CN110634451B - 驱动方法及其驱动电路 - Google Patents
驱动方法及其驱动电路 Download PDFInfo
- Publication number
- CN110634451B CN110634451B CN201910555100.3A CN201910555100A CN110634451B CN 110634451 B CN110634451 B CN 110634451B CN 201910555100 A CN201910555100 A CN 201910555100A CN 110634451 B CN110634451 B CN 110634451B
- Authority
- CN
- China
- Prior art keywords
- level
- driving
- driving signal
- lines
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 60
- 230000007704 transition Effects 0.000 claims description 42
- 238000007667 floating Methods 0.000 abstract description 8
- 230000008878 coupling Effects 0.000 description 125
- 238000010168 coupling process Methods 0.000 description 125
- 238000005859 coupling reaction Methods 0.000 description 125
- 239000003990 capacitor Substances 0.000 description 102
- 230000008859 change Effects 0.000 description 28
- 238000010586 diagram Methods 0.000 description 23
- 239000004973 liquid crystal related substance Substances 0.000 description 14
- 239000013256 coordination polymer Substances 0.000 description 13
- 230000011218 segmentation Effects 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
- G09G3/3611—Control of matrices with row and column drivers
- G09G3/3648—Control of matrices with row and column drivers using an active matrix
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
- Liquid Crystal Display Device Control (AREA)
- Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)
- Oscillators With Electromechanical Resonators (AREA)
- Electronic Switches (AREA)
Abstract
本发明公开了一种驱动方法及其驱动电路,用于一显示面板,驱动电路包含一驱动模块与一时序控制器。驱动方法是产生复数驱动信号,并传送所述驱动信号至显示面板的复数驱动线,其中对应相邻两驱动线的一第一驱动信号与一第二驱动信号的第一驱动信号的准位从一初始准位转变至一预定准位,第一驱动信号的准位变化时,第二驱动信号的准位为固定或者第二驱动线处于浮接状态。
Description
技术领域
本发明涉及一种驱动方法及其驱动电路,尤其涉及一种减少驱动显示面板所需的电流耗损的驱动方法及其驱动电路。
背景技术
液晶显示器(Liquid Crystal Display,LCD)具有外型轻薄、低辐射、体积小及低耗能等优点,广泛地应用在笔记本电脑或平面电视等信息产品上,其中以主动矩阵式薄膜晶体管液晶显示器(Active Matrix TFT LCD)受到广泛的采用。简单来说,主动矩阵式薄膜晶体管液晶显示器的驱动系统是由一时序控制器(Timing Controller)、源极驱动模块(Source Driver)以与门极驱动模块(Gate Driver)所构成。源极驱动模块与门极驱动模块分别控制源极驱动线与门极驱动线,其在面板上相互交叉形成电路单元矩阵,而每个电路单元(Cell)包含液晶分子及晶体管。液晶显示器的显示原理是栅极驱动模块先将栅极驱动信号送至晶体管的栅极,使晶体管导通,同时源极驱动模块将数据转换成输出电压后,将输出电压送至晶体管的源极,此时液晶一端的电压会等于晶体管汲极的电压,并根据汲极电压改变液晶分子的倾斜角度,进而改变透光率达到显示不同颜色的目的。
然而,随着技术的演进,液晶显示器的分辨率逐渐上升(如从全高清(Full HD)分辨率上升至4K分辨率),且液晶显示器的画面显示质量也随之提高。当液晶显示器的分辨率增加时,液晶显示器中用于驱动显示面板的驱动电路中驱动组件的数目也随之上升。其中,现有的显示面板具有复数驱动线,例如栅极驱动线与源极驱动线,而相邻驱动线之间具有耦合电容,如源极驱动线与源极驱动线之间的耦合电容、栅极驱动线与栅极驱动线之间的耦合电容及源极驱动线与栅极驱动线之间的耦合电容。当驱动电路产生驱动信号并传送至驱动线,而驱动显示面板显示画面时,传送于驱动线的驱动信号即会对上述的耦合电容充放电,如此即会耗费电源。
因此,如何降低消耗在显示面板的驱动线间的耦合电容上的电源,便成为业界亟欲探讨的议题。
发明内容
因此,本发明提出一种驱动方法及其驱动电路,以减少显示面板上的驱动线间的耦合电容的电源耗损,进而减少驱动显示面板的总耗电源。
本发明实施例揭露一种驱动方法,用于一显示面板,包含产生复数驱动信号,并传送所述驱动信号至显示面板的复数驱动线,对应相邻两驱动线的一第一驱动信号与一第二驱动信号的第一驱动信号的准位从一初始准位转变至一预定准位,第一驱动信号的准位变化时,第二驱动信号的准位为固定或者第二驱动线处于浮接状态。
本发明实施例另揭露一种驱动电路,用于一显示面板,其包含一驱动模块与一时序控制器。驱动模块耦接显示面板的复数驱动线,并产生复数驱动信号,且传送所述驱动信号至所述驱动线。时序控制器耦接驱动模块,控制所述驱动模块产生所述驱动信号,对应相邻两驱动线的一第一驱动信号与一第二驱动信号的第一驱动信号的准位从一初始准位转变至一预定准位,第一驱动信号的准位变化时,第二驱动信号的准位为固定或者为浮接状态。
附图说明
图1为本发明实施例的一显示器的示意图。
图2为本发明实施例的驱动方法对一耦合电容的两端充电的波形图。
图3为本发明实施例的驱动方法对一耦合电容的两端充电的波形图。
图4至图7分别为本发明实施例的驱动方法对耦合电容的两端充电的波形图。
图8为本发明实施例的一源极驱动模块的示意图。
图9至图15为本发明实施例的驱动方法对源极驱动线之间的耦合电容的两端充电的波形图。
图16为本发明实施例的一栅极驱动模块的示意图。
图17至图19为本发明实施例的驱动方法对栅极驱动线之间的耦合电容的两端充电的波形图。
图20至图23为本发明实施例的驱动方法对源极驱动线与栅极驱动线之间的耦合电容的两端充电的波形图。
图24为本发明实施例的驱动方法对显示面板的耦合电容的两端充电的波形图。
其中,附图标记说明如下:
10 显示器
100 显示面板
102 驱动电路
104 栅极驱动模块
104_1~104_N 栅极驱动电路
106 源极驱动模块
106_1~106_N 源极驱动电路
108 时序控制器
CN 第二端
CP 第一端
CS、CL 电容
Cs2s、Cg2g、Cs2g 耦合电容
Cycle 周期
GL1~GL3 栅极驱动线
GND 地电压
MUX_1、MUX_2、MUX_3 选择器
OP 驱动单元
PIX 像素
SL1~SL4 源极驱动线
t0~t21 时间
Vdd~6Vdd、-Vdd~-5Vdd 电压值
具体实施方式
请参考图1,图1为本发明实施例的一显示器10的示意图。显示器10可为如薄膜晶体管(Thin Film Transistor,TFT)液晶显示器。显示器10包括一显示面板(panel)100及一驱动电路102。如图1所示,显示面板100包括多个像素PIX。显示面板100具有复数驱动线,其包含复数栅极驱动线GL1~GLn、源极驱动线SL1~SLm,为求简洁,图1仅绘示出栅极驱动线GL1~GL3及源极驱动线SL1~SL4作为代表。栅极驱动线GL1~GLn与源极驱动线SL1~SLm的每一交界处分别为像素PIX的所在处,且耦接于晶体管MN,晶体管MN并耦接储存电容CS与液晶电容CL。电容CS、CL可都耦接至一共同电压VCOM。驱动电路102包括一驱动模块及一时序控制器108,驱动模块包含一栅极驱动模块104及一源极驱动模块106。时序控制器108耦接栅极驱动模块104,并产生一时序控制信号控制栅极驱动模块104产生复数栅极驱动信号并分别传送至栅极驱动线GL1~GLn,以控制晶体管MN的导通状态。时序控制器108耦接源极驱动模块106并通过时序控制信号控制源极驱动模块106产生复数源极驱动信号并传送至所述源极驱动线SL1~SLm,以控制每一液晶分子两端的电位差,以驱动显示面板100显示影像。
详细来说,栅极驱动模块104及源极驱动模块106产生的栅极驱动信号与源极驱动信号为电压信号,因此栅极驱动信号会对相邻的栅极驱动线GL1~GLn间的耦合电容充放电,而源极驱动模块106产生的源极驱动信号会对相邻的源极驱动线SL1~SLm间的耦合电容充放电,甚至栅极驱动信号与源极驱动信号会对相邻的栅极驱动线与源极驱动线间的耦合电容充放电。本发明实施例的时序控制器108控制栅极驱动模块104及/或源极驱动模块106以一分时分段方式产生栅极驱动信号与源极驱动信号,以对上述的耦合电容进行充电。分时分段方式是以一切换电压源方式产生栅极驱动信号与源极驱动信号,并且,当以分时分段方式产生栅极驱动信号与源极驱动信号而对任一耦合电容进行充电时,是对任一耦合电容的一第一端点充电,且任一耦合电容的一第二端点为一固定电压,其中切换电压源方式是可以以低倍压电源切换至高倍压电源产生栅极驱动信号与源极驱动信号,即栅极驱动信号与源极驱动信号的准位的绝对值由低值变换至高值,以对耦合电容进行充电。
举例来说,请继续参考图2,图2为本发明实施例的驱动方法对一耦合电容的两端充电的波形图。耦合电容两端即为相邻的两驱动线,例如相邻的源极驱动线、相邻的栅极驱动线,又或者是相邻的栅极驱动线与源极驱动线,而对应相邻的两驱动线的驱动信号即会对耦合电容的两端进行充电或者放电。其中,X轴为时间轴,Y轴为耦合电容的两端点的一跨压电压值,粗实线段代表耦合电容的一第一端CP的电压变化,粗虚线段代表耦合电容的一第二端CN的电压变化。为了方便说明,以下以时序控制器108控制源极驱动模块106产生源极驱动信号为例,于一周期cycle内,时序控制器108控制源极驱动模块106产生复数源极驱动信号,所述源极驱动信号对应所述源极驱动线SL1~SLm。在此例中,对应相邻的两源极驱动线的两源极驱动信号的第一源极驱动信号的准位由初始准位为地电压GND转变为三倍压(即3Vdd)的预定准位,而对耦合电容的第一端CP进行充电,而对应相邻的两源极驱动线的两源极驱动信号的第二源极驱动信号的准位始终为地电压GND,即耦合电容的第二端CN的准位保持固定。由上述说明可知,当第一源极驱动信号的准位变换而对耦合电容的第一端CP充电时,第二源极驱动信号的准位为固定。如此可降低对耦合电容进行充电的电源损耗,例如电流损耗。
请继续参考图3,图3为本发明实施例的驱动方法对一耦合电容的两端充电的波形图。其中,X轴为时间轴,Y轴为耦合电容的两端点的一跨压电压值,粗实线段代表耦合电容的第一端CP的电压变化,粗虚线段代表耦合电容的一第二端CN的电压变化。在此实施例中,于一周期cycle内,时序控制器108控制源极驱动模块106产生复数源极驱动信号,所述源极驱动信号对应所述源极驱动线SL1~SLm。在此例中,对应相邻的两源极驱动线的两源极驱动信号的第一源极驱动信号的准位于时间t0~t1、t1~t2、t2~t3依序地由初始准位为地电压GND转变为一倍压Vdd(过渡准位)、两倍压2Vdd(过渡准位)至三倍压3Vdd的预定准位,而对耦合电容的第一端CP进行充电,而对应相邻的两源极驱动线的两源极驱动信号的第二源极驱动信号的准位始终为地电压GND,即耦合电容的第二端CN的准位保持固定。本发明实施例以分时分段的方式,依序以低压电源切换至高压电源对耦合电容的一端进行充电,且切换电压对耦合电容的端点充电时,耦合电容的另一端的准位为固定,如此可降低充电耦合电容的总耗电量。
图4为本发明实施例的驱动方法对耦合电容的两端充电的波形图。在此例中,于周期cycle内,时序控制器108控制源极驱动模块106产生复数源极驱动信号。在此例中,对应相邻的两源极驱动线的两源极驱动信号的第一源极驱动信号的准位依序地于时间t0~t1、t1~t2、t2~t3由初始准位为地电压GND转变为一倍压Vdd(过渡准位)、两倍压2Vdd(过渡准位)至三倍压3Vdd的预定准位,而对耦合电容的第一端CP以一倍压Vdd、两倍压2Vdd及三倍压3Vdd对耦合电容行充电。接着,第一源极驱动信号的准位于时间t3~t4由三倍压3Vdd的预定准位转变为一倍压Vdd而对耦合电容进行放电,第一源极驱动信号的准位并非由三倍压3Vdd的预定准位直接转变为地电压GND,如此可回收电荷,进一步节省电源。上述第一源极驱动信号的准位由三倍压3Vdd的预定准位转变为一倍压Vdd,此一倍压Vdd为放电准位。此外,对应相邻的两源极驱动线的两源极驱动信号的第二源极驱动信号的准位始终为地电压GND,即耦合电容的第二端CN的准位保持固定。
图5至图7分别为本发明实施例的驱动方法对耦合电容的两端充电的波形图。不同于图3的波形图,在图5至图7中,于周期cycle内,时序控制器108控制源极驱动模块106,让对应相邻的两源极驱动线的两源极驱动信号的第一源极驱动信号的准位由第一初始准位为地电压GND转变为一倍压Vdd(第一过渡准位)、两倍压2Vdd(第一过渡准位)至三倍压3Vdd的第一预定准位,而依序地对耦合电容的第一端CP以一倍压Vdd、两倍压2Vdd及三倍压3Vdd对耦合电容行充电;另一方面,时序控制器108控制源极驱动模块106,让对应相邻的两源极驱动线的两源极驱动信号的第二源极驱动信号的准位由第二初始准位为地电压GND转变为一倍负压-Vdd(第二过渡准位)至两倍负压-2Vdd的第二预定准位,而依序地对耦合电容的第二端CN以较低的负压转变至较高的负压对耦合电容的第二端CN充电(即依序以负一倍压-Vdd及负两倍压-2Vdd对耦合电容的第二端CN充电)。由上述说明可以知道,第一初始准位(地电压GND)的绝对值小于第一预定准位的绝对值(三倍压3Vdd),第二初始准位(地电压GND)的绝对值低于第二预定准位(两倍负压-2Vdd)的绝对值。
值得注意的是,在图6中,于时间t0、t2、t4时,以及在图7中,于时间t0、t2、t4时,时序控制器108控制源极驱动模块106,让对应于耦合电容的第一端CP的第一源极驱动信号变换不同准位时,不改变对应于耦合电容的第二端CN的第二源极驱动信号的准位;相对的,在图6与图7中,于时间t1、t3时,时序控制器108控制源极驱动模块106,让对应于耦合电容的第二端CN的第二源极驱动信号变换不同准位时,则不改变对应于耦合电容的第一端CP的第一源极驱动信号的准位。如此一来,可以降低耦合电容的总耗电量。此外,在图7中,于时间t5时,时序控制器108控制源极驱动模块106,让对应于耦合电容的第一端CP的第一源极驱动信号的准位由第一预定准位(三倍压3Vdd)转变至第一初始准位(地电压GND)前,先让第一源极驱动信号的准位转变至放电准位(一倍压Vdd),且也让对应于耦合电容的第二端CN的第二源极驱动信号的准位由第二预定准位(负两倍压-2Vdd)转变至第二初始准位(地电压GND)前,先让第二源极驱动信号的准位转变至放电准位(负一倍压-Vdd),如此可回收电荷至产生供应电压的电路,例如充电电路(charge pump),进一步节省电源。由上述说明可以知道,放电准位(一倍压Vdd、负一倍压-Vdd)的绝对值小于预定准位(第一预定准位的三倍压3Vdd、第二预定准位负两倍压-2Vdd)的绝对值,并大于初始准位(地电压GND)的绝对值。
因此,本发明的驱动方法以分时分段方式对耦合电容进行充电,其中以切换电源方式,从低电压轮流切换至高电压对耦合电容进行充电,以较少的耗电流达成相同的正电位或负电位。另一方面,以对耦合电容的端点不同时充电,进而以低压电源提供充电电荷,达成省电的目的。
请参考图8,图8为本发明实施例的源极驱动模块106的示意图。源极驱动模块106包含多个源极驱动电路106_1~106_N,每一源极驱动电路106_1~106_N包含一选择电路与一驱动单元,选择电路可包含选择器MUX_1、MUX_2,例如多任务器,而驱动单元可为一放大单元OP。选择器MUX_1、MUX_2耦接于时序控制器108,驱动单元OP耦接于一输入信号VI_S。在此实施例中,输入信号VI_S可以是对应于源极驱动电路106_1~106_N的Gamma电压。选择器MUX_1接收地电压GND、一倍压Vdd、二倍压2Vdd、三倍压3Vdd等供应电压,且受时序控制器108控制而选择所述供应电压的一而提供给驱动单元OP,而选择器MUX_2接收地电压GND、负一倍压-Vdd、负二倍压-2Vdd等供应电压,且受时序控制器108控制选择所述供应电压的一而提供给驱动单元OP,因此,本发明实施例的源极驱动电路106_1~106_N可接收地电压GND、正倍压(例如,一倍压Vdd、二倍压2Vdd、三倍压3Vdd等)及负倍压(例如负一倍压-Vdd、负二倍压-2Vdd、负三倍压-3Vdd等)并选择所述供应电压而提供驱动单元OP,以产生源极驱动信号并传输至对应的源极驱动线,以驱动显示面板,进而根据前述实施例的分时分段方式对源极驱动线间的耦合电容Cs2s进行充电以降低总耗电量。
举例来说,对应第一源极驱动线SL1的第一源极驱动电路106_1的第一选择电路接收所述供应电压,地电压GND、一倍压Vdd、二倍压2Vdd、三倍压3Vdd、负一倍压-Vdd、负二倍压-2Vdd,时序控制器108控制第一选择电路选择所述供应电压并提供给驱动单元OP,以产生第一源极驱动信号,并传送至第一源极驱动线SL1,第一源极驱动信号对应于第一源极驱动线SL1与第二源极驱动线SL2间的耦合电容Cs2s的一端。同理,对应第二源极驱动线SL2的第二驱动电路106_2的第二选择电路接收所述供应电压,地电压GND、一倍压Vdd、二倍压2Vdd、三倍压3Vdd、负一倍压-Vdd、负二倍压-2Vdd,时序控制器108控制第二选择电路选择所述供应电压并提供给驱动单元OP,以产生第二源极驱动信号,并传送至第二源极驱动线SL2,第二源极驱动信号对应于第一源极驱动线SL1与第二源极驱动线SL2间的耦合电容Cs2s的另一端。
关于本发明的驱动方法应用于对源极驱动线之间的耦合电容Cs2s时的实施例,请参考图9至图12。图9至图12为本发明实施例的驱动方法对源极驱动线之间的耦合电容Cs2s的两端充电的波形图。粗实线段代表对应于奇数源极驱动线(即SL1、SL3、SL5…)的源极驱动信号的准位的变化,于本实施例中可相当于耦合电容的第一端CP的电压变化,粗虚线段代表对应于偶数源极驱动线(即SL2、SL4、SL6…)的源极驱动信号的准位的变化,于本实施例中可相当于耦合电容的第二端CN的电压变化。在此实施例中,显示面板100的像素PIX的一极性反转方式为栏反转方式(Column inversion),且显示行与行为黑白相间的影像,例如奇数行(奇数栅极驱动线)为黑影像,偶数行(偶数栅极驱动线)为白影像,其中共同电压VCOM的电压不变。如图9所示,在栅极驱动线GL1开启(Gate1 ON)且其余栅极驱动线关闭(Others OFF)时,本发明的驱动方法分时分段地于时间t0、t1、t2以低压切换至高压对源极驱动线之间的耦合电容的第一端(即奇数源极驱动线)以及于时间t1、t2以低负压切换至高负压对源极驱动线之间的耦合电容的第二端(即偶数源极驱动线)进行充电,以降低源极驱动线之间的耦合电容的总耗电流,进而降低驱动显示面板100的总耗电量。
在图10中,本发明实施例的驱动方法先以分时分段方法将耦合电容的第一端(即奇数源极驱动线)充电至三倍压3Vdd,再以分时方段方式改变耦合电容的第二端(即偶数源极驱动线)的电位至负二倍压-2Vdd,以达到降低源极驱动线之间的耦合电容的总耗电流。
在图11中,本发明实施例的驱动方法于时间t0~t1先将耦合电容的第二端(即偶数源极驱动线)固定于地电压(GND),并且于时间t0、t2、t4分段改变耦合电容的第一端(即奇数源极驱动线)电压时,不改变耦合电容第二端(即偶数源极驱动线)的电压,此外,于时间t1、t3分段改变耦合电容的第二端(即偶数源极驱动线)电压时,不改变耦合电容第一端(即奇数源极驱动线)的电压,以达到降低源极驱动线之间的耦合电容的总耗电流。
在图12中,本发明实施例的驱动方法于时间t0先将耦合电容的第一端(即奇数源极驱动线)固定于地电压(GND),并且于时间t0、t2分段改变耦合电容的第二端(即偶数源极驱动线)电压时,不改变耦合电容的第一端(即奇数源极驱动线)的电压,此外,于时间t1、t3、t4分段改变耦合电容的第一端(即奇数源极驱动线)电压时,不改变耦合电容的第二端(即偶数源极驱动线)的电压,以达到降低源极驱动线之间的耦合电容的总耗电流。
在另一实施例中,请参考图13至图15,图13至图15为本发明另一实施例的驱动方法对源极驱动线之间的耦合电容Cs2s的两端充电的波形图。显示面板100的像素PIX的极性反转方式为点反转方式(Dot inversion),其中共同基准电压VCOM的电压不变,粗实线段代表对应于奇数源极驱动线(即SL1、SL3、SL5…)的源极驱动信号的准位的变化,于本实施例中可相当于耦合电容的第一端CP的电压变化,粗虚线段代表对应于偶数源极驱动线(即SL2、SL4、SL6…)的源极驱动信号的准位的变化,可相当于耦合电容的第二端CN的电压变化。如图13所示,在栅极驱动线GL1开启且其余栅极驱动线关闭时,本发明实施例的驱动方法于时间t1、t2、t3先以分时分段方法将耦合电容的第一端(即奇数源极驱动线)充电至三倍压3Vdd,再于时间t4、t5以分时方段方式改变耦合电容的第二端(即偶数源极驱动线)的电压。
在图14中,本发明实施例的驱动方法于时间t1~t2先将耦合电容的第二端(即偶数源极驱动线)固定于地电压(GND),并且于时间t1、t3、t5分段改变耦合电容的第一端(即奇数源极驱动线)电压时,不改变耦合电容的第二端(即偶数源极驱动线)的电压,此外,于时间t2、t4分段改变耦合电容的第二端(即偶数源极驱动线)电压时,不改变耦合电容的第一端(即奇数源极驱动线)的电压,以达到降低源极驱动线之间的耦合电容的总耗电流。
在图15中,本发明实施例的驱动方法于时间t0~t2先将耦合电容的第一端(即奇数源极驱动线)固定于地电压(GND),并且于时间t1、t3分段改变耦合电容的第二端(即偶数源极驱动线)电压时,不改变耦合电容的第一端(即奇数源极驱动线)的电压,此外,于时间t2、t4、t5分段改变耦合电容的第一端(即奇数源极驱动线)电压时,不改变耦合电容的第二端(即偶数源极驱动线)的电压,以达到降低源极驱动线之间的耦合电容的总耗电流。
另一方面,当本发明实施例的驱动方法应用于栅极驱动模块104时,请参考图16,图16为本发明实施例的栅极驱动模块104的示意图。栅极驱动模块104包含多个栅极驱动电路104_1~104_N,每一栅极驱动电路104_1~104_N包含一选择电路。选择电路包含一选择器MUX_3耦接于时序控制器108,且接收地电压GND、一倍压Vdd、二倍压2Vdd、三倍压3Vdd、四倍压4Vdd、五倍压5Vdd、六倍压6Vdd、负一倍压-Vdd、负二倍压-2Vdd、负三倍压-3Vdd、负四倍压-4Vdd、负五倍压-5Vdd等供应电压,且受时序控制器108控制而选择所述供应电压之一而产生栅极驱动信号。因此,本发明实施例的栅极驱动电路104_1~104_N可选择地电压GND、正电压(例如,一倍压Vdd、二倍压2Vdd、三倍压3Vdd、四倍压4Vdd、五倍压5Vdd、六倍压6Vdd等)及负倍压(例如,负一倍压-Vdd、负二倍压-2Vdd、负三倍压-3Vdd、负四倍压-4Vdd、负五倍压-5Vdd等)以产生栅极驱动信号,并输出至对应的栅极驱动线,进而可根据前述实施例的分时分段方式对栅极驱动线之间的耦合电容Cg2g进行充电以降低显示面板100的总耗电量。
详细而言,请参考图17至图19,图17至图19为本发明实施例的驱动方法对栅极驱动线之间的耦合电容Cg2g的两端充电的波形图。粗虚线段代表对应于栅极驱动线GLn的第一栅极驱动信号的电压准位变化,粗实线段代表对应于栅极驱动线GLn+1的第二栅极驱动信号的电压准位变化。如图17所示,在此例中,在栅极驱动线GLn的致能区间内,对应于两相邻的栅极驱动线GLn、GLn+1的栅极驱动信号的准位可先从禁能准位VGL转变至地电压GND,即两相邻的栅极驱动线间的耦合电容Cg2g的两端于时间t0耦接地电压GND,其可为初始准位,接着本发明的驱动方法于时间t1~t6分时分段地以低压切换至高压改变对应于栅极驱动线GLn的第一栅极驱动信号的准位,即从接地电压GND、一倍压Vdd(过渡准位)、二倍压2Vdd(过渡准位)、三倍压3Vdd(过渡准位)、四倍压4Vdd(过渡准位)、五倍压5Vdd(过渡准位)至六倍压6Vdd的预定准位后,再从六倍压6Vdd转变至接地电压GND,再转变至禁能准位VGL(负五倍跨压-5Vdd)。同时,对应于栅极驱动线GLn+1的第二栅极驱动信号的准位于时间t0~t6皆维持在地电压GND。此外,当对应于栅极驱动线GLn的第一栅极驱动信号的准位变换为禁能准位VGL时,对应于栅极驱动线GLn+1的第二栅极驱动信号的准位也变换为禁能准位VGL。
在图18中,本发明实施例的驱动方法于时间t0先让第二栅极驱动线GLn+1处于一浮接状态(Floating),即选择电路不提供供应电压至第二栅极驱动线GLn+1,并于时间t1~t6分时分段地以低压变换至高压而变换对应栅极驱动线GLn的第一栅极驱动信号的准位从地电压GND、一倍压Vdd(过渡准位)、二倍压2Vdd(过渡准位)、三倍压3Vdd(过渡准位)、四倍压4Vdd(过渡准位)、五倍压5Vdd(过渡准位)至六倍压6Vdd,接着再变换至地电压GND,再变换到禁能准位VGL(负五倍压-5Vdd)。此外,当对应于栅极驱动线GLn的第一栅极驱动信号的准位变换为禁能准位VGL时,第二栅极驱动线GLn+1并非处于浮接状态,而对应于栅极驱动线GLn+1的第二栅极驱动信号的准位为禁能准位VGL。此外,当对应于栅极驱动线GLn的第一栅极驱动信号的准位变换为禁能准位VGL时,第二栅极驱动线GLn+1可仍处于浮接状态,只要在对应于栅极驱动线GLn+1的第二栅极驱动信号欲驱动栅极驱动线GLn+1前,栅极驱动线GLn+1处于非浮接状态即可。
在图19中,本发明实施例的驱动方法于时间t0先将对应于栅极驱动线GLn+1的第二栅极驱动信号的准位变换为接地电压GND,并分时分段地使对应于栅极驱动线GLn的第一栅极驱动信号的准位从禁能准位VGL(负五倍压-5Vdd)、负四倍压-4Vdd(过渡准位)、负三倍压-3Vdd(过渡准位)、负二倍压-2Vdd(过渡准位)、负一倍压-Vdd(过渡准位)逐渐变换至地电压GND(过渡准位),再变换至低压Vdd(过渡准位),再从低压Vdd、二倍压2Vdd(过渡准位)、三倍压3Vdd(过渡准位)、四倍压4Vdd(过渡准位)、五倍压5Vdd(过渡准位)逐渐变换至致能准位(六倍压6Vdd),接着再逐步地变换至地电压GND,再变换至低负压-Vdd,再从低负压-Vdd逐步地变换到禁能准位VGL(负五倍压-5Vdd)。如此一来,本发明的驱动方法分时分段地以低压切换至高压对栅极驱动线之间的耦合电容进行充电,降低栅极驱动线之间的耦合电容的总耗电流,进而降低驱动显示面板100的总耗电量。此外,分时分段地从高压切换至低压对耦合电容进行放电,其可以回收电荷,以进一步节省电源。
当本发明的驱动方法应用于显示面板100的源极驱动线与栅极驱动线之间的耦合电容时,请参考图20至图23。图20至图23为本发明实施例的驱动方法对源极驱动线与栅极驱动线之间的耦合电容Cs2g的两端充电的波形图。粗虚线段代表对应于耦合电容Cs2g的一端的栅极驱动线的电压变化,粗实线段代表对应于耦合电容Cs2g的另一端的源极驱动线的电压变化。其中,图20及图21为对应于源极驱动线的源极驱动信号的准位朝正向转换准位时,以本发明的驱动方法对耦合电容Cs2g进行充电的实施例。由图20及图21可知,当源极驱动信号的准位朝正向变换准位时,其可在栅极驱动信号的准位从禁能准位转变为致能准位后再进行,如此可以降低栅极驱动线与源极驱动线之间的耦合电容的总耗电流。
图22及图23为源极驱动线的源极驱动信号的准位朝负向转换准位时,以本发明的驱动方法对耦合电容Cs2g进行充电的实施例。由图22及图23可知,当源极驱动信号的准位朝负向变换准位时,其可在栅极驱动信号的准位由禁能准位转变为致能准位前就进行,如此可以降低栅极驱动线与源极驱动线之间的耦合电容的总耗电流。
于本发明的一实施例中,时序控制器108可依据源极驱动信号的准位的变换方向,控制源极驱动模块106决定在栅极驱动信号的准位转变为致能准位前或者后转变所述源极驱动信号的准位。
此外,当本发明实施例的驱动方法应用于驱动电路102时,可采用如图24中的波形图以对耦合电容进行充电,以达到降低驱动显示面板100的总耗电流。详细而言,对应源极驱动线的源极驱动信号的准位欲朝负向转换时,可在对应栅极驱动线GLn的栅极驱动信号的致能区间前,先行变换准位,例如图24所示,在栅极驱动线GLn的栅极驱动信号的致能区间前,对应于耦合电容的第二端CN的源极驱动信号的准位从地电压GND逐步地变换至负两倍压-2Vdd。此外,在对应栅极驱动线GLn的栅极驱动信号的致能区间内,对应于耦合电容的第一端CP的源极驱动信号的准位从地电压GND再分段地变换至三倍压3Vdd,如此可以降低显示面板100的耦合电容的总耗电流。
需注意的是,本领域的技术人员可根据不同需求适当应用于显示面板。举例来说,在同一周期中,可使用图10及图11实施例的驱动方法对源极驱动线之间的耦合电容进行充放电,且不限于此组合,皆属本发明的范畴。
综上所述,本发明提供一种驱动方法及其驱动电路,透过切换电压方式对显示面板的耦合电容进行充电,以及回收电荷的方式,减少显示面板上的耦合电容的耗损电荷量,进而减少驱动显示面板的总耗电量。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (24)
1.一种驱动方法,用于一显示面板,其特征在于,包含:
产生复数驱动信号,并传送所述驱动信号至所述显示面板的复数驱动线;其中,对应相邻两驱动线的一第一驱动信号与一第二驱动信号的所述第一驱动信号的准位从一初始准位转变至一预定准位,所述第一驱动信号的准位变化时,所述第二驱动信号的准位为固定;
其中,所述第一驱动信号的准位从所述初始准位转变至所述预定准位前,先转变至至少一过渡准位;
其中,所述第一驱动信号的准位从所述预定准位转变至所述初始准位,所述第一驱动信号的准位从所述预定准位转变至所述初始准位前,先转变为一第一放电准位,所述第一放电准位的绝对值小于所述预定准位的绝对值,并大于所述初始准位的绝对值。
2.如权利要求1所述的驱动方法,其特征在于,所述第一驱动信号的所述初始准位为一第一初始准位,所述第一驱动信号的所述预定准位为一第一预定准位,所述第二驱动信号的准位从一第二初始准位转变至一第二预定准位,所述第二驱动信号的准位变化时,所述第一驱动信号的准位为固定。
3.如权利要求2所述的驱动方法,其特征在于,所述第一初始准位的绝对值小于所述第一预定准位的绝对值,所述第二初始准位的绝对值低于所述第二预定准位的绝对值。
4.如权利要求2所述的驱动方法,其特征在于,所述第二驱动信号的准位从所述第二初始准位转变至所述第二预定准位的期间,所述第二驱动信号的准位变化时,所述第一驱动信号的准位为固定,所述第一驱动信号的所述至少一过渡准位为至少一第一过渡准位,所述第二驱动信号的准位从所述第二初始准位转变至所述第二预定准位前,先转变至至少一第二过渡准位。
5.如权利要求4所述的驱动方法,其特征在于,所述第二驱动信号的准位从所述第二预定准位转变至所述第二初始准位,所述第二驱动信号的准位从所述第二预定准位转变至所述第二初始准位前,先转变为一第二放电准位,所述第二放电准位的绝对值小于所述第二预定准位的绝对值,并大于所述第二初始准位的绝对值。
6.如权利要求1所述的驱动方法,其特征在于,所述初始准位的绝对值小于所述预定准位的绝对值。
7.如权利要求1所述的驱动方法,其特征在于,所述第一驱动信号的准位从所述初始准位转变至所述预定准位的期间,所述第一驱动信号的准位变化时,所述第二驱动信号的准位为固定。
8.如权利要求1所述的驱动方法,其特征在于,更包含:
提供复数供应电压;
选择所述供应电压,以产生所述第一驱动信号,所述第一驱动信号的准位从所述初始准位转变至所述预定准位;以及
选择所述供应电压,以产生所述第二驱动信号,所述第一驱动信号的准位变化时,所述第二驱动信号的准位为固定。
9.如权利要求1所述的驱动方法,其特征在于,所述显示面板的所述驱动线包含复数源极驱动线,所述驱动信号包含复数源极驱动信号,所述相邻两驱动线为相邻的两源极驱动线,对应相邻所述两源极驱动线的所述第一驱动信号与所述第二驱动信号分别为一第一源极驱动信号与一第二源极驱动信号。
10.如权利要求9所述的驱动方法,其特征在于,于一栅极驱动信号的准位转变为一致能准位后,所述第一源极驱动信号的准位朝正向变换至所述预定准位。
11.如权利要求9所述的驱动方法,其特征在于,于一栅极驱动信号的准位转变为一致能准位前,所述第一源极驱动信号的准位朝负向变换至所述预定准位。
12.如权利要求1所述的驱动方法,其特征在于,所述显示面板的所述驱动线包含复数栅极驱动线,所述驱动信号包含复数栅极驱动信号,所述相邻两驱动线为相邻的两栅极驱动线,对应相邻所述两栅极驱动线的所述第一驱动信号与所述第二驱动信号分别为一第一栅极驱动信号与一第二栅极驱动信号。
13.一种驱动电路,用于一显示面板,其特征在于,包含:
一驱动模块,耦接所述显示面板的复数驱动线,产生复数驱动信号,并传送所述驱动信号至所述驱动线;以及
一时序控制器,耦接所述驱动模块,控制所述驱动模块产生所述驱动信号,对应相邻两驱动线的一第一驱动信号与一第二驱动信号的所述第一驱动信号的准位从一初始准位转变至一预定准位,所述第一驱动信号的准位变化时,所述第二驱动信号的准位为固定;
其中,所述第一驱动信号的准位从所述初始准位转变至所述预定准位前,先转变至至少一过渡准位;
其中,所述第一驱动信号的准位从所述预定准位转变至所述初始准位,所述第一驱动信号的准位从所述预定准位转变至所述初始准位前,先转变为一第一放电准位,所述第一放电准位的绝对值小于所述预定准位的绝对值,并大于所述初始准位的绝对值。
14.如权利要求13所述的驱动电路,其特征在于,所述第一驱动信号的所述初始准位为一第一初始准位,所述第一驱动信号的所述预定准位为一第一预定准位,所述第二驱动信号的准位从一第二初始准位转变至一第二预定准位,所述第二驱动信号的准位变化时,所述第一驱动信号的准位为固定。
15.如权利要求14所述的驱动电路,其特征在于,所述第一初始准位的绝对值小于所述第一预定准位的绝对值,所述第二初始准位的绝对值低于所述第二预定准位的绝对值。
16.如权利要求14所述的驱动电路,其特征在于,所述第二驱动信号的准位从所述第二初始准位转变至所述第二预定准位的期间,所述第二驱动信号的准位变化时,所述第一驱动信号的准位为固定,所述第一驱动信号的所述至少一过渡准位为至少一第一过渡准位,所述第二驱动信号的准位从所述第二初始准位转变至所述第二预定准位前,先转变至至少一第二过渡准位。
17.如权利要求16所述的驱动电路,其特征在于,所述第二驱动信号的准位从所述第二预定准位转变至所述第二初始准位,所述第二驱动信号的准位从所述第二预定准位转变至所述第二初始准位前,先转变为一第二放电准位,所述第二放电准位的绝对值小于所述第二预定准位的绝对值,并大于所述第二初始准位的绝对值。
18.如权利要求13所述的驱动电路,其特征在于,所述初始准位的绝对值小于所述预定准位的绝对值。
19.如权利要求13所述的驱动电路,其特征在于,所述第一驱动信号的准位从所述初始准位转变至所述预定准位的期间,所述第一驱动信号的准位变化时,所述第二驱动信号的准位为固定。
20.如权利要求13所述的驱动电路,其特征在于,所述驱动模块更包含:
一第一选择电路,接收复数供应电压并耦接所述时序控制器,所述时序控制器控制所述第一选择电路选择所述供应电压,以产生所述第一驱动信号,所述第一驱动信号的准位从所述初始准位转变至所述预定准位;以及
一第二选择电路,接收所述供应电压并耦接所述时序控制器,所述时序控制器控制所述第二选择电路选择所述供应电压,以产生所述第二驱动信号,所述第一驱动信号的准位变化时,所述第二驱动信号的准位为固定。
21.如权利要求13所述的驱动电路,其特征在于,所述显示面板的所述驱动线包含复数源极驱动线,所述驱动模块产生的所述驱动信号包含复数源极驱动信号,所述相邻两驱动线为相邻的两源极驱动线,对应相邻所述两源极驱动线的所述第一驱动信号与所述第二驱动信号分别为一第一源极驱动信号与一第二源极驱动信号,所述驱动模块包含:
一源极驱动电路,耦接所述源极驱动线与所述时序控制器,产生所述源极驱动信号,并传送所述源极驱动信号至所述源极驱动线。
22.如权利要求21所述的驱动电路,其特征在于,于一栅极驱动信号的准位转变为一致能准位后,所述第一源极驱动信号的准位朝正向变换至所述预定准位。
23.如权利要求21所述的驱动电路,其特征在于,于一栅极驱动信号的准位转变为一致能准位前,所述第一源极驱动信号的准位朝负向变换至所述预定准位。
24.如权利要求13所述的驱动电路,其特征在于,所述显示面板的所述驱动线包含复数栅极驱动线,所述驱动模块产生的所述驱动信号包含复数栅极驱动信号,所述相邻两驱动线为相邻的两栅极驱动线,对应相邻所述两栅极驱动线的所述第一驱动信号与所述第二驱动信号分别为一第一栅极驱动信号与一第二栅极驱动信号,所述驱动模块包含:
一栅极驱动电路,耦接所述栅极驱动线与所述时序控制器,产生所述栅极驱动信号,并传送所述栅极驱动信号至所述栅极驱动线。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310542532.7A CN116758871A (zh) | 2018-06-25 | 2019-06-25 | 驱动方法及其驱动电路 |
CN202111170063.8A CN113990265B (zh) | 2018-06-25 | 2019-06-25 | 驱动方法及其驱动电路 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862689249P | 2018-06-25 | 2018-06-25 | |
US62/689,249 | 2018-06-25 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111170063.8A Division CN113990265B (zh) | 2018-06-25 | 2019-06-25 | 驱动方法及其驱动电路 |
CN202310542532.7A Division CN116758871A (zh) | 2018-06-25 | 2019-06-25 | 驱动方法及其驱动电路 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110634451A CN110634451A (zh) | 2019-12-31 |
CN110634451B true CN110634451B (zh) | 2023-04-11 |
Family
ID=68968897
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310542532.7A Pending CN116758871A (zh) | 2018-06-25 | 2019-06-25 | 驱动方法及其驱动电路 |
CN201910555100.3A Active CN110634451B (zh) | 2018-06-25 | 2019-06-25 | 驱动方法及其驱动电路 |
CN202111170063.8A Active CN113990265B (zh) | 2018-06-25 | 2019-06-25 | 驱动方法及其驱动电路 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310542532.7A Pending CN116758871A (zh) | 2018-06-25 | 2019-06-25 | 驱动方法及其驱动电路 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111170063.8A Active CN113990265B (zh) | 2018-06-25 | 2019-06-25 | 驱动方法及其驱动电路 |
Country Status (2)
Country | Link |
---|---|
CN (3) | CN116758871A (zh) |
TW (1) | TWI788578B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115775548B (zh) * | 2023-02-15 | 2023-04-14 | 禹创半导体(深圳)有限公司 | 显示驱动芯片及其极性反转预充方法和装置 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101976551A (zh) * | 2010-10-19 | 2011-02-16 | 友达光电股份有限公司 | 显示器驱动电路、液晶显示器及显示器驱动方法 |
CN104299581A (zh) * | 2014-08-11 | 2015-01-21 | 友达光电股份有限公司 | 显示器及其栅极驱动电路 |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003149676A (ja) * | 2001-11-15 | 2003-05-21 | Matsushita Electric Ind Co Ltd | アクティブマトリクス型液晶表示装置、及びその駆動方法 |
JP2004117513A (ja) * | 2002-09-24 | 2004-04-15 | Sony Corp | 画像表示装置と画像表示方法 |
TWI282540B (en) * | 2003-08-28 | 2007-06-11 | Chunghwa Picture Tubes Ltd | Controlled circuit for a LCD gate driver |
KR101217158B1 (ko) * | 2006-06-29 | 2012-12-31 | 엘지디스플레이 주식회사 | 액정표시장치 |
TW200926107A (en) * | 2007-12-10 | 2009-06-16 | Richtek Technology Corp | A row driving cells of electroluminescent display and the method thereof |
CN100561563C (zh) * | 2007-12-29 | 2009-11-18 | 友达光电股份有限公司 | 液晶显示器及其驱动控制电路 |
US9129576B2 (en) * | 2008-05-06 | 2015-09-08 | Himax Technologies Limited | Gate driving waveform control |
TWI410941B (zh) * | 2009-03-24 | 2013-10-01 | Au Optronics Corp | 可改善畫面閃爍之液晶顯示器和相關驅動方法 |
CN101826314B (zh) * | 2010-03-10 | 2012-09-05 | 敦泰科技(深圳)有限公司 | 一种tft液晶显示屏驱动方法及驱动电路 |
JP5248717B1 (ja) * | 2011-08-02 | 2013-07-31 | シャープ株式会社 | 表示装置およびその駆動方法 |
EP2911145B1 (en) * | 2012-10-19 | 2016-11-30 | Sharp Kabushiki Kaisha | Display device and drive method thereof |
CN103177682B (zh) * | 2013-03-26 | 2015-05-13 | 京东方科技集团股份有限公司 | 一种显示驱动电路及其驱动方法、显示装置 |
TWI527019B (zh) * | 2014-06-25 | 2016-03-21 | 友達光電股份有限公司 | 時脈訊號產生電路及其預充/預放方法 |
CN105469751A (zh) * | 2014-09-05 | 2016-04-06 | 联咏科技股份有限公司 | 残影消除方法及其驱动方法、驱动装置、面板与显示系统 |
CN104318890A (zh) * | 2014-11-18 | 2015-01-28 | 合肥鑫晟光电科技有限公司 | 一种阵列基板及其驱动方法、显示装置 |
US9564458B2 (en) * | 2014-11-26 | 2017-02-07 | Shenzhen China Star Optoelectronics Technology Co., Ltd. | TFT substrates and the manufacturing method thereof |
CN105810143B (zh) * | 2014-12-29 | 2018-09-28 | 昆山工研院新型平板显示技术中心有限公司 | 一种数据驱动电路及其驱动方法和有机发光显示器 |
CN104793382A (zh) * | 2015-05-12 | 2015-07-22 | 合肥鑫晟光电科技有限公司 | 一种阵列基板、其驱动方法、显示面板及显示装置 |
CN106652930B (zh) * | 2016-10-19 | 2019-03-26 | 厦门天马微电子有限公司 | 显示面板及其数据驱动电路、以及显示装置 |
CN106444192B (zh) * | 2016-11-09 | 2019-05-21 | 厦门天马微电子有限公司 | 阵列基板及其驱动方法、显示面板 |
CN106782383B (zh) * | 2016-12-29 | 2018-10-19 | 深圳市华星光电技术有限公司 | 液晶显示装置驱动方法及液晶显示装置 |
CN107230457B (zh) * | 2017-05-19 | 2019-07-12 | 南京中电熊猫液晶显示科技有限公司 | 液晶显示面板的补偿电路 |
CN108133693B (zh) * | 2018-01-03 | 2020-08-25 | 厦门天马微电子有限公司 | 显示面板、驱动方法及显示装置 |
-
2019
- 2019-06-25 TW TW108122180A patent/TWI788578B/zh active
- 2019-06-25 CN CN202310542532.7A patent/CN116758871A/zh active Pending
- 2019-06-25 CN CN201910555100.3A patent/CN110634451B/zh active Active
- 2019-06-25 CN CN202111170063.8A patent/CN113990265B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101976551A (zh) * | 2010-10-19 | 2011-02-16 | 友达光电股份有限公司 | 显示器驱动电路、液晶显示器及显示器驱动方法 |
CN104299581A (zh) * | 2014-08-11 | 2015-01-21 | 友达光电股份有限公司 | 显示器及其栅极驱动电路 |
Also Published As
Publication number | Publication date |
---|---|
CN113990265B (zh) | 2023-06-30 |
TW202001867A (zh) | 2020-01-01 |
CN110634451A (zh) | 2019-12-31 |
TWI788578B (zh) | 2023-01-01 |
CN113990265A (zh) | 2022-01-28 |
CN116758871A (zh) | 2023-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9070341B2 (en) | Liquid crystal display device and driving method thereof | |
KR101326075B1 (ko) | 액정 표시 장치 및 이의 구동 방법 | |
JP4126613B2 (ja) | 液晶表示装置のゲート駆動装置及び方法 | |
US8432343B2 (en) | Liquid crystal display device and driving method thereof | |
JP2008310317A (ja) | 液晶表示装置の駆動装置とこれを含む液晶表示装置 | |
KR101165842B1 (ko) | 모바일용 액정 표시 장치 및 그 구동 방법 | |
US10748465B2 (en) | Gate drive circuit, display device and method for driving gate drive circuit | |
WO2017101573A1 (zh) | 像素电路及其驱动方法、驱动电路、显示装置 | |
CN101135787A (zh) | 可通过电荷分享来降低能量消耗的液晶显示装置 | |
CN103424907B (zh) | 液晶显示器、像素的驱动电路及装置、控制方法及装置 | |
CN101794557B (zh) | 用于液晶显示装置的驱动方法及其相关装置 | |
US9978326B2 (en) | Liquid crystal display device and driving method thereof | |
CN106098018A (zh) | 显示面板控制方法及其驱动电路 | |
KR101485583B1 (ko) | 표시 장치 및 그 구동 방법 | |
KR101589752B1 (ko) | 액정표시장치 | |
US20120098816A1 (en) | Liquid Crystal Display and Driving Method Thereof | |
CN110634451B (zh) | 驱动方法及其驱动电路 | |
KR101284940B1 (ko) | 액정표시소자의 구동 장치 및 방법 | |
KR20080086060A (ko) | 액정표시장치 및 이의 구동방법 | |
KR101773193B1 (ko) | 액티브 매트릭스 표시장치 | |
KR20090113080A (ko) | 액정표시장치의 게이트 구동 회로 | |
CN101162335A (zh) | 栅极驱动器、光电装置、电子设备以及驱动方法 | |
KR101100879B1 (ko) | 표시 장치 및 그 구동 방법 | |
KR102298315B1 (ko) | 액정표시장치 | |
US10964280B2 (en) | Source driver |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |