[go: up one dir, main page]

CN110631871A - A device and method for collecting ash from a sealed piston type pressurized boiler - Google Patents

A device and method for collecting ash from a sealed piston type pressurized boiler Download PDF

Info

Publication number
CN110631871A
CN110631871A CN201910952361.9A CN201910952361A CN110631871A CN 110631871 A CN110631871 A CN 110631871A CN 201910952361 A CN201910952361 A CN 201910952361A CN 110631871 A CN110631871 A CN 110631871A
Authority
CN
China
Prior art keywords
ash
pressure
flue gas
outlet pipeline
flue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910952361.9A
Other languages
Chinese (zh)
Other versions
CN110631871B (en
Inventor
庞磊
邵应娟
钟文琪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201910952361.9A priority Critical patent/CN110631871B/en
Publication of CN110631871A publication Critical patent/CN110631871A/en
Application granted granted Critical
Publication of CN110631871B publication Critical patent/CN110631871B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2247Sampling from a flowing stream of gas
    • G01N1/2258Sampling from a flowing stream of gas in a stack or chimney

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

本发明公开了一种密封活塞式增压锅炉取灰装置及方法,装置包括压力容器,压力容器上端设有入口管路,一侧设有充气阀,另一侧设有烟气出口管路,下端设有灰分出口管路,内部设有密封活塞。通过充气阀向压力容器内充入惰性气体,使取灰装置工作前的内部压力与烟道压力相等。本发明具有密封性好、取灰效率高及易于维护的优点。采用该取灰方法可解决由取灰点内外侧压差造成的飞灰四溅、集灰量减少及烟气泄漏造成的环境污染等问题,同时可避免取灰过程中对烟道内烟气流场结构的破坏,从而实现从高压烟道中安全、高效取灰。

The invention discloses a dust-taking device and method for a sealed piston type pressurized boiler. The device includes a pressure vessel, an inlet pipeline is arranged at the upper end of the pressure vessel, an air charging valve is arranged on one side, and a flue gas outlet pipeline is arranged on the other side. There is an ash outlet pipeline at the lower end, and a sealing piston inside. Inert gas is filled into the pressure vessel through the inflation valve, so that the internal pressure before the ash collection device works is equal to the flue pressure. The invention has the advantages of good sealing performance, high ash extraction efficiency and easy maintenance. This ash extraction method can solve the problems of flying ash splashing caused by the pressure difference between the inside and outside of the ash extraction point, the reduction of ash collection and the environmental pollution caused by the leakage of flue gas. The destruction of the field structure, so as to realize the safe and efficient ash removal from the high-pressure flue.

Description

一种密封活塞式增压锅炉取灰装置及方法A device and method for collecting ash from a sealed piston type pressurized boiler

技术领域technical field

本发明涉及一种取灰装置及方法,尤其涉及一种密封活塞式增压锅炉取灰装置及方法,属于锅炉取灰装置领域。The invention relates to an ash-taking device and method, in particular to a sealed-piston pressurized boiler ash-taking device and method, and belongs to the field of boiler ash-taking devices.

背景技术Background technique

一次能源以煤炭为主的基本格局在短期内难以改变,煤炭的清洁高效利用依然是能源转型发展的重要技术课题。火力发电厂中,飞灰是锅炉尾部烟气的重要组成部分。其物理化学分析结果对电厂运行调控、成本控制、设计改造及环境保护都具有重大意义。增压燃烧具有增加煤颗粒燃烧速率、提高燃烧效率,减少NO污染物排放量等优点。整体煤气化联合循环和加压富氧燃烧技术均涉及加压气化/燃烧过程。The basic pattern of primary energy dominated by coal is difficult to change in the short term, and the clean and efficient utilization of coal is still an important technical issue for the development of energy transformation. In thermal power plants, fly ash is an important part of boiler tail flue gas. Its physical and chemical analysis results are of great significance to power plant operation regulation, cost control, design transformation and environmental protection. Pressurized combustion has the advantages of increasing the combustion rate of coal particles, improving combustion efficiency, and reducing the emission of NO pollutants. Integrated coal gasification combined cycle and pressurized oxyfuel combustion technologies both involve pressurized gasification/combustion processes.

虽然增加反应压力有诸多优点,但加压条件增加了取灰难度,对取灰装置提出了更高要求。取灰过程中,由于取灰点内外侧存在巨大压差,灰样往往会随着高压烟气喷涌而出,不仅减少了取灰量、降低了取灰效率,还对环境造成污染。目前大部分的取灰装置均适用于常压锅炉,不适用于在加压条件下进行取灰。更为重要的是,这些装置在取灰过程中均会对烟道内部压力造成的巨大影响,从而破坏烟道内部烟气流动结构。除此之外,部分取灰装置均用于处理连续排灰且灰量较多的情况,其系统结构复杂、制造工艺难度大且成本高,并且无法在短时间内方便快捷地完成灰样收集工作。Although increasing the reaction pressure has many advantages, the pressurized condition increases the difficulty of ash extraction and puts forward higher requirements for the ash extraction device. During the process of collecting ash, due to the huge pressure difference between the inside and outside of the ash collection point, the ash sample will often spew out with the high-pressure flue gas, which not only reduces the amount of ash collection, reduces the efficiency of ash collection, but also pollutes the environment. At present, most of the ash extraction devices are suitable for atmospheric boilers, and are not suitable for ash extraction under pressurized conditions. More importantly, these devices will have a huge impact on the internal pressure of the flue during the ash removal process, thereby destroying the flue gas flow structure inside the flue. In addition, some ash collection devices are used to deal with continuous ash discharge and a large amount of ash. The system structure is complex, the manufacturing process is difficult and costly, and the ash sample cannot be collected conveniently and quickly in a short time. Work.

发明内容Contents of the invention

发明目的:本发明提供一种在高压烟道中安全、高效、环保取灰的装置及方法,以解决上述问题。Purpose of the invention: The present invention provides a device and method for collecting ash in a high-pressure flue that is safe, efficient, and environmentally friendly, so as to solve the above problems.

技术方案:本发明的密封活塞式增压锅炉取灰装置,包括压力容器,所述压力容器上端设有入口管路,一侧设有充气阀,另一侧设有烟气出口管路,下端设有灰分出口管路,内部设有密封活塞;所述密封活塞通过调节活塞控制件上下移动,用于隔离收集到的飞灰。Technical solution: The ash extraction device for a sealed piston type pressurized boiler of the present invention includes a pressure vessel, the upper end of the pressure vessel is provided with an inlet pipeline, one side is provided with an inflation valve, the other side is provided with a flue gas outlet pipeline, and the lower end is provided with an inlet pipeline. An ash outlet pipeline is provided, and a sealing piston is arranged inside; the sealing piston is moved up and down by adjusting the piston control part, and is used for isolating the collected fly ash.

优选的,压力容器分为多段,每段可采用法兰连接。Preferably, the pressure vessel is divided into multiple sections, and each section can be connected by a flange.

所述密封活塞下降至末端时,其周侧与压力容器内壁密封贴合。When the sealing piston descends to the end, its peripheral side is in sealing contact with the inner wall of the pressure vessel.

所述密封活塞为平台形、圆锥形或圆台形。The sealing piston is in the shape of a platform, a cone or a truncated cone.

所述入口管路上设有进样阀。A sampling valve is provided on the inlet pipeline.

所述烟气出口管路上设有引风机与烟气出口阀。An induced draft fan and a flue gas outlet valve are arranged on the flue gas outlet pipeline.

所述灰分出口管路上设有排灰阀。An ash discharge valve is arranged on the ash outlet pipeline.

所述排灰阀前部设有转子,转子连接变速器与电机。优选的,该转子可为星型转子。The front part of the ash discharge valve is provided with a rotor, and the rotor is connected to the transmission and the motor. Preferably, the rotor can be a star rotor.

所述烟道与压力容器之间设有压差计。A differential pressure gauge is provided between the flue and the pressure vessel.

一种密封活塞式增压锅炉取灰装置的取灰方法,包括如下步骤:A method for collecting ash from a sealed piston type pressurized boiler ash collection device, comprising the following steps:

a、关闭所有阀门,将装置入口管路连接至烟道取样口,连接烟气出口管路至烟道出样口;a. Close all valves, connect the device inlet pipeline to the flue sampling port, and connect the flue gas outlet pipeline to the flue gas sampling port;

b、打开充气阀,向压力容器内充入惰性气体直至容器内与烟道压力相同;b. Open the inflation valve and fill the pressure vessel with inert gas until the pressure in the vessel is the same as that of the flue;

c、关闭充气阀,打开入口管道、烟气出口管路上的阀门,携带飞灰的烟气进入压力容器,并经由烟气出口管路回到烟道,此时密封活塞与壁面分离;c. Close the inflation valve, open the valves on the inlet pipeline and the flue gas outlet pipeline, and the flue gas carrying fly ash enters the pressure vessel and returns to the flue through the flue gas outlet pipeline. At this time, the sealing piston is separated from the wall;

d、采集完毕后,关闭入口管道、烟气出口管路上的阀门,通过活塞控制件使密封活塞下移直至其与压力容器的壁面紧密贴合;d. After the collection is completed, close the valves on the inlet pipeline and the flue gas outlet pipeline, and move the sealing piston down through the piston control unit until it is closely attached to the wall of the pressure vessel;

e、打开灰分出口管路上的阀门,将沉积的飞灰排出。e. Open the valve on the ash outlet pipeline to discharge the deposited fly ash.

所述步骤e之前还可实施以下步骤:The following steps can also be implemented before the step e:

f、打开烟气出口管路上的阀门,将密封活塞上侧空间内的高压烟气排出压力容器。f. Open the valve on the flue gas outlet pipeline to discharge the high-pressure flue gas in the space above the sealed piston out of the pressure vessel.

g、当烟道与压力容器的压差稳定后,关闭烟气出口管路上的阀门并上移密封活塞,使得密封活塞下侧的高压气体再次进入上侧常压空间。该步骤用于释放活塞下部残留的高压烟气。g. When the pressure difference between the flue and the pressure vessel is stable, close the valve on the flue gas outlet pipeline and move up the sealing piston, so that the high-pressure gas on the lower side of the sealing piston enters the upper normal pressure space again. This step is used to release the high-pressure fumes remaining in the lower part of the piston.

所述取灰装置烟气出口管路设有引风机时,实施步骤b的同时关闭引风机,在实施步骤c的同时开启引风机。When the flue gas outlet pipeline of the ash collecting device is provided with an induced draft fan, the induced draft fan is turned off while implementing step b, and turned on while implementing step c.

有益效果:与现有技术相比,本发明具有如下显著优点:Beneficial effect: compared with the prior art, the present invention has the following significant advantages:

(1)本发明方便、快捷、可靠得实现了飞灰与烟气的分离及烟气泄压工作,有效防止了普通取灰装置由于取灰内外侧压差过大造成的飞灰四溅、集灰量减少等问题。(1) The invention realizes the separation of fly ash and flue gas and the work of flue gas pressure relief conveniently, quickly and reliably, and effectively prevents fly ash from flying ash due to excessive pressure difference between the inside and outside of the ash collection device, Problems such as reducing the amount of dust collected.

(2)本发明可在不改变高压烟道内部流动结构的同时完成取灰过程。同时,抽取的烟气均再次返回烟道,避免了烟气泄漏造成的环境污染问题。(2) The present invention can complete the ash removal process without changing the internal flow structure of the high-pressure flue. At the same time, the extracted flue gas is returned to the flue again, which avoids environmental pollution caused by flue gas leakage.

(3)本发明通过在取灰过程中充、放惰性气体,可有效减少压力容器内的飞灰残留,提高飞灰收集率。(3) The present invention can effectively reduce the residual fly ash in the pressure vessel and improve the collection rate of the fly ash by filling and discharging the inert gas during the ash collection process.

(4)本发明设置的转子,通过外接电机及变速器,可实现对飞灰排放速率的控制。同时,转子本身具有良好的密封性,可防止意外情况下压差失衡时造成的飞灰外泄问题。(4) The rotor provided in the present invention can control the discharge rate of fly ash through an external motor and transmission. At the same time, the rotor itself has good sealing performance, which can prevent the leakage of fly ash caused by unbalanced pressure difference under unexpected circumstances.

(5)本发明压力容器的分段式设计可有效简化拆卸组装过程,方便对其内部组件进行检查维修。尤其在锅炉燃烧高灰高硫的劣质煤种时,大量的飞灰容易对取灰装置内部部件造成一定损害,此时方便快捷的拆装设计尤为重要。(5) The segmented design of the pressure vessel of the present invention can effectively simplify the disassembly and assembly process and facilitate the inspection and maintenance of its internal components. Especially when the boiler burns low-quality coal with high ash and high sulfur, a large amount of fly ash is likely to cause certain damage to the internal components of the ash collection device. At this time, the convenient and quick disassembly design is particularly important.

附图说明Description of drawings

图1为本发明的结构示意图;Fig. 1 is a structural representation of the present invention;

图2(a)为本发明密封活塞与容器壁面分离状态示意图;Fig. 2 (a) is the schematic diagram of the separation state of the sealing piston and the container wall of the present invention;

图2(b)为本发明密封活塞与容器壁面密封状态示意图;Fig. 2 (b) is the schematic diagram of sealing state of sealing piston and container wall surface of the present invention;

图3为不同形状密封活塞结构图。Figure 3 is a structural diagram of sealing pistons with different shapes.

具体实施方式Detailed ways

下面结合附图对本发明的技术方案作进一步说明。The technical solution of the present invention will be further described below in conjunction with the accompanying drawings.

如图1所示,一种密封活塞式增压锅炉取灰装置,包括压力容器2、入口管道15、烟气出口管路11以及灰分出口管路11。所述压力容器2壁面设有充气阀5与排气阀6,另一侧设有烟气出口管路11,顶部设有入口管道15,底部设有灰分出口管路16,内部设有密封活塞3。该压力容器2可分为多段,每段通过法兰连接,方便对装置内部进行检修。所述入口管路上设有进样阀13。所述烟气出口管路上设有引风机12与烟气出口阀13。所述灰分出口管路的上设有排灰阀10。所述烟道与压力容器2之间设有压差计14。As shown in FIG. 1 , a sealed piston type supercharged boiler ash extraction device includes a pressure vessel 2 , an inlet pipe 15 , a flue gas outlet pipe 11 and an ash outlet pipe 11 . The wall of the pressure vessel 2 is provided with an inflation valve 5 and an exhaust valve 6, the other side is provided with a flue gas outlet pipeline 11, the top is provided with an inlet pipeline 15, the bottom is provided with an ash outlet pipeline 16, and the inside is provided with a sealing piston 3. The pressure vessel 2 can be divided into multiple sections, and each section is connected by a flange, which is convenient for inspection and maintenance of the inside of the device. A sampling valve 13 is provided on the inlet pipeline. An induced draft fan 12 and a flue gas outlet valve 13 are arranged on the flue gas outlet pipeline. An ash discharge valve 10 is arranged on the ash outlet pipeline. A differential pressure gauge 14 is provided between the flue and the pressure vessel 2 .

所述密封活塞3可通过调节活塞控制件4上下移动,用于隔离收集到的飞灰。根据所取灰样的粘结性,密封活塞3可采用不同形状,该密封活塞可以为平台型,也可以为圆锥形或圆台型,如图3所示。平台型活塞结构最简单、质量最轻,但灰样也最易沉积在表面;圆锥型活塞结构、复杂质量大,但积灰最少;圆台型活塞则介于二者之间。The sealing piston 3 can be moved up and down by adjusting the piston control member 4 to isolate the collected fly ash. According to the cohesiveness of the collected ash sample, the sealing piston 3 can adopt different shapes, and the sealing piston can be platform-shaped, conical or truncated-conical, as shown in Fig. 3 . The platform type piston has the simplest structure and the lightest mass, but the ash is also the easiest to deposit on the surface; the conical piston structure has a complex mass, but the least ash accumulation; the truncated cone type piston is in between.

如图2(a)所示,当密封活塞3与压力容器3壁面分离时,活塞下部空间与上部空间联通,灰分在重力的作用下在压力容器2内下落至下部空间。所述密封活塞下落至末端时,将压力容器分为隔绝的两个空间,灰分被压在压力容器3下部与灰分出口管路11中,如图2(b)所示。所述密封活塞3外侧可设有耐高温密封橡胶圈。As shown in Figure 2(a), when the sealing piston 3 is separated from the wall of the pressure vessel 3, the lower space of the piston communicates with the upper space, and the ash falls to the lower space in the pressure vessel 2 under the action of gravity. When the sealing piston falls to the end, the pressure vessel is divided into two isolated spaces, and the ash is pressed in the lower part of the pressure vessel 3 and the ash outlet pipeline 11, as shown in Fig. 2(b). The outer side of the sealing piston 3 may be provided with a high temperature resistant sealing rubber ring.

所述排灰阀上部设有转子9,连接变速器8与电机7,在变速器8及电机7的作用下调节自身转速从而控制排灰速率。转子可对飞灰起阻隔作用,对特殊情况下取灰装置内外压力失衡造成的飞灰外泄问题起到了防护作用。所述转子9外侧与压力容器壁面间空隙小于1mm,该转子9还可为星型转子,星型转子具有良好的密封性能。The upper part of the ash discharge valve is provided with a rotor 9, which is connected to the transmission 8 and the motor 7, and under the action of the transmission 8 and the motor 7, the rotation speed of itself is adjusted to control the ash discharge rate. The rotor can block the fly ash, and protect the fly ash leakage problem caused by the imbalance of internal and external pressure of the ash collection device under special circumstances. The gap between the outer side of the rotor 9 and the wall of the pressure vessel is less than 1 mm, and the rotor 9 can also be a star-shaped rotor, which has good sealing performance.

实施例1Example 1

以实施例1对本发明的取灰方法进行详细描述,包括如下步骤:The ash-taking method of the present invention is described in detail with embodiment 1, comprises the following steps:

a、关闭所有阀门(进样阀1、充气阀5、排气阀6、排灰阀10以及烟气出口阀13),将装置入口管路15连接至烟道取样口A,连接烟气出口管路11至烟道出样口B。a. Close all valves (injection valve 1, inflation valve 5, exhaust valve 6, ash discharge valve 10 and flue gas outlet valve 13), connect the device inlet pipeline 15 to the flue gas sampling port A, and connect the flue gas outlet Pipeline 11 to flue sample outlet B.

b、打开充气阀5,通过充气阀5向压力容器2内充入惰性气体,直至压力容器2内压力与烟道压力相同,此时压差计14示数为0。该惰性气体还可具有一定压力。取灰装置与烟道压力相同,在取灰过程中不会影响烟道内部的流场分布。b. Open the inflation valve 5, and fill inert gas into the pressure vessel 2 through the inflation valve 5 until the pressure in the pressure vessel 2 is the same as the flue pressure, and the differential pressure gauge 14 shows 0 at this time. The inert gas can also have a certain pressure. The pressure of the ash extraction device is the same as that of the flue, and the flow field distribution inside the flue will not be affected during the ash extraction process.

c、关闭充气阀5,打开入口管道15、烟气出口管路11上的阀门(进样阀1、烟气出口阀13)与引风机12,携带飞灰的烟气进入压力容器2,并经由烟气出口管路11回到烟道,此时充气阀5,排气阀6,排灰阀10均处于关闭状态,且密封活塞3与压力容器2的壁面分离。c, close the inflation valve 5, open the valve (injection valve 1, flue gas outlet valve 13) and the induced draft fan 12 on the inlet pipeline 15, the flue gas outlet pipeline 11, the flue gas that carries fly ash enters the pressure vessel 2, and Back to the flue through the flue gas outlet pipeline 11, the charging valve 5, exhaust valve 6, and ash discharge valve 10 are all closed, and the sealing piston 3 is separated from the wall of the pressure vessel 2.

d、一定时间后,待压力容器2及烟气出口管路11内的惰性气体全部变为烟气,关闭入口管道、烟气出口管路11上的阀门(进样阀1、烟气出口阀13)与引风机12,通过活塞控制件4使密封活塞3下移直至其与压力容器的壁面紧密贴合,由于重力的作用,绝大多数的飞灰沉积在密封活塞下侧空间内。d. After a certain period of time, when the inert gas in the pressure vessel 2 and the flue gas outlet pipeline 11 has all turned into flue gas, close the valves on the inlet pipeline and the flue gas outlet pipeline 11 (injection valve 1, flue gas outlet valve 13) With the induced draft fan 12, the sealing piston 3 is moved down through the piston control part 4 until it is closely attached to the wall of the pressure vessel. Due to the effect of gravity, most of the fly ash is deposited in the space below the sealing piston.

e、打开烟气出口管路11上的烟气出口阀13与引风机12,将密封活塞3上侧空间内的高压烟气排出压力容器。e. Open the flue gas outlet valve 13 and the induced draft fan 12 on the flue gas outlet pipeline 11, and discharge the high-pressure flue gas in the upper side space of the sealing piston 3 out of the pressure vessel.

f、当烟道与压力容器的压差稳定后,关闭烟气出口管路11上的上的烟气出口阀13与引风机12,并上移密封活塞3,使得之前密封活塞下侧的高压气体再次进入上侧常压空间,由于上部空间体积远远大于下部空间体积,进行一到两次泄压过程后,压力容器内部即可变为常压,且飞灰依然保留在容器内部而不被气体带出。f. When the pressure difference between the flue and the pressure vessel is stable, close the upper flue gas outlet valve 13 and the induced draft fan 12 on the flue gas outlet pipeline 11, and move up the sealing piston 3 so that the high pressure on the lower side of the previous sealing piston The gas enters the upper normal-pressure space again. Since the volume of the upper space is much larger than the volume of the lower space, after one or two pressure relief processes, the inside of the pressure vessel can become normal pressure, and the fly ash still remains inside the container without carried out by the gas.

g、打开灰分出口管路16上的阀门,并通过变速器8及电机7调节转子9转速将沉积的飞灰排出。在取灰完成后,当压力容器2内有飞灰残留时,开启充气阀5、排气阀6以及排灰阀10(其他阀门关闭),可通过充气阀5向压力容器2内通入加压惰性气体对其进行吹扫,并重复上述过程使得残留飞灰经由转子9及排灰阀10排出。g. Open the valve on the ash outlet pipeline 16, and adjust the speed of the rotor 9 through the transmission 8 and the motor 7 to discharge the deposited fly ash. After the ash removal is completed, when there is fly ash remaining in the pressure vessel 2, open the inflation valve 5, the exhaust valve 6 and the ash discharge valve 10 (other valves are closed), and the gas can be injected into the pressure vessel 2 through the inflation valve 5. Purge it with inert gas, and repeat the above process so that the residual fly ash is discharged through the rotor 9 and the ash discharge valve 10.

Claims (8)

1. The ash taking device for the sealed piston type supercharged boiler is characterized by comprising a pressure container (2), wherein an inlet pipeline (15) is arranged at the upper end of the pressure container (2), an inflation valve (5) is arranged at one side of the pressure container, a flue gas outlet pipeline (11) is arranged at the other side of the pressure container, an ash outlet pipeline (16) is arranged at the lower end of the pressure container, and a sealed piston (3) is arranged inside the pressure container; the sealing piston (3) moves up and down through the adjusting piston control piece (4).
2. The ash extraction device of a sealed piston supercharged boiler according to claim 1, characterized in that the peripheral side of the sealing piston (3) is in sealing abutment with the inner wall of the pressure vessel (2) when it is lowered to the end.
3. The ash extraction device of a sealed piston supercharged boiler according to claim 1, characterized in that the sealing piston (3) is platform-shaped, conical or truncated cone-shaped.
4. The ash extraction device of the sealed piston type supercharged boiler according to claim 1, characterized in that an induced draft fan (12) and a flue gas outlet valve (13) are arranged on the flue gas outlet pipeline (11).
5. The ash extraction device of a sealed piston type supercharged boiler according to claim 1, characterized in that the ash outlet line (16) is provided with a rotor (9) and an ash valve (10), the rotor connecting the transmission (8) and the motor (7).
6. The ash taking method of the ash taking device of the sealed piston type supercharged boiler based on the claim 1 is characterized by comprising the following steps:
a. closing all valves, connecting the device inlet pipeline to a flue sampling port, and connecting a flue gas outlet pipeline to a flue sample outlet;
b. opening the charging valve (5), and charging inert gas into the pressure container (2) until the pressure in the container is the same as the pressure in the flue;
c. closing the charging valve (5), opening valves on the inlet pipeline and the flue gas outlet pipeline, allowing the flue gas carrying the fly ash to enter the pressure container and return to the flue through the flue gas outlet pipeline (11), and separating the sealing piston (3) from the wall surface;
d. after the collection is finished, the valves on the inlet pipeline and the flue gas outlet pipeline are closed, and the sealing piston (3) is moved downwards through the piston control part (4) until the sealing piston is tightly attached to the wall surface of the pressure vessel;
e. and opening a valve on an ash outlet pipeline to discharge the deposited fly ash.
7. The supercharged boiler ash-removing method according to claim 6, wherein said step e is preceded by the steps of:
f. opening a valve on a flue gas outlet pipeline, and discharging high-pressure flue gas in the upper side space of the sealing piston (3) out of the pressure container;
g. and when the pressure difference between the flue and the pressure container is stable, closing the valve on the flue gas outlet pipeline and moving the sealing piston (3) upwards, so that the high-pressure gas on the lower side of the sealing piston (3) enters the upper normal-pressure space again.
8. The supercharged boiler ash taking method according to claim 6, wherein when an induced draft fan (12) is arranged on the flue gas outlet pipeline (11) of the ash taking device, the induced draft fan is turned off while the step b is implemented, and the induced draft fan is turned on while the step c is implemented.
CN201910952361.9A 2019-10-09 2019-10-09 Sealed piston type supercharged boiler ash taking device and method Active CN110631871B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910952361.9A CN110631871B (en) 2019-10-09 2019-10-09 Sealed piston type supercharged boiler ash taking device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910952361.9A CN110631871B (en) 2019-10-09 2019-10-09 Sealed piston type supercharged boiler ash taking device and method

Publications (2)

Publication Number Publication Date
CN110631871A true CN110631871A (en) 2019-12-31
CN110631871B CN110631871B (en) 2022-04-12

Family

ID=68975992

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910952361.9A Active CN110631871B (en) 2019-10-09 2019-10-09 Sealed piston type supercharged boiler ash taking device and method

Country Status (1)

Country Link
CN (1) CN110631871B (en)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3583059B2 (en) * 2000-06-29 2004-10-27 株式会社日立製作所 Exhaust gas introduction device
CN2720425Y (en) * 2004-07-27 2005-08-24 杨上雄 Fly ash sampling device
CN2840002Y (en) * 2005-09-16 2006-11-22 郑忠信 Non-power cyclone separating fly ash sampler mounted on flue
CN101241033A (en) * 2008-03-14 2008-08-13 东南大学 Anti-clogging pressure taking pipe of dense gas-solid flow device and its application method
CN202013289U (en) * 2011-03-09 2011-10-19 东北电力科学研究院有限公司 Anti-clogging type constant velocity fly ash sampler
CN102749225A (en) * 2012-07-11 2012-10-24 广东电网公司电力科学研究院 Constant-speed continuous pulverized coal sampling device
CN203719956U (en) * 2013-12-18 2014-07-16 天津鹰麟节能科技发展有限公司 Sealed flying-ash sampling device
CN203849060U (en) * 2014-05-17 2014-09-24 国家电网公司 Fixed fly ash sampler capable of regulating fly ash quantity
CN204630782U (en) * 2015-06-02 2015-09-09 华电国际电力股份有限公司技术服务中心 A kind of fume duct fly ash sampler
CN106501031A (en) * 2016-12-01 2017-03-15 南京弗诺特测控科技有限公司 A kind of fly ash constant speed sampling is quantitative to receive grey automatic carbon testing device
CN206573338U (en) * 2017-01-10 2017-10-20 万达集团股份有限公司 A kind of fly ash sampling device
CN207081589U (en) * 2017-06-14 2018-03-09 中国大唐集团科学技术研究院有限公司华中分公司 A kind of fly ash sampling device
CN207280819U (en) * 2017-10-10 2018-04-27 江苏加怡热电有限公司 A kind of fly ash sampler
CN110031266A (en) * 2018-01-11 2019-07-19 四川天法科技有限公司 A kind of spiral-flow type flue gas Fly ash sampling pipe
US10378416B2 (en) * 2015-05-29 2019-08-13 Fuji Electric Co., Ltd. Analyzing apparatus and exhaust gas treating system

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3583059B2 (en) * 2000-06-29 2004-10-27 株式会社日立製作所 Exhaust gas introduction device
CN2720425Y (en) * 2004-07-27 2005-08-24 杨上雄 Fly ash sampling device
CN2840002Y (en) * 2005-09-16 2006-11-22 郑忠信 Non-power cyclone separating fly ash sampler mounted on flue
CN101241033A (en) * 2008-03-14 2008-08-13 东南大学 Anti-clogging pressure taking pipe of dense gas-solid flow device and its application method
CN202013289U (en) * 2011-03-09 2011-10-19 东北电力科学研究院有限公司 Anti-clogging type constant velocity fly ash sampler
CN102749225A (en) * 2012-07-11 2012-10-24 广东电网公司电力科学研究院 Constant-speed continuous pulverized coal sampling device
CN203719956U (en) * 2013-12-18 2014-07-16 天津鹰麟节能科技发展有限公司 Sealed flying-ash sampling device
CN203849060U (en) * 2014-05-17 2014-09-24 国家电网公司 Fixed fly ash sampler capable of regulating fly ash quantity
US10378416B2 (en) * 2015-05-29 2019-08-13 Fuji Electric Co., Ltd. Analyzing apparatus and exhaust gas treating system
CN204630782U (en) * 2015-06-02 2015-09-09 华电国际电力股份有限公司技术服务中心 A kind of fume duct fly ash sampler
CN106501031A (en) * 2016-12-01 2017-03-15 南京弗诺特测控科技有限公司 A kind of fly ash constant speed sampling is quantitative to receive grey automatic carbon testing device
CN206573338U (en) * 2017-01-10 2017-10-20 万达集团股份有限公司 A kind of fly ash sampling device
CN207081589U (en) * 2017-06-14 2018-03-09 中国大唐集团科学技术研究院有限公司华中分公司 A kind of fly ash sampling device
CN207280819U (en) * 2017-10-10 2018-04-27 江苏加怡热电有限公司 A kind of fly ash sampler
CN110031266A (en) * 2018-01-11 2019-07-19 四川天法科技有限公司 A kind of spiral-flow type flue gas Fly ash sampling pipe

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘景龙: "火力发电厂飞灰取样装置性能分析与改进", 《山东电力技术》 *

Also Published As

Publication number Publication date
CN110631871B (en) 2022-04-12

Similar Documents

Publication Publication Date Title
CN104023818A (en) Systems for capturing polluting emissions
CN210140604U (en) Recovery device for blast furnace damping-down and diffusing coal gas
CN202620920U (en) Ash removal device of filter core dust remover
CN110631871B (en) Sealed piston type supercharged boiler ash taking device and method
CN214486252U (en) Pulse type dust removal purification device
CN204723967U (en) Purification of air dedusting blowdown cleaning device
CN204709989U (en) Saving low pulse dust collector
CN103451378A (en) Automatic dust cleaning system and method for vacuum pipeline of molten steel refining dry type vacuum-pumping system
CN218107192U (en) Bag type dust collector
CN107339220B (en) Dual reflux oil separates taper orifice plate noise reduction compressor periodic off-gases recyclable device
CN205235671U (en) Oil -gas separator
CN112797803B (en) Method and mechanism for treating tail gas containing organic high-temperature pyrolysis product in kiln
CN201454297U (en) Blowing pipe of bag type dust collector
CN210602970U (en) Steel shot ash removal device for high-temperature heat exchanger on converter gas
CN209464744U (en) Filiform quick remove device online in a kind of high-temperature gas
CN207080197U (en) Quick open flow ignition device of natural gas ground pipeline
CN202909557U (en) Dust wiper seal pipe dust separation device
CN207153333U (en) A kind of boiler dust removal device
CN206184189U (en) Electric automated dust removal device
CN2920363Y (en) Tail bag dust collector for large sintering machine
CN201331080Y (en) Bowl-type coal grinding mill stone coal processing recycling device
CN200991623Y (en) Dust unloader secondary dust-removal apparatus
CN219259921U (en) Pneumatic tar residue discharging device
CN205481008U (en) Air circulation system is discharged to garbage cracking furnace's nothing
CN208878130U (en) A kind of ceramic kiln dry type exhaust gas processing device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant