[go: up one dir, main page]

CN110643618B - Jatropha MYB transcription factor JcMYB16 gene and its application in improving plant drought resistance - Google Patents

Jatropha MYB transcription factor JcMYB16 gene and its application in improving plant drought resistance Download PDF

Info

Publication number
CN110643618B
CN110643618B CN201911098741.7A CN201911098741A CN110643618B CN 110643618 B CN110643618 B CN 110643618B CN 201911098741 A CN201911098741 A CN 201911098741A CN 110643618 B CN110643618 B CN 110643618B
Authority
CN
China
Prior art keywords
gene
jcmyb16
jatropha
drought
plants
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201911098741.7A
Other languages
Chinese (zh)
Other versions
CN110643618A (en
Inventor
唐跃辉
王健
包欣欣
齐静
刘坤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhoukou Normal University
Original Assignee
Zhoukou Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhoukou Normal University filed Critical Zhoukou Normal University
Priority to CN201911098741.7A priority Critical patent/CN110643618B/en
Publication of CN110643618A publication Critical patent/CN110643618A/en
Application granted granted Critical
Publication of CN110643618B publication Critical patent/CN110643618B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Botany (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明提供了一种小桐子MYB类转录因子JcMYB16基因,其基因核苷酸序列为SEQ ID NO.1,其基因开放阅读框的核苷酸序列为SEQ ID NO.2超表达JcMYB16基因不影响植物的生长和发育,可以显著提高干旱胁迫抗性。该基因可以用于小桐子及水稻、小麦等禾谷类作物耐干旱品种的培育,还可应用于大麦、高粱、玉米、拟南芥、番茄、烟草、大豆、土豆等作物耐旱品种的培育。

Figure 201911098741

The invention provides a Jatropha MYB class transcription factor JcMYB16 gene, its gene nucleotide sequence is SEQ ID NO.1, and the nucleotide sequence of its gene open reading frame is SEQ ID NO.2. Overexpression of JcMYB16 gene does not affect Plant growth and development can significantly improve drought stress resistance. The gene can be used for the cultivation of drought-resistant varieties of cereal crops such as jatropha, rice, and wheat, and can also be applied to the cultivation of drought-tolerant varieties of crops such as barley, sorghum, corn, Arabidopsis, tomato, tobacco, soybean, and potato.

Figure 201911098741

Description

小桐子MYB类转录因子JcMYB16基因及其在提高植物抗旱性中的应用Jatropha MYB transcription factor JcMYB16 gene and its application in improving plant drought resistance

技术领域technical field

本发明属于植物生物技术领域,它涉及一种小桐子MYB类转录因子JcMYB16基因及其在植物中的应用。The invention belongs to the field of plant biotechnology, and relates to a Jatropha MYB transcription factor JcMYB16 gene and its application in plants.

背景技术Background technique

干旱胁迫引发的植物生理缺水严重影响植物生长发育和农作物产量。统计显示,目前我国可耕地面积仅有1.21亿公顷,而荒漠化和盐碱化土地有2.6亿公顷,人为因素造成的废弃土地0.13亿公顷。因此干旱胁迫已成为制约我国农作物生长发育的瓶颈,解决这一问题的重要途径就是大力加强耐逆性相关基因的挖掘及在分子育种中的开发利用研究。目前,对于模式植物拟南芥的研究已经初步了解了植物响应干旱胁迫信号的信号途径,确定了一些抗旱途径的基因。由于物种进化的特异性和相关基因在特定物种的局限性,很难在单一物种中筛选出更多的抗旱相关基因。但是,由于物种的多样性,很多植物具有较好的耐干旱的特性,因此从具有耐干旱特性的植物中挖掘抗旱的基因资源,为将来应用于我国农作物耐旱品种培育具有重要的农业价值和应用前景。小桐子的引入给我们提供了一个较理想的方案,它不仅可以改善环境,改良土壤,保持水土,还可以作为生物质能源产生较大的经济效益。小桐子(Jatropha curcas L.)是大戟科麻疯树属的多年生落叶灌木/小乔木,具有繁殖快、耐逆强特别是耐干旱的特性。Physiological water shortage in plants caused by drought stress seriously affects plant growth and crop yield. Statistics show that the arable land area in my country is only 121 million hectares at present, while the desertification and salinization land has 260 million hectares, and the abandoned land caused by human factors is 13 million hectares. Therefore, drought stress has become a bottleneck restricting the growth and development of crops in my country. An important way to solve this problem is to vigorously strengthen the mining of genes related to stress tolerance and the development and utilization research in molecular breeding. At present, the research on the model plant Arabidopsis has preliminarily understood the signaling pathways of plants responding to drought stress signals, and identified some genes of drought resistance pathways. Due to the specificity of species evolution and the limitation of related genes in specific species, it is difficult to screen out more genes related to drought resistance in a single species. However, due to the diversity of species, many plants have good drought-tolerant characteristics, so excavating drought-resistant gene resources from plants with drought-tolerant characteristics has important agricultural values and Application prospects. The introduction of jatropha provides us with an ideal solution. It can not only improve the environment, improve the soil, maintain water and soil, but also generate greater economic benefits as biomass energy. Jatropha curcas L. is a perennial deciduous shrub/small tree of the genus Jatropha in the Euphorbiaceae family. It has the characteristics of fast reproduction, strong stress tolerance, especially drought tolerance.

MYB类转录因子是众多类转录因子中的一大类,以其蛋白N端含有50多个氨基酸组成的保守MYB结构域为重要特征,且含有1—3个串联的、不完全重复的MYB结构域(R1、R2和R3)。根据MYB结构域的个数,可将MYB转录因子分成4类,分别是1R-MYB、2R-MYB(R2R3-MYB)、3R-MYB(R1R2R3-MYB)和4R-MYB(four R1/R2)。MYB转录因子在调控植物的生长发育、生理生化过程和抗逆性中有重要作用。此外,MYB转录因子在植物响应干旱胁迫过程中,MYB转录因子也发挥关键的作用。比如,拟南芥AtMYB2转录因子和rd22BP1分别结合到干旱胁迫响应基因rd22的启动子区域,然后共同激活rd22的表达,从而实现抗旱性越来越多的研究表明,MYB蛋白参与植物对非生物胁迫响应的调控。总之,尽管许多MYB蛋白已经被克隆和功能分析,但是小桐子MYB家族响应干旱胁迫的基因仍然罕见报道。因此,克隆小桐子MYB家族参与干旱胁迫调控基因并对其功能进行研究,为抗旱作物品种培育提供一个新的基因资源,为培育抗干旱植物提供分子理论基础,有助于我国干旱土地得到有效的开发利用,进而促进我国国民经济的可持续发展和生态环境的有效保护。MYB transcription factors are one of many transcription factors, which are characterized by a conserved MYB domain consisting of more than 50 amino acids at the N-terminus of the protein, and contain 1-3 tandem, incompletely repeated MYB structures Domains (R1, R2, and R3). According to the number of MYB domains, MYB transcription factors can be divided into four categories, namely 1R-MYB, 2R-MYB (R2R3-MYB), 3R-MYB (R1R2R3-MYB) and 4R-MYB (four R1/R2) . MYB transcription factors play an important role in regulating plant growth and development, physiological and biochemical processes and stress resistance. In addition, MYB transcription factors also play a key role in the process of plant response to drought stress. For example, the Arabidopsis AtMYB2 transcription factor and rd22BP1 respectively bind to the promoter region of the drought stress response gene rd22, and then jointly activate the expression of rd22 to achieve drought resistance. More and more studies have shown that MYB proteins are involved in plant response to abiotic stress Response regulation. In conclusion, although many MYB proteins have been cloned and functionally analyzed, the drought stress-responsive genes of the Jatropha MYB family are still rarely reported. Therefore, cloning the Jatropha MYB family involved in drought stress regulation genes and studying their functions will provide a new gene resource for the breeding of drought-resistant crop varieties, provide a molecular theoretical basis for the cultivation of drought-resistant plants, and help my country's arid land to be effectively protected. Development and utilization, and then promote the sustainable development of my country's national economy and the effective protection of the ecological environment.

发明内容Contents of the invention

本发明的目的在于提供了一种小桐子MYB类转录因子JcMYB16基因及其在植物中的应用,该基因可以提高植物的抗干旱能力,对植物应对逆境胁迫的分子育种具有重要价值。The object of the present invention is to provide a Jatropha MYB transcription factor JcMYB16 gene and its application in plants. The gene can improve the drought resistance ability of plants and has important value for molecular breeding of plants coping with adversity stress.

为实现上述目的,本发明采用的技术方案如下:To achieve the above object, the technical scheme adopted in the present invention is as follows:

一种小桐子MYB类转录因子JcMYB16基因核苷酸序列为SEQ ID NO.1,其基因开放阅读框的核苷酸序列为SEQ ID NO.2。The nucleotide sequence of a Jatropha MYB transcription factor JcMYB16 gene is SEQ ID NO.1, and the nucleotide sequence of its gene open reading frame is SEQ ID NO.2.

一种多肽,多肽的氨基酸序列由SEQ ID NO.3编码而成。A polypeptide whose amino acid sequence is encoded by SEQ ID NO.3.

一种重组构建体,重组构建体包含SEQ ID NO.1所示的核苷酸序列,所述构建体用的载体为用于克隆的pMD18-T载体或者用于表达的pCAMBIA1301载体。A kind of recombinant construct, recombinant construct comprises the nucleotide sequence shown in SEQ ID NO.1, and the vector that described construct is used is the pMD18-T vector that is used for cloning or the pCAMBIA1301 vector that is used for expressing.

小桐子MYB类转录因子JcMYB16基因的转基因农杆菌为EHA105或GV3101。The transgenic Agrobacterium of Jatropha MYB transcription factor JcMYB16 gene is EHA105 or GV3101.

小桐子MYB类转录因子JcMYB16基因的核苷酸序列在提高植物抗旱性的应用。Application of the nucleotide sequence of JcMYB16 gene of MYB transcription factor of Jatropha Jatropha in improving drought resistance of plants.

小桐子MYB类转录因子JcMYB16基因的核苷酸序列在提高植物抗旱性的应用,所述植物为单子叶植物或双子叶植物。The application of the nucleotide sequence of JcMYB16 gene of Jatropha MYB transcription factor in improving the drought resistance of plants, and the plants are monocotyledonous plants or dicotyledonous plants.

所述单子叶植物为水稻,所述双子叶植物为小桐子拟南芥。The monocotyledon is rice, and the dicotyledon is Arabidopsis jatropha.

所述SEQ ID NO.1为:Said SEQ ID NO.1 is:

TTAGTGGTGGTTAAACTTTCAAAATCTCGATAGTGCAAGTATTTGAATTTTTAGGTTATGTTTCTTTTATGGCCTTTCGCACTGTTAGTGGAATTGGAGTGTGAAAATGGAATCTGGGGTTAGAGATTATTTTTCTTCTCTAATCAGGAGTGAGAAACCTTGAATTACTGGCCGTTCTACTCTCAATTAATGGCTTTCTGTTCCCAGGAATTGCCCTTCAAATCTGCTGTTGATAACATAGGTCAGCAGTTCACAAGAGTCCAATTTTTTTGAATTGTGGAGCAAATTACCATTGAATTCTTCACATACTCCGTTGGGATTTTGTGATTTTTATTGGAGGTGATCTCTGGTTCAGTTCTCTTGGCTTTTTTTGGGTCCATCTGCTTGTTTCTCGTCTTCCTTACCTCTACACCCTGACACATCCTGCTGCTTTCCCATAATTCTGTTCTGCCATCACTCCAACTGTTGGTCATAACCAAATATAGAAATTATTCAGATCCAAATTTCAAGAAACCGTTCTAGAATTTTTTTTTTTTTTCAAGATTGGCTTATTAATTTAGCCTAGATTCTAGAGCTAGGTTTTTCCTTTCTTTGCTAGTGTAAGATTCAAACCAGTCTAGATGATTGCGGATGAAGCAGACTGCAGCTCTGTGTGGACTAGGGAGCAGGATAAGGCATTTGAGGATGCCCTTGCAACATATCCTGAGGATGCTGTAGATCGGTGGGAGAAAATTGCTGCTGATGTTCCTGGGAAAACCTTAGAAGAGCTTAAACTTCACTATGAACTTCTGGTTGAAGATTTGAATCAGATTGAAGCTGGCTGTGTGCCTCTGCCTAACTACTCTTCTATGGAGGGTTCAATAAGCCAAGCTGGCGATGAAGGAACTACTAAGAAGGGTGGTCAAATGGGGCACCATAACAGTGAGTCTACTCATGGAAATAAGGCTTCAAGGTCAGATCAAGAACGCCGTAAAGGAATCGCTTGGACAGAGGATGAGCACAGGTTATTTCTTCTTGGTTTGGACAAATATGGGAAAGGTGACTGGCGAAGTATTTCCAGAAACTTTGTTGTGACAAGGACACCTACGCAAGTGGCAAGCCATGCACAAAAATATTTCATTCGTTTGAACTCGATGAACAAAGATAGGAGGCGTTCCAGCATTCATGATATCACCAGTGTTGGCAATGGAGATATTTCAGCGCCACAAGGACCAATAACTGGTCAAACAAATGGTTCTGCTGCAGGAGGTTCCTCTGGTAAAGCTGCTAAACAACCCCCTCAACACCCTACTGGACCTCCAGGAGTTGGTGTTTATGGTCCTCCGACTATAGGGCAACCTATAGGAGGTCCCCTTGTCTCAGCAGTTGGCACCCCTGTGAATCTTCCTGCCCCTGCACACATGGCTTATGGCGTTAGAGCTCCTGTACCAGGAACAGTACCGGGAGCTGTGGTTCCTGGTGCACCAATGATGAACATGGGTCCTATGGCATATCCAATGCCACCGACAACTGCTCATAGGTGATATACATGGTTTAGCTGCAAAATGTACAAAGACAGAAGGCTACTTGCTTGTATTTCTGGTGGGTCAGTGGCTTCTCCATTTTAGCCTGAATAAAACTGCTTATTTGCAAGCAAAAATTGTCTGATGTCATTTGTTTATTCTGGTAGCAATATCAAATAAACCAATAGGTAGAGAAACTACATGCATTTGTATAGGCAGCAGCTGTGGAAAATATGGCAGCAGTTATGGGTAGGACACATTTTGGTACTTTTTTTTTGGTTTTACATTACAATGTTTAGTCTCAGTAGCAGTCAGTTAATGGTATTTTACTTTTAATGACCAAATTTGTAAAGAATCCATTTATACGTTTTACTATTTTGAGTAGTAGATGTTGGCACGGATTGTGCAAAGCCTTTGTAAAAAAAAGTACCAAAATGTGTCCTACCCATAACTGCTGCCATATTTTCCACAGCTGCTGCCTATACAAATGCATGTAGTTTCTCTACCTATTGGTTTATTTGATATTGCTACCAGAATAAACAAATGACATCAGACAATTTTTGCTTGCAAATAAGCAGTTTTATTCAGGCTAAAATGGAGAAGCCACTGACCCACCAGAAATACAAGCAAGTAGCCTTCTGTCTTTGTACATTTTGCAGCTAAACCATGTATATCACCTATGAGCAGTTGTCGGTGGCATTGGATATGCCATAGGACCCATGTTCATCATTTAGTGGTGGTTAAACTTTCAAAATCTCGATAGTGCAAGTTTGAATTTTTAGGTTATGTTTCTTTTATGGCCTTTCGCACTGTTAGTGGAATTGGAGTGTGAAAATGGAATCTGGGGTTAGAGATTATTTTTCTTCTCTAATCAGGAGTGAGAAACCTTGAATTACTGGCCGTTCTACTCTCAATTAATGGCTTTCTGTTCCCAGGAATTGCCCTTCAA ATCTGCTGTTGATAACATAGGTCAGCAGTTCACAAGAGTCCAATTTTTTTGAATTGTGGAGCAAATTACCATTGAATTCTTCATACTCCGTTGGGATTTTGTGATTTTTATTGGAGGTGATCTCTGGTTCAGTTTCTTGGCTTTTTTTGGGTCCATCTGCTTGTTTCTCGTCTTTCCTTACCTCTACACCCTGACACATCCTGCTGCTTTCCCATAATTCCTGTT CTGCCATCACTCCAACTGTTGGTCATAACCAAATAGAAATTATTCAGATCCAAATTTCAAGAAACCGTTCTAGAATTTTTTTTTTTTTTCAAGATTGGCTTATTAATTTAGCCTAGATTCTAGAGCTAGGTTTTTCCTTTCTTTGCTAGTGTAAGATTCAAACCAGTCTAGATGATTGCGGATGAAGCAGACTGCAGCTCTGTGTGGACTAGGGAGCAGGATAAGGCATTTGA GGATGCCCTTGCAACATATCCTGAGGATGCTGTAGATCGGTGGGAGAAAATTGCTGCTGATGTTCCTGGGAAAACCTTAGAAGAGCTTAAACTTCACTATGAACTTCTGGTTGAAGATTTGAATCAGATTGAAGCTGGCTGTGTGCCTCTGCCTAACTACTTCTTCTATGGAGGGTTCAATAAGCCAAGCTGGCGATGAAGGAACTACTAAGAAGGGTG GTCAAATGGGGCACCATAACAGTGAGTCTACTCATGGAAATAAGGCTTCAAGGTCAAGATCAAGAACGCCGTAAAGGAATCGCTTGGACAGAGGATGAGCACAGGTTATTTCTTCTTGGTTTGGACAAATATGGGAAAGGTGACTGGCGAAGTATTTCCAGAAACTTTGTTGTGACAAGGACACCTACGCAAGTGGCAAGCCATGCACAAAAATATTTCATTC GTTTGAACTCGATGAACAAAGATAGGAGGCGTTCCAGCATTCATGATATCACCAGTGTTGGCAATGGAGATATTTCAGCGCCACAAGGACCAATAACTGGTCAAACAAATGGTTCTGCTGCAGGAGGTTCCTCTGGTAAAGCTGCTAAACAACCCCCCTCAACACCCTACTGGACCTCAGGAGTTGGTGTTTATGGTCCTCCGACTATAGGGCAACCTATAG GAGGTCCCCCTTGTCTCCAGCAGTTGGCACCCCTGTGAATCTTCCTGCCCCTGCACACATGGCTTATGGCGTTAGAGCTCCTGTACCAGGAACAGTACCGGGAGCTGTGGTTCCTGGTGCACCAATGATGAACATGGGTCCTATGGCATATCCAATGCCACCGACAACTGCTCATAGGTGATATACATGGTTTAGCTGCAAAATGTACAAAGACAGAAGGCTACTT GCTTGTATTTCTGGTGGGTCAGTGGCTTCTCCATTTTAGCCTGAATAAAACTGCTTATTTGCAAGCAAAAATTGTCTGATGTCATTTGTTTATTCTGGTAGCAATATCAAATAAACCAATAGGTAGAGAAACTACATGCATTTGTATAGGCAGCAGCTGTGGAAAATATGGCAGCAGTTATGGGTAGGACACATTTTGGTACTTTTTTTTTGGTTTTCATTACAC ATGTTTAGTCTCAGTAGCAGCAGTCAGTTAATGGTATTTTACTTTTAATGACCAAATTTGTAAAGAATCCATTTATACGTTTTACTATTTTGAGTAGTAGATGTTGGCACGGATTGTGCAAAAGCCTTTGTAAAAAAAGTACCAAATGTGTCCTACCCATAACTGCTGCCATATTTTCCACAGCTGCTGCCTATACAAATGCATGTAGTTTCTCTACCTATTGGTTTATTTGATA TTGCTACCAGAATAAACAAATGACATCAGACAATTTTTGCTTGCAAATAAGCAGTTTTATTCAGGCTAAAATGGAGAAGCCACTGACCCACCAGAAATACAAGCAAGTAGCCTTCTGTCTTTGTACATTTTGCAGCTAAACCATGTATATCACCTATGAGCAGTTGTCGGTGGCATTGGATATGCCATAGGACCCATGTTCATCAT

所述SEQ ID NO.2为:Said SEQ ID NO.2 is:

ATGATTGCGGATGAAGCAGACTGCAGCTCTGTGTGGACTAGGGAGCAGGATAAGGCATTTGAGGATGCCCTTGCAACATATCCTGAGGATGCTGTAGATCGGTGGGAGAAAATTGCTGCTGATGTTCCTGGGAAAACCTTAGAAGAGCTTAAACTTCACTATGAACTTCTGGTTGAAGATTTGAATCAGATTGAAGCTGGCTGTGTGCCTCTGCCTAACTACTCTTCTATGGAGGGTTCAATAAGCCAAGCTGGCGATGAAGGAACTACTAAGAAGGGTGGTCAAATGGGGCACCATAACAGTGAGTCTACTCATGGAAATAAGGCTTCAAGGTCAGATCAAGAACGCCGTAAAGGAATCGCTTGGACAGAGGATGAGCACAGGTTATTTCTTCTTGGTTTGGACAAATATGGGAAAGGTGACTGGCGAAGTATTTCCAGAAACTTTGTTGTGACAAGGACACCTACGCAAGTGGCAAGCCATGCACAAAAATATTTCATTCGTTTGAACTCGATGAACAAAGATAGGAGGCGTTCCAGCATTCATGATATCACCAGTGTTGGCAATGGAGATATTTCAGCGCCACAAGGACCAATAACTGGTCAAACAAATGGTTCTGCTGCAGGAGGTTCCTCTGGTAAAGCTGCTAAACAACCCCCTCAACACCCTACTGGACCTCCAGGAGTTGGTGTTTATGGTCCTCCGACTATAGGGCAACCTATAGGAGGTCCCCTTGTCTCAGCAGTTGGCACCCCTGTGAATCTTCCTGCCCCTGCACACATGGCTTATGGCGTTAGAGCTCCTGTACCAGGAACAGTACCGGGAGCTGTGGTTCCTGGTGCACCAATGATGAACATGGGTCCTATGGCATATCCAATGCCACCGACAACTGCTCATAGGTGAATGATTGCGGATGAAGCAGACTGCAGCTCTGTGTGGACTAGGGAGCAGGATAAGGCATTTGAGGATGCCCTTGCAACATATCCTGAGGATGCTGTAGATCGGTGGGAGAAAATTGCTGCTGATGTTCCTGGGAAAACCTTAGAAGAGCTTAAACTTCACTATGAACTTCTGGTTGAAGATTTGAATCAGATTGAAGCTGGCTGTGTGCCTCTGCCTAA CTACTTCTTCTATGGAGGGTTCAATAAGCCAAGCTGGCGATGAAGGAACTACTAAGAAGGGTGGTCAAATGGGGCACCATAACAGTGAGTCTACTCATGGAAATAAGGCTTCAAGGTCAGATCAAGAACGCCGTAAAGGAATCGCTTGGACAGAGGATGAGCACAGGTTATTTCTTCTTGGTTTGGACAAATATGGGAAAGGTGACTGGCGAAGTATTTC CAGAAACTTTGTTGTGACAAGGACACCTACGCAAGTGGCAAGCCATGCACAAAAATATTTCATTCGTTTGAACTCGATGAACAAAGATAGGAGGCGTTCCCAGCATTCATGATATCACCAGTGTTGGCAATGGAGATATTTCAGGCCACAAGGACCAATAACTGGTCAAACAAATGGTTCTGCTGCAGGAGGTTCCTCTGGTAAAGCTGCTAAACAACCCCCTC ACACCCTACTGGACCTCCAGGAGTTGGTGTTTATGGTCCTCCGACTATAGGGCAACCTATAGGAGGTCCCTTGTCTCCAGCAGTTGGCACCCCTGTGAATCTTCCTGCCCCTGCACACATGGCTTATGGCGTTAGAGCTCCTGTACCAGGAACAGTACCGGGAGCTGTGGTTCCTGGTGCACCAATGATGAACATGGGTCCTATGGCATATCCAATGCCACC GACAACTGCTCATAGGTGA

所述SEQ ID NO.3为:Said SEQ ID NO.3 is:

MIADEADCSSVWTREQDKAFEDALATYPEDAVDRWEKIAADVPGKTLEELKLHYELLVEDLNQIEAGCVPLPNYSSMEGSISQAGDEGTTKKGGQMGHHNSESTHGNKASRSDQERRKGIAWTEDEHRLFLLGLDKYGKGDWRSISRNFVVTRTPTQVASHAQKYFIRLNSMNKDRRRSSIHDITSVGNGDISAPQGPITGQTNGSAAGGSSGKAAKQPPQHPTGPPGVGVYGPPTIGQPIGGPLVSAVGTPVNLPAPAHMAYGVRAPVPGTVPGAVVPGAPMMNMGPMAYPMPPTTAHR*MIADEADCSSVWTREQDKAFEDALATYPEDAVDRWEKIAADVPGKTLEELKLHYELLVEDLNQIEAGCVPLPNYSSMEGSISQAGDEGTTKKGGQMGHHNSESTHGNKASRSDQERRKGIAWTEDEHRLFLLGLDKYGKGDWRSISRNFVVTRTPTQVASHAQKYFIRLNSMNKDRRRSSI HDITSVGNGDISAPQGPITGQTNGSAAGGSSGKAAKQPPQHPTGPPGVGVYGPPTIGQPIGGPLVSAVGTPVNLPAPAHMAYGVRAPVPGTVPGAVVPGAPMMNMGPMAYPMPPTTAHR*

与现有技术相比,本发明的优点在于:本发明提供一种小桐子MYB类转录因子JcMYB16基因及其在提高植物抗旱性中的应用,超表达JcMYB16基因不影响植物的生长和发育,可以显著提高干旱胁迫抗性。Compared with the prior art, the present invention has the advantages that: the present invention provides a Jatropha MYB class transcription factor JcMYB16 gene and its application in improving plant drought resistance, overexpressing the JcMYB16 gene does not affect the growth and development of plants, and can Significantly improved drought stress resistance.

附图说明Description of drawings

图1表示JcMYB16在小桐子不同组织中的表达量;Figure 1 shows the expression level of JcMYB16 in different tissues of Jatropha;

图2表示JcMYB16在干旱胁迫条件下在小桐子中的表达量;Figure 2 shows the expression level of JcMYB16 in Jatropha Jatropha under drought stress conditions;

图3表示JcMYB16在正常生长条件下在转基因水稻中的表达量;Figure 3 shows the expression level of JcMYB16 in transgenic rice under normal growth conditions;

图4表示超表达JcMYB16基因在水稻中的表型观察;Fig. 4 shows the phenotype observation of overexpression JcMYB16 gene in rice;

图5表示超表达JcMYB16基因在水稻干旱胁迫条件下的表型观察;Fig. 5 shows the phenotype observation of the overexpression JcMYB16 gene under the drought stress condition of rice;

图6表示超表达JcMYB16基因在水稻干旱胁迫条件下的存活率统计结果;Figure 6 shows the statistical results of the survival rate of the overexpressed JcMYB16 gene under rice drought stress conditions;

图7表示超表达JcMYB16基因在水稻干旱胁迫条件下的相对电导率测定结果;Fig. 7 shows the relative conductivity determination result of overexpression JcMYB16 gene under rice drought stress condition;

图8表示超表达JcMYB16基因在水稻干旱胁迫条件下的脯氨酸含量测定结果;Figure 8 shows the proline content determination results of the overexpressed JcMYB16 gene under rice drought stress conditions;

图9表示JcMYB16在正常生长条件下在转基因拟南芥中的表达量;;Figure 9 shows the expression level of JcMYB16 in transgenic Arabidopsis under normal growth conditions;

图10表示超表达JcMYB16基因在拟南芥中的表型观察;Figure 10 shows the phenotype observation of overexpressing JcMYB16 gene in Arabidopsis;

图11表示超表达JcMYB16基因在拟南芥干旱胁迫条件下的表型观察;Figure 11 shows the phenotype observation of overexpressing JcMYB16 gene under the drought stress condition of Arabidopsis;

图12表示超表达JcMYB16基因在拟南芥干旱胁迫(300mM甘露醇)条件下的表型观察;Figure 12 shows the phenotype observation of overexpression JcMYB16 gene under the condition of Arabidopsis drought stress (300mM mannitol);

图13表示超表达JcMYB16基因在拟南芥正常生长条件和干旱胁迫条件下的主根长度;Figure 13 shows the main root length of overexpressing JcMYB16 gene under normal growth conditions and drought stress conditions of Arabidopsis;

图14表示超表达JcMYB16基因在拟南芥干旱胁迫条件下的脯氨酸含量测定结果;Fig. 14 shows the proline content determination result of the overexpression JcMYB16 gene under the drought stress condition of Arabidopsis;

图15表示超表达JcMYB16基因在拟南芥干旱胁迫条件下的丙二醛(MDA)测定结果;Figure 15 represents the malondialdehyde (MDA) assay result of overexpression JcMYB16 gene under Arabidopsis drought stress condition;

图16表示超表达JcMYB16基因在拟南芥干旱胁迫条件下的相对电导率测定结果;Fig. 16 shows the relative conductivity determination result of overexpression JcMYB16 gene under the drought stress condition of Arabidopsis;

图17表示非生物胁迫响应基因在干旱胁迫条件下在野生型和超表达JcMYB16基因拟南芥植株中的表达量;Figure 17 shows the expression levels of abiotic stress response genes in wild-type and overexpressed JcMYB16 gene Arabidopsis plants under drought stress conditions;

具体实施方式Detailed ways

以下本发明拟进一步对JcMYB16基因的上下游基因及其参与的相关调控信号通路进行分析,并分析JcMYB16基因是否具有更广泛的抗旱作用。通过分析该基因在水稻和拟南芥干旱胁迫调控机理研究及抗旱品种培育中的作用,以期丰富小桐子和水稻等禾谷类作物响应干旱胁迫的分子机理积累资料,通过基因工程手段为小桐子和水稻、小麦等禾谷类作物的抗旱分子模块设计育种提供新的基因资源。In the following, the present invention intends to further analyze the upstream and downstream genes of the JcMYB16 gene and related regulatory signaling pathways involved in it, and analyze whether the JcMYB16 gene has a broader drought resistance effect. By analyzing the role of this gene in the research on the regulation mechanism of drought stress in rice and Arabidopsis thaliana and the cultivation of drought-resistant varieties, it is hoped to enrich the molecular mechanism accumulation data of cereal crops such as Jatropha and rice in response to drought stress. The design and breeding of drought-resistant molecular modules of cereal crops such as rice and wheat provide new genetic resources.

实施例1Example 1

一水稻转基因株系获得及表型、抗旱胁迫分析实验A rice transgenic line acquisition and phenotype, drought stress analysis experiment

1材料与方法1 Materials and methods

1.1植物材料及种植方式1.1 Plant materials and planting methods

供试的水稻品种为水稻粳稻品种中花11即水稻(Oryza sativa L.)cv.中花11,保存在周口师范学院植物遗传与分子育种重点实验室。新收的种子种植前先用质量百分比浓度为5%次氯酸钠消毒40min或者用1/1000的多菌灵消毒12h,再用0.1mol/L HNO3(1mL63%的浓HNO3加入100mL水)浸种16h,自来水冲洗干净后将消毒后的种子置于28℃环境下浸种1d,然后将种子均匀的平铺在培养皿中,其中培养皿中放置一层滤纸,并用水湿润;盖上盖子,然后放入32℃下培养,每天换水两到三次,看到大多数种子破壳出根后转入30℃下培养。保存半年以上的种子播种前先晒种2d,消毒后浸种,消毒方法:55℃温汤浸种30min,待水稻芽长到4.8-5.2mm长的时候播种到纱窗布上(水稻营养液中培养),3叶期后,将水稻幼苗移入土壤中并做好对应的标签进行表型观察和后续的试验分析。水稻每间隔8或者10d进行一次施肥。The rice variety used in the test is the japonica rice variety Zhonghua 11, namely Oryza sativa L. cv. Zhonghua 11, which is kept in the Key Laboratory of Plant Genetics and Molecular Breeding of Zhoukou Normal University. Before planting, the newly harvested seeds were first disinfected with 5% sodium hypochlorite for 40 minutes or 1/1000 carbendazim for 12 hours, and then soaked in 0.1mol/L HNO 3 (1 mL of 63% concentrated HNO 3 added to 100 mL of water) for 16 hours After rinsing with tap water, soak the sterilized seeds at 28°C for 1 day, spread the seeds evenly in a petri dish, place a layer of filter paper in the petri dish, and moisten it with water; put the lid on, and put Cultivate at 32°C, change the water two to three times a day, and transfer to 30°C for cultivation after seeing that most of the seeds have broken shells and rooted out. The seeds stored for more than half a year should be sun-dried for 2 days before sowing, and then soaked after disinfection. Disinfection method: Soak the seeds in warm water at 55°C for 30 minutes. When the rice buds grow to 4.8-5.2mm long, they should be sown on screen cloth (cultivated in rice nutrient solution). After the 3-leaf stage, the rice seedlings were moved into the soil and labeled accordingly for phenotypic observation and subsequent experimental analysis. The rice is fertilized every 8 or 10 days.

1.2所用试剂及载体1.2 Reagents and carriers used

本实验所采用的大肠杆菌为DH5α,农杆菌为EHA105,这些菌株为周口师范学院植物遗传与分子育种重点实验室保存,植物表达载体为pCAMBIA1301;其中,限制性内切酶、克隆载体pMD18-T、T4DNA连接酶、Taq DNA聚合酶购自于TaKaBa生物公司;DNA回收试剂盒为Magen生物公司产品;潮霉素(Hyg)、卡那霉素(Kan)和氨卡霉素(Amp)等购自北京鼎国生物技术有限公司,试验所有引物均由北京奥克鼎盛生物公司合成。The Escherichia coli used in this experiment was DH5α, and the Agrobacterium was EHA105. These strains were preserved by the Key Laboratory of Plant Genetics and Molecular Breeding of Zhoukou Normal University, and the plant expression vector was pCAMBIA1301; among them, the restriction enzyme and the cloning vector pMD18-T , T4 DNA ligase, and Taq DNA polymerase were purchased from TaKaBa Biological Company; the DNA recovery kit was a product of Magen Biological Company; All primers were synthesized by Beijing Aoke Dingsheng Biotechnology Co., Ltd. from Beijing Dingguo Biotechnology Co., Ltd.

1.3 RNA的提取、cDNA合成和RT-PCR扩增目的基因1.3 RNA extraction, cDNA synthesis and RT-PCR amplification of the target gene

RNA提取使用Magen公司的植物RNA提取试剂盒,参考方法为较易提取植物组织RNA小量提取法。以1μg的RNA做模板,按照cDNA合成试剂盒(TaKaRa)操作说明合成第一链cDNA。根据OsHT1基因cDNA全长序列设计特异引物,特异引物序列见表1。RT-PCR反应体系(20μL):10×PCR反应缓冲液2μL,dNTP(2.5mmol/L)1μL,引物(10pm/μL)各1μL,Taq聚合酶(5U/μL)0.2μL,模板cDNA2μL,ddH2O 12.8μL。PCR反应条件:94℃预变性5min;94℃变性30s,54℃退火30s,72℃延伸1min,33个循环;72℃延伸10min,4℃保存。For RNA extraction, a plant RNA extraction kit from Magen was used, and the reference method was a small amount of RNA extraction from plant tissues, which is relatively easy to extract. Using 1 μg of RNA as a template, the first-strand cDNA was synthesized according to the operating instructions of the cDNA synthesis kit (TaKaRa). Specific primers were designed according to the full-length sequence of OsHT1 gene cDNA, and the sequences of specific primers are shown in Table 1. RT-PCR reaction system (20 μL): 2 μL of 10×PCR reaction buffer, 1 μL of dNTP (2.5 mmol/L), 1 μL of each primer (10 pm/μL), 0.2 μL of Taq polymerase (5U/μL), 2 μL of template cDNA, ddH 2 O 12.8 μL. PCR reaction conditions: pre-denaturation at 94°C for 5 min; denaturation at 94°C for 30 s, annealing at 54°C for 30 s, extension at 72°C for 1 min, 33 cycles; extension at 72°C for 10 min, storage at 4°C.

表1 RT-PCR扩增目的基因的引物序列Table 1 Primer sequences for RT-PCR amplification of target genes

Table1 The sequences of primers used in RT-PCR of objective genesTable1 The sequences of primers used in RT-PCR of objective genes

Figure BDA0002266699140000071
Figure BDA0002266699140000071

1.4 JcMYB16基因表达模式分析1.4 Analysis of JcMYB16 gene expression pattern

组织特异性表达分析如下:选用6叶期的小桐子根、茎韧皮部、叶,花、授粉后35天种子用于表达模式分析。干旱胁迫表达模式分析如下:干旱处理开始于小桐子六叶期(发芽后八周),对照组浇灌1/2MS培养基,实验组直接停止浇水,分别取0h,2d,4d和7d第三片叶进行RNA提取和表达分析。JcMYB16基因表达量检测选用定量PCR(qRT-PCR)。用于qRT-PCR分析的引物根据基因全长序列设计,作为定量PCR引物(表2)。Tissue-specific expression analysis was as follows: Jatropha Jatropha roots, stem phloem, leaves, flowers, and seeds 35 days after pollination were selected for expression pattern analysis at the 6-leaf stage. The analysis of the expression pattern of drought stress is as follows: the drought treatment started at the six-leaf stage of Jatropha Jatropha (eight weeks after germination), the control group was irrigated with 1/2MS medium, and the experimental group directly stopped watering. Leaves were subjected to RNA extraction and expression analysis. Quantitative PCR (qRT-PCR) was used for the detection of JcMYB16 gene expression. The primers used for qRT-PCR analysis were designed according to the full-length sequence of the gene as quantitative PCR primers (Table 2).

表2定量qRT-PCR的引物序列Table 2 Primer sequences for quantitative qRT-PCR

Table 2 The sequences of primers used in quantitative qRT-PCRTable 2 The sequences of primers used in quantitative qRT-PCR

Figure BDA0002266699140000081
Figure BDA0002266699140000081

1.5 JcMYB16基因植物表达载体的构建1.5 Construction of JcMYB16 gene plant expression vector

目的基因的PCR产物,按照宝生物(Takara)Agarose Gel DNA PurificationKit试剂盒操作进行纯化。限制性内切酶KpnI和Sal I双酶切连接有目的基因片段的pMD18-T质粒或pCAMBIA1301质粒后,用T4DNA连接酶将目的基因连接到植物表达载体pCAMBIA1301上,反应体系如下:T4DNA连接酶(5U/μL)1μL,10×buffer 1μL,目的基因片段5μL,pCAMBIA1301载体3μL;反应条件:16℃,2h。连接产物转化感受态E.coli DH5α,涂布LB平板(50mg/L Kan)培养,37℃过夜倒置培养形成单菌落。The PCR product of the target gene was purified according to the operation of Takara Agarose Gel DNA Purification Kit. After the pMD18-T plasmid or pCAMBIA1301 plasmid with restriction endonuclease KpnI and Sal I double-digested and ligated with the target gene fragment, use T 4 DNA ligase to connect the target gene to the plant expression vector pCAMBIA1301, and the reaction system is as follows: T 4 DNA ligase (5U/μL) 1 μL, 10× buffer 1 μL, target gene fragment 5 μL, pCAMBIA1301 vector 3 μL; reaction conditions: 16°C, 2h. The ligation product was transformed into competent E.coli DH5α, spread on LB plates (50mg/L Kan) for culture, and cultured overnight at 37°C to form a single colony.

1.6 JcMYB16基因植物表达载体的鉴定1.6 Identification of JcMYB16 gene plant expression vector

挑取JcMYB16基因植物表达载体质粒转化E.coli DH5α后形成的单克隆,提取质粒进行PCR鉴定。阳性质粒转化至感受态农杆菌EAH105,涂布LB平板(50mg/L Kan、50mg/LRif)培养,28℃倒置培养2d,挑选阳性克隆提取质粒并进行酶切验证。Pick the single clone formed after transforming the JcMYB16 gene plant expression vector plasmid into E.coli DH5α, and extract the plasmid for PCR identification. The positive plasmid was transformed into competent Agrobacterium EAH105, spread on LB plates (50mg/L Kan, 50mg/LRif) for culture, and cultured upside down at 28°C for 2 days, and the positive clones were selected to extract the plasmid and carry out enzyme digestion verification.

1.7农杆菌侵染和转基因苗的获得1.7 Agrobacterium infection and acquisition of transgenic seedlings

以水稻愈伤组织为实验材料。JcMYB16基因植物表达载体(质粒)通过冻融法转化农杆菌EHA105。分别挑取农杆菌(含有JcMYB16基因植物超表达载体)单克隆于28℃培养过夜,取10mL培养液,3000rpm,20min,离心收集菌体沉淀,分别重悬于AAI溶液(AA培养液,30g/L蔗糖,70g/L葡萄糖,200μmol/L乙酰丁香酮,PH 5.2)内,OD600=1.0,然后将悬浮液在摇床上28℃振荡培养3-5h。将长到一定大小的水稻愈伤组织挑出,放入农杆菌悬浮液浸染30min;然后将愈伤组织取出,置于灭菌滤纸上沥干50min;将愈伤组织置于共培养基(2N6,10g/L葡萄糖,200μmol/L乙酰丁香酮,PH 5.5)上,28℃暗培养3d。三天后用500mg/L头孢美素的灭菌水清洗6遍,100mL灭菌水(包含16μL吐温)清洗5遍,然后用无菌水清洗一遍。将沥干的水稻愈伤转移到筛选培养基(2N6,500mg/L头孢美素,50mg/L潮霉素),28℃暗培养30d。将新长出的抗性愈伤组织转入分化培养基(MS+30g/L蔗糖+30g/L山梨醇+2mg/L6-BA(花之舞用KT)+0.8%琼脂+1.0mg/L NAA+250mg/L头孢霉素+50mg/L潮霉素+2g/L水解酪蛋白,PH5.8)。挑取出现绿芽的水稻愈伤移入装有生根培养基(MS/2+30g/L蔗糖+250mg/L头孢霉素+50mg/L潮霉素)的三角瓶中,放入恒温培养箱28℃光培养15d。准备移栽。首先通过潮霉素抗性基因和GUS活性分析对阳性转基因植株进行初步筛选,然后通过qRT-PCR技术检测目的基因在野生型和转基因植株中的表达情况,进一步对初次筛选的阳性植株进行再次筛选。Rice callus was used as the experimental material. JcMYB16 gene plant expression vector (plasmid) was transformed into Agrobacterium EHA105 by freeze-thaw method. Pick out single clones of Agrobacterium (plant overexpression vector containing JcMYB16 gene) and culture them overnight at 28°C, take 10mL culture solution, 3000rpm, 20min, centrifuge to collect the bacterial pellet, resuspend in AAI solution (AA culture solution, 30g/ L sucrose, 70 g/L glucose, 200 μmol/L acetosyringone, pH 5.2), OD 600 =1.0, and then shake the suspension on a shaker at 28° C. for 3-5 hours. Pick out the rice callus that has grown to a certain size, put it into the Agrobacterium suspension and dip it for 30 minutes; then take out the callus, put it on sterile filter paper and drain it for 50 minutes; place the callus in a co-culture medium (2N6 , 10g/L glucose, 200μmol/L acetosyringone, pH 5.5), cultured in the dark at 28°C for 3d. Three days later, wash with 500 mg/L cefotaxime sterilized water 6 times, 100 mL sterilized water (containing 16 μL Tween) 5 times, and then wash once with sterile water. The drained rice callus was transferred to a selection medium (2N6, 500 mg/L cefotaxime, 50 mg/L hygromycin), and cultured in the dark at 28°C for 30 days. The newly grown resistant callus was transferred to the differentiation medium (MS+30g/L sucrose+30g/L sorbitol+2mg/L6-BA (KT for Flower Dance)+0.8% agar+1.0mg/L NAA+250mg/L cephalosporin+50mg/L hygromycin+2g/L hydrolyzed casein, pH5.8). Pick the paddy rice callus that appears green bud and move into the triangular flask that rooting medium (MS/2+30g/L sucrose+250mg/L cephalosporin+50mg/L hygromycin) is housed, put into constant temperature incubator 28 ℃ light culture 15d. Ready to transplant. First, the positive transgenic plants were initially screened by hygromycin resistance gene and GUS activity analysis, and then the expression of the target gene in wild-type and transgenic plants was detected by qRT-PCR technology, and the positive plants screened for the first time were further screened .

1.8 JcMYB16基因在野生型和转基因水稻中的表达情况检测1.8 Detection of JcMYB16 gene expression in wild-type and transgenic rice

取14d的野生型和转基因水稻叶片进行RNA提取,以1μg的RNA做模板,按照cDNA合成试剂盒(TaKaRa)操作说明合成第一链cDNA。以JcMYB16基因cDNA设计特异定量PCR引物(表二),通过qRT-PCR检测JcMYB16在野生型和转基因株系中的表达情况。14d wild-type and transgenic rice leaves were taken for RNA extraction, and 1 μg of RNA was used as a template to synthesize the first-strand cDNA according to the instructions of the cDNA synthesis kit (TaKaRa). Specific quantitative PCR primers (Table 2) were designed using JcMYB16 gene cDNA, and the expression of JcMYB16 in wild-type and transgenic lines was detected by qRT-PCR.

1.9 JcMYB16基因在野生型和转基因水稻中的表型分析1.9 Phenotype analysis of JcMYB16 gene in wild-type and transgenic rice

野生型和JcMYB16转基因水稻植株萌发后,将幼苗种植到水稻国际Yoshida营养液中,12天后进行表型分析。After germination of wild-type and JcMYB16 transgenic rice plants, the seedlings were planted in the rice international Yoshida nutrient solution, and phenotype analysis was performed 12 days later.

2.0 JcMYB16基因转基因水稻干旱胁迫实验分析2.0 Experimental Analysis of Drought Stress in JcMYB16 Gene Transgenic Rice

野生型和JcMYB16转基因水稻植株萌发后,选取14d的生长一致的幼苗进行盐胁迫处理实验。方法如下:将生长14d的野生型和转基因植株幼苗放入含有300mM甘露醇的Yoshida营养液,6d后进行表型分析;然后将干旱胁迫6d的幼苗放入Yoshida营养液中生长,10d后进行表型分析并统计存活率。并选取干旱胁迫处理3d的地上部分叶片进行生理指标例如电导率、脯氨酸和MDA含量检测。每个实验包含三个生物学重复。After germination of wild-type and JcMYB16 transgenic rice plants, 14d seedlings with consistent growth were selected for salt stress treatment experiment. The method is as follows: the wild-type and transgenic plant seedlings grown for 14 days were put into Yoshida nutrient solution containing 300mM mannitol, and phenotype analysis was carried out after 6 days; Type analysis and statistical survival rate. The aboveground leaves of the drought stress treatment for 3 days were selected to detect physiological indicators such as electrical conductivity, proline and MDA content. Each experiment contained three biological replicates.

2.2 JcMYB16序列对应基因的全长2.2 The full length of the gene corresponding to the JcMYB16 sequence

JcMYB16序列对应基因的全长序列为2 232bp,其中包含完整读码框序列长度为903bp,序列如下SEQ ID NO.1;The full-length sequence of the gene corresponding to the JcMYB16 sequence is 2 232bp, which includes a complete reading frame sequence length of 903bp, and the sequence is as follows SEQ ID NO.1;

采用NCBI ORF-finder预测其编码蛋白质为300个氨基酸,序列如下SEQ ID NO.3;NCBI ORF-finder is used to predict that the encoded protein is 300 amino acids, and the sequence is as follows SEQ ID NO.3;

根据序列分析,JcMYB16为一个功能未知的新的小桐子干旱胁迫相关的基因,尚没有与其同源的任何功能已知的基因被发现。According to sequence analysis, JcMYB16 is a new drought stress-related gene with unknown function, and no homologous gene with known function has been found.

实施例2Example 2

一拟南芥转基因株系获得及表型、抗旱胁迫分析实验Obtaining a transgenic line of Arabidopsis thaliana and analyzing its phenotype and drought stress

1材料与方法1 Materials and methods

1.1植物材料及种植方式1.1 Plant materials and planting methods

本实验使用的拟南芥是哥伦比亚(Columbia)生态型,保存于周口师范学院植物遗传与分子育种重点实验室。拟南芥种子消毒方法为:无菌水清洗1遍,70%酒精消毒5分钟,无菌水清洗1遍,1%次氯酸钠消毒15分钟,无菌水清洗5遍。拟南芥种子种植前使用4℃低温处理2天,使其萌发一致。经消毒种植的种子在1/2MS(1%蔗糖,8%琼脂,pH 5.7)培养基上萌发7-10天后,移植于种植基质中。不需消毒的种子经低温处理后可直接播种。种植基质为大颗粒蛭石,萌发期间使用薄膜覆盖约5天。生长阶段每隔3-5天浇一次营养液。生长间的培养条件为:22±2℃,光照周期为16小时光照/8小时黑暗。The Arabidopsis thaliana used in this experiment is Columbia ecotype, which is preserved in the Key Laboratory of Plant Genetics and Molecular Breeding of Zhoukou Normal University. The disinfection method of Arabidopsis thaliana seeds is as follows: wash once with sterile water, disinfect with 70% alcohol for 5 minutes, wash once with sterile water, disinfect with 1% sodium hypochlorite for 15 minutes, wash with sterile water five times. Arabidopsis seeds were treated with a low temperature of 4°C for 2 days before planting to make them germinate uniformly. The sterilized seeds were germinated on 1/2MS (1% sucrose, 8% agar, pH 5.7) medium for 7-10 days, and then transplanted into the planting medium. Seeds that do not need to be sterilized can be sown directly after low temperature treatment. The planting substrate is large-grained vermiculite, and it is covered with a film for about 5 days during the germination period. During the growth stage, the nutrient solution was poured every 3-5 days. The culture conditions in the growth room are: 22±2°C, and the photoperiod is 16 hours of light/8 hours of darkness.

超表达植株干旱胁迫分析实验Drought stress analysis experiment of overexpression plants

1.2菌株,载体和试剂1.2 Strains, vectors and reagents

本实验使用的大肠杆菌为DH5α,农杆菌为GV3101。植物表达载体为pCAMBIA1301。以上菌株和载体均保存于本实验室。pMD18-T载体、限制性内切酶、T4连接酶、核酸回收试剂盒等均购自大连宝生物公司(Takara)。氨苄霉素(Amp)、潮霉素(Hyg)等购自北京鼎国生物技术有限公司。实验所有引物均由北京奥科鼎盛生物公司合成。The Escherichia coli used in this experiment was DH5α, and the Agrobacterium was GV3101. The plant expression vector is pCAMBIA1301. All the above strains and vectors were kept in our laboratory. The pMD18-T vector, restriction endonuclease, T4 ligase, and nucleic acid recovery kit were all purchased from Takara, Dalian. Ampicillin (Amp) and hygromycin (Hyg) were purchased from Beijing Dingguo Biotechnology Co., Ltd. All primers in the experiment were synthesized by Beijing Aoke Dingsheng Biotechnology Co., Ltd.

本实验主要使用成苗干旱胁迫,幼苗150mM NaCl胁迫、300mM甘露醇(Man)胁迫对各转基因株系的抗逆性进行了实验。具体步骤如下:将消毒的拟南芥种子低温处理2天,播种于1/2MS+1%蔗糖的培养基中萌发,垂直培养4天。移栽至相应的胁迫培养基(基本培养基仍为1/2MS)中垂直培养5-7天。观察、记录生长情况和成活率等。This experiment mainly uses seedling drought stress, seedling 150mM NaCl stress, 300mM mannitol (Man) stress to test the stress resistance of each transgenic line. The specific steps are as follows: the sterilized Arabidopsis seeds were treated at low temperature for 2 days, sowed in the medium of 1/2MS+1% sucrose for germination, and cultured vertically for 4 days. Transplant to the corresponding stress medium (basic medium is still 1/2MS) and culture vertically for 5-7 days. Observe and record the growth and survival rate.

1.3 RNA的提取、cDNA合成和RT-PCR扩增目的基因1.3 RNA extraction, cDNA synthesis and RT-PCR amplification of the target gene

RNA提取使用Magen公司的植物RNA提取试剂盒,参考方法为较易提取植物组织RNA小量提取法。以1μg的RNA做模板,按照cDNA合成试剂盒(TaKaRa)操作说明合成第一链cDNA。根据OsHT1基因cDNA全长序列设计特异引物,特异引物序列见表3。RT-PCR反应体系(20μL):10×PCR反应缓冲液2μL,dNTP(2.5mmol/L)1μL,引物(10pm/μL)各1μL,Taq聚合酶(5U/μL)0.2μL,模板cDNA2μL,ddH2O 12.8μL。PCR反应条件:94℃预变性5min;94℃变性30s,54℃退火30s,72℃延伸1min,33个循环;72℃延伸10min,4℃保存。For RNA extraction, a plant RNA extraction kit from Magen was used, and the reference method was a small amount of RNA extraction from plant tissues, which is relatively easy to extract. Using 1 μg of RNA as a template, the first-strand cDNA was synthesized according to the operating instructions of the cDNA synthesis kit (TaKaRa). Specific primers were designed according to the full-length sequence of OsHT1 gene cDNA, and the sequences of specific primers are shown in Table 3. RT-PCR reaction system (20 μL): 2 μL of 10×PCR reaction buffer, 1 μL of dNTP (2.5 mmol/L), 1 μL of each primer (10 pm/μL), 0.2 μL of Taq polymerase (5U/μL), 2 μL of template cDNA, ddH 2 O 12.8 μL. PCR reaction conditions: pre-denaturation at 94°C for 5 min; denaturation at 94°C for 30 s, annealing at 54°C for 30 s, extension at 72°C for 1 min, 33 cycles; extension at 72°C for 10 min, storage at 4°C.

表3 RT-PCR扩增目的基因的引物序列Table 3 Primer sequences for RT-PCR amplification of target genes

Table3 The sequences of primers used in RT-PCR of objective genesTable3 The sequences of primers used in RT-PCR of objective genes

Figure BDA0002266699140000111
Figure BDA0002266699140000111

1.4 JcMYB16基因植物表达载体构建1.4 JcMYB16 gene plant expression vector construction

提取测序正确克隆的质粒,用已经添加的酶切位点进行双酶切,具体如下:使用Kpn I和SalI双酶切。10μl体系中各酶均添加0.5μl,其他条件根据Takara提供的说明书进行,酶切时间2小时。将酶切片段回收,与用同样进行双酶切的pCAMBIA1301载体进行连接过夜。连接产物直接转化DH5α感受态,使用Kan筛选,挑取有抗性的克隆进行菌液PCR检测。将检测阳性的克隆进行扩大培养,提取质粒。对提取的质粒进行双酶切验证:除了选用PCR添加的酶切位点外,另外选取载体中已有的酶切位点EcoR I和Hind III进行组合酶切验证,判断连入表达载体的方向是否正确。将连接正确的质粒转化农杆菌GV3101感受态,1天后挑取抗性克隆进行菌液PCR检测。对检测阳性的克隆再提取质粒,进行回转验证,即再转入大肠杆菌中提取质粒进行双酶切验证。每一步均检测正确的克隆将用于下一步的转化,并保存于-80℃备用。Extract the plasmid cloned correctly for sequencing, and perform double digestion with the added restriction site, as follows: double restriction with Kpn I and SalI. 0.5 μl of each enzyme was added to the 10 μl system, other conditions were carried out according to the instructions provided by Takara, and the digestion time was 2 hours. The digested fragment was recovered and ligated overnight with the pCAMBIA1301 vector that was also double digested. The ligation product was directly transformed into DH5α competent, and Kan screening was used to pick out resistant clones for bacterial liquid PCR detection. The positive clones were expanded and cultured to extract plasmids. Double-enzyme digestion verification of the extracted plasmid: In addition to selecting the restriction sites added by PCR, the existing restriction sites EcoR I and Hind III in the vector were also selected for combined restriction restriction verification to determine the direction of connection into the expression vector is it right or not. The correctly connected plasmids were transformed into competent Agrobacterium GV3101, and resistant clones were picked one day later for bacterial liquid PCR detection. Plasmids were extracted from clones that were positive for detection, and then verified by rotation, that is, they were transformed into E. coli to extract plasmids for double enzyme digestion verification. Correct clones detected in each step will be used for the next step of transformation and stored at -80°C for future use.

1.5 JcMYB16植物表达载体转基因到拟南芥1.5 JcMYB16 plant expression vector transgene into Arabidopsis

本实验转化拟南芥的方法为花粉管通道法,也被称为花序浸染法,具体步骤如下:选取含苞待放的拟南芥植株(约4周),去除已经开放的花苞,侵染前夜充分浇水备用。将包含目的载体的农杆菌摇至OD600=1.8,5000g离心5min收集菌体。加入浸润培养基(1/2MS不加维生素+1ml 1000×Gamborg’s Vitamins(肌醇100mg/mL,烟酸1mg/mL,B6 1mg/mL,B110mg/mL)+6-BA 10μg/mL,pH 5.7)使农杆菌以1:1的比例重悬,并加入表面活性剂Silwet,使其终浓度达到0.02%。准备完毕后进行浸染,浸染时间为2min,期间不断搅拌浸染液使其与花序充分结合。浸染后短暂晾干,将植株置于暗箱中黑暗培养24h,期间使用报纸遮光并保持暗箱一定湿度。暗培养结束后,继续正常培养,收取种子用于筛选。The method of transforming Arabidopsis thaliana in this experiment is the pollen tube passage method, also known as the inflorescence dipping method. The specific steps are as follows: select the Arabidopsis plants (about 4 weeks) that are about to bloom, remove the flower buds that have opened, and infect them the night before. Water well and set aside. The Agrobacterium containing the target vector was shaken to OD 600 =1.8, and the bacteria were collected by centrifugation at 5000g for 5 minutes. Add infiltration medium (1/2MS without vitamins + 1ml 1000×Gamborg's Vitamins (inositol 100mg/mL, niacin 1mg/mL, B6 1mg/mL, B110mg/mL) + 6-BA 10μg/mL, pH 5.7) The Agrobacterium was resuspended at a ratio of 1:1, and the surfactant Silwet was added to make the final concentration 0.02%. After the preparation is completed, carry out dip-dyeing, and the dip-dyeing time is 2 minutes, during which the dipping solution is constantly stirred to fully combine with the inflorescences. After dipping and drying for a short time, the plants were placed in a dark box for dark cultivation for 24 hours. During this period, newspapers were used for shading and the dark box was kept at a certain humidity. After the dark cultivation, continue the normal cultivation, collect the seeds for screening.

1.6 JcMYB16转基因植株筛选和目的基因表达量检测1.6 Screening of JcMYB16 transgenic plants and detection of target gene expression

将收取的拟南芥种子消毒,播种于1/2MS+潮霉素(Hyg)30μg/mL培养基上,一周后获得阳性植株。阳性植株的特征为叶片较绿,根系发达。这些阳性植株即为T1代株系,每个单株均为一个株系,单独编号和收集种子。将T1代株系种子进行消毒和潮霉素筛选,统计分离比。选取分离比约为3﹕1(阳性植株﹕阴性植株)的株系进行移植,每个株系12棵单株(T2代)。然后将T2代单株收种,再进行消毒和潮霉素筛选。观察T2代单株种子是否发生分离,不再发生分离的单株就是纯合体植株,单独收种、保存,并播种获得T3代植株种子。这样获得的T3代植株种子较多,用于后续的表型分析。The harvested Arabidopsis seeds were sterilized, sown on 1/2MS+hygromycin (Hyg) 30 μg/mL medium, and positive plants were obtained one week later. Positive plants are characterized by greener leaves and well-developed root systems. These positive plants are the T1 generation strains, and each single plant is a strain, and the seeds are numbered and collected separately. The seeds of the T1 generation strains were sterilized and screened with hygromycin, and the segregation ratio was counted. Select lines with a segregation ratio of about 3:1 (positive plants: negative plants) for transplantation, and each line has 12 individual plants (T2 generation). Then the T2 generation single plants were harvested, and then disinfected and screened with hygromycin. Observe whether the seeds of the individual plants of the T2 generation segregate, and the individual plants that no longer segregate are homozygous plants. The seeds are harvested separately, preserved, and sowed to obtain the seeds of the T3 generation plants. The T3 generation plants obtained in this way have more seeds and are used for subsequent phenotypic analysis.

取生长20天的T3代植株第四片叶片用于RNA提取。提取方法为Trizol法。提取的RNA使用Nanodrop2000分光光度计和琼脂糖凝胶电泳检测浓度和完整度。质量较好的RNA用于逆转录,逆转录RNA量为2μg,试剂盒购自Premega公司。逆转录的cDNA质量使用JcActin基因进行PCR检测,并调整浓度一致。使用半定量PCR检测各目的基因在拟南芥各株系中的表达量,并由此选取3个超表达株系用于后续表型分析。The fourth leaf of T3 generation plants grown for 20 days was taken for RNA extraction. The extraction method is Trizol method. The concentration and integrity of the extracted RNA were detected by Nanodrop2000 spectrophotometer and agarose gel electrophoresis. RNA with good quality was used for reverse transcription, the amount of reverse-transcribed RNA was 2 μg, and the kit was purchased from Premega. The quality of reverse-transcribed cDNA was detected by PCR using JcActin gene, and the concentration was adjusted to be consistent. Semi-quantitative PCR was used to detect the expression levels of each target gene in each Arabidopsis line, and three overexpressed lines were selected for subsequent phenotypic analysis.

1.7 JcMYB16转基因植物干旱胁迫实验分析1.7 Experimental analysis of drought stress in JcMYB16 transgenic plants

干旱胁迫处理条件如下:首先将野生型和JcMYB16转基因拟南芥种子消毒,然后将拟南芥点播在含有1/2MS培养基的正方形无菌培养皿中,垂直培养4d,然后挑选生长一致的野生型和转基因拟南芥幼苗并转移到1/2MS和含有300mM甘露醇的1/2MS培养基中继续垂直生长7d,进行表型分析,电导率、脯氨酸和MDA含量检测。此外,营养土中的干旱胁迫,3周的拟南芥直接停止浇水,2周后进行表型观察,然后复水7d统计存活率。The drought stress treatment conditions were as follows: firstly, the wild-type and JcMYB16 transgenic Arabidopsis seeds were sterilized, and then the Arabidopsis was seeded in a square sterile petri dish containing 1/2 MS medium, cultured vertically for 4 days, and then wild-type plants with consistent growth were selected. Type and transgenic Arabidopsis seedlings were transferred to 1/2MS and 1/2MS medium containing 300mM mannitol to continue to grow vertically for 7 days, and the phenotype analysis, conductivity, proline and MDA content detection were performed. In addition, for the drought stress in the nutrient soil, the Arabidopsis thaliana stopped watering for 3 weeks, observed the phenotype after 2 weeks, and then rewatered for 7 days to count the survival rate.

1.8 RNA提取及qRT-PCR1.8 RNA extraction and qRT-PCR

本实验所需RNA均采用Magen公司植物RNA提取试剂盒进行;第一链cDNA合成采用TAKARA公司第一链cDNA合成试剂盒进行。LightCycler 480和TB GreenTM Premix Ex TaqII被用来进行qRT-PCR分析。2-ΔΔCT方法被用来计算基因相对表达量,AtActin2用作拟南芥内参基因。定量PCR引物见表4。The RNA required in this experiment was carried out using the plant RNA extraction kit from Magen; the first-strand cDNA was synthesized using the first-strand cDNA synthesis kit from TAKARA. LightCycler 480 and TB GreenTM Premix Ex TaqII were used for qRT-PCR analysis. The 2 -ΔΔCT method was used to calculate the relative expression of genes, and AtActin2 was used as an internal reference gene in Arabidopsis. Quantitative PCR primers are listed in Table 4.

表4定量qRT-PCR的引物序列Table 4 Primer sequences for quantitative qRT-PCR

Table 4 The sequences of primers used in quantitative qRT-PCRTable 4 The sequences of primers used in quantitative qRT-PCR

Figure BDA0002266699140000131
Figure BDA0002266699140000131

首次克隆并研究了小桐子MYB家族基因JcMYB16在植物响应干旱胁迫中的功能,即本发明可以提供一种能够增加植物干旱抗性的基因。首先对JcMYB16基因进行了组织特异性表达分析,qRT-PCR结果表明JcMYB16基因在小桐子根中高效表达;然后将JcMYB16基因构建到以35S启动子启动的植物表达载体pCAMBIA1301中,获得重组载体pCAMBIA1301-JcMYB16,将重组载体转入农杆菌用于进一步的转化。以水稻愈伤和拟南芥为受体,利用农杆菌介导法将构建好的载体分别转入到水稻愈伤组织和拟南芥中,获得JcMYB16转基因纯合体株系;然后对JcMYB16转基因株系进行表型和干旱胁迫分析。表型分析显示,超表达JcMYB16基因不影响植物的生长和发育。干旱胁迫实验分析显示,超表达JcMYB16基因增加了转基因水稻和拟南芥对干旱胁迫抗性。此外,我们已经种植了4代转基因株系,并且从T1代开始JcMYB16转基因水稻和转基因拟南芥就可以显著提高干旱胁迫抗性,说明我们获得的JcMYB16转基因植株是可以稳定遗传的。JcMYB16基因是水稻和拟南芥干旱胁迫的关键调控基因,表明可以利用基因工程技术提高水稻、小桐子抵抗干旱胁迫抗性,在利用生物工程技术有目的调控植物耐干旱胁迫特性,通过分子育种手段培育耐干旱水稻或者小桐子新品种进而促进水稻或小桐子在干旱地区大面积推广种植方面具有非常重要的应用价值。该基因可以用于小桐子及水稻、小麦等禾谷类作物耐干旱品种的培育,还可应用于大麦、高粱、玉米、拟南芥、番茄、烟草、大豆、土豆等作物耐旱品种的培育。JcMYB16编码的蛋白质,或其他物种中的功能类似蛋白,其氨基酸序列与Seq IDNo.3所示的氨基酸序列具有不小于30%的同源性。蛋白在培育耐逆品种植物中的应用,耐逆为增加禾谷类作物抗旱能力,进而增加在干旱和盐碱地单位面积产量。For the first time, the function of the Jatropha MYB family gene JcMYB16 in plant response to drought stress was cloned and studied, that is, the present invention can provide a gene capable of increasing plant drought resistance. First, the tissue-specific expression analysis of the JcMYB16 gene was carried out, and the qRT-PCR results showed that the JcMYB16 gene was highly expressed in Jatropha Jatropha roots; then the JcMYB16 gene was constructed into the plant expression vector pCAMBIA1301 driven by the 35S promoter, and the recombinant vector pCAMBIA1301- JcMYB16, transfer the recombinant vector into Agrobacterium for further transformation. Using rice callus and Arabidopsis thaliana as receptors, the constructed vectors were transformed into rice calli and Arabidopsis thaliana by the Agrobacterium-mediated method to obtain JcMYB16 transgenic homozygous lines; then JcMYB16 transgenic lines Lines were subjected to phenotypic and drought stress analysis. Phenotypic analysis showed that overexpression of JcMYB16 gene did not affect plant growth and development. Analysis of drought stress experiments showed that overexpression of JcMYB16 gene increased the drought stress resistance of transgenic rice and Arabidopsis. In addition, we have planted 4 generations of transgenic lines, and JcMYB16 transgenic rice and transgenic Arabidopsis can significantly improve drought stress resistance from the T1 generation, indicating that the JcMYB16 transgenic plants we obtained can be stably inherited. The JcMYB16 gene is a key regulatory gene for drought stress in rice and Arabidopsis thaliana, indicating that genetic engineering technology can be used to improve the resistance of rice and Jatropha to drought stress. Breeding new varieties of drought-tolerant rice or jatropha to promote the large-scale planting of rice or jatropha has very important application value. The gene can be used for the cultivation of drought-resistant varieties of cereal crops such as jatropha, rice, and wheat, and can also be applied to the cultivation of drought-tolerant varieties of crops such as barley, sorghum, corn, Arabidopsis, tomato, tobacco, soybean, and potato. The protein encoded by JcMYB16, or the functionally similar protein in other species, its amino acid sequence has no less than 30% homology with the amino acid sequence shown in Seq ID No.3. The application of protein in cultivating stress-tolerant varieties of plants. Stress-tolerant is to increase the drought-resistant ability of cereal crops, thereby increasing the yield per unit area in drought and saline-alkali land.

以上实施例仅用以说明,而非限制本发明的技术方案,尽管参照上述实施例对本发明进行了详细说明,本领域的普通技术人员应当理解:依然可以对本发明进行修改或者等同替换,而不脱离本发明的精神和范围的任何修改或局部替换,其均应涵盖在本发明的权利要求范围当中。The above embodiments are only used to illustrate rather than limit the technical solutions of the present invention. Although the present invention has been described in detail with reference to the above embodiments, those of ordinary skill in the art should understand that: the present invention can still be modified or equivalently replaced without Any modification or partial replacement departing from the spirit and scope of the present invention shall fall within the scope of the claims of the present invention.

                         SEQUENCE LISTINGSEQUENCE LISTING

<110>  周口师范学院<110> Zhoukou Teachers College

<120>  小桐子MYB类转录因子JcMYB16基因及其在提高植物抗旱性中的应用<120> Jatropha MYB transcription factor JcMYB16 gene and its application in improving plant drought resistance

<130>  191131<130> 191131

<160>  3<160> 3

<170>  PatentIn version 3.5<170> PatentIn version 3.5

<210>  1<210> 1

<211>  2232<211> 2232

<212>  DNA<212> DNA

<213>  JcMYB16基因核苷酸序列<213> Nucleotide sequence of JcMYB16 gene

<400>  1<400> 1

ttagtggtgg ttaaactttc aaaatctcga tagtgcaagt atttgaattt ttaggttatg 60ttagtggtgg ttaaactttc aaaatctcga tagtgcaagt atttgaattt ttaggttatg 60

tttcttttat ggcctttcgc actgttagtg gaattggagt gtgaaaatgg aatctggggt 120tttcttttat ggcctttcgc actgttagtg gaattggagt gtgaaaatgg aatctggggt 120

tagagattat ttttcttctc taatcaggag tgagaaacct tgaattactg gccgttctac 180tagagattat ttttcttctc taatcaggag tgagaaacct tgaattactg gccgttctac 180

tctcaattaa tggctttctg ttcccaggaa ttgcccttca aatctgctgt tgataacata 240tctcaattaa tggctttctg ttcccaggaa ttgcccttca aatctgctgt tgataacata 240

ggtcagcagt tcacaagagt ccaatttttt tgaattgtgg agcaaattac cattgaattc 300ggtcagcagt tcacaagagt ccaatttttt tgaattgtgg agcaaattac cattgaattc 300

ttcacatact ccgttgggat tttgtgattt ttattggagg tgatctctgg ttcagttctc 360ttcacatact ccgttgggat tttgtgattt ttatggagg tgatctctgg ttcagttctc 360

ttggcttttt ttgggtccat ctgcttgttt ctcgtcttcc ttacctctac accctgacac 420ttggcttttt ttgggtccat ctgcttgttt ctcgtcttcc ttacctctac accctgacac 420

atcctgctgc tttcccataa ttctgttctg ccatcactcc aactgttggt cataaccaaa 480atcctgctgc tttcccataa ttctgttctg ccatcactcc aactgttggt cataaccaaa 480

tatagaaatt attcagatcc aaatttcaag aaaccgttct agaatttttt ttttttttca 540tatagaaatt attcagatcc aaatttcaag aaaccgttct agaatttttt ttttttttca 540

agattggctt attaatttag cctagattct agagctaggt ttttcctttc tttgctagtg 600agattggctt attaatttag cctagattct agagctaggt ttttcctttc tttgctagtg 600

taagattcaa accagtctag atgattgcgg atgaagcaga ctgcagctct gtgtggacta 660taagattcaa accagtctag atgattgcgg atgaagcaga ctgcagctct gtgtggacta 660

gggagcagga taaggcattt gaggatgccc ttgcaacata tcctgaggat gctgtagatc 720gggagcagga taaggcattt gaggatgccc ttgcaacata tcctgaggat gctgtagatc 720

ggtgggagaa aattgctgct gatgttcctg ggaaaacctt agaagagctt aaacttcact 780ggtgggagaa aattgctgct gatgttcctg ggaaaacctt agaagagctt aaacttcact 780

atgaacttct ggttgaagat ttgaatcaga ttgaagctgg ctgtgtgcct ctgcctaact 840atgaacttct ggttgaagat ttgaatcaga ttgaagctgg ctgtgtgcct ctgcctaact 840

actcttctat ggagggttca ataagccaag ctggcgatga aggaactact aagaagggtg 900actcttctat ggagggttca ataagccaag ctggcgatga aggaactact aagaagggtg 900

gtcaaatggg gcaccataac agtgagtcta ctcatggaaa taaggcttca aggtcagatc 960gtcaaatggg gcaccataac agtgagtcta ctcatggaaa taaggcttca aggtcagatc 960

aagaacgccg taaaggaatc gcttggacag aggatgagca caggttattt cttcttggtt 1020aagaacgccg taaaggaatc gcttggacag aggatgagca caggttattt cttcttggtt 1020

tggacaaata tgggaaaggt gactggcgaa gtatttccag aaactttgtt gtgacaagga 1080tggacaaata tgggaaaggt gactggcgaa gtatttccag aaactttgtt gtgacaagga 1080

cacctacgca agtggcaagc catgcacaaa aatatttcat tcgtttgaac tcgatgaaca 1140cacctacgca agtggcaagc catgcacaaa aatatttcat tcgtttgaac tcgatgaaca 1140

aagataggag gcgttccagc attcatgata tcaccagtgt tggcaatgga gatatttcag 1200aagataggag gcgttccagc attcatgata tcaccagtgt tggcaatgga gatatttcag 1200

cgccacaagg accaataact ggtcaaacaa atggttctgc tgcaggaggt tcctctggta 1260cgccacaagg accaataact ggtcaaacaa atggttctgc tgcaggaggt tcctctggta 1260

aagctgctaa acaaccccct caacacccta ctggacctcc aggagttggt gtttatggtc 1320aagctgctaa acaaccccct caacacccta ctggacctcc aggagttggt gtttatggtc 1320

ctccgactat agggcaacct ataggaggtc cccttgtctc agcagttggc acccctgtga 1380ctccgactat agggcaacct ataggaggtc cccttgtctc agcagttggc acccctgtga 1380

atcttcctgc ccctgcacac atggcttatg gcgttagagc tcctgtacca ggaacagtac 1440atcttcctgc ccctgcacac atggcttatg gcgttagagc tcctgtacca ggaacagtac 1440

cgggagctgt ggttcctggt gcaccaatga tgaacatggg tcctatggca tatccaatgc 1500cgggagctgt ggttcctggt gcaccaatga tgaacatggg tcctatggca tatccaatgc 1500

caccgacaac tgctcatagg tgatatacat ggtttagctg caaaatgtac aaagacagaa 1560caccgacaac tgctcatagg tgatatacat ggtttagctg caaaatgtac aaagacagaa 1560

ggctacttgc ttgtatttct ggtgggtcag tggcttctcc attttagcct gaataaaact 1620ggctacttgc ttgtatttct ggtgggtcag tggcttctcc attttagcct gaataaaact 1620

gcttatttgc aagcaaaaat tgtctgatgt catttgttta ttctggtagc aatatcaaat 1680gcttatttgc aagcaaaaat tgtctgatgt catttgttta ttctggtagc aatatcaaat 1680

aaaccaatag gtagagaaac tacatgcatt tgtataggca gcagctgtgg aaaatatggc 1740aaaccaatag gtagagaaac tacatgcatt tgtataggca gcagctgtgg aaaatatggc 1740

agcagttatg ggtaggacac attttggtac tttttttttg gttttacatt acaatgttta 1800agcagttatg ggtaggacac atttggtac tttttttttg gttttacatt acaatgttta 1800

gtctcagtag cagtcagtta atggtatttt acttttaatg accaaatttg taaagaatcc 1860gtctcagtag cagtcagtta atggtatttt acttttaatg accaaatttg taaagaatcc 1860

atttatacgt tttactattt tgagtagtag atgttggcac ggattgtgca aagcctttgt 1920atttatacgt tttactattt tgagtagtag atgttggcac ggattgtgca aagcctttgt 1920

aaaaaaaagt accaaaatgt gtcctaccca taactgctgc catattttcc acagctgctg 1980aaaaaaaagt accaaaatgt gtcctaccca taactgctgc catattttcc acagctgctg 1980

cctatacaaa tgcatgtagt ttctctacct attggtttat ttgatattgc taccagaata 2040cctatacaaa tgcatgtagt ttctctacct attggtttat ttgatattgc taccagaata 2040

aacaaatgac atcagacaat ttttgcttgc aaataagcag ttttattcag gctaaaatgg 2100aacaaatgac atcagacaat ttttgcttgc aaataagcag ttttattcag gctaaaatgg 2100

agaagccact gacccaccag aaatacaagc aagtagcctt ctgtctttgt acattttgca 2160agaagccact gacccaccag aaatacaagc aagtagcctt ctgtctttgt aattttgca 2160

gctaaaccat gtatatcacc tatgagcagt tgtcggtggc attggatatg ccataggacc 2220gctaaaccat gtatatcacc tatgagcagt tgtcggtggc attggatatg ccataggacc 2220

catgttcatc at                                                     2232catgttcatc at 2232

<210>  2<210> 2

<211>  903<211> 903

<212>  DNA<212> DNA

<213>  基因开放阅读框的核苷酸序列<213> Nucleotide sequence of the open reading frame of the gene

<400>  2<400> 2

atgattgcgg atgaagcaga ctgcagctct gtgtggacta gggagcagga taaggcattt 60atgattgcgg atgaagcaga ctgcagctct gtgtggacta gggagcagga taaggcattt 60

gaggatgccc ttgcaacata tcctgaggat gctgtagatc ggtgggagaa aattgctgct 120gaggatgccc ttgcaacata tcctgaggat gctgtagatc ggtgggagaa aattgctgct 120

gatgttcctg ggaaaacctt agaagagctt aaacttcact atgaacttct ggttgaagat 180gatgttcctg ggaaaacctt agaagagctt aaacttcact atgaacttct ggttgaagat 180

ttgaatcaga ttgaagctgg ctgtgtgcct ctgcctaact actcttctat ggagggttca 240ttgaatcaga ttgaagctgg ctgtgtgcct ctgcctaact actcttctat ggagggttca 240

ataagccaag ctggcgatga aggaactact aagaagggtg gtcaaatggg gcaccataac 300ataagccaag ctggcgatga aggaactact aagaagggtg gtcaaatggg gcaccataac 300

agtgagtcta ctcatggaaa taaggcttca aggtcagatc aagaacgccg taaaggaatc 360agtgagtcta ctcatggaaa taaggcttca aggtcagatc aagaacgccg taaaggaatc 360

gcttggacag aggatgagca caggttattt cttcttggtt tggacaaata tgggaaaggt 420gcttggacag aggatgagca caggttatt cttcttggtt tggacaaata tgggaaaggt 420

gactggcgaa gtatttccag aaactttgtt gtgacaagga cacctacgca agtggcaagc 480gactggcgaa gtatttccag aaactttgtt gtgacaagga cacctacgca agtggcaagc 480

catgcacaaa aatatttcat tcgtttgaac tcgatgaaca aagataggag gcgttccagc 540catgcacaaa aatatttcat tcgtttgaac tcgatgaaca aagataggag gcgttccagc 540

attcatgata tcaccagtgt tggcaatgga gatatttcag cgccacaagg accaataact 600attcatgata tcaccagtgt tggcaatgga gatatttcag cgccacaagg accaataact 600

ggtcaaacaa atggttctgc tgcaggaggt tcctctggta aagctgctaa acaaccccct 660ggtcaaacaa atggttctgc tgcaggaggt tcctctggta aagctgctaa acaaccccct 660

caacacccta ctggacctcc aggagttggt gtttatggtc ctccgactat agggcaacct 720caacacccta ctggacctcc aggagttggt gtttatggtc ctccgactat agggcaacct 720

ataggaggtc cccttgtctc agcagttggc acccctgtga atcttcctgc ccctgcacac 780ataggaggtc cccttgtctc agcagttggc acccctgtga atcttcctgc ccctgcacac 780

atggcttatg gcgttagagc tcctgtacca ggaacagtac cgggagctgt ggttcctggt 840atggcttatg gcgttagagc tcctgtacca ggaacagtac cgggagctgt ggttcctggt 840

gcaccaatga tgaacatggg tcctatggca tatccaatgc caccgacaac tgctcatagg 900gcaccaatga tgaacatggg tcctatggca tatccaatgc caccgacaac tgctcatagg 900

tga                                                               903tga 903

<210>  3<210> 3

<211>  300<211> 300

<212>  PRT<212> PRT

<213>  基因开放阅读框的DNA编码的氨基酸序列<213> DNA-encoded amino acid sequence of the open reading frame of the gene

<400>  3<400> 3

Met Ile Ala Asp Glu Ala Asp Cys Ser Ser Val Trp Thr Arg Glu GlnMet Ile Ala Asp Glu Ala Asp Cys Ser Ser Val Trp Thr Arg Glu Gln

1               5                   10                  151 5 10 15

Asp Lys Ala Phe Glu Asp Ala Leu Ala Thr Tyr Pro Glu Asp Ala ValAsp Lys Ala Phe Glu Asp Ala Leu Ala Thr Tyr Pro Glu Asp Ala Val

            20                  25                  3020 25 30

Asp Arg Trp Glu Lys Ile Ala Ala Asp Val Pro Gly Lys Thr Leu GluAsp Arg Trp Glu Lys Ile Ala Ala Asp Val Pro Gly Lys Thr Leu Glu

        35                  40                  4535 40 45

Glu Leu Lys Leu His Tyr Glu Leu Leu Val Glu Asp Leu Asn Gln IleGlu Leu Lys Leu His Tyr Glu Leu Leu Val Glu Asp Leu Asn Gln Ile

    50                  55                  6050 55 60

Glu Ala Gly Cys Val Pro Leu Pro Asn Tyr Ser Ser Met Glu Gly SerGlu Ala Gly Cys Val Pro Leu Pro Asn Tyr Ser Ser Met Glu Gly Ser

65                  70                  75                  8065 70 75 80

Ile Ser Gln Ala Gly Asp Glu Gly Thr Thr Lys Lys Gly Gly Gln MetIle Ser Gln Ala Gly Asp Glu Gly Thr Thr Lys Lys Gly Gly Gln Met

                85                  90                  9585 90 95

Gly His His Asn Ser Glu Ser Thr His Gly Asn Lys Ala Ser Arg SerGly His His Asn Ser Glu Ser Thr His Gly Asn Lys Ala Ser Arg Ser

            100                 105                 110100 105 110

Asp Gln Glu Arg Arg Lys Gly Ile Ala Trp Thr Glu Asp Glu His ArgAsp Gln Glu Arg Arg Lys Gly Ile Ala Trp Thr Glu Asp Glu His Arg

        115                 120                 125115 120 125

Leu Phe Leu Leu Gly Leu Asp Lys Tyr Gly Lys Gly Asp Trp Arg SerLeu Phe Leu Leu Gly Leu Asp Lys Tyr Gly Lys Gly Asp Trp Arg Ser

    130                 135                 140130 135 140

Ile Ser Arg Asn Phe Val Val Thr Arg Thr Pro Thr Gln Val Ala SerIle Ser Arg Asn Phe Val Val Thr Arg Thr Pro Thr Gln Val Ala Ser

145                 150                 155                 160145 150 155 160

His Ala Gln Lys Tyr Phe Ile Arg Leu Asn Ser Met Asn Lys Asp ArgHis Ala Gln Lys Tyr Phe Ile Arg Leu Asn Ser Met Asn Lys Asp Arg

                165                 170                 175165 170 175

Arg Arg Ser Ser Ile His Asp Ile Thr Ser Val Gly Asn Gly Asp IleArg Arg Ser Ser Ser Ile His Asp Ile Thr Ser Val Gly Asn Gly Asp Ile

            180                 185                 190180 185 190

Ser Ala Pro Gln Gly Pro Ile Thr Gly Gln Thr Asn Gly Ser Ala AlaSer Ala Pro Gln Gly Pro Ile Thr Gly Gln Thr Asn Gly Ser Ala Ala

        195                 200                 205195 200 205

Gly Gly Ser Ser Gly Lys Ala Ala Lys Gln Pro Pro Gln His Pro ThrGly Gly Ser Ser Gly Lys Ala Ala Lys Gln Pro Pro Gln His Pro Thr

    210                 215                 220210 215 220

Gly Pro Pro Gly Val Gly Val Tyr Gly Pro Pro Thr Ile Gly Gln ProGly Pro Pro Gly Val Gly Val Tyr Gly Pro Pro Thr Ile Gly Gln Pro

225                 230                 235                 240225 230 235 240

Ile Gly Gly Pro Leu Val Ser Ala Val Gly Thr Pro Val Asn Leu ProIle Gly Gly Pro Leu Val Ser Ala Val Gly Thr Pro Val Asn Leu Pro

                245                 250                 255245 250 255

Ala Pro Ala His Met Ala Tyr Gly Val Arg Ala Pro Val Pro Gly ThrAla Pro Ala His Met Ala Tyr Gly Val Arg Ala Pro Val Pro Gly Thr

            260                 265                 270260 265 270

Val Pro Gly Ala Val Val Pro Gly Ala Pro Met Met Asn Met Gly ProVal Pro Gly Ala Val Val Pro Gly Ala Pro Met Met Asn Met Gly Pro

        275                 280                 285275 280 285

Met Ala Tyr Pro Met Pro Pro Thr Thr Ala His ArgMet Ala Tyr Pro Met Pro Pro Thr Thr Ala His Arg

    290                 295                 300290 295 300

Claims (2)

1.小桐子MYB类转录因子JcMYB16基因在提高植物抗旱性的应用,其特征在于:所述植物为单子叶植物或双子叶植物,所述JcMYB16基因核苷酸序列为SEQ ID NO.1。1. The application of the Jatropha Jatropha MYB class transcription factor JcMYB16 gene in improving the drought resistance of plants, characterized in that: the plant is a monocotyledonous plant or a dicotyledonous plant, and the nucleotide sequence of the JcMYB16 gene is SEQ ID NO.1. 2.如权利要求1所述的小桐子MYB类转录因子JcMYB16基因在提高植物抗旱性的应用,其特征在于:所述单子叶植物为水稻,所述双子叶植物为小桐子、拟南芥,所述JcMYB16基因核苷酸序列为SEQ ID NO.1。2. the application of Jatropha MYB class transcription factor JcMYB16 gene as claimed in claim 1 in improving plant drought resistance, it is characterized in that: described monocot is rice, and described dicotyledon is Jatropha, Arabidopsis, The nucleotide sequence of the JcMYB16 gene is SEQ ID NO.1.
CN201911098741.7A 2019-11-08 2019-11-08 Jatropha MYB transcription factor JcMYB16 gene and its application in improving plant drought resistance Expired - Fee Related CN110643618B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911098741.7A CN110643618B (en) 2019-11-08 2019-11-08 Jatropha MYB transcription factor JcMYB16 gene and its application in improving plant drought resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911098741.7A CN110643618B (en) 2019-11-08 2019-11-08 Jatropha MYB transcription factor JcMYB16 gene and its application in improving plant drought resistance

Publications (2)

Publication Number Publication Date
CN110643618A CN110643618A (en) 2020-01-03
CN110643618B true CN110643618B (en) 2023-04-21

Family

ID=68995755

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911098741.7A Expired - Fee Related CN110643618B (en) 2019-11-08 2019-11-08 Jatropha MYB transcription factor JcMYB16 gene and its application in improving plant drought resistance

Country Status (1)

Country Link
CN (1) CN110643618B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113501867B (en) * 2021-07-14 2022-06-14 华中农业大学 Maize Drought Resistance Gene ZmMYBR38 and Its Application
CN114231541B (en) * 2022-01-11 2022-12-06 沈阳农业大学 A kind of MYB transcription factor improving the drought resistance of Populus montana and its application
CN114395023B (en) * 2022-01-27 2022-12-13 广东省农业科学院果树研究所 Jatropha curcas early flowering gene JcRR1B and application thereof
CN115927371B (en) * 2022-07-25 2023-06-23 中国科学院华南植物园 Sea sword bean CrHsf7 gene and transcription factor and application thereof
CN116855509B (en) * 2023-07-11 2024-08-23 四川农业大学 Grass drought-enduring gene LmMYB1 and application thereof
CN117209583B (en) * 2023-11-09 2024-03-22 吉林农业大学 Application of gene ZmMYB86 in improving plant drought resistance

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1807627A (en) * 2006-01-10 2006-07-26 中国科学院植物研究所 Barbadosnut salt induced transcription factor and its coding gene and uses
WO2010058428A2 (en) * 2008-11-21 2010-05-27 Reliance Life Sciences Pvt. Ltd. Identification of genes related to abiotic stress tolerance in jatropha curcas
CN109456982A (en) * 2018-11-29 2019-03-12 周口师范学院 The application of rice Os MYB6 gene and its coding albumen in drought resisting and salt resistance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1807627A (en) * 2006-01-10 2006-07-26 中国科学院植物研究所 Barbadosnut salt induced transcription factor and its coding gene and uses
WO2010058428A2 (en) * 2008-11-21 2010-05-27 Reliance Life Sciences Pvt. Ltd. Identification of genes related to abiotic stress tolerance in jatropha curcas
CN109456982A (en) * 2018-11-29 2019-03-12 周口师范学院 The application of rice Os MYB6 gene and its coding albumen in drought resisting and salt resistance

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"PREDICTED: Jatropha curcas transcription factor SRM1 (LOC105631171), transcript variant";NCBI;《NCBI》;20170406;第1-2页 *

Also Published As

Publication number Publication date
CN110643618A (en) 2020-01-03

Similar Documents

Publication Publication Date Title
CN110643618B (en) Jatropha MYB transcription factor JcMYB16 gene and its application in improving plant drought resistance
CN109456982B (en) Application of rice OsMYB6 gene and encoding protein thereof in drought resistance and salt resistance
CN106868021B (en) Gene OsNAC1 for controlling rice seed size and application thereof
CN105949295B (en) Proteins related to plant flowering time and their encoding genes and applications
CN106868019A (en) Control rice tillering gene OsHT1 and its application
CN104829700A (en) Corn CCCH-type zinc finger protein, and encoding gene ZmC3H54 and application thereof
CN103275200A (en) Plant adverse resistance related protein, coding gene thereof, and application of protein or gene
CN107164391A (en) A kind of strawberry floral genes FvbHLH78 and its application
CN110904071A (en) Application of RAF49 protein and its encoding gene in regulating plant drought resistance
CN113025627A (en) Rice tillering control gene OsMYB27 and application thereof in breeding
CN101643745B (en) The Promoter Sequence of Salmus V-pyrophosphatase Gene and the Application of Its Deletion Mutant
CN114560919B (en) Plant drought tolerance related transcription factor VcMYB and coding gene and application thereof
CN102719449A (en) Clone of apple resistance-related gene MdSIMYB1 and application thereof
CN107641627A (en) H gene, H protein and its application that a kind of regulation and control tomato I types glandular hairs are formed
CN101698854A (en) Application of transcription thellungiella halophila CBF1 gene in improving drought resistance and salt tolerance of corn and wheat
CN114940997A (en) Application of GmBBE-like43 gene in regulating plant adaptation to low phosphorus and aluminum acid stress and promoting growth
CN108424920A (en) The resistance to inversely related transcription factor ZmNAC33 genes of corn and its application
CN108570469A (en) Sedum lineare resistant gene of salt SLTATS and its application
CN108570471A (en) Sedum lineare resistant gene of salt SLEIPP and its application
CN104862319B (en) Control arabidopsis gene AtTIE1 and its application of plant branching
CN106432449A (en) Protein VPS23A related to drought tolerance of plants, encoding gene of protein VPS23A and application
CN110564736A (en) Sedum lineare salt-tolerant gene SlWRKY and application thereof
CN110643615A (en) Drought-resistance gene SlATHB-7 of S. foetida and its application
CN101864430A (en) Abiotic Stress Resistance Gene Tamyb31 in Wheat Introgression Lines and Its Application
CN106520723B (en) Protein VvMas, coding gene and application of protein VvMas in improving salt tolerance of plants

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20230421

CF01 Termination of patent right due to non-payment of annual fee