CN110648769A - A first wall structure for the strong field side of a tokamak device - Google Patents
A first wall structure for the strong field side of a tokamak device Download PDFInfo
- Publication number
- CN110648769A CN110648769A CN201810675853.3A CN201810675853A CN110648769A CN 110648769 A CN110648769 A CN 110648769A CN 201810675853 A CN201810675853 A CN 201810675853A CN 110648769 A CN110648769 A CN 110648769A
- Authority
- CN
- China
- Prior art keywords
- field side
- wall
- vacuum chamber
- graphite block
- ring support
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 57
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 57
- 239000010439 graphite Substances 0.000 claims abstract description 57
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 26
- 229910052802 copper Inorganic materials 0.000 claims abstract description 13
- 239000010949 copper Substances 0.000 claims abstract description 13
- 239000011889 copper foil Substances 0.000 claims abstract description 13
- 238000012546 transfer Methods 0.000 claims abstract description 9
- 238000009434 installation Methods 0.000 claims description 7
- 229910001220 stainless steel Inorganic materials 0.000 claims description 6
- 239000010935 stainless steel Substances 0.000 claims description 6
- 239000011888 foil Substances 0.000 claims description 3
- 239000002131 composite material Substances 0.000 claims 1
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- 238000001816 cooling Methods 0.000 abstract description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 2
- 239000011324 bead Substances 0.000 description 12
- 238000010586 diagram Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- -1 backing plates Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21B—FUSION REACTORS
- G21B1/00—Thermonuclear fusion reactors
- G21B1/11—Details
- G21B1/13—First wall; Blanket; Divertor
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C15/00—Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
- G21C15/02—Arrangements or disposition of passages in which heat is transferred to the coolant; Coolant flow control devices
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/10—Nuclear fusion reactors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Plasma Technology (AREA)
Abstract
本发明公开了一种用于托卡马克装置强场侧的第一壁结构,第一壁安装在托克马克装置的真空室强场侧壁上,石墨块厚度中心插入截面压条,然后通过采用螺钉和蝶形垫圈结构连接至背板上,背板与石墨块组合结构通过螺钉和蝶形垫圈固定至经环支撑上,经环支撑通过内螺纹螺帽与外螺纹螺柱固定至真空室强场侧壁上,且经环支撑与真空室强场侧壁间填充有铜块/铜箔组合件。本发明的有益效果在于:强场侧第一壁结构非主动水冷结构,但传热性能较好,可最大化节约等离子体物理空间。该结构中均采用紧固件连接形式,故强场侧第一壁结构易于安装及后期运行维护,同时等离子体物理界面调整精度高等。
The invention discloses a first wall structure used for the strong field side of a tokamak device. The first wall is installed on the strong field side wall of a vacuum chamber of the tokamak device. The screw and butterfly washer structure is connected to the back plate, the back plate and the graphite block combined structure are fixed to the ring support through the screw and butterfly washer, and the ring support is fixed to the vacuum chamber through the inner thread nut and the outer thread stud. A copper block/copper foil assembly is filled on the field sidewall and between the ring support and the vacuum chamber strong field sidewall. The beneficial effect of the present invention is that the first wall structure on the strong field side is not an active water cooling structure, but has better heat transfer performance and can maximize the saving of plasma physical space. In this structure, fasteners are used for connection, so the first wall structure on the strong field side is easy to install and operate and maintain in the later stage, and the adjustment precision of the plasma physical interface is high.
Description
技术领域technical field
本发明属于一种应用于中国环流器二号M(HL-2M)装置中的部件,具体涉及一种用于托卡马克装置强场侧的第一壁结构。The invention belongs to a component used in a China Circulator No. 2 M (HL-2M) device, in particular to a first wall structure used for the strong field side of a tokamak device.
背景技术Background technique
在托卡马卡装置中,第一壁结构用于包围等离子体的第一物理边界,防止等离子大量热负荷破坏真空室和位于真空室内的诊断设备。强场侧第一壁位于真空室中心柱内壁上,属于真空室内部件范畴。由于时常会有高能逃逸电子和环向场纹波捕获离子使强场侧第一壁局部发生过高的热量沉积导致其损坏,故必须设计出一种同时满足以下两个主要功能的新型强场侧第一壁结构:一是该结构需有效将等离子体辐射能量传递至真空室之外,二是该结构易于安装维护且安装精度要求较高。In the tokamaka device, the first wall structure is used to surround the first physical boundary of the plasma, preventing the large thermal load of the plasma from damaging the vacuum chamber and the diagnostic equipment located within the vacuum chamber. The first wall on the strong field side is located on the inner wall of the central column of the vacuum chamber and belongs to the category of components in the vacuum chamber. Since high-energy escaped electrons and trapped ions in toroidal field ripples often cause excessive heat deposition locally on the first wall on the strong field side, causing it to be damaged, it is necessary to design a new type of strong field that satisfies the following two main functions at the same time Side first wall structure: First, the structure needs to effectively transfer the plasma radiation energy to the outside of the vacuum chamber, and second, the structure is easy to install and maintain and requires high installation accuracy.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种用于托卡马克装置强场侧的第一壁结构,它既有较优的传热性能,又可易于安装维护且等离子体物理界面安装精度较高。The purpose of the present invention is to provide a first wall structure for the strong field side of a tokamak device, which not only has better heat transfer performance, but also is easy to install and maintain, and has high installation accuracy of the plasma physical interface.
本发明的技术方案如下:一种用于托卡马克装置强场侧的第一壁结构,它包括真空室强场侧壁,经环支撑,内螺纹螺帽,铜块/铜箔组合件,压条,背板,石墨块,螺钉,蝶形垫圈和外螺纹螺柱,第一壁安装在托克马克装置的真空室强场侧壁上,石墨块厚度中心插入截面压条,然后通过采用螺钉和蝶形垫圈结构连接至背板上,背板与石墨块组合结构通过螺钉和蝶形垫圈固定至经环支撑上,经环支撑通过内螺纹螺帽与外螺纹螺柱固定至真空室强场侧壁上,且经环支撑与真空室强场侧壁间填充有铜块/铜箔组合件。The technical scheme of the present invention is as follows: a first wall structure for a strong field side of a tokamak device, which comprises a strong field side wall of a vacuum chamber, supported by a ring, an internal thread nut, a copper block/copper foil assembly, Beads, backing plates, graphite blocks, screws, butterfly washers and externally threaded studs, the first wall is mounted on the strong field side wall of the vacuum chamber of the Tokamak device, the thickness center of the graphite block is inserted into the section bead, and then the cross-section bead is inserted through the use of screws and The butterfly washer structure is connected to the back plate, the back plate and the graphite block combined structure are fixed to the ring support through screws and butterfly washers, and the ring support is fixed to the strong field side of the vacuum chamber through the inner thread nut and the outer thread stud A copper block/copper foil assembly is filled between the ring support and the strong field side wall of the vacuum chamber.
所述的外螺纹螺柱与真空室强场侧壁采用焊接形式。The external thread stud and the side wall of the vacuum chamber strong field are in the form of welding.
所述的经环支撑厚度为35mm,长800mm,经环支撑通过焊接在真空室强场侧壁的外螺纹螺柱及内六角内螺纹螺帽进行固定至真空室强场侧壁上,整个强场侧第一壁经环支撑环向共有10个,位于真空室相邻两个扇段的端部。The thickness of the ring support is 35mm, and the length is 800mm. The ring support is fixed to the side wall of the vacuum chamber through the external thread stud and the inner hexagonal internal thread nut welded on the side wall of the vacuum chamber. A total of 10 first walls on the field side are supported in the ring direction, and are located at the ends of two adjacent sectors of the vacuum chamber.
所述的石墨块尺寸有两种,一种是由两根压条共同固定的石墨块,另一种是单根压条固定的石墨块,前者的尺寸是后者尺寸的两倍,前者位于单个第一壁模块结构的中部位置,面向等离子体表面无螺栓孔;后者位于其两端,表面开有螺栓孔,用于固定单个模块至经环支撑,厚度均为25mm。There are two sizes of the graphite block, one is a graphite block fixed by two beading bars, and the other is a graphite block fixed by a single beading bar, the size of the former is twice the size of the latter, and the former is located in a single The middle part of the one-wall module structure has no bolt holes on the plasma-facing surface; the latter is located at both ends, with bolt holes on the surface, which are used to fix a single module to the ring support, with a thickness of 25mm.
所述的石墨块与石墨块之间留有0.67mm的间隙,主要用于吸收热变形。A gap of 0.67 mm is left between the graphite blocks, which is mainly used for absorbing thermal deformation.
所述的石墨块侧面开有15的圆孔,其用于插入半圆形截面的压条,石墨块后面为背板,其材料为316L不锈钢,主要用于通过紧固件将插有压条的石墨块整合形成一个部件,便于安装和固定。There are 15 round holes on the side of the graphite block, which are used for inserting the bead with a semicircular cross-section. Behind the graphite block is a back plate, which is made of 316L stainless steel. It is mainly used to insert the graphite with the bead through fasteners. The blocks are integrated to form one part for easy installation and securing.
所述的石墨块与背板间垫有石墨箔,用于改善两者间的传热接触性能,对于整个强场侧所需的第一壁由上述的石墨块与背板整合成的模块数量共计有80 个。A graphite foil is placed between the graphite block and the back plate to improve the heat transfer and contact performance between the two. The number of modules that the first wall required for the entire high-field side is composed of the above-mentioned graphite block and the back plate. There are 80 in total.
所述的石墨块与背板组合结构两端通过四颗M8螺钉及蝶形垫圈从强场侧第一壁正面进行拧紧固定至经环支撑,其中,经环支撑采用316L不锈钢,厚度为35mm。The two ends of the graphite block and the back plate combined structure are tightened and fixed to the meridian support through four M8 screws and butterfly washers from the front of the first wall on the strong field side, wherein the meridian support is made of 316L stainless steel with a thickness of 35mm.
本发明的有益效果在于:强场侧第一壁结构非主动水冷结构,但传热性能较好,可最大化节约等离子体物理空间。该结构中均采用紧固件连接形式,故强场侧第一壁结构易于安装及后期运行维护,同时等离子体物理界面调整精度高等。The beneficial effect of the present invention is that: the first wall structure on the strong field side is not an active water cooling structure, but has better heat transfer performance and can maximize the saving of plasma physical space. Fasteners are used in this structure, so the first wall structure on the strong field side is easy to install and operate and maintain later, and at the same time, the adjustment precision of the plasma physical interface is high.
附图说明Description of drawings
图1为本发明所提供的一种用于托卡马克装置强场侧的第一壁结构示意图;1 is a schematic diagram of a first wall structure for a strong field side of a tokamak device provided by the present invention;
图2为强场侧第一壁结构两端紧固件连接形式剖面结构示意图。FIG. 2 is a schematic cross-sectional structural diagram of the connection form of fasteners at both ends of the first wall structure on the strong field side.
图中:1真空室强场侧壁,2经环支撑,3内螺纹螺帽,4铜块/铜箔组合件, 5截面压条,6背板,7石墨块,8螺钉,9蝶形垫圈,10外螺纹螺柱。In the picture: 1. Strong field side wall of vacuum chamber, 2. Supported by ring, 3. Internal thread nut, 4. Copper block/copper foil assembly, 5. Sectional bead, 6. Back plate, 7. Graphite block, 8. Screw, 9. Butterfly washer , 10 male threaded studs.
具体实施方式Detailed ways
下面结合附图及具体实施例对本发明作进一步详细说明。The present invention will be further described in detail below with reference to the accompanying drawings and specific embodiments.
如图1和2所示,一种用于托卡马克装置强场侧的第一壁结构包括背板6 与石墨块7连接结构,经环支撑2,铜块/铜箔组合件4以及系列紧固件等结构。As shown in Figures 1 and 2, a first wall structure for the strong field side of a tokamak device includes a
第一壁主要安装在托克马克装置的真空室强场侧壁1上,石墨块7厚度中心开孔插入半圆形截面压条5,然后通过采用螺钉和蝶形垫圈结构连接至背板6 上;背板6与石墨块7组合结构通过螺钉8和蝶形垫圈9固定至经环支撑2上;经环支撑2通过内螺纹螺帽3与外螺纹螺柱10固定至真空室强场侧壁1上,且经环支撑2与真空室强场侧壁1间填充有铜块/铜箔组合件4,用于对石墨块7 表面精度调整,该铜块/铜箔组合件4主要用于调整等离子体物理界面精度以及改善经环支撑2与真空室强场侧壁1间的接触传热性能。铜块/铜箔组合件4的厚度及形状与真空室强场侧壁1加工精度有关,目前设计最大可调精度范围为 10mm。外螺纹螺柱10与真空室强场侧壁1采用焊接形式。强场侧第一壁经环支撑2厚度为35mm,长800mm。经环支撑2通过焊接在真空室强场侧壁1的外螺纹螺柱10及内六角内螺纹螺帽3进行固定至真空室强场侧壁1上。整个强场侧第一壁经环支撑环向共有10个,位于真空室相邻两个扇段的端部。The first wall is mainly installed on the strong field side wall 1 of the vacuum chamber of the tokemak device, the thickness center of the
面对等离子体侧为单曲面的石墨块7,石墨块7尺寸有两种,一种是由两根压条共同固定的石墨块7,另一种是单根压条固定的石墨块7,前者的尺寸是后者尺寸的两倍。前者位于单个第一壁模块结构的中部位置,面向等离子体表面无螺栓孔;后者位于其两端,表面开有螺栓孔,用于固定单个模块至经环支撑2,厚度均为25mm。石墨块7与石墨块7之间留有0.67mm的间隙,主要用于吸收热变形。石墨块7侧面开有15的圆孔,其用于插入半圆形截面的压条5。石墨块7后面为背板6,其材料为316L不锈钢,主要用于通过紧固件将插有压条5的石墨块7整合形成一个部件,便于安装和固定。石墨块7与背板6间垫有石墨箔,用于改善两者间的传热接触性能。对于整个强场侧所需的第一壁由上述的石墨块7与背板6整合成的模块数量共计有80个。The
为了强场侧第一壁结构易于安装维护,石墨块7与背板6组合结构两端通过四颗M8螺钉8及蝶形垫圈9从强场侧第一壁正面进行拧紧固定至经环支撑2。其中,经环支撑2采用316L不锈钢,厚度为35mm。In order to facilitate the installation and maintenance of the first wall structure on the strong field side, the two ends of the combined structure of the
为消除石墨块7与等离子体间的物理界面偏差,填充有铜块/铜箔组合件4 用于调整物理界面精度,其位于经环支撑2与强场侧真空室壁1间。此结构中铜块/铜箔组合件4可调整偏差为10mm,该数值主要依据真空室强场侧壁1的加工误差而定。In order to eliminate the physical interface deviation between the
另一主要功能是有效改善真空室强场侧壁1与强场侧第一壁结构间的相互接触,进而提高强场侧第一壁结构的传热性能。Another main function is to effectively improve the mutual contact between the strong field side wall 1 of the vacuum chamber and the first wall structure on the strong field side, thereby improving the heat transfer performance of the first wall structure on the strong field side.
为易于对支撑组件(包括经环支撑2、铜块/铜箔组合件4)的安装维护,经环支撑2与真空室强场侧壁1间通过外螺纹螺柱10及内螺纹螺帽3进行固定。首先是将M10外螺纹螺柱10焊接至真空室强场侧壁1上,然后从正面拧内六角螺帽3将支撑组件固定。In order to facilitate the installation and maintenance of the support components (including the via-
将石墨块7与背板6整合成一个模块后,在两端拧带有蝶形垫圈9的M8 螺钉8将其固定至经环支撑2。相邻模块之间有1mm的间隙,每个模块之间相互独立,易于安装及后期运行维护。After integrating the
为了避免紧固件直接面向离子体承受大量热负荷而损坏情况,紧固件从背板6凹面拧向插有压条5的石墨块7将石墨块7固定。背板6的整体厚度为 15mm,采用板材滚卷而成;石墨块7厚度为25mm,厚度中心开有15的通孔,用于插入半圆形截面压条5;压条5对应背板6螺钉孔位置开有直径为6的螺孔,用于背板6与石墨块7的固定。In order to prevent the fasteners from directly facing the ion body and being damaged by a large amount of thermal load, the fasteners are screwed from the concave surface of the
本发明不限于上述实施例,还可以在不脱离本发明宗旨的前提下做出各种变化。本发明中未作详细描述的内容均可以采用现有技术。The present invention is not limited to the above-described embodiments, and various changes can be made without departing from the spirit of the present invention. The content that is not described in detail in the present invention can use the prior art.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810675853.3A CN110648769B (en) | 2018-06-27 | 2018-06-27 | First wall structure for strong field side of tokamak device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810675853.3A CN110648769B (en) | 2018-06-27 | 2018-06-27 | First wall structure for strong field side of tokamak device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110648769A true CN110648769A (en) | 2020-01-03 |
CN110648769B CN110648769B (en) | 2024-06-11 |
Family
ID=69008939
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810675853.3A Active CN110648769B (en) | 2018-06-27 | 2018-06-27 | First wall structure for strong field side of tokamak device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110648769B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113963816A (en) * | 2021-11-09 | 2022-01-21 | 中国科学院合肥物质科学研究院 | A combined first wall structure suitable for high field side of tokamak device |
CN114459193A (en) * | 2021-11-09 | 2022-05-10 | 中国科学院合肥物质科学研究院 | A water-cooling module for tokamak device using stainless steel copper alloy composite plate and its processing method |
CN114864113A (en) * | 2022-05-31 | 2022-08-05 | 核工业西南物理研究院 | First wall structure of tokamak |
CN117038115A (en) * | 2023-09-20 | 2023-11-10 | 中国科学院合肥物质科学研究院 | Composite tile structure for a first wall plasma-facing component of a tokamak device |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07167972A (en) * | 1993-12-15 | 1995-07-04 | Toshiba Corp | First wall for nuclear fusion device |
EP1063871A1 (en) * | 1999-06-24 | 2000-12-27 | European Community | Divertorfiltering element for a tokamak nuclear fusion reactor, divertor employing the filtering element and tokamak nuclear fusion reactor employing the divertor |
JP2001349969A (en) * | 2000-06-08 | 2001-12-21 | Japan Atom Energy Res Inst | Vacuum container for tokamak fusion device |
CN201549241U (en) * | 2009-09-10 | 2010-08-11 | 中国科学院等离子体物理研究所 | Connection structure of divertor components in superconducting tokamak |
CN102653856A (en) * | 2012-04-16 | 2012-09-05 | 中国科学院等离子体物理研究所 | Method for improving first wall fuel recycling of full-superconducting tokomak by using lithium metal coating layer |
CN206532603U (en) * | 2016-12-30 | 2017-09-29 | 核工业西南物理研究院 | A kind of passive cooled TOKAMAK device feeble field side the first wall component |
CN208507202U (en) * | 2018-06-27 | 2019-02-15 | 核工业西南物理研究院 | A kind of the first wall construction for tokamak device high field side |
-
2018
- 2018-06-27 CN CN201810675853.3A patent/CN110648769B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07167972A (en) * | 1993-12-15 | 1995-07-04 | Toshiba Corp | First wall for nuclear fusion device |
EP1063871A1 (en) * | 1999-06-24 | 2000-12-27 | European Community | Divertorfiltering element for a tokamak nuclear fusion reactor, divertor employing the filtering element and tokamak nuclear fusion reactor employing the divertor |
JP2001349969A (en) * | 2000-06-08 | 2001-12-21 | Japan Atom Energy Res Inst | Vacuum container for tokamak fusion device |
CN201549241U (en) * | 2009-09-10 | 2010-08-11 | 中国科学院等离子体物理研究所 | Connection structure of divertor components in superconducting tokamak |
CN102653856A (en) * | 2012-04-16 | 2012-09-05 | 中国科学院等离子体物理研究所 | Method for improving first wall fuel recycling of full-superconducting tokomak by using lithium metal coating layer |
CN206532603U (en) * | 2016-12-30 | 2017-09-29 | 核工业西南物理研究院 | A kind of passive cooled TOKAMAK device feeble field side the first wall component |
CN208507202U (en) * | 2018-06-27 | 2019-02-15 | 核工业西南物理研究院 | A kind of the first wall construction for tokamak device high field side |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113963816A (en) * | 2021-11-09 | 2022-01-21 | 中国科学院合肥物质科学研究院 | A combined first wall structure suitable for high field side of tokamak device |
CN114459193A (en) * | 2021-11-09 | 2022-05-10 | 中国科学院合肥物质科学研究院 | A water-cooling module for tokamak device using stainless steel copper alloy composite plate and its processing method |
CN113963816B (en) * | 2021-11-09 | 2023-08-18 | 中国科学院合肥物质科学研究院 | A combined first wall structure suitable for the high field side of a tokamak device |
CN114459193B (en) * | 2021-11-09 | 2023-09-12 | 中国科学院合肥物质科学研究院 | Water cooling module for tokamak device adopting stainless steel copper alloy composite board and processing method thereof |
CN114864113A (en) * | 2022-05-31 | 2022-08-05 | 核工业西南物理研究院 | First wall structure of tokamak |
CN117038115A (en) * | 2023-09-20 | 2023-11-10 | 中国科学院合肥物质科学研究院 | Composite tile structure for a first wall plasma-facing component of a tokamak device |
Also Published As
Publication number | Publication date |
---|---|
CN110648769B (en) | 2024-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110648769A (en) | A first wall structure for the strong field side of a tokamak device | |
US11311909B2 (en) | Device and method for reducing and homogenizing residual stress of a component by array of high-energy elastic waves | |
CN201549241U (en) | Connection structure of divertor components in superconducting tokamak | |
CN104994672A (en) | Cylindrical probe used for plume measurement of magnetic plasma thrustor | |
CN208507202U (en) | A kind of the first wall construction for tokamak device high field side | |
CN115762815A (en) | A first wall structure used in a tokamak vacuum chamber | |
CN105120633A (en) | Heat radiation apparatus of charging system of underwater autonomous vehicle | |
CN211319729U (en) | An adjustable connecting structure of ultra-thin plates in a tokamak device | |
CN113375546A (en) | Limiter probe system suitable for magnetic restraint device | |
CN104702048A (en) | Motor heat-insulating device | |
CN109599310B (en) | An ion source mounting bracket | |
CN104384819B (en) | A kind of installing and fixing method of plate nut | |
CN111370145A (en) | A divertor for magnetic confinement nuclear fusion vacuum chambers | |
CN109576664B (en) | A triple grid assembly and an ion source containing the triple grid assembly | |
JPS58197679A (en) | Matrix type fuel cell | |
CN206961922U (en) | A kind of combined cell module | |
CN210606651U (en) | A divertor for magnetic confinement nuclear fusion vacuum chambers | |
CN114530261A (en) | Sealing ring sealing structure used under ultrahigh vacuum environment | |
CN210666559U (en) | Insulating machine case easy to radiate and suitable for server | |
RU128383U1 (en) | REMOVABLE ELECTRIC ISOLATING CONNECTION OF THE BLANKET MODULE AND THE THERMONUCLEAR REACTOR VACUUM CAMERA (OPTIONS) | |
CN219975145U (en) | Adjustable bearing seat assembly for photovoltaic solar panel | |
CN106602933A (en) | Integrated component used for thermoelectric exchanger assembling | |
CN202323018U (en) | Labyrinth inlet device for vacuum chamber of large plate type PECVD equipment | |
CN112357127B (en) | A compression device suitable for the installation of heat pipes inside and outside of satellites | |
CN217600844U (en) | A high-strength condenser cathodic protection device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |