CN110639784B - Low frequency narrow beam transducer and transducer method and application - Google Patents
Low frequency narrow beam transducer and transducer method and application Download PDFInfo
- Publication number
- CN110639784B CN110639784B CN201910894854.1A CN201910894854A CN110639784B CN 110639784 B CN110639784 B CN 110639784B CN 201910894854 A CN201910894854 A CN 201910894854A CN 110639784 B CN110639784 B CN 110639784B
- Authority
- CN
- China
- Prior art keywords
- vibration
- piezoelectric ceramic
- cover plate
- low
- butterfly
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 9
- 239000000919 ceramic Substances 0.000 claims abstract description 132
- 230000005855 radiation Effects 0.000 claims abstract description 61
- 230000004044 response Effects 0.000 claims abstract description 25
- 239000013078 crystal Substances 0.000 claims abstract description 23
- 238000005452 bending Methods 0.000 claims description 19
- 229920001971 elastomer Polymers 0.000 claims description 17
- 229920005830 Polyurethane Foam Polymers 0.000 claims description 10
- 239000011496 polyurethane foam Substances 0.000 claims description 10
- 238000007789 sealing Methods 0.000 claims description 8
- 238000006073 displacement reaction Methods 0.000 claims description 6
- 230000005540 biological transmission Effects 0.000 claims description 5
- 230000010287 polarization Effects 0.000 claims description 4
- 230000026683 transduction Effects 0.000 claims description 4
- 238000010361 transduction Methods 0.000 claims description 4
- 230000001105 regulatory effect Effects 0.000 claims 2
- 230000000149 penetrating effect Effects 0.000 claims 1
- 238000005265 energy consumption Methods 0.000 abstract description 2
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 238000006243 chemical reaction Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 21
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 18
- 229910052782 aluminium Inorganic materials 0.000 description 18
- 239000000463 material Substances 0.000 description 13
- 229910000831 Steel Inorganic materials 0.000 description 7
- 239000000853 adhesive Substances 0.000 description 7
- 230000001070 adhesive effect Effects 0.000 description 7
- 239000010959 steel Substances 0.000 description 7
- 238000001514 detection method Methods 0.000 description 6
- 125000006850 spacer group Chemical group 0.000 description 6
- 229910000838 Al alloy Inorganic materials 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B06—GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
- B06B—METHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
- B06B1/00—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
- B06B1/02—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
- B06B1/06—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
- B06B1/0607—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
- B06B1/0622—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements on one surface
- B06B1/0625—Annular array
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B06—GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
- B06B—METHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
- B06B3/00—Methods or apparatus specially adapted for transmitting mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B06—GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
- B06B—METHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
- B06B2201/00—Indexing scheme associated with B06B1/0207 for details covered by B06B1/0207 but not provided for in any of its subgroups
- B06B2201/70—Specific application
- B06B2201/74—Underwater
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Transducers For Ultrasonic Waves (AREA)
Abstract
本发明提出了一种低频窄波束换能器及换能方法与应用,属于声换能器技术领域,其具体包括前盖板和后盖板,其还包括振动辐射板和压电陶瓷晶堆,振动辐射板设置在前盖板的振动输出端,压电陶瓷晶堆设置在前盖板与后盖板之间。本发明的低频窄波束换能器能够控制换能器谐振频率处的发射电压响应值与波束宽度,实现低频窄波束的小尺寸换能器,使换能装置整体结构及制作工艺简单且成本低、能耗降低。
The invention proposes a low-frequency narrow beam transducer, an energy conversion method and application, belonging to the technical field of acoustic transducers, and specifically includes a front cover plate and a rear cover plate, and also includes a vibration radiation plate and a piezoelectric ceramic crystal stack , the vibration radiation plate is arranged at the vibration output end of the front cover plate, and the piezoelectric ceramic crystal stack is arranged between the front cover plate and the rear cover plate. The low-frequency narrow beam transducer of the present invention can control the emission voltage response value and the beam width at the resonant frequency of the transducer, realize a small-sized transducer with a low-frequency narrow beam, and make the overall structure and manufacturing process of the transducer device simple and low in cost. , reduce energy consumption.
Description
技术领域technical field
本发明属于声换能器技术领域,具体涉及一种低频窄波束换能器及换能方法与应用。The invention belongs to the technical field of acoustic transducers, and in particular relates to a low-frequency narrow-beam transducer and a transducer method and application.
背景技术Background technique
随着有限元分析方法在换能器设计中的不断运用,各种新理论、新结构的水声换能器层出不穷,然而压电式换能器仍是当前水声换能器研究的重点。水下声学主要研究水声的发射、传播、接收、处理和水下信息传递技术,利用声波在水中的传播,可以实现对水中目标的探测、定位、识别、跟踪以及水下通信等,而且对航运、鱼探、海底资源的开发等也具有重要的意义。由于高频信号在水中传输时损失较大,而低频信号在水中传输时损失较小且传播距离较远,因此,低频换能器的研究成为水声换能器的重要研究方向。目前使用较普遍的降低换能器频率的方法有弯曲振动、液腔谐振以及模态耦合等。With the continuous application of finite element analysis method in transducer design, various new theories and new structures of underwater acoustic transducers emerge one after another. However, piezoelectric transducers are still the focus of current underwater acoustic transducer research. Underwater acoustics mainly studies the transmission, propagation, reception, processing and underwater information transmission technology of underwater sound. Using the propagation of sound waves in water, it can realize the detection, positioning, identification, tracking and underwater communication of underwater targets. Shipping, fish exploration, and development of seabed resources are also of great significance. Because the high-frequency signal has a large loss when transmitted in water, while the low-frequency signal has a small loss and a long distance when transmitted in the water. Therefore, the research of low-frequency transducers has become an important research direction of underwater acoustic transducers. At present, the commonly used methods to reduce the frequency of transducers include bending vibration, liquid cavity resonance and modal coupling.
在利用声波进行水下探测时,声波是由换能器晶片的振动产生,而声波的波束宽度越窄,表示声场能量越集中,因此设计窄波束的换能器对提高水下探测的范围和精度、提高成像的分辨率具有较好的作用。波束宽度(指向性开角)是指指向性主波瓣中,幅度由最大值降低3dB、6dB等时对应的方向之间夹角,分别称为-3dB波束宽度、-6dB波束宽度等。换能器波束宽度的大小与换能器辐射面的尺寸有关,当频率一定时,较大孔径的换能器所产生辐射声场的波束宽度较小;反之,较小的孔径则对应较大的波束宽度。通过改变换能器辐射面的振速分布,可以控制换能器辐射声场的波束宽度,从而在较小的孔径尺寸下,实现较小的波束宽度。When using sound waves for underwater detection, the sound waves are generated by the vibration of the transducer wafer, and the narrower the beam width of the sound waves is, the more concentrated the sound field energy is. Accuracy and improving the resolution of imaging have a good effect. The beam width (directivity opening angle) refers to the angle between the corresponding directions in the directional main lobe when the amplitude decreases by 3dB, 6dB, etc. from the maximum value, which are called -3dB beamwidth, -6dB beamwidth, etc. respectively. The size of the beam width of the transducer is related to the size of the radiation surface of the transducer. When the frequency is constant, the beam width of the radiated sound field generated by the larger aperture transducer is smaller; on the contrary, the smaller aperture corresponds to the larger one. beam width. By changing the vibration velocity distribution of the radiation surface of the transducer, the beam width of the sound field radiated by the transducer can be controlled, so that a smaller beam width can be achieved with a smaller aperture size.
发明内容SUMMARY OF THE INVENTION
为了解决现有技术中的换能器所存在的不足,本发明提供了一种可实现小尺寸、低频率且波束宽度较小的低频窄波束换能器。In order to solve the shortcomings of the transducers in the prior art, the present invention provides a low-frequency narrow beam transducer that can realize small size, low frequency and small beam width.
同时,本发明提供了一种可以通过上述低频窄波束换能器实现的换能方法和适用于水下探测的低频窄波束换能装置,提高发射电压响应级,实现小尺寸换能器在低频窄波束的范围内工作的目的。At the same time, the present invention provides a transduction method that can be realized by the above-mentioned low-frequency narrow-beam transducer and a low-frequency narrow-beam transducer device suitable for underwater detection, so as to improve the response level of the emission voltage, and realize the low-frequency and low-frequency operation of the small-sized transducer. The purpose of working within a narrow beam range.
为了实现上述目的,本发明所采用的技术方案是:In order to achieve the above object, the technical scheme adopted in the present invention is:
一种低频窄波束换能器,包括前盖板5和后盖板8,其还包括振动辐射板4和压电陶瓷晶堆,所述振动辐射板4设置在前盖板5的振动输出端,所述压电陶瓷晶堆设置在前盖板5与后盖板8之间;A low-frequency narrow beam transducer, comprising a
所述压电陶瓷晶堆由串接的多组压电陶瓷组组成的空腔式结构,所述压电陶瓷组是由压电陶瓷环6和设置在压电陶瓷环6上下端面的蝶形弹性垫片7组成,所述蝶形弹性垫片7是蝶形环结构,其扩口端与压电陶瓷环6正对,使压电陶瓷环6空腔与上下蝶形弹性垫片7空腔组合在压电陶瓷晶堆内部形成纵向截面为类八边形单元组合而成的振动腔。The piezoelectric ceramic crystal stack is a cavity structure composed of multiple piezoelectric ceramic groups connected in series. The butterfly-shaped
所述蝶形弹性垫片7的敞口直径小于等于压电陶瓷环6的外直径D1,蝶形弹性垫片7的侧部与水平面的夹角为10~20°;The opening diameter of the butterfly-shaped
所述蝶形弹性垫片7的敞口直径是另一端较小口直径的1.5~2倍;The opening diameter of the butterfly-shaped
所述振动辐射板4的直径D2与前盖板5的直径D1之间的关系为:D2=D1~2D1;The relationship between the diameter D2 of the
进一步优选,所述蝶形弹性垫片7的侧部与底部的夹角为11.3°,使蝶形弹性垫片7的自身弹性能够产生纵向应力与纵向振动发生协同效应。Further preferably, the included angle between the side and the bottom of the butterfly-shaped
一种通过上述的低频窄波束换能器实现的换能方法,其包括以下步骤:A transduction method realized by the above-mentioned low-frequency narrow beam transducer, which comprises the following steps:
(1)压电陶瓷环6受激励产生径向振动,径向振动激励蝶形弹性垫片7底部产生弯曲振动,蝶形弹性垫片7的侧壁将弯曲振动转变为纵向振动,多组压电陶瓷组串联,使作用在前盖板5的纵振动位移增大,工作频率降低;(1) The piezoelectric
(2)前盖板5的纵振动作用在振动辐射板4上,在振动辐射板4与前盖板5接触面上形成内纵向振动,而在振动辐射板4突出前盖板5的圆环部分形成外弯曲振动且该外弯曲振动的相位与内纵向振动的相位相反,两部分振动的辐射声压叠加,使波束变窄,可以通过调整振动辐射板4与前盖板5的直径差值,调控振动辐射板4输出端的发射电压响应值和波束宽度。(2) The longitudinal vibration of the
一种适于水下探测的低频窄波束换能装置,其包括上述的低频窄波束换能器、设置在低频窄波束换能器的外部的外壳1以及连接在低频窄波束换能器上的正极引线12和负极引线11,所述低频窄波束换能器的相邻两个压电陶瓷环6的极化方向相反,压电陶瓷环6的一面连接正极引线12,另一面连接负极引线11;利用低频窄波束换能器的空腔式压电陶瓷晶堆使纵振动位移增大,工作频率降低,再通过调整振动辐射板4与前盖板5的直径差值,调控振动辐射板4输出端的发射电压响应值和波束宽度。A low-frequency narrow-beam transducer device suitable for underwater detection, which comprises the above-mentioned low-frequency narrow-beam transducer, a
进一步限定,所述低频窄波束换能器的振动辐射板4外表面设置有透声橡胶层2,透声橡胶层2与外壳1的端口之间形成密封腔,将低频窄波束换能器封装在密封腔内。It is further limited that the outer surface of the
进一步限定,所述外壳1内部填充有聚氨酯泡沫层3;所述正极引线12和负极引线11与穿过外壳1底部的电缆13连接,以利用聚氨酯泡沫层3实现低频窄波束换能器的定位和悬浮,使其适于水中声波辐射。Further limited, the
进一步限定,所述振动辐射板4的直径D2与前盖板5的直径D1之间的关系为:D2=D1~2D1,保证振动辐射板4上与前盖板5接触的部分产生纵向振动,而前盖板5外侧的环形部分产生的是弯曲振动。Further limited, the relationship between the diameter D2 of the
与现有技术相比,本发明的有益效果是:Compared with the prior art, the beneficial effects of the present invention are:
本发明的低频窄波束换能器在外加电压信号的激励下做纵向振动并向外辐射声波能量,通过调节压电陶瓷环6与蝶形弹性垫片7的几何尺寸,可以获得不同谐振频率的换能器,蝶形弹性垫片7与压电陶瓷片的组合是为了降低换能器的谐振频率,在结合换能器前盖板辐射端的振动辐射板4,当换能器的纵向振动传递到振动辐射板会使其产生弯曲振动,改变换能器的指向性与发射电压响应级,通过调节振动辐射板的直径,控制换能器谐振频率处的发射电压响应值与波束宽度,实现低频窄波束的小尺寸换能器,使换能装置整体结构及制作工艺简单且成本低、能耗降低。The low-frequency narrow-beam transducer of the present invention vibrates longitudinally and radiates sound wave energy outwardly under the excitation of an applied voltage signal. The combination of the transducer, the butterfly-shaped
附图说明Description of drawings
图1为本发明低频窄波束换能器的结构示意图。FIG. 1 is a schematic structural diagram of a low-frequency narrow beam transducer of the present invention.
图2为图1中压电陶瓷组的结构示意图。FIG. 2 is a schematic structural diagram of the piezoelectric ceramic group in FIG. 1 .
图3为夹心式压电换能器的振型图。FIG. 3 is a mode diagram of a sandwich piezoelectric transducer.
图4为夹心式压电换能器在水中的发射电压响应曲线图。FIG. 4 is a graph showing the emission voltage response curve of the sandwich piezoelectric transducer in water.
图5为夹心式压电换能器在水中的指向性图。FIG. 5 is a directivity diagram of a sandwich piezoelectric transducer in water.
图6为本发明实施例1中低频小尺寸换能器的振型图。FIG. 6 is a mode shape diagram of a low-frequency small-sized transducer in
图7为本发明实施例2中低频小尺寸换能器的振型图。FIG. 7 is a mode shape diagram of a low-frequency small-sized transducer in
图8为本发明实施例3中低频小尺寸换能器的振型图。FIG. 8 is a mode shape diagram of a low-frequency small-sized transducer in
图9为本发明实施例3中低频小尺寸换能器在水中的发射电压响应曲线图。FIG. 9 is a graph showing the emission voltage response curve of the low-frequency small-sized transducer in water in Example 3 of the present invention.
图10为本发明实施例3中低频小尺寸换能器在水中的指向性图。10 is a directivity diagram of a low-frequency small-sized transducer in water in
图11为本发明实施例4中低频窄波束换能器在水中的发射电压响应曲线图。FIG. 11 is a graph of the emission voltage response curve of the low-frequency narrow-beam transducer in water in
图12为本发明实施例4中低频窄波束换能器在水中的指向性图。FIG. 12 is a directivity diagram of a low-frequency narrow beam transducer in water in
图13为本发明实施例5中低频窄波束换能器在水中的发射电压响应曲线图。FIG. 13 is a graph showing the emission voltage response curve of the low-frequency narrow-beam transducer in water in
图14为本发明实施例5中低频窄波束换能器在水中的指向性图。FIG. 14 is a directivity diagram of a low-frequency narrow beam transducer in water in
图15为本发明实施例6中低频窄波束换能器的振型图。FIG. 15 is a mode shape diagram of a low-frequency narrow beam transducer in
图16为本发明实施例6中低频窄波束换能器在水中的声压图。FIG. 16 is a sound pressure diagram of a low-frequency narrow beam transducer in water in
图17为本发明实施例6中低频窄波束换能器在水中的声压级图。FIG. 17 is a diagram of the sound pressure level of the low-frequency narrow-beam transducer in water in
图18为本发明实施例6中低频窄波束换能器在水中的发射电压响应曲线图。FIG. 18 is a graph showing the emission voltage response curve of the low-frequency narrow-beam transducer in water in
图19为本发明实施例6中低频窄波束换能器在水中的指向性图。FIG. 19 is a directivity diagram of a low-frequency narrow beam transducer in water in
图中:1-外壳,2-透声橡胶层,3-聚氨酯泡沫层,4-振动辐射板,5-前盖板,6-压电陶瓷环,7-蝶形弹性垫片,8-后盖板,9-螺栓,10-螺帽,11-负极引线,12-正极引线,13-电缆,14-密封橡胶。In the picture: 1- Shell, 2- Sound-transmitting rubber layer, 3- Polyurethane foam layer, 4- Vibration radiation plate, 5- Front cover plate, 6- Piezoelectric ceramic ring, 7- Butterfly elastic gasket, 8- Rear Cover plate, 9-bolt, 10-nut, 11-negative lead, 12-positive lead, 13-cable, 14-sealing rubber.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部实施例。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments.
参见图1,本发明的低频窄波束换能器包括依次设置的振动辐射板4、前盖板5、压电陶瓷晶堆和后盖板8,其中,前盖板5、压电陶瓷晶堆和后盖板8通过穿过轴心的螺栓9同轴固定,振动辐射板4通过粘结胶固定在前盖板5的振动输出端,振动辐射板4是厚度为2-5mm、直径D2为30~60mm的铝制圆形薄板,前盖板5是厚度为35~45mm、直径D1为20~30mm的铝制圆柱状,前盖板的直径D1与振动辐射板4的直径D2之间满足:D2=1~2D1,后盖板8是厚度为35~45mm、直径为20~30mm的钢制圆柱状。在后盖板8与前盖板5之间设置压电陶瓷晶堆,压电陶瓷晶堆是由串接的多组压电陶瓷组组成。Referring to FIG. 1, the low-frequency narrow beam transducer of the present invention includes a
参见图2,压电陶瓷组是由压电陶瓷环6和设置在压电陶瓷环6两端面的蝶形弹性垫片7组成,压电陶瓷环6是PZT-4压电陶瓷制成的圆环形压电陶瓷环,蝶形弹性垫片7是铝材制成的蝶形环结构,其扩口端与压电陶瓷环6正对,压电陶瓷环6空腔与上、下的蝶形弹性垫片7空腔组合在压电陶瓷晶堆内部形成纵向截面为类八边形单元组合而成的振动腔。压电陶瓷环6受激励产生径向振动,径向振动激励蝶形弹性垫片7底部产生弯曲振动,蝶形弹性垫片7的侧壁将弯曲振动转变为纵向振动,多组压电陶瓷组串联,使作用在前盖板5的纵振动位移增大,工作频率降低。可以通过调节压电陶瓷环6与蝶形弹性垫片7的几何尺寸,在不改变厚度的前提下,可以获得不同谐振频率的换能器。Referring to FIG. 2, the piezoelectric ceramic group is composed of a piezoelectric
进一步限定,蝶形弹性垫片7的敞口直径小于等于压电陶瓷环6的外直径,蝶形弹性垫片7的敞口直径是另一端较小口直径的1.5~2倍,蝶形弹性垫片7的侧部与底部的夹角为10~20°,优选为11.3°。It is further limited that the diameter of the opening of the butterfly-shaped
通过上述的低频窄波束换能器实现的换能方法包括以下步骤:The transduction method realized by the above-mentioned low-frequency narrow beam transducer includes the following steps:
(1)压电陶瓷环6受激励产生径向振动,径向振动激励蝶形弹性垫片7底部产生弯曲振动,蝶形弹性垫片7的侧壁将弯曲振动转变为纵向振动,多组压电陶瓷组串联,使作用在前盖板5的纵振动位移增大,工作频率降低;(1) The piezoelectric
(2)前盖板5的纵振动作用在振动辐射板4上,在振动辐射板4与前盖板5接触面上形成内纵向振动,而在振动辐射板4突出前盖板5的圆环部分形成外弯曲振动且该外弯曲振动的相位与内纵向振动的相位相反,两部分振动的辐射声压叠加,使波束变窄,可以通过调整振动辐射板4与前盖板5的直径差值,调控振动辐射板4输出端的发射电压响应值和波束宽度。(2) The longitudinal vibration of the
由于低频窄波束换能器具有低频、小尺寸、窄波束的优势,其可以制成适于水下探测的低频窄波束换能装置。Because the low frequency narrow beam transducer has the advantages of low frequency, small size and narrow beam, it can be made into a low frequency narrow beam transducer device suitable for underwater detection.
该适于水下探测的低频窄波束换能装置包括外壳1、低频窄波束换能器、正极引线12、负极引线11、透声橡胶层2、聚氨酯泡沫层3以及电缆13。The low frequency narrow beam transducer device suitable for underwater detection includes a
在外壳1内部填充有聚氨酯泡沫层3,利用聚氨酯泡沫层3实现低频窄波束换能器的定位和悬浮,使其适于水中声波辐射。在外壳1的端口设置透声橡胶层2,使透声橡胶层2与外壳1的端口之间形成密封腔,将低频窄波束换能器封装在密封腔内。低频窄波束换能器的振动辐射板4与透声橡胶层2正对,低频窄波束换能器的相邻两个压电陶瓷环6的极化方向相反,压电陶瓷环6的一面连接正极引线12,另一面连接负极引线11,正极引线12和负极引线11与穿过外壳1底部的电缆13连接。为了保证密封效果,在电缆13与外壳1连接处设置有密封橡胶14。在保持压电陶瓷晶堆与前盖板5、后盖板8的厚度不变的情况下,相邻两个压电陶瓷环6的极化方向相反,通过调节压电陶瓷环6与蝶形弹性垫片7的几何尺寸,在不改变厚度的前提下,可以获得不同谐振频率的换能器,通过调整振动辐射板4与前盖板5的直径差值,调控振动辐射板4输出端的发射电压响应值和波束宽度,即调整换能器的发射电压响应值和波束宽度。The interior of the
实施例1Example 1
本实施例的低频小尺寸换能器包括前盖板5、压电陶瓷环6、蝶形弹性垫片7、后盖板8、螺栓9、螺帽10。其中,前盖板5、蝶形弹性垫片7为铝质材料,后盖板8、螺栓9和螺帽10为钢质材料。螺栓9贯穿后盖板8、压电陶瓷环6、蝶形弹性垫片7且伸入前盖板5至一定深度,使后盖板8与前盖板5串接为一体结构,而中部与后盖板8和前盖板5连接的蝶形弹性垫片7分别通过粘结胶粘结。在螺栓9底部装有螺帽10紧固。The low-frequency small-sized transducer of this embodiment includes a
本实施例的压电陶瓷晶堆是由串接的4组压电陶瓷组组成,每组压电陶瓷组是由1个PZT-4压电陶瓷制成的圆形压电陶瓷环6和2个分别设置在压电陶瓷环两端面的蝶形弹性垫片7粘结为一体,本实施例的蝶形弹性垫片7是铝材制成的蝶形环结构,其扩口端与压电陶瓷环正对,使压电陶瓷环6空腔与上下蝶形弹性垫片7空腔组合在压电陶瓷晶堆内部形成纵向截面为类八边形单元组合而成的振动腔。The piezoelectric ceramic crystal stack of this embodiment is composed of 4 groups of piezoelectric ceramic groups connected in series, and each group of piezoelectric ceramic groups is a circular piezoelectric
本实施例的前盖板5的厚度为45mm、直径D1为30mm,后盖板8的厚度为39mm、直径为30mm。压电陶瓷环的外直径为30mm,内直径为24mm,蝶形弹性垫片7的敞口直径为24mm,较小口直径为18mm,蝶形弹性垫片7的侧部与底部的夹角为18.26°。The thickness of the
实施例2Example 2
本实施例的低频小尺寸换能器包括前盖板5、压电陶瓷环6、蝶形弹性垫片7、后盖板8、螺栓9、螺帽10。其中,前盖板5、蝶形弹性垫片7为铝质材料,后盖板8、螺栓9和螺帽10为钢质材料。螺栓9贯穿后盖板8、压电陶瓷环6、蝶形弹性垫片7且伸入前盖板5至一定深度,使后盖板8与前盖板5串接为一体结构,而中部与后盖板8和前盖板5连接的蝶形弹性垫片7分别通过粘结胶粘结。在螺栓9底部装有螺帽10紧固。The low-frequency small-sized transducer of this embodiment includes a
本实施例的压电陶瓷晶堆是由串接的4组压电陶瓷组组成,每组压电陶瓷组是由1个PZT-4压电陶瓷制成的圆形压电陶瓷环6和2个分别设置在压电陶瓷环两端面的蝶形弹性垫片7粘结为一体,本实施例的蝶形弹性垫片7是铝材制成的蝶形环结构,其扩口端与压电陶瓷环正对,使压电陶瓷环6空腔与上下蝶形弹性垫片7空腔组合在压电陶瓷晶堆内部形成纵向截面为类八边形单元组合而成的振动腔。The piezoelectric ceramic crystal stack of this embodiment is composed of 4 groups of piezoelectric ceramic groups connected in series, and each group of piezoelectric ceramic groups is a circular piezoelectric
本实施例的前盖板5的厚度为45mm、直径D1为30mm,后盖板8的厚度为39mm、直径为30mm。压电陶瓷环的外直径为30mm,内直径为22mm,蝶形弹性垫片7的敞口直径为22mm,较小口直径为14mm,蝶形弹性垫片7的侧部与底部的夹角为14°。The thickness of the
实施例3Example 3
本实施例的低频小尺寸换能器包括前盖板5、压电陶瓷环6、蝶形弹性垫片7、后盖板8、螺栓9、螺帽10。其中,前盖板5、蝶形弹性垫片7为铝质材料,后盖板8、螺栓9和螺帽10为钢质材料。螺栓9贯穿后盖板8、压电陶瓷环6、蝶形弹性垫片7且伸入前盖板5至一定深度,使后盖板8与前盖板5串接为一体结构,而中部与后盖板8和前盖板5连接的蝶形弹性垫片7分别通过粘结胶粘结。在螺栓9底部装有螺帽10紧固。The low-frequency small-sized transducer of this embodiment includes a
本实施例的压电陶瓷晶堆是由串接的4组压电陶瓷组组成,每组压电陶瓷组是由1个PZT-4压电陶瓷制成的圆形压电陶瓷环6和2个分别设置在压电陶瓷环两端面的蝶形弹性垫片7粘结为一体,本实施例的蝶形弹性垫片7是铝材制成的蝶形环结构,其扩口端与压电陶瓷环正对,使压电陶瓷环6空腔与上下蝶形弹性垫片7空腔组合在压电陶瓷晶堆内部形成纵向截面为类八边形单元组合而成的振动腔。The piezoelectric ceramic crystal stack of this embodiment is composed of 4 groups of piezoelectric ceramic groups connected in series, and each group of piezoelectric ceramic groups is a circular piezoelectric
本实施例的前盖板5的厚度为45mm、直径D1为30mm,后盖板8的厚度为39mm、直径为30mm。压电陶瓷环的外直径为30mm,内直径为20mm,蝶形弹性垫片7的敞口直径为20mm,较小口直径为10mm,蝶形弹性垫片7的侧部与底部的夹角为11.3°。The thickness of the
实施例4Example 4
本实施例的低频窄波束换能装置包括外壳1、透声橡胶层2、聚氨酯泡沫层3、振动辐射板4、前盖板5、压电陶瓷环6、蝶形弹性垫片7、后盖板8、螺栓9、螺帽10、负极引线11、正极引线12以及电缆13。The low-frequency narrow beam transducer device of this embodiment includes a
其中,外壳1采用铝合金制成,前盖板5、蝶形弹性垫片7和振动辐射板4为铝质材料,后盖板8、螺栓9和螺帽10为钢质材料。外壳1底部开孔以便电缆13通过,在开孔处用密封橡胶14密封。螺栓9贯穿后盖板8、压电陶瓷环6、蝶形弹性垫片7且伸入前盖板5至一定深度,使后盖板8与前盖板5串接为一体结构,而中部与后盖板8和前盖板5连接的蝶形弹性垫片7分别通过粘结胶粘结。在螺栓9底部装有螺帽10紧固。The
本实施例的压电陶瓷晶堆是由串接的4组压电陶瓷组组成,每组压电陶瓷组是由1个PZT-4压电陶瓷制成的圆形压电陶瓷环6和2个分别设置在压电陶瓷环两端面的蝶形弹性垫片7粘结为一体,本实施例的蝶形弹性垫片7是铝材制成的蝶形环结构,其扩口端与压电陶瓷环正对,使压电陶瓷环6空腔与上下蝶形弹性垫片7空腔组合在压电陶瓷晶堆内部形成纵向截面为类八边形单元组合而成的振动腔。The piezoelectric ceramic crystal stack of this embodiment is composed of 4 groups of piezoelectric ceramic groups connected in series, and each group of piezoelectric ceramic groups is a circular piezoelectric
本实施例的振动辐射板4是厚度为2mm、直径D2为40mm的铝制圆形薄板,前盖板5的厚度为45mm、直径D1为30mm,与振动辐射板4的直径D2满足:D2=1~2D1中任一即可。后盖板8的厚度为39mm、直径为30mm。压电陶瓷环的外直径为30mm,内直径为20mm,蝶形弹性垫片7的敞口直径为20mm,较小口直径为10mm,蝶形弹性垫片7的侧部与底部的夹角为11.3°。The
实施例5Example 5
本实施例的低频窄波束换能装置包括外壳1、透声橡胶层2、聚氨酯泡沫层3、振动辐射板4、前盖板5、压电陶瓷环6、蝶形弹性垫片7、后盖板8、螺栓9、螺帽10、负极引线11、正极引线12以及电缆13。The low-frequency narrow beam transducer device of this embodiment includes a
其中,外壳1采用铝合金制成,前盖板5、蝶形弹性垫片7和振动辐射板4为铝质材料,后盖板8、螺栓9和螺帽10为钢质材料。外壳1底部开孔以便电缆13通过,在开孔处用密封橡胶14密封。螺栓9贯穿后盖板8、压电陶瓷环6、蝶形弹性垫片7且伸入前盖板5至一定深度,使后盖板8与前盖板5串接为一体结构,而中部与后盖板8和前盖板5连接的蝶形弹性垫片7分别通过粘结胶粘结。在螺栓9底部装有螺帽10紧固。The
本实施例的压电陶瓷晶堆是由串接的4组压电陶瓷组组成,每组压电陶瓷组是由1个PZT-4压电陶瓷制成的圆形压电陶瓷环6和2个分别设置在压电陶瓷环两端面的蝶形弹性垫片7粘结为一体,本实施例的蝶形弹性垫片7是铝材制成的蝶形环结构,其扩口端与压电陶瓷环正对,使压电陶瓷环6空腔与上下蝶形弹性垫片7空腔组合在压电陶瓷晶堆内部形成纵向截面为类八边形单元组合而成的振动腔。The piezoelectric ceramic crystal stack of this embodiment is composed of 4 groups of piezoelectric ceramic groups connected in series, and each group of piezoelectric ceramic groups is a circular piezoelectric
本实施例的振动辐射板4是厚度为2mm、直径D2为50mm的铝制圆形薄板,前盖板5的厚度为45mm、直径D1为30mm,与振动辐射板4的直径D2满足:D2=1~2D1中任一即可。后盖板8的厚度为39mm、直径为30mm。压电陶瓷环的外直径为30mm,内直径为20mm,蝶形弹性垫片7的敞口直径为20mm,较小口直径为10mm,蝶形弹性垫片7的侧部与底部的夹角为11.3°。The
实施例6Example 6
本实施例的低频窄波束换能装置包括外壳1、透声橡胶层2、聚氨酯泡沫层3、振动辐射板4、前盖板5、压电陶瓷环6、蝶形弹性垫片7、后盖板8、螺栓9、螺帽10、负极引线11、正极引线12以及电缆13。The low-frequency narrow beam transducer device of this embodiment includes a
其中,外壳1采用铝合金制成,前盖板5、蝶形弹性垫片7和振动辐射板4为铝质材料,后盖板8、螺栓9和螺帽10为钢质材料。外壳1底部开孔以便电缆13通过,在开孔处用密封橡胶14密封。螺栓9贯穿后盖板8、压电陶瓷环6、蝶形弹性垫片7且伸入前盖板5至一定深度,使后盖板8与前盖板5串接为一体结构,而中部与后盖板8和前盖板5连接的蝶形弹性垫片7分别通过粘结胶粘结。在螺栓9底部装有螺帽10紧固。The
本实施例的压电陶瓷晶堆是由串接的4组压电陶瓷组组成,每组压电陶瓷组是由1个PZT-4压电陶瓷制成的圆形压电陶瓷环6和2个分别设置在压电陶瓷环两端面的蝶形弹性垫片7粘结为一体,本实施例的蝶形弹性垫片7是铝材制成的蝶形环结构,其扩口端与压电陶瓷环正对,使压电陶瓷环6空腔与上下蝶形弹性垫片7空腔组合在压电陶瓷晶堆内部形成纵向截面为类八边形单元组合而成的振动腔。The piezoelectric ceramic crystal stack of this embodiment is composed of 4 groups of piezoelectric ceramic groups connected in series, and each group of piezoelectric ceramic groups is a circular piezoelectric
本实施例的振动辐射板4是厚度为2mm、直径D2为53mm的铝制圆形薄板,前盖板5的厚度为45mm、直径D1为30mm,与振动辐射板4的直径D2满足:D2=1~2D1中任一即可。后盖板8的厚度为39mm、直径为30mm。压电陶瓷环的外直径为30mm,内直径为20mm,蝶形弹性垫片7的敞口直径为20mm,较小口直径为10mm,蝶形弹性垫片7的侧部与底部的夹角为11.3°。The
图3、图4、图5分别为夹心式压电换能器的振型及在水中的发射电压响应曲线与指向性图。Figure 3, Figure 4, Figure 5 are the mode shape of the sandwich piezoelectric transducer, the emission voltage response curve and the directivity diagram in water, respectively.
图6、图7、图8分别为本发明实施例1、2、3中低频小尺寸换能器(即为不加振动辐射板4时的换能器)的振型图。比较图3与图6、图7、图8可知,实施例3中低频小尺寸换能器的谐振频率与夹心式换能器相比降低8658Hz,而且,从实施例1-3的尺寸数据对比可知,改变蝶形垫片与压电陶瓷环的尺寸,可以改变换能器的频率。6 , 7 , and 8 are respectively the mode shape diagrams of the low-frequency small-sized transducers (that is, the transducers without the vibration radiating plate 4 ) in
图9、图10分别为本发明实施例3中低频小尺寸换能器在水中的发射电压响应曲线与指向性图。比较图4与图9可知,实施例3中低频小尺寸换能器谐振频率处的发射电压响应值与夹心式换能器相比减小14.67dB。根据波束宽度的定义,由图5、图10可知,实施例3中低频小尺寸换能器与夹心式换能器谐振频率处的-3dB波束宽度均为180°。FIG. 9 and FIG. 10 are respectively the emission voltage response curve and the directivity diagram of the low-frequency small-sized transducer in water in
图11、图13、图18分别为本发明实施例4、5、6中低频窄波束换能器在水中的发射电压响应曲线。比较各发射电压响应曲线可知,实施例6中低频窄波束换能器谐振频率处的发射电压响应值最大,与夹心式换能器相比增大5.2dB,与实施例3中低频小尺寸换能器相比增大19.87dB,通过改变振动辐射板4的直径,可以调整改变最大发射电压响应值与最小波束宽度。FIG. 11 , FIG. 13 , and FIG. 18 are respectively the emission voltage response curves of the low-frequency narrow-beam transducers in water in
图12、图14、图19分别为本发明实施例4、5、6中低频窄波束换能器在水中的指向性图。根据波束宽度的定义,由图12、图14、图19可知,实施例4、5、6中低频窄波束换能器谐振频率处的-3dB波束宽度分别为180°、92.6°、44.6°。FIG. 12 , FIG. 14 , and FIG. 19 are the directivity diagrams of the low-frequency narrow-beam transducers in water in
图15、图16、图17分别为本发明实施例6中低频窄波束换能器的振型图及在水中的声压图与声压级图。由图15可知,当换能器的纵振动传递到振动辐射板4,振动辐射板4的中心部分做纵振动,而边缘部分做弯曲振动。FIG. 15 , FIG. 16 , and FIG. 17 are respectively the mode shape diagram, the sound pressure diagram and the sound pressure level diagram of the low-frequency narrow beam transducer in
综上对比说明,本发明的多个压电陶瓷环6与蝶形弹性垫片7组合形成的压电陶瓷晶堆与圆盘状振动辐射板4结合,能够使纵向振动与弯曲振动叠加,提高发射电压响应级,使输出端的波束变窄,通过调节振动辐射板4的直径,控制换能器谐振频率处的发射电压响应值与波束宽度,实现小尺寸换能器在低频窄波束的范围内工作。In summary, the piezoelectric ceramic crystal stack formed by the combination of the plurality of piezoelectric
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910894854.1A CN110639784B (en) | 2019-09-20 | 2019-09-20 | Low frequency narrow beam transducer and transducer method and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910894854.1A CN110639784B (en) | 2019-09-20 | 2019-09-20 | Low frequency narrow beam transducer and transducer method and application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110639784A CN110639784A (en) | 2020-01-03 |
CN110639784B true CN110639784B (en) | 2020-12-29 |
Family
ID=69010957
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910894854.1A Active CN110639784B (en) | 2019-09-20 | 2019-09-20 | Low frequency narrow beam transducer and transducer method and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110639784B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111570245B (en) * | 2020-06-02 | 2021-05-07 | 浙江大学 | A microelectromechanical piezoelectric ultrasonic transducer with butterfly-shaped vibrating membrane |
CN116329060B (en) * | 2023-03-02 | 2023-12-12 | 大连理工大学宁波研究院 | Low-frequency sound wave generating device for detecting pipeline blockage |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5627171B2 (en) * | 2008-06-26 | 2014-11-19 | 株式会社東芝 | Ultrasonic diagnostic equipment |
JP5500887B2 (en) * | 2009-07-06 | 2014-05-21 | 有限会社エッチアンドビーソリューション | Anchor bolt shape exploration method and apparatus |
JP5445323B2 (en) * | 2010-05-17 | 2014-03-19 | 日本電気株式会社 | Acoustic transducer |
CN203648823U (en) * | 2013-12-23 | 2014-06-18 | 西安建筑科技大学 | Hanging device of four-shaft inertial exciting device |
GB201419219D0 (en) * | 2014-10-29 | 2014-12-10 | Imp Innovations Ltd | Electromagnetic accoustic transducer |
CN109967331B (en) * | 2018-12-27 | 2023-11-28 | 无锡市宇超电子有限公司 | Series high-power transducer |
CN109914635A (en) * | 2019-04-10 | 2019-06-21 | 重庆大学 | A rotating frictional energy dissipation wall |
CN110173535B (en) * | 2019-06-10 | 2024-04-05 | 伯科姆汽车零部件系统(苏州)有限公司 | Frequency self-induction damping adjustment shock absorber recovery valve assembly |
-
2019
- 2019-09-20 CN CN201910894854.1A patent/CN110639784B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN110639784A (en) | 2020-01-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101964185B (en) | An Ultra-Wideband Underwater Acoustic Transducer | |
US4333028A (en) | Damped acoustic transducers with piezoelectric drivers | |
CN101321411B (en) | Cylindrical stack wafer underwater transducer | |
US8085621B2 (en) | Ultrasonic transducer with improved method of beam angle control | |
CN100561575C (en) | Dish type transmitting transducer | |
CN102136268B (en) | Bent piezoelectric-ceramic low-frequency underwater acoustic transducer | |
CN102169685A (en) | Small sized deepwater underwater sound energy transducer with low frequency and broad band | |
CN103841499A (en) | Prestressed stacked piezoelectric round tube transducer | |
CN110639784B (en) | Low frequency narrow beam transducer and transducer method and application | |
CN108435523B (en) | Droplet Flextensional Transducer | |
CN110277485B (en) | Composite laminated flexural vibration element and preparation method thereof | |
CN108877756A (en) | A kind of low frequency annulus energy converter of flextensional structure driving | |
CN110944274B (en) | A Mass-loaded Tunable MEMS Piezoacoustic Transducer Based on Piston-mode | |
US20240056726A1 (en) | Flextensional low frequency sound projector | |
CN109604133B (en) | Low-directivity fluctuating arc transmitting transducer array | |
EP0039986B1 (en) | An acoustic transducer system | |
RU2536782C1 (en) | Hydroacoustic directional waveguide converter | |
CN110619863A (en) | Low-frequency narrow-beam underwater acoustic transducer | |
EP3638429B1 (en) | High frequency wideband wide beam ultrasound emitter transducer for underwater communications | |
RU2267866C1 (en) | Hydro-acoustic rod-type transformer | |
CN118338188B (en) | A spherical concave-convex low-frequency directional flextensional transducer | |
US8817575B1 (en) | Transducer for high pressure environment | |
RU2757358C1 (en) | Broadband hydroacoustic antenna | |
RU2228578C1 (en) | Electroacoustic transducer | |
CN115134705B (en) | Multi-plate and shell flexural transducer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |