CN110632162A - A method for identifying local wild Astragalus membranaceus and cultivated Astragalus membranaceus - Google Patents
A method for identifying local wild Astragalus membranaceus and cultivated Astragalus membranaceus Download PDFInfo
- Publication number
- CN110632162A CN110632162A CN201910859282.3A CN201910859282A CN110632162A CN 110632162 A CN110632162 A CN 110632162A CN 201910859282 A CN201910859282 A CN 201910859282A CN 110632162 A CN110632162 A CN 110632162A
- Authority
- CN
- China
- Prior art keywords
- astragalus
- wild
- cultivated
- sample
- barium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 235000006533 astragalus Nutrition 0.000 title claims abstract description 138
- 241000045403 Astragalus propinquus Species 0.000 title claims abstract description 55
- 238000000034 method Methods 0.000 title claims abstract description 44
- 241001061264 Astragalus Species 0.000 claims abstract description 83
- 210000004233 talus Anatomy 0.000 claims abstract description 83
- 229910052788 barium Inorganic materials 0.000 claims abstract description 47
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 45
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims abstract description 45
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 45
- 239000011574 phosphorus Substances 0.000 claims abstract description 45
- 238000001095 inductively coupled plasma mass spectrometry Methods 0.000 claims abstract description 26
- 238000007477 logistic regression Methods 0.000 claims abstract description 11
- 239000000523 sample Substances 0.000 claims description 37
- 238000004458 analytical method Methods 0.000 claims description 14
- 230000029087 digestion Effects 0.000 claims description 14
- 239000012086 standard solution Substances 0.000 claims description 14
- 239000000126 substance Substances 0.000 claims description 14
- 229910052684 Cerium Inorganic materials 0.000 claims description 7
- 230000035945 sensitivity Effects 0.000 claims description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 6
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims description 6
- 150000002500 ions Chemical class 0.000 claims description 6
- 238000000120 microwave digestion Methods 0.000 claims description 6
- 239000000843 powder Substances 0.000 claims description 6
- 239000000243 solution Substances 0.000 claims description 6
- 229910021642 ultra pure water Inorganic materials 0.000 claims description 6
- 239000012498 ultrapure water Substances 0.000 claims description 6
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 5
- 238000002474 experimental method Methods 0.000 claims description 5
- 229910017604 nitric acid Inorganic materials 0.000 claims description 5
- 229910052744 lithium Inorganic materials 0.000 claims description 4
- 238000012360 testing method Methods 0.000 claims description 4
- 238000005406 washing Methods 0.000 claims description 4
- 229910052770 Uranium Inorganic materials 0.000 claims description 3
- 229910052786 argon Inorganic materials 0.000 claims description 3
- 230000001174 ascending effect Effects 0.000 claims description 3
- 229940107666 astragalus root Drugs 0.000 claims description 3
- 238000004364 calculation method Methods 0.000 claims description 3
- 239000012159 carrier gas Substances 0.000 claims description 3
- 229910000420 cerium oxide Inorganic materials 0.000 claims description 3
- 239000007789 gas Substances 0.000 claims description 3
- 239000001307 helium Substances 0.000 claims description 3
- 229910052734 helium Inorganic materials 0.000 claims description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 3
- 229910052738 indium Inorganic materials 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 238000005259 measurement Methods 0.000 claims description 3
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 claims description 3
- -1 polytetrafluoroethylene Polymers 0.000 claims description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 3
- 238000002360 preparation method Methods 0.000 claims description 3
- 238000003113 dilution method Methods 0.000 claims description 2
- 239000013062 quality control Sample Substances 0.000 claims description 2
- 239000009636 Huang Qi Substances 0.000 claims 4
- 238000003556 assay Methods 0.000 claims 1
- 238000012937 correction Methods 0.000 claims 1
- 238000007865 diluting Methods 0.000 claims 1
- 238000002347 injection Methods 0.000 claims 1
- 239000007924 injection Substances 0.000 claims 1
- 238000002156 mixing Methods 0.000 claims 1
- 238000007789 sealing Methods 0.000 claims 1
- 238000007873 sieving Methods 0.000 claims 1
- 238000005303 weighing Methods 0.000 claims 1
- 238000000921 elemental analysis Methods 0.000 abstract description 2
- 239000007788 liquid Substances 0.000 description 4
- 239000006199 nebulizer Substances 0.000 description 4
- 238000012795 verification Methods 0.000 description 4
- 239000003814 drug Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 2
- 230000000144 pharmacologic effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- PJANXHGTPQOBST-VAWYXSNFSA-N Stilbene Natural products C=1C=CC=CC=1/C=C/C1=CC=CC=C1 PJANXHGTPQOBST-VAWYXSNFSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000012496 blank sample Substances 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 238000012364 cultivation method Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000000581 reactive spray deposition Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 238000009331 sowing Methods 0.000 description 1
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical compound C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 1
- 235000021286 stilbenes Nutrition 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/44—Sample treatment involving radiation, e.g. heat
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/62—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
- G01N27/626—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode using heat to ionise a gas
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Abstract
本发明公开了一种地方野生黄芪和栽培黄芪的识别方法,采用微波消解‑电感耦合等离子体质谱ICP‑MS对山西野生和栽培黄芪进行分析,得到钡和磷元素的含量,通过二元逻辑回归,得到野生黄芪的判别公式及其判别概率P;在相同条件下,对种植方式未知的山西黄芪进行元素分析和属性判别,确定其属性为野生或栽培。本发明准确可靠,简单可行;尤其适用于山西黄芪种植方式的鉴别。
The invention discloses a method for identifying local wild astragalus and cultivated astragalus. Microwave digestion-inductively coupled plasma mass spectrometry (ICP-MS) is used to analyze wild and cultivated astragalus in Shanxi to obtain the content of barium and phosphorus elements, and through binary logistic regression , to get the discriminant formula and discriminant probability P of wild Astragalus membranaceus; under the same conditions, conduct elemental analysis and attribute discrimination on Shanxi Astragalus membranaceus whose planting method is unknown, and determine its attribute as wild or cultivated. The invention is accurate, reliable, simple and feasible; it is especially suitable for the identification of the planting mode of the astragalus in Shanxi.
Description
技术领域technical field
本发明涉及一种地方野生黄芪和栽培黄芪的识别方法,属于分析化学领域。The invention relates to a method for identifying local wild astragalus and cultivated astragalus, belonging to the field of analytical chemistry.
背景技术Background technique
黄芪,是豆科植物蒙古黄芪的干燥根,山西是黄芪的道地药材生产地,道地性保证了中药的药效,其中以大同市浑源县黄芪最为有名。在黄芪的药效药理研究中,道地黄芪的采集是首要且极其重要的步骤。野生黄芪纯自然生长且药效高,具有不可替代的作用,另一方面,野生黄芪来源少,珍贵,所以价格高。为扩大产量,一些人工栽培,如山坡栽培,人工撒种(半野生)栽培种植黄芪的方法应运而生。鉴于野生黄芪和栽培黄芪的药效存在较大的差异,因此鉴别野生黄芪和栽培黄芪,是一个值得关注的问题。Astragalus is the dried root of Astragalus membranaceus, a leguminous plant. Shanxi is the authentic medicinal material production area of Astragalus membranaceus. In the pharmacological research of Astragalus, the collection of authentic Astragalus is the first and extremely important step. Wild Astragalus membranaceus grows purely naturally and has high efficacy, which has an irreplaceable effect. On the other hand, wild Astragalus membranaceus has few sources and is precious, so the price is high. In order to expand the output, some artificial cultivation methods, such as hillside cultivation and artificial sowing (semi-wild) cultivation, came into being. In view of the large difference in the efficacy of wild Astragalus and cultivated Astragalus, it is a problem worthy of attention to identify wild Astragalus and cultivated Astragalus.
野生黄芪与栽培(半野生)黄芪在外观上很难区分,仅靠样品外观,根的粗细,难以判别黄芪是否为野生品种。It is difficult to distinguish wild Astragalus membranaceus from cultivated (semi-wild) Astragalus membranaceus in appearance. It is difficult to distinguish whether Astragalus membranaceus is a wild variety only by the appearance of samples and the thickness of roots.
发明内容Contents of the invention
本发明旨在提供一种地方野生黄芪和栽培黄芪的识别方法,将微波消解结合ICP-MS分析方法,首次提出通过黄芪中的元素作为指标,判别山西黄芪的野生和栽培(半野生)属性,为中药黄芪的质量鉴别提供依据。The present invention aims to provide a method for identifying local wild Astragalus membranaceus and cultivated Astragalus membranaceus. Combining microwave digestion with ICP-MS analysis method, it is proposed for the first time to use the elements in Astragalus membranaceus as indicators to distinguish the wild and cultivated (semi-wild) attributes of Astragalus membranaceus in Shanxi. Provide a basis for the quality identification of traditional Chinese medicine Astragalus.
本发明利用黄芪主根切片中钡元素与磷元素含量的比值对山西黄芪的野生或栽培属性进行判别,具体是通过微波消解提取黄芪中的钡和磷元素,进行电感耦合等离子体质谱分析,利用二元逻辑回归分析,实现对地方黄芪种植方式的判别。The present invention utilizes the ratio of the content of barium and phosphorus in the main root slices of Astragalus membranaceus to discriminate the wild or cultivated attributes of Astragalus membranaceus in Shanxi. Meta-logistic regression analysis was used to discriminate the planting methods of local Astragalus membranaceus.
本发明提供了一种地方野生黄芪和栽培黄芪的识别方法,采用微波消解-电感耦合等离子体质谱(ICP-MS)对山西野生和栽培黄芪进行分析,得到钡和磷元素的含量,通过二元逻辑回归,得到野生黄芪的判别公式及其判别概率P(Probability);在相同条件下,对种植方式未知的山西黄芪进行元素分析和属性判别,确定其野生或栽培属性。The invention provides a method for identifying local wild Astragalus membranaceus and cultivated Astragalus membranaceus. Microwave digestion-inductively coupled plasma mass spectrometry (ICP-MS) is used to analyze wild and cultivated Astragalus membranaceus in Shanxi to obtain the content of barium and phosphorus elements. Logistic regression was used to obtain the discriminant formula of wild Astragalus membranaceus and its discriminant probability P (Probability). Under the same conditions, the elemental analysis and attribute discrimination of Shanxi Astragalus membranaceus with unknown planting methods were carried out to determine its wild or cultivated attributes.
具体步骤为:The specific steps are:
(1)收集产自山西省的野生和栽培黄芪主根切片样品,用粉碎机磨成粉末,过60目筛;(1) Collect sliced samples of wild and cultivated Astragalus root slices from Shanxi Province, grind them into powder with a pulverizer, and pass through a 60-mesh sieve;
(2)称取150mg(精确至0.001g)的黄芪样品/黄芪标准物质样品粉末于聚四氟乙烯消解管中,加入浓硝酸6mL,轻轻振荡后混匀密闭,置于微波消解仪中进行消解;完成后,待消解液冷却至低于70℃,将其转入100 ml容量瓶中,用少量超纯水洗涤消解罐3次,洗液合并于容量瓶中,用超纯水定容至100 mL;进行空白实验,即上述实验过程中不加样品,其余操作与上述均相同;(2) Weigh 150 mg (accurate to 0.001 g) of astragalus sample/astragalus standard substance sample powder into a polytetrafluoroethylene digestion tube, add 6 mL of concentrated nitric acid, shake gently, mix well and seal it, and place it in a microwave digestion apparatus for Digestion; after completion, wait for the digestion liquid to cool below 70°C, transfer it to a 100 ml volumetric flask, wash the digestion tank with a small amount of ultrapure water for 3 times, combine the washing liquid into the volumetric flask, and dilute to volume with ultrapure water to 100 mL; conduct a blank experiment, that is, no sample is added during the above experiment, and the rest of the operations are the same as above;
黄芪样品指采集的待分析的未知黄芪样品;黄芪标准物质样品指元素含量经过相关部门检定的标准样品,作为质控样品,用来对方法的准确度进行验证;The Astragalus sample refers to the collected unknown Astragalus sample to be analyzed; the Astragalus standard substance sample refers to the standard sample whose element content has been verified by the relevant department, which is used as a quality control sample to verify the accuracy of the method;
(3)根据黄芪中钡及磷元素含量,配制35000 ng/mL 磷元素及300 ng/mL 钡元素的混合标准溶液,随后将该混合标准溶液分别稀释到(V/V)50%、10%、5%、1%、0.5%、0.1%,得到系列浓度梯度的标准溶液;(3) According to the content of barium and phosphorus in Astragalus, prepare a mixed standard solution of 35000 ng/mL phosphorus and 300 ng/mL barium, and then dilute the mixed standard solution to (V/V) 50% and 10% respectively , 5%, 1%, 0.5%, 0.1%, to obtain standard solutions with a series of concentration gradients;
(4)采用微波消解-电感耦合等离子体质谱ICP-MS对山西野生和栽培黄芪进行分析,按照浓度由低到高的顺序,对元素标准溶液依次进行ICP-MS分析,采用软件或者手动计算,绘制标准曲线;同时对黄芪样品及标准物质进行ICP-MS分析,根据标准曲线,计算黄芪样品中钡和磷的含量,得到元素比值钡/磷;对黄芪标准物质的元素测定结果与标定值进行比对,确保方法的准确性;(4) Use microwave digestion-inductively coupled plasma mass spectrometry ICP-MS to analyze the wild and cultivated Astragalus membranaceus in Shanxi. According to the order of concentration from low to high, ICP-MS analysis is performed on the element standard solution in turn, using software or manual calculation. Draw a standard curve; carry out ICP-MS analysis to the Astragalus sample and standard substance at the same time, calculate the content of barium and phosphorus in the Astragalus sample according to the standard curve, and obtain the element ratio barium/phosphorus; Compare to ensure the accuracy of the method;
(5)将黄芪的钡/磷数值与其野生和栽培属性进行二元逻辑回归分析后,得到回归方程Y=17684.370 钡/磷-48.669,进一步得出黄芪野生类别的判别概率公式是P=1/(1+e-Y),公式中,P代表黄芪为野生类型的概率,Y为根据钡/磷及回归方程计算得到的结果,P值越接近于1,黄芪的野生概率越高,P值越接近于0,栽培概率越高。(5) After performing binary logistic regression analysis on the barium/phosphorus value of Astragalus membranaceus and its wild and cultivated attributes, the regression equation Y=17684.370 barium/phosphorus-48.669 is obtained, and the formula for discriminant probability of the wild category of Astragalus membranaceus is P=1/ (1+e -Y ), in the formula, P represents the probability that Astragalus membranaceus is the wild type, and Y is the result calculated based on barium/phosphorus and the regression equation. The closer the P value is to 1, the higher the wild probability of Astragalus membranaceus, and the P value The closer to 0, the higher the cultivation probability.
上述方法中,所述黄芪标准物质样品为GBW10028,对其中的钡和磷元素进行分析,测定结果与标定值进行比对,确保方法的准确性。采用接受者操作特性曲线(receiveroperating characteristic curve,简称ROC曲线),,判断预测的特异性及灵敏度。In the above method, the Astragalus standard substance sample is GBW10028, the barium and phosphorus elements in it are analyzed, and the measurement results are compared with the calibration values to ensure the accuracy of the method. The receiver operating characteristic curve (receiver operating characteristic curve, referred to as ROC curve) was used to judge the specificity and sensitivity of prediction.
上述方法中,所述步骤(3)中混合标准溶液稀释过程中用1% (V/V)HNO3作为稀释溶液。In the above method, 1% (V/V) HNO3 is used as the dilution solution during the dilution process of the mixed standard solution in the step (3).
上述方法中,所述步骤(4)中,设置ICP-MS仪器条件如下:ICP-MS功率:1600 W,等离子体氩气流速:18 L/min,辅助气流速1.2 L/min,载气流速0.94 L/min,雾化器为梅哈德型(Meinhard),滞留时间50 ms,仪器调谐需满足以下技术指标:常规分析灵敏度指标Be:>2000 cps,In:>40000 cps,U:>30000 cps;背景:Bkgd220≤1 cps,铈元素氧化物与铈元素的比值(156CeO+/140Ce+):≤2.5%,铈元素双电荷与单电荷离子的比值(70Ce2+/140Ce+):≤3.0%,质量数和分辨率以Li、Mg、In和U在10%峰高处峰宽在0.65-0.8 u范围。仪器测试之前,优化矩管位置、雾化器流量、四极杆离子偏转器(QID)电压和检测器电压,并进行检测器双模校正;KED模式下设置氦气流量为4.4 mL/min。In the above method, in the step (4), set the ICP-MS instrument conditions as follows: ICP-MS power: 1600 W, plasma argon flow rate: 18 L/min, auxiliary gas flow rate 1.2 L/min, carrier gas flow rate 0.94 L/min, the nebulizer is Meinhard, the residence time is 50 ms, the instrument tuning needs to meet the following technical indicators: routine analysis sensitivity index Be: >2000 cps, In: >40000 cps, U: >30000 cps; background: Bkgd220≤1 cps, the ratio of cerium oxide to cerium ( 156 CeO + / 140 Ce + ): ≤2.5%, the ratio of cerium double charge to single charge ion ( 70 Ce 2+ / 140 Ce + ): ≤3.0%, the mass number and resolution are based on Li, Mg, In and U at 10% peak height, and the peak width is in the range of 0.65-0.8 u. Before the instrument test, the position of the torch, the flow rate of the nebulizer, the voltage of the quadrupole ion deflector (QID) and the voltage of the detector were optimized, and the dual-mode calibration of the detector was performed; the helium flow rate was set to 4.4 mL/min in the KED mode.
上述方法中,所有样本分析前进行随机排序,按照随机编号的升序顺序进行粉碎、消解及ICP-MS进样分析;每个黄芪样本重复制备3份(平行试验),每次制备测定一次;收集不同批次的种植方式未知的芪样品进行判别验证,根据P值预测其种植方式。In the above method, all samples were randomly sorted before analysis, crushed, digested and analyzed by ICP-MS in ascending order of random numbers; each Astragalus sample was prepared in three replicates (parallel test), and each preparation was measured once; collected Different batches of stilbene samples with unknown planting methods were used for discriminant verification, and the planting methods were predicted according to the P value.
本发明的技术路线是:将2019年收集的产自山西的黄芪样品(含8个野生和8个栽培类型),采用微波消解ICP-MS测定其中的无机元素含量,分析表明,野生黄芪和栽培黄芪样品中的无机元素的含量有明显的差异。非参数检验结果表明,黄芪中稳定测定的53种元素中,除K、Al、Si、B、Mo、Pb、As、Li、Ta、Hf和Re外,其余42种元素在两种黄芪间均有显著差异,含量差异在2倍以上的元素分别是Ti、Ba、Rb、Co、Cs、La、Ce、Pr、Nd、Sm、Gd、Lu、Te、Ga、W和钡/磷。进一步采用二元逻辑回归分析,研究元素含量与黄芪的野生栽培属性的相关性,采用步进法筛选变量,得到差异较大变量包括Ba、Ga、Te、钡/磷、磷和Mg,综合简便性、元素特性及方法的稳定性,最终使用钡/磷变量(见图1),建立二元逻辑回归方程Y,得出野生黄芪的判别概率P=1/(1+e-Y)。采用ROC曲线判断敏感度及特异性,再次收集第二批来源不同的,种植方式未知的黄芪样品,采用同样的方法,分析其中的钡和磷元素的含量,计算判别概率P,得出黄芪的野生或栽培属性。The technical route of the present invention is: Astragalus samples collected in 2019 from Shanxi (including 8 wild and 8 cultivated types) were used to determine the content of inorganic elements in them by microwave digestion ICP-MS. The analysis showed that wild Astragalus and cultivated The contents of inorganic elements in Astragalus samples had obvious differences. The non-parametric test results showed that among the 53 elements that were stably determined in Astragalus membranaceus, except K, Al, Si, B, Mo, Pb, As, Li, Ta, Hf and Re, the remaining 42 elements were stable between the two Astragalus membranaceus. There are significant differences, and the elements with a content difference of more than 2 times are Ti, Ba, Rb, Co, Cs, La, Ce, Pr, Nd, Sm, Gd, Lu, Te, Ga, W, and barium/phosphorus. Further, binary logistic regression analysis was used to study the correlation between the element content and the wild cultivation attributes of Astragalus membranaceus, and the stepwise method was used to screen the variables, and the variables with large differences included Ba, Ga, Te, barium/phosphorus, phosphorus and Mg, and the synthesis was simple. Finally, the barium/phosphorus variable (see Figure 1) was used to establish the binary logistic regression equation Y, and the discriminant probability of wild Astragalus membranaceus was P=1/(1+e -Y ). Use the ROC curve to judge the sensitivity and specificity, collect the second batch of astragalus samples from different sources and unknown planting methods, use the same method to analyze the content of barium and phosphorus elements, calculate the discrimination probability P, and obtain the astragalus Wild or cultivated properties.
本发明研究人员经过对黄芪野生和非野生样品的研究,发现元素含量与黄芪种植方式之间的相关性,其中磷元素与黄芪的细胞壁成分相关,钡/磷在野生黄芪中比栽培黄芪含量高。因此钡/磷可以作为一个指标,对山西黄芪的野生和栽培属性进行鉴别区分。After studying wild and non-wild samples of Astragalus, the researchers of the present invention found the correlation between the element content and the planting method of Astragalus, in which the phosphorus element is related to the cell wall components of Astragalus, and the content of barium/phosphorus in wild Astragalus is higher than that in cultivated Astragalus . Therefore, barium/phosphorus can be used as an index to distinguish the wild and cultivated attributes of Shanxi Astragalus.
本发明的有益效果:Beneficial effects of the present invention:
以中药黄芪主根切片中的钡和磷元素的含量比(钡/磷)为基础,建立二元逻辑回归方程,得到野生黄芪的判别概率值P,可对山西黄芪的野生和栽培类别进行判别。本发明准确可靠,简单可行。适用于山西黄芪种植方式的鉴别。Based on the content ratio of barium and phosphorus (barium/phosphorus) in the main root slices of traditional Chinese medicine Astragalus membranaceus, a binary logistic regression equation was established to obtain the discriminant probability value P of wild Astragalus membranaceus, which can distinguish the wild and cultivated types of Astragalus membranaceus in Shanxi. The invention is accurate, reliable, simple and feasible. It is suitable for the identification of the planting methods of Astragalus membranaceus in Shanxi.
附图说明Description of drawings
图1 为实施例1(A)发现集和(B)验证集中钡/磷的箱图。Figure 1 is a boxplot of Barium/Phosphorus in Example 1 (A) Discovery Set and (B) Validation Set.
图2 为(A)判别概率值P对发现集的野生黄芪和栽培黄芪的判别;(B)判别概率值P对验证集的野生黄芪和栽培黄芪的判别。Figure 2 shows (A) the discriminant probability value P for the discrimination of wild Astragalus membranaceus and cultivated Astragalus membranaceus in the discovery set; (B) the discrimination probability value P for the discrimination of wild Astragalus membranaceus and cultivated Astragalus membranaceus in the verification set.
图3 为(A)判别概率值P用于发现集野生黄芪和栽培黄芪鉴别的ROC曲线,AUC=1;(B)判别概率值P用于验证集野生黄芪和栽培黄芪鉴别的ROC曲线,AUC=1。Figure 3 is (A) the discriminant probability value P used for the ROC curve for the identification of wild Astragalus and cultivated Astragalus in the discovery set, AUC=1; (B) the discriminant probability value P for the ROC curve for the identification of wild Astragalus and cultivated Astragalus in the verification set, AUC =1.
具体实施方式Detailed ways
下面通过实施例来进一步说明本发明,但不局限于以下实施例。The present invention is further illustrated by the following examples, but not limited to the following examples.
实施例1:Example 1:
1、黄芪样品收集1. Astragalus sample collection
收集产自山西省大同市浑源县恒山的野生和栽培黄芪主根切片样品16份(包括8个野生样品及8个栽培样品),随即编号后,作为发现集,用粉碎机磨成粉末,过60目筛。Collected 16 samples of wild and cultivated Astragalus membranaceus taproot slices (including 8 wild samples and 8 cultivated samples) from Hengshan Mountain, Hunyuan County, Datong City, Shanxi Province, and numbered them immediately as a discovery set. 60 mesh sieve.
2、微波消解前处理2. Microwave digestion pretreatment
称取150 mg左右(精确至0.001g)的黄芪样品或黄芪标准物质粉末于聚四氟乙烯消解管中,加入浓硝酸6 mL,轻轻振荡后混匀密闭,置于微波消解仪中进行消解。完成后,待消解液冷却至低于70℃,将其转入100 ml容量瓶中,用少量超纯水洗涤消解罐3次,洗液合并于容量瓶中,用超纯水定容至100 mL。空白样品除样品加入步骤外,其余操作与样品均相同。Weigh about 150 mg (accurate to 0.001g) of Astragalus sample or Astragalus standard substance powder into a polytetrafluoroethylene digestion tube, add 6 mL of concentrated nitric acid, shake gently, mix well and seal it, and place it in a microwave digestion apparatus for digestion . After completion, when the digestion liquid is cooled to below 70°C, transfer it to a 100 ml volumetric flask, wash the digestion tank with a small amount of ultrapure water for 3 times, combine the washing liquid into the volumetric flask, and dilute to 100 ml with ultrapure water. mL. For the blank sample, except for the sample addition step, the other operations are the same as the sample.
3、配制元素的标准曲线:3. The standard curve of the prepared elements:
根据黄芪中钡及磷元素含量,配制35000 ng/mL磷元素及300 ng/mL 钡元素的混合标准溶液,随后将该混合标样分别稀释到50%、10%、5%、1%、0.5%、0.1%(V/V),得到系列浓度梯度的标准溶液。(用1% HNO3作为稀释溶液)。According to the content of barium and phosphorus in Astragalus membranaceus, a mixed standard solution of 35000 ng/mL phosphorus and 300 ng/mL barium was prepared, and then the mixed standard solution was diluted to 50%, 10%, 5%, 1%, 0.5%, respectively. %, 0.1% (V/V), to obtain a standard solution with a series of concentration gradients. (Use 1% HNO3 as dilute solution).
4、仪器参数调节:4. Instrument parameter adjustment:
ICP-MS功率:1600 W,等离子体氩气流速:18 L/min,辅助气流速1.2 L/min,载气流速0.94 L/min,雾化器为梅哈德型(Meinhard),滞留时间50 ms,仪器调谐需满足以下技术指标:常规分析灵敏度指标Be:>2000 cps,In:>40000 cps,U:>30000 cps;背景:Bkgd220≤1cps,铈元素氧化物与铈元素的比值(156CeO+/140Ce+):≤2.5%,铈元素双电荷与单电荷离子的比值(70Ce2+/140Ce+):≤3.0%,质量数和分辨率以Li、Mg、In和U在10%峰高处峰宽在0.65-0.8u范围。实验前,优化矩管位置、雾化器流量、四极杆离子偏转器(QID)电压和检测器电压,并进行检测器双模校正。KED模式下设置氦气流量为4.4 mL/min。ICP-MS power: 1600 W, plasma argon flow rate: 18 L/min, auxiliary gas flow rate 1.2 L/min, carrier gas flow rate 0.94 L/min, nebulizer is Meinhard type (Meinhard), residence time 50 ms, instrument tuning needs to meet the following technical indicators: routine analysis sensitivity index Be: >2000 cps, In: >40000 cps, U: >30000 cps; background: Bkgd220≤1cps, ratio of cerium oxide to cerium ( 156 CeO + / 140 Ce + ): ≤2.5%, the ratio of double-charged to single-charged ions of cerium element ( 70 Ce 2+ / 140 Ce + ): ≤3.0%, the mass number and resolution are based on Li, Mg, In and U The peak width at 10% peak height is in the range of 0.65-0.8u. Before the experiment, the position of the torch, the flow rate of the nebulizer, the voltage of the quadrupole ion deflector (QID) and the voltage of the detector were optimized, and the dual-mode calibration of the detector was performed. In KED mode, set the helium flow rate to 4.4 mL/min.
5、ICP-MS分析,得到元素比值钡/磷5. ICP-MS analysis to obtain the element ratio barium/phosphorus
在上述仪器条件下,按照浓度由低到高的顺序,对钡和磷元素标准溶液依次进行ICP-MS分析,采用仪器软件或者人工进行数据处理,绘制标准曲线。元素的标准曲线通过以系列浓度为自变量,以其系列浓度对应的峰强度为应变量作图得到,即公式(1):Under the above instrument conditions, the barium and phosphorus element standard solutions were analyzed by ICP-MS in order of concentration from low to high, and the data was processed by instrument software or manually to draw a standard curve. The standard curve of an element is obtained by plotting the series concentration as the independent variable and the peak intensity corresponding to the series concentration as the dependent variable, that is, the formula (1):
Ai =KiCi (1)Ai = KiCi (1)
其中:Ai-系列浓度钡/磷元素的峰强度,Ci-钡/磷元素系列浓度,Ki-标准工作曲线的斜率。得到标准曲线后,将样品中的钡/磷元素峰强度代入公式,得到元素钡/磷的浓度。所有样本分析前进行随机排序,按照随机编号的升序顺序进行ICP-MS分析,减小系统误差对样本结果的影响。每个黄芪样本重复制备3份,每次制备测定一次,减小随机误差的影响。对黄芪样品和黄芪标准物质进行分析,计算黄芪样品中钡和磷的含量,得到元素比值钡/磷。对黄芪标准样品GBW10028平行制备6份,将钡和磷元素的含量结果与标定值进行比对(见表1),钡和磷元素的RSD分别为4.1%和1.5%,回收率为104.5%和103.3%,分析方法准确且稳定。Among them: Ai-the peak intensity of barium/phosphorus element series concentration, Ci-barium/phosphorus element series concentration, Ki-the slope of the standard working curve. After obtaining the standard curve, substitute the barium/phosphorus element peak intensity in the sample into the formula to obtain the concentration of elemental barium/phosphorus. All samples were randomly sorted before analysis, and ICP-MS analysis was performed in ascending order of random numbers to reduce the influence of systematic errors on sample results. Each Astragalus sample was prepared in triplicate, and each preparation was measured once to reduce the influence of random errors. The Astragalus sample and the Astragalus standard substance were analyzed, the contents of barium and phosphorus in the Astragalus sample were calculated, and the element ratio barium/phosphorus was obtained. Six copies of Astragalus standard sample GBW10028 were prepared in parallel, and the content results of barium and phosphorus were compared with the calibration values (see Table 1). The RSDs of barium and phosphorus were 4.1% and 1.5%, respectively, and the recovery rates were 104.5% and 1.5%. 103.3%, the analytical method is accurate and stable.
表1 黄芪标准物质GBW10028钡和磷元素的测定结果Table 1 Determination results of barium and phosphorus in Astragalus standard substance GBW10028
6、山西黄芪野生和栽培判别概率公式的建立6. Establishment of the probability formula for wild and cultivated Astragalus in Shanxi
将黄芪的钡/磷数值与其野生和栽培属性进行二元逻辑回归分析后,得到的回归方程为Y=17684.370 钡/磷-48.669,进一步得出黄芪类别的判别概率公式是P=1/(1+e-Y),公式中,P值越接近于1,黄芪的野生概率越高,P值越接近于0,栽培概率越高。发现集中8个栽培样品P值接近于0,8个野生样品P值接近于1(见图2A),ROC曲线下面积AUC为1,特异性及灵敏度均为1.00(见图3A)。After performing binary logistic regression analysis on the barium/phosphorus value of Astragalus membranaceus and its wild and cultivated attributes, the regression equation obtained is Y=17684.370 barium/phosphorus-48.669, and the discriminant probability formula of Astragalus membranaceus is P=1/(1 +e -Y ), in the formula, the closer the P value is to 1, the higher the wild probability of Astragalus membranaceus, and the closer the P value is to 0, the higher the cultivation probability. It was found that the P values of 8 cultivated samples were close to 0, and the P values of 8 wild samples were close to 1 (see Figure 2A), the area under the ROC curve AUC was 1, and the specificity and sensitivity were both 1.00 (see Figure 3A).
7、不同批次山西黄芪种植方式的判别7. Discrimination of different batches of Shanxi Astragalus planting methods
收集不同批次的、种植方式未知的9个黄芪样品作为预测集,采用步骤1到5中所述的与发现集相同的处理方法,得到样品中钡和磷的含量比值后,进一步计算P值,根据P值大小来确定黄芪的种植方式。9个样品中,2个被判定为野生黄芪,其余7个为栽培黄芪(见图2B),判定结果与黄芪样品的来源一致,证明了这个判别公式的稳定性及有效性。进一步绘制预测集的ROC曲线,预测的特异性及灵敏度均达到了1.00,且曲线下面积(AUC)为1(见图3B)。Collect 9 astragalus samples of different batches and unknown planting methods as the prediction set, and use the same processing method as the discovery set described in
表2 山西黄芪种植方式的判别Table 2 Discrimination of planting methods of Astragalus membranaceus in Shanxi
综合发现集和验证集黄芪的判别结果(见表2),说明本发明提出的山西黄芪野生和非野生的判别方法的可行性和可靠性。The discriminant results of Astragalus membranaceus in the discovery set and verification set (see Table 2) illustrate the feasibility and reliability of the method for discriminating between wild and non-wild Astragalus membranaceus in Shanxi proposed by the present invention.
综上所述,本文提出了以钡和磷元素结合二元逻辑回归,判别山西黄芪的野生和栽培种植方式的方法。该方法操作简单快速,结果准确可靠。方法适用于黄芪的来源区分及鉴别,可为中药黄芪后续的药理学研究提供技术支撑。In summary, this paper proposes a method to distinguish the wild and cultivated planting methods of Astragalus in Shanxi by combining barium and phosphorus elements with binary logistic regression. The method is simple and rapid in operation, and the result is accurate and reliable. The method is suitable for the source differentiation and identification of Astragalus membranaceus, and can provide technical support for the follow-up pharmacological research of the traditional Chinese medicine Astragalus membranaceus.
尽管对本发明已作了详细的说明并印证了一些具体实例,但对本领域技术人员来说,只要不离开本发明的精神和范围,作各种变化或修正是显然的。Although the present invention has been described in detail and some specific examples have been confirmed, it is obvious for those skilled in the art that various changes or modifications can be made without departing from the spirit and scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910859282.3A CN110632162B (en) | 2019-09-11 | 2019-09-11 | A kind of identification method of local wild astragalus and cultivated astragalus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910859282.3A CN110632162B (en) | 2019-09-11 | 2019-09-11 | A kind of identification method of local wild astragalus and cultivated astragalus |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110632162A true CN110632162A (en) | 2019-12-31 |
CN110632162B CN110632162B (en) | 2021-07-27 |
Family
ID=68971236
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910859282.3A Active CN110632162B (en) | 2019-09-11 | 2019-09-11 | A kind of identification method of local wild astragalus and cultivated astragalus |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110632162B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112666246A (en) * | 2020-12-17 | 2021-04-16 | 贵州中医药大学 | Method for screening dendrobium officinale cultivated by imitating wild rock fissure epiphytic growth |
CN115754031A (en) * | 2022-09-05 | 2023-03-07 | 云南中烟工业有限责任公司 | A GC-MS-based method for identifying the centroid of different medicinal parts of Yebazi |
CN117990772A (en) * | 2024-04-07 | 2024-05-07 | 中国科学院生态环境研究中心 | Method for determining phosphorus element in plant by utilizing ICP-MS |
CN120121699A (en) * | 2025-05-09 | 2025-06-10 | 四川卡森科技有限公司 | Method for determining and analyzing transformation rate and acidification rate of lithium ore |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102590180A (en) * | 2011-10-31 | 2012-07-18 | 沈阳药大药业有限责任公司 | Method for detecting element of Chinese medicine, Chinese medicinal extract, soil or medicinal composition containing Chinese medicinal extract |
CN104122287A (en) * | 2014-08-01 | 2014-10-29 | 山西大学 | Method for distinguishing wild radix astragali from cultured radix astragali |
CN105866223A (en) * | 2016-03-29 | 2016-08-17 | 福建农林大学 | Electronic tongue detection information-based Wuyi rock tea taste grade discrimination method |
CN106093240A (en) * | 2016-06-07 | 2016-11-09 | 山西大学 | A kind of fast-growing Radix Astragali and the discrimination method of the wild Radix Astragali |
CN106990153A (en) * | 2017-05-31 | 2017-07-28 | 山西大学 | A kind of method for differentiating astragalus mongolicus and Astragalus membranacus |
CN107024524A (en) * | 2017-05-31 | 2017-08-08 | 山西大学 | It is a kind of to differentiate the method for transplanting the Radix Astragali and the wild Radix Astragali |
CN108663352A (en) * | 2018-03-27 | 2018-10-16 | 四川中医药高等专科学校 | A kind of discriminating of genunie medicinal materials and identification method |
CN110097127A (en) * | 2019-05-07 | 2019-08-06 | 杭州麦迪特检测技术服务有限公司 | Radix Astragali chromatogram characteristic based on core principle component analysis extracts and place of production discrimination method |
-
2019
- 2019-09-11 CN CN201910859282.3A patent/CN110632162B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102590180A (en) * | 2011-10-31 | 2012-07-18 | 沈阳药大药业有限责任公司 | Method for detecting element of Chinese medicine, Chinese medicinal extract, soil or medicinal composition containing Chinese medicinal extract |
CN104122287A (en) * | 2014-08-01 | 2014-10-29 | 山西大学 | Method for distinguishing wild radix astragali from cultured radix astragali |
CN105866223A (en) * | 2016-03-29 | 2016-08-17 | 福建农林大学 | Electronic tongue detection information-based Wuyi rock tea taste grade discrimination method |
CN106093240A (en) * | 2016-06-07 | 2016-11-09 | 山西大学 | A kind of fast-growing Radix Astragali and the discrimination method of the wild Radix Astragali |
CN106990153A (en) * | 2017-05-31 | 2017-07-28 | 山西大学 | A kind of method for differentiating astragalus mongolicus and Astragalus membranacus |
CN107024524A (en) * | 2017-05-31 | 2017-08-08 | 山西大学 | It is a kind of to differentiate the method for transplanting the Radix Astragali and the wild Radix Astragali |
CN108663352A (en) * | 2018-03-27 | 2018-10-16 | 四川中医药高等专科学校 | A kind of discriminating of genunie medicinal materials and identification method |
CN110097127A (en) * | 2019-05-07 | 2019-08-06 | 杭州麦迪特检测技术服务有限公司 | Radix Astragali chromatogram characteristic based on core principle component analysis extracts and place of production discrimination method |
Non-Patent Citations (2)
Title |
---|
陈欣 等: "野生黄芪与栽培黄芪及不同产地、规格、等级黄芪中硒元素含量分析研究", 《医药前沿》 * |
雷连娣 等: "不同产地黄芪中元素分布特征及相关性分析", 《中国中药杂志》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112666246A (en) * | 2020-12-17 | 2021-04-16 | 贵州中医药大学 | Method for screening dendrobium officinale cultivated by imitating wild rock fissure epiphytic growth |
CN115754031A (en) * | 2022-09-05 | 2023-03-07 | 云南中烟工业有限责任公司 | A GC-MS-based method for identifying the centroid of different medicinal parts of Yebazi |
CN117990772A (en) * | 2024-04-07 | 2024-05-07 | 中国科学院生态环境研究中心 | Method for determining phosphorus element in plant by utilizing ICP-MS |
CN117990772B (en) * | 2024-04-07 | 2024-09-06 | 中国科学院生态环境研究中心 | Method for determining phosphorus element in plant by utilizing ICP-MS |
CN120121699A (en) * | 2025-05-09 | 2025-06-10 | 四川卡森科技有限公司 | Method for determining and analyzing transformation rate and acidification rate of lithium ore |
Also Published As
Publication number | Publication date |
---|---|
CN110632162B (en) | 2021-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110632162A (en) | A method for identifying local wild Astragalus membranaceus and cultivated Astragalus membranaceus | |
CN105699472B (en) | Discrimination method of flat tea origin based on the difference of stable isotope ratio | |
Huang et al. | High-precision determination of stable potassium and magnesium isotopes utilizing single column separation and multicollector inductively coupled plasma mass spectrometry | |
CN109187709A (en) | The method of rare earth element content in micro-wave digestion-inductivity coupled plasma mass spectrometry measurement solid sample | |
Wagner et al. | On the accuracy of ion measurements using a Neutral cluster and Air Ion Spectrometer | |
Bai et al. | Simultaneous measurement stable and radiogenic Nd isotopic compositions by MC-ICP-MS with a single-step chromatographic extraction technique | |
CN109270101A (en) | Method for determining strontium content in molybdenum products by X-ray fluorescence spectrometry | |
CN110412018A (en) | A kind of detection method of phosphorus element in plant | |
Wang et al. | Precise and accurate isotopic analysis of uranium and thorium in uranium ore concentrates using ICP-MS and their age dating for nuclear forensic analysis | |
CN105606436A (en) | Method for quickly measuring content of five rare earth elements in edible packing material | |
CN113984872B (en) | Inductively coupled plasma mass spectrometry detection of 10 elements in peripheral blood | |
CN105929016A (en) | Value determination method for selenium content of quality control sample of tobacco leaf | |
CN118858496A (en) | A method for monitoring and analyzing the quality of Chinese medicine raw materials | |
CN114608931A (en) | Pretreatment method for determination of silver in soil and sediment by inductively coupled plasma mass spectrometry | |
CN112129744B (en) | Chemical phase analysis method for lithium in ore | |
CN111487309B (en) | Uranium ore geographic tracing method based on discriminant analysis | |
CN111337605A (en) | Method for evaluating authenticity of lotus bee pollen | |
CN116223768A (en) | Method for rapidly determining rock type rubidium ore grade in field | |
CN110672705A (en) | Method for identifying local wild astragalus membranaceus | |
CN113189318B (en) | Method for quantitative determination of trace elements in milk | |
CN110412116B (en) | Method for testing content of sulfur element and application thereof | |
CN115753962B (en) | A method for calculating the various forms and total amount of chloride ions in soil | |
CN115452805A (en) | Determination method of residual tricobalt tetroxide content in lithium cobaltate material | |
CN115015225A (en) | Method for measuring contents of phosphorus, iron and lithium in lithium iron phosphate for lithium ion battery | |
CN111505101A (en) | Uranium ore producing area classification method based on principal component analysis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |