CN110611334A - A method for output correlation of multiple wind farms based on Copula-garch model - Google Patents
A method for output correlation of multiple wind farms based on Copula-garch model Download PDFInfo
- Publication number
- CN110611334A CN110611334A CN201910782063.XA CN201910782063A CN110611334A CN 110611334 A CN110611334 A CN 110611334A CN 201910782063 A CN201910782063 A CN 201910782063A CN 110611334 A CN110611334 A CN 110611334A
- Authority
- CN
- China
- Prior art keywords
- function
- copula
- distribution
- attribute
- model
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 34
- 241000039077 Copula Species 0.000 claims abstract description 52
- 238000009826 distribution Methods 0.000 claims abstract description 43
- 238000005315 distribution function Methods 0.000 claims abstract description 28
- 230000000694 effects Effects 0.000 claims abstract description 4
- 239000011159 matrix material Substances 0.000 claims description 12
- 238000011156 evaluation Methods 0.000 claims description 9
- 238000004364 calculation method Methods 0.000 claims description 5
- 238000007689 inspection Methods 0.000 claims 1
- 238000005314 correlation function Methods 0.000 abstract description 7
- 238000011160 research Methods 0.000 abstract description 4
- 238000010248 power generation Methods 0.000 abstract description 2
- 238000005259 measurement Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 8
- 238000005457 optimization Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000000265 homogenisation Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000007476 Maximum Likelihood Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000013499 data model Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000001422 normality test Methods 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000011426 transformation method Methods 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/15—Correlation function computation including computation of convolution operations
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/46—Controlling of the sharing of output between the generators, converters, or transformers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/76—Power conversion electric or electronic aspects
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Theoretical Computer Science (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Physics (AREA)
- Computing Systems (AREA)
- Algebra (AREA)
- Databases & Information Systems (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Wind Motors (AREA)
Abstract
本发明涉及风力发电领域,具体涉及一种采用Copula‑garch函数对多风电场出力相关性建模的方法,该方法包括:采集风电场的有功出力分布数据;对风电场进行arch效应检验,进而建立Garch(P,Q)模型拟合风电场的边缘分布函数,再根据SKlar定理,将多风电场联合出力分布拆分为边缘分布函数与Copula函数相乘的形式;求出五类Copula函数分别对应的四个指标;确定各指标在各函数中的权值,根据权值计算得到属性测度值,并根据属性测度值确定每种copula函数所对应的分级标准,选择最优级所对应的copula函数为风电场的最佳的copula函数。将风电出力不确定性研究转化为确定性研究,解决选择最优相关性函数与实际不符合的问题。The invention relates to the field of wind power generation, in particular to a method for modeling the output correlation of multiple wind farms by using a Copula-garch function. The method includes: collecting active power output distribution data of the wind farms; checking the arch effect of the wind farms, and then The Garch(P,Q) model is established to fit the marginal distribution function of the wind farm, and then according to the SKlar theorem, the combined output distribution of multiple wind farms is divided into the form of multiplying the marginal distribution function and the Copula function; Corresponding four indicators; determine the weight of each indicator in each function, calculate the attribute measure value according to the weight value, and determine the grading standard corresponding to each copula function according to the attribute measure value, and select the copula corresponding to the optimal level The function is the optimal copula function of the wind farm. Convert the uncertainty research of wind power output into deterministic research, and solve the problem that the selection of the optimal correlation function does not conform to the actual situation.
Description
技术领域technical field
本发明涉及风力发电领域,具体涉及一种采用Copula-garch函数对多风电场出力相关性建模的方法。The invention relates to the field of wind power generation, in particular to a method for modeling the output correlation of multiple wind farms by using a Copula-garch function.
背景技术Background technique
在大规模风电接入电网的背景下,常发生多风电场同时并网的情况,这就导致地理位置相近的风电场间有较强的相关性。忽视这种相关性会导致风电分析与实际运行相差较大,进而产生一系列不良后果。In the context of large-scale wind power being connected to the grid, multiple wind farms are often connected to the grid at the same time, which leads to a strong correlation between wind farms with similar geographical locations. Ignoring this correlation can lead to a large discrepancy between wind power analysis and actual operation, which in turn has a series of undesirable consequences.
在多风电场出力相关性的应用中,可用于描述相关性的方法主要有:Pearson相关系数、Spearman相关系数、Kendall相关系数、矩阵变换法以及Copula函数法。这几种方法中,Pearson相关系数和矩阵变换适用于变量为线性、正态分布;其余几种可以适用于任意分布的变量。当前应用的方法只考虑了风电出力的不确定性,没有考虑风电功率的波动性,并且在选择最优相关性函数时,只考虑相关性系数,没有将函数与实际样本进行拟合度验证。In the application of multi-wind farm output correlation, the methods that can be used to describe the correlation mainly include: Pearson correlation coefficient, Spearman correlation coefficient, Kendall correlation coefficient, matrix transformation method and Copula function method. Among these methods, Pearson correlation coefficient and matrix transformation are suitable for variables with linear and normal distribution; the other methods can be applied to variables with any distribution. The currently applied method only considers the uncertainty of wind power output, but does not consider the volatility of wind power, and when selecting the optimal correlation function, only the correlation coefficient is considered, and the function is not verified with the actual sample.
发明内容SUMMARY OF THE INVENTION
本发明所要解决的技术问题在于提供一种基于Copula-garch模型的多风电场出力相关性方法,解决当前应用的方法只考虑了风电出力的不确定性,没有考虑风电功率的波动性,从而在选择最优相关性函数与实际不符合的问题。The technical problem to be solved by the present invention is to provide a multi-wind farm output correlation method based on the Copula-garch model, and the currently applied method only considers the uncertainty of the wind power output, but does not consider the fluctuation of the wind power, so that the The problem of choosing the optimal correlation function does not match the actual situation.
本发明是这样实现的,The present invention is realized in this way,
一种基于Copula-garch模型的多风电场出力相关性方法,该方法包括:A method for output correlation of multiple wind farms based on the Copula-garch model, the method includes:
1)采集风电场的有功出力分布数据;1) Collect the active power output distribution data of the wind farm;
2)对风电场进行arch效应检验,进而建立Garch(P,Q)模型拟合风电场的边缘分布函数,再根据SKlar定理,将多风电场联合出力分布拆分为边缘分布函数与Copula函数相乘的形式;求出五类Copula函数分别对应的四个指标;2) The arch effect test is carried out on the wind farm, and then the Garch(P,Q) model is established to fit the marginal distribution function of the wind farm. Then, according to the SKlar theorem, the combined output distribution of multiple wind farms is divided into the marginal distribution function and the Copula function. The form of multiplication; find out the four indicators corresponding to the five types of Copula functions;
3)确定各指标在各函数中的权值,根据权值计算得到属性测度值,并根据属性测度值确定每种copula函数所对应的分级标准,选择最优级所对应的copula函数为风电场的最佳的copula函数。3) Determine the weight of each index in each function, calculate the attribute measurement value according to the weight value, and determine the classification standard corresponding to each copula function according to the attribute measurement value, and select the copula function corresponding to the optimal grade as the wind farm The optimal copula function for .
进一步地,该方法包括:Garch(P,Q)模型:Further, the method includes: Garch(P,Q) model:
其中:εt表示变量残差,α0>0,αi≥0,i>0,边缘分布为均大于0的组合,P为非负整数滞后条件方差,Q为非负整数平方条件方差。Among them: ε t represents the variable residual, α 0 > 0, α i ≥ 0, i > 0, the marginal distribution is a combination of all greater than 0, P is the non-negative integer lag conditional variance, Q is the non-negative integer square conditional variance.
进一步地,所述五类Copula函数包括:Normal-Copula函数、t-Copula函数、Gumbel-Copula函数、Clayton-Copula函数以及Frank-Copula函数。Further, the five types of Copula functions include: Normal-Copula function, t-Copula function, Gumbel-Copula function, Clayton-Copula function and Frank-Copula function.
进一步地,所述四个指标包括:欧氏距离dGu、最大距离dz、kendall相关性系数之差dτ和Spearman相关性系数之差dρ。Further, the four indicators include: the Euclidean distance d Gu , the maximum distance d z , the difference d τ between the Kendall correlation coefficients and the difference d ρ between the Spearman correlation coefficients.
进一步地,建立四个指标的属性空间,生成标准的分级矩阵:Further, an attribute space of four indicators is established to generate a standard grading matrix:
aij=Xi.min+j·(Xi.max-Xi.min)/5,其中Xi.min为矩阵元素的最小值,Xi.max为矩阵元素的最大值;a ij =X i.min +j·(X i.max -X i.min )/5, wherein X i.min is the minimum value of the matrix element, and X i.max is the maximum value of the matrix element;
xi(i=1,2,3,4)为评价标准:P为指标xi的属性空间,Pj,j=1,2,......,5为优劣等级,P1级最优,P5级最差;aij为指标i在属性空间P上的第j个分级标准;指标xi具有Pm属性,记“xi∝Pm”,其属性程度用λxi(Pj)来表示,为属性测度值,模型的属性测度值的计算公式为:x i (i=1, 2, 3, 4) is the evaluation standard: P is the attribute space of the index x i , P j , j=1, 2,..., 5 is the level of pros and cons, P 1 P is the best, and P is the worst; a ij is the j - th grading standard of the index i on the attribute space P; the index x i has the attribute of P m , denoted as "x i ∝P m ", and its attribute degree is denoted by λ xi (P j ) to represent, is the attribute measurement value, the calculation formula of the attribute measurement value of the model is:
式中ωi为评估标准xi的权值,由熵值法确定;where ω i is the weight of the evaluation standard x i , which is determined by the entropy method;
根据置信度准则,求得Copula模型的优劣等级m:According to the confidence criterion, the pros and cons of the Copula model m are obtained:
式中置信度δ∈(0.5~1),评级最高的P1级的Copula函数作为所求风电场出力的最优联合分布模型。In the formula, the confidence level is δ∈(0.5~1), and the Copula function of level P 1 with the highest rating is used as the optimal joint distribution model of the desired wind farm output.
本发明与现有技术相比,有益效果在于:Compared with the prior art, the present invention has the following beneficial effects:
本发明将风电出力不确定性研究转化为确定性研究的基础上,用garch模型描述风电功率的波动性,分别建立风电场的边缘分布,根据风电场的联合出力分布,进而求出Copula函数,通过相关性系数比较以及与实际样本进行拟合性度验证,选出最优Copula函数,最终建立Copula-garch模型。The invention transforms the uncertainty research of wind power output into deterministic research, describes the fluctuation of wind power with the garch model, establishes the edge distribution of the wind farm respectively, and then obtains the Copula function according to the joint output distribution of the wind farm, By comparing the correlation coefficient and verifying the degree of fit with the actual sample, the optimal Copula function is selected, and the Copula-garch model is finally established.
附图说明Description of drawings
图1为本发明实施例提供的风电场1的出力频数统计图;FIG. 1 is a statistical diagram of the output frequency of a wind farm 1 according to an embodiment of the present invention;
图2为本发明实施例提供的风电场2的出力频数统计图;FIG. 2 is a statistical diagram of the output frequency of the wind farm 2 according to an embodiment of the present invention;
图3为本发明实施例提供的两个风电场联合出力频数统计图;3 is a statistical diagram of the combined output frequency of two wind farms according to an embodiment of the present invention;
图4为本发明实施例提供的Clayton-Copula密度函数;FIG. 4 is a Clayton-Copula density function provided by an embodiment of the present invention;
图5为本发明实施例提供的Clayton-Copula分布函数图;5 is a Clayton-Copula distribution function diagram provided by an embodiment of the present invention;
图6为本发明实施例提供的二元t-Copula密度函数;6 is a binary t-Copula density function provided by an embodiment of the present invention;
图7为本发明实施例提供的二元t-Copula分布函数图;7 is a diagram of a binary t-Copula distribution function provided by an embodiment of the present invention;
图8为本发明实施例提供的经验Copula分布函数图。FIG. 8 is an empirical Copula distribution function diagram provided by an embodiment of the present invention.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to the embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention.
一种基于Copula-garch模型的多风电场出力相关性方法,该方法包括:A method for output correlation of multiple wind farms based on the Copula-garch model, the method includes:
1)采集风电场的有功出力分布数据;1) Collect the active power output distribution data of the wind farm;
2)对风电场进行arch效应检验,进而建立Garch(P,Q)模型拟合风电场的边缘分布函数,再根据SKlar定理,将多风电场联合出力分布拆分为边缘分布函数与Copula函数相乘的形式;求出五类Copula函数分别对应的四个指标;2) The arch effect test is carried out on the wind farm, and then the Garch(P,Q) model is established to fit the marginal distribution function of the wind farm. Then, according to the SKlar theorem, the combined output distribution of multiple wind farms is divided into the marginal distribution function and the Copula function. The form of multiplication; find out the four indicators corresponding to the five types of Copula functions;
3)确定各指标在各函数中的权值,根据权值计算得到属性测度值,并根据属性测度值确定每种copula函数所对应的分级标准,选择最优级所对应的copula函数为风电场的最佳的copula函数。3) Determine the weight of each index in each function, calculate the attribute measurement value according to the weight value, and determine the classification standard corresponding to each copula function according to the attribute measurement value, and select the copula function corresponding to the optimal grade as the wind farm The optimal copula function for .
多风电场的有功出力序列属于异方差序列,而Garch模型可以有效的拟合长期异方差变量,因此,更适合应用于风电场的边缘分布建立上。The active output sequence of multiple wind farms is a heteroscedastic sequence, and the Garch model can effectively fit long-term heteroscedastic variables. Therefore, it is more suitable for the establishment of the marginal distribution of wind farms.
用Garch(P,Q)模型拟合风电场的边缘分布可以很好的描述变量的变化。Using the Garch(P,Q) model to fit the marginal distribution of wind farms can well describe the changes of variables.
Garch(P,Q)模型:Garch(P,Q) model:
其中:εt表示变量残差,α0>0,αi≥0,i>0,边缘分布为均大于0的组合,P为非负整数滞后条件方差,Q为非负整数平方条件方差。Among them: ε t represents the variable residual, α 0 > 0, α i ≥ 0, i > 0, the marginal distribution is a combination of all greater than 0, P is the non-negative integer lag conditional variance, Q is the non-negative integer square conditional variance.
Copula函数作为连接联合分布函数和边缘分布函数的函数而存在,所以也被称为连接函数。Copula function exists as a function connecting joint distribution function and marginal distribution function, so it is also called connecting function.
对于Sklar定理:设随机变量X1,X2,……,Xn的联合分布函数为H,边缘分布函数为F1(X1),F2(X2),……,Fn(Xn),那么存在一个Copula函数C,使得H(x1,x2,......,xn)=C[F1(x1),F2(x2),......,Fn(xn)]For Sklar's theorem: Let the joint distribution function of random variables X 1 , X 2 ,...,X n be H, and the marginal distribution function be F 1 (X 1 ),F 2 (X 2 ),...,F n (X n ), then there is a Copula function C such that H(x 1 ,x 2 ,...,x n )=C[F 1 (x 1 ),F 2 (x 2 ),.... ..,F n (x n )]
若边缘分布函数F为连续函数,则联合分布函数C是唯一确定的。从这个定理可以看出,多风电场联合出力分布可以拆分为边缘分布函数与Copula函数相乘的形式。从而不要求变量具有相同的边缘分布,任意边缘分布都可以通过Copula函数连接成一个联合分布,并且随机序列的信息都在边缘分布函数之中,所以在通过Copula函数转换的过程中,几乎不会出现数据失真的情况。If the marginal distribution function F is a continuous function, the joint distribution function C is uniquely determined. It can be seen from this theorem that the joint output distribution of multiple wind farms can be divided into the form of multiplying the marginal distribution function and the Copula function. Therefore, the variables are not required to have the same marginal distribution. Any marginal distribution can be connected to a joint distribution through the Copula function, and the information of the random sequence is in the marginal distribution function, so in the process of converting through the Copula function, almost no Data distortion occurs.
所述五类Copula函数包括:Normal-Copula函数、t-Copula函数、Gumbel-Copula函数、Clayton-Copula函数以及Frank-Copula函数。The five types of Copula functions include: Normal-Copula function, t-Copula function, Gumbel-Copula function, Clayton-Copula function and Frank-Copula function.
使用Copula函数时包含以下几个步骤,确定变量的边缘分布函数,根据skalr定理计算并得出Copula函数的参数,再根据合适的评价指标选择合适的Copula函数,建立分布最后再根据得到的相关性函数。When using the Copula function, it includes the following steps: determine the marginal distribution function of the variable, calculate and obtain the parameters of the Copula function according to the skalr theorem, and then select the appropriate Copula function according to the appropriate evaluation index, and establish the distribution. Finally, according to the obtained correlation function.
在分析选择最适合的Copula函数时主要考虑的指标包括拟合性指标:欧氏距离dGu(样本经验分布函数值和Copula联合分布函数值的距离和)和最大距离dz(样本经验分布函数值和Copula联合分布函数值的最大值)差值越小模型越接近经验分布;以及相关性指标:kendall相关性系数之差dτ和Spearman相关性系数之差dρ,这两值越小则经验数据模型和所选模型越接近。The indicators that are mainly considered when analyzing and selecting the most suitable Copula function include fit indicators: the Euclidean distance d Gu (the distance sum of the sample empirical distribution function value and the Copula joint distribution function value) and the maximum distance d z (the sample empirical distribution function value). The smaller the difference between the value and the maximum value of the Copula joint distribution function), the closer the model is to the empirical distribution; and the correlation index: the difference between the Kendall correlation coefficient d τ and the Spearman correlation coefficient difference d ρ , the smaller the two values, the better The closer the empirical data model is to the selected model.
定义:在自二位总体样本(X,Y)中取样本(xi,yi),记F(x)和G(y)为X、Y经验分布函数,u、v为X、Y转化后的均匀分布,这样样本的经验分布可以定义为:Definition: Take the sample (x i , y i ) from the two-digit overall sample (X, Y), denote F(x) and G(y) as the empirical distribution function of X and Y, and u and v as the transformation of X and Y After the uniform distribution, the empirical distribution of the sample can be defined as:
式中:I[G(yi)≤v]为示性函数,当F(xi)≤u时,I[F(xi)≤u]=1;当F(xi)>u时,I[F(xi)≤u]=0,设C(ui,vi)为Copula联合分布函数值,则其欧式距离定义式为:In the formula: I[G(y i )≤v] is an indicative function, when F(x i )≤u, I[F(x i )≤u]=1; when F(x i )>u , I[F(x i )≤u]=0, set C( u i ,vi ) as the value of Copula joint distribution function, then its Euclidean distance is defined as:
最大距离定义式为:The maximum distance is defined as:
根据以上分析可以得出优选Copula函数可以归类为决策问题,可采用熵权优选理论来进行,首先建立四个指标的属性空间,生成标准的分级矩阵:According to the above analysis, it can be concluded that the optimal Copula function can be classified as a decision-making problem, which can be carried out by using the entropy weight optimization theory. First, the attribute space of four indicators is established, and a standard hierarchical matrix is generated:
aij=Xi.min+j·(Xi.max-Xi.min)/5,其中Xi.min为矩阵元素的最小值,Xi.max为矩阵元素的最大值;a ij =X i.min +j·(X i.max -X i.min )/5, wherein X i.min is the minimum value of the matrix element, and X i.max is the maximum value of the matrix element;
xi(i=1,2,3,4)为评价标准:P为指标xi的属性空间,Pj,j=1,2,......,5为优劣等级,P1级最优,P5级最差;aij为指标i在属性空间P上的第j个分级标准;指标xi具有Pm属性,记“xi∝Pm”,其属性程度用λxi(Pj)来表示,为属性测度值,模型的属性测度值的计算公式为:x i (i=1, 2, 3, 4) is the evaluation standard: P is the attribute space of the index x i , P j , j=1, 2,..., 5 is the level of pros and cons, P 1 P is the best, and P is the worst; a ij is the j - th grading standard of the index i on the attribute space P; the index x i has the attribute of P m , denoted as "x i ∝P m ", and its attribute degree is denoted by λ xi (P j ) to represent, is the attribute measurement value, the calculation formula of the attribute measurement value of the model is:
式中ωi为评估标准xi的权值,由熵值法确定;where ω i is the weight of the evaluation standard x i , which is determined by the entropy method;
根据置信度准则,求得Copula模型的优劣等级m:According to the confidence criterion, the pros and cons of the Copula model m are obtained:
式中置信度δ∈(0.5~1),评级最高的P1级的Copula函数作为所求风电场出力的最优联合分布模型。In the formula, the confidence level is δ∈(0.5~1), and the Copula function of level P 1 with the highest rating is used as the optimal joint distribution model of the desired wind farm output.
上述的熵值法具体为:The above entropy value method is specifically:
1)n个待评价目标,m个评价指标,bij为第i个目标的第j个指标的数值。指标的归一化处理:异质指标同质化,由于各项指标的计量单位并不统一,因此在用它们计算综合指标前,先要对它们进行标准化处理,即把指标的绝对值转化为相对值,并令xij=|xij|,从而解决各项不同质指标值的同质化问题。而且,由于正向指标和负向指标数值代表的含义不同(正向指标数值越高越好,负向指标数值越低越好),因此,对于高低指标用不同的算法进行数据标准化处理。其具体方法如下:1) n targets to be evaluated, m evaluation indicators, and b ij is the value of the j-th indicator of the i-th target. Normalization of indicators: Homogenization of heterogeneous indicators. Since the measurement units of various indicators are not uniform, before using them to calculate comprehensive indicators, they must be standardized, that is, the absolute value of the indicators is converted into relative value, and let x ij =|x ij |, so as to solve the problem of homogenization of various inhomogeneous index values. Moreover, since the values of positive indicators and negative indicators have different meanings (the higher the positive indicator value is, the better, and the lower the negative indicator value is, the better), therefore, different algorithms are used to standardize the data for high and low indicators. The specific method is as follows:
正向指标:Positive indicators:
负向指标:Negative indicators:
则b'ij为第i个目标的第j个指标的数值(i=1,2,…,n;j=1,2,…,m)Then b' ij is the value of the j-th index of the i-th target (i=1,2,...,n; j=1,2,...,m)
2)计算第j项指标下第i个目标占该指标的比重:2) Calculate the proportion of the i-th target under the j-th indicator to this indicator:
3)计算第j项指标的熵值:3) Calculate the entropy value of the jth index:
此处以辽宁省阜新市的2个地理位置较为接近的风电场1和风电场2为例。取2018年全年有功出力的真实数据作为仿真算例。数据采样间隔时间为15min,以一年为时间。首先确定风电出力的边缘分布函数。Here, two wind farms 1 and 2 in Fuxin City, Liaoning Province, which are geographically close to each other, are taken as examples. The real data of active power output in 2018 is taken as a simulation example. The data sampling interval is 15 minutes, and the time is one year. First, determine the marginal distribution function of wind power output.
本实施例结果计算方法为核密度估计法,通过两风电场的出力频数统计图,如图1、图2,以及联合出力分布图,如图3。可以看出这两座风电场出力上尾极低,下尾凸出明显,因而这两座风电场具有尾部非对称分布,即两个风电场同时出力较小的时候占很大比例。The calculation method of the results in this embodiment is the kernel density estimation method, and the output frequency statistics of the two wind farms are used, as shown in Figure 1 and 2, and the joint output distribution diagram, as shown in Figure 3. It can be seen that the output of the two wind farms is extremely low on the upper tail, and the lower tail protrudes significantly, so the two wind farms have asymmetric distribution of the tail, that is, when the output of the two wind farms is small at the same time, it accounts for a large proportion.
由于风电场出力具有很强的随机性和不确定性,且对这两座风电场进行正态性检验,结果显示不服从正态分布,不能用t分布和正态分布等常见的分布来模拟风电场的出力概率分布。所以采用通用性更强的Copula函数进行相关性建模。利用非参数估计法即核密度估计法来模拟风电出力的边缘分布,分别如图4、图5所示。Due to the strong randomness and uncertainty of the output of wind farms, and the normality test of the two wind farms is carried out, the results show that they do not obey the normal distribution and cannot be simulated by common distributions such as t distribution and normal distribution. The output probability distribution of the wind farm. Therefore, the more versatile Copula function is used for correlation modeling. The marginal distribution of wind power output is simulated by the non-parametric estimation method, namely the kernel density estimation method, as shown in Figure 4 and Figure 5, respectively.
最优Copula函数的选择Selection of the optimal Copula function
根据5种Copula函数特性,选择t-Copula函数、Clayton-Copula函数和Normal-Copula函数这三种描述非对称分布且包含尾部分布特征的函数进行相关性评价。借助熵权优选理论选择最优函数,完成风电场相关性的建模,指标参数值见表1。According to the characteristics of five Copula functions, three functions, t-Copula function, Clayton-Copula function and Normal-Copula function, which describe asymmetric distribution and include tail distribution characteristics are selected for correlation evaluation. With the help of the entropy weight optimization theory, the optimal function is selected to complete the modeling of the correlation of the wind farm. The index parameter values are shown in Table 1.
表1评价指标参数值Table 1 Evaluation index parameter values
求得属性测试矩阵为:The attribute test matrix is obtained as:
然后分别计算四种模型的四个熵权值,然后评估属性测度值:λ(P1)=0.6154,λ(P2)=0.3832(为Clayton-Copula的属性测度值),取置信度δ=0.65得出每个函数对应的m值假如m=2,则所对应的评级即为P2级。各个函数得到的对应评级如表2所示。Then calculate the four entropy weights of the four models respectively, and then evaluate the attribute measurement values: λ(P 1 )=0.6154, λ(P 2 )=0.3832 (which is the attribute measurement value of Clayton-Copula), and take the confidence δ= 0.65 to get the m value corresponding to each function. If m=2, the corresponding rating is P 2 . The corresponding ratings obtained by each function are shown in Table 2.
表2各类Copula模型评级结果汇总表Table 2 Summary of rating results of various types of Copula models
根据图表中的数据,最终可得到结果选择Clayton-Copula函数最为接近。在采用极大似然估计法对结果进行验证也可以得Clayton-Copula函数的欧式平方距离最小,所以选择Clayton-Copula函数描述风电场1和风电场2的相关性。According to the data in the chart, the Clayton-Copula function is the closest to the final result. The maximum likelihood estimation method is used to verify the results, and the Euclidean squared distance of the Clayton-Copula function is the smallest. Therefore, the Clayton-Copula function is selected to describe the correlation between wind farm 1 and wind farm 2.
将两个风电场的核密度估计边缘分布带入Clayton-Copula函数和二元t-Copula函数中可以得到两个函数建模的密度函数和分布函数图Bringing the edge distributions of the kernel density estimates of the two wind farms into the Clayton-Copula function and the binary t-Copula function can obtain the density function and distribution function diagrams modeled by the two functions
将t-Copula和Clayton-Copula函数分别与经验Copula函数做分析比较,计算分析结果显示参见图4、5、6、7、8所示,Clayton-Copula函数更逼近经验Copula函数。并且根据Clayton-Copula函数特性:非对称分布,下尾相关,上尾渐进独立,正好符合数据分布的特征。所以,Clayton-Copula函数为这两座风电场最佳的相关性函数,从而,建立出基于Clayton-Copula函数的Copula-garch相关性模型。The t-Copula and Clayton-Copula functions are analyzed and compared with the empirical Copula functions respectively. The calculation and analysis results are shown in Figures 4, 5, 6, 7, and 8. The Clayton-Copula functions are closer to the empirical Copula functions. And according to the Clayton-Copula function characteristics: asymmetric distribution, lower tail correlation, upper tail asymptotically independent, just in line with the characteristics of data distribution. Therefore, the Clayton-Copula function is the best correlation function of the two wind farms, thus, a Copula-garch correlation model based on the Clayton-Copula function is established.
本实施例针对地理位置相近的多风电场,用核密度估计法建立边缘分布求解,建立了多风电场之间的出力相关性函数。在多种Copula函数中,通过Kendall相关系数、Spearman相关系数、欧氏距离和最大距离来对其进行分析比较,结合熵权优选理论,确定了Clayton-Copula函数为风电场1和风电场2的最佳相关性函数,从而建立出最优的Copula-garch相关性模型。且从函数可以看出,该联合分布具有较强的下尾相关性,在风电分析应用中,忽视这种相关性可能导致一系列的与实际运行不符的情况,增加电网安全稳定运行的风险。In this embodiment, for multiple wind farms with similar geographical locations, the kernel density estimation method is used to establish an edge distribution solution, and an output correlation function between multiple wind farms is established. Among various Copula functions, the Kendall correlation coefficient, Spearman correlation coefficient, Euclidean distance and maximum distance are used to analyze and compare them. Combined with the entropy weight optimization theory, the Clayton-Copula function is determined to be the difference between wind farm 1 and wind farm 2. The optimal correlation function is used to establish the optimal Copula-garch correlation model. It can be seen from the function that the joint distribution has a strong lower tail correlation. In the application of wind power analysis, ignoring this correlation may lead to a series of situations that are inconsistent with the actual operation and increase the risk of safe and stable operation of the power grid.
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention shall be included in the protection of the present invention. within the range.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910782063.XA CN110611334A (en) | 2019-08-23 | 2019-08-23 | A method for output correlation of multiple wind farms based on Copula-garch model |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910782063.XA CN110611334A (en) | 2019-08-23 | 2019-08-23 | A method for output correlation of multiple wind farms based on Copula-garch model |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110611334A true CN110611334A (en) | 2019-12-24 |
Family
ID=68890174
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910782063.XA Pending CN110611334A (en) | 2019-08-23 | 2019-08-23 | A method for output correlation of multiple wind farms based on Copula-garch model |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110611334A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111709454A (en) * | 2020-05-22 | 2020-09-25 | 东南大学 | A clustering evaluation method for output of multiple wind farms based on optimal copula model |
CN112653199A (en) * | 2020-12-17 | 2021-04-13 | 华中科技大学 | Multi-wind-farm joint output prediction method and device based on dynamic R-Vine Copula model |
CN112711864A (en) * | 2021-01-18 | 2021-04-27 | 国网浙江省电力有限公司电力科学研究院 | Distribution network cable quality index correlation model construction and data expansion method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102945223A (en) * | 2012-11-21 | 2013-02-27 | 华中科技大学 | Method for constructing joint probability distribution function of output of a plurality of wind power plants |
CN103020423A (en) * | 2012-11-21 | 2013-04-03 | 华中科技大学 | Copula-function-based method for acquiring relevant characteristic of wind power plant capacity |
CN104252649A (en) * | 2014-09-25 | 2014-12-31 | 东南大学 | Regional wind power output prediction method based on correlation between multiple wind power plants |
US20150160373A1 (en) * | 2013-12-07 | 2015-06-11 | Cardinal Wind, Inc. | Computer-implemented data analysis methods and systems for wind energy assessments |
CN109558968A (en) * | 2018-11-02 | 2019-04-02 | 国网冀北电力有限公司经济技术研究院 | Wind farm output correlation analysis method and device |
-
2019
- 2019-08-23 CN CN201910782063.XA patent/CN110611334A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102945223A (en) * | 2012-11-21 | 2013-02-27 | 华中科技大学 | Method for constructing joint probability distribution function of output of a plurality of wind power plants |
CN103020423A (en) * | 2012-11-21 | 2013-04-03 | 华中科技大学 | Copula-function-based method for acquiring relevant characteristic of wind power plant capacity |
US20150160373A1 (en) * | 2013-12-07 | 2015-06-11 | Cardinal Wind, Inc. | Computer-implemented data analysis methods and systems for wind energy assessments |
CN104252649A (en) * | 2014-09-25 | 2014-12-31 | 东南大学 | Regional wind power output prediction method based on correlation between multiple wind power plants |
CN109558968A (en) * | 2018-11-02 | 2019-04-02 | 国网冀北电力有限公司经济技术研究院 | Wind farm output correlation analysis method and device |
Non-Patent Citations (3)
Title |
---|
唐渐: ""基于Copula函数的电网规划指标相关性分析及建模"", 《中国优秀硕士学位论文全文数据库 经济与管理科学辑》 * |
熊飞等: ""基于藤Copula-GARCH模型的网络资源风险预测"", 《湖北工业大学学报》 * |
蒋楠: ""多风电场相关性的优化建模及其在经济调度中的应用"", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111709454A (en) * | 2020-05-22 | 2020-09-25 | 东南大学 | A clustering evaluation method for output of multiple wind farms based on optimal copula model |
CN111709454B (en) * | 2020-05-22 | 2022-06-07 | 东南大学 | Multi-wind-field output clustering evaluation method based on optimal copula model |
CN112653199A (en) * | 2020-12-17 | 2021-04-13 | 华中科技大学 | Multi-wind-farm joint output prediction method and device based on dynamic R-Vine Copula model |
CN112653199B (en) * | 2020-12-17 | 2022-08-02 | 华中科技大学 | Multi-wind-farm joint output prediction method and device |
CN112711864A (en) * | 2021-01-18 | 2021-04-27 | 国网浙江省电力有限公司电力科学研究院 | Distribution network cable quality index correlation model construction and data expansion method |
CN112711864B (en) * | 2021-01-18 | 2024-06-07 | 国网浙江省电力有限公司电力科学研究院 | Distribution network cable quality index correlation model construction and data expansion method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108336739B (en) | An online calculation method of probabilistic power flow based on RBF neural network | |
CN110991786A (en) | 10kV static load model parameter identification method based on similar daily load curve | |
CN107506941A (en) | A kind of enterprise in charge of construction's credit assessment method and system based on big data technology | |
CN111144644B (en) | Short-term wind speed prediction method based on variation variance Gaussian process regression | |
CN104252649A (en) | Regional wind power output prediction method based on correlation between multiple wind power plants | |
CN110611334A (en) | A method for output correlation of multiple wind farms based on Copula-garch model | |
CN107360147A (en) | Public cloud credibility evaluation method and system based on TOPSIS and cloud model | |
CN111178585A (en) | Prediction method of fault reception volume based on multi-algorithm model fusion | |
CN106355360A (en) | Evaluation method for urgency of middle-voltage project of power distribution network by considering correction factor | |
Wang et al. | Toward a flexible scenario generation tool for stochastic renewable energy analysis | |
CN117526274A (en) | New energy power prediction method, electronic equipment and storage medium in extreme climate | |
CN113487080B (en) | Wind speed dynamic scene generation method, system and terminal based on wind speed classification | |
CN117458489A (en) | EMD-Bi-LSTM short-term prediction method for electricity price and multidimensional time sequence variable | |
CN109902340A (en) | A Multi-source-Load Joint Scenario Generation Method Considering Complex Meteorological Coupling Characteristics | |
CN110020712A (en) | A kind of optimization population BP neural network forecast method and system based on cluster | |
CN115759389A (en) | Day-ahead photovoltaic power prediction method based on weather type similar day combination strategy | |
CN105740635A (en) | Cloud ideal solution evaluation method for transformer electromagnetic design scheme | |
CN110601173A (en) | Distribution network topology identification method and device based on edge calculation | |
CN114330486A (en) | Power system bad data identification method based on improved Wasserstein GAN | |
CN110390343A (en) | Method and system for correcting space weather data | |
CN117236720A (en) | Photovoltaic power station generated power prediction method utilizing multi-meteorological factor characteristics | |
CN104182910A (en) | Correlation-associated wind power output scene construction method | |
Bodini et al. | Operational-based annual energy production uncertainty: are its components actually uncorrelated? | |
CN113449258A (en) | Quality evaluation method and device for intelligent electric meter, terminal equipment and storage medium | |
CN118627925A (en) | A method for evaluating causes of short-term wind power forecasting errors based on principal component analysis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20191224 |
|
RJ01 | Rejection of invention patent application after publication |