[go: up one dir, main page]

CN110607284A - Escherichia coliphage vB_EcoM_swi3 and its application - Google Patents

Escherichia coliphage vB_EcoM_swi3 and its application Download PDF

Info

Publication number
CN110607284A
CN110607284A CN201911012910.0A CN201911012910A CN110607284A CN 110607284 A CN110607284 A CN 110607284A CN 201911012910 A CN201911012910 A CN 201911012910A CN 110607284 A CN110607284 A CN 110607284A
Authority
CN
China
Prior art keywords
coli
escherichia coli
phage
coliphage
swi3
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201911012910.0A
Other languages
Chinese (zh)
Inventor
张灿
韩丽丽
任慧英
刘文华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Agricultural University
Original Assignee
Qingdao Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Agricultural University filed Critical Qingdao Agricultural University
Priority to CN201911012910.0A priority Critical patent/CN110607284A/en
Publication of CN110607284A publication Critical patent/CN110607284A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/10Animal feeding-stuffs obtained by microbiological or biochemical processes
    • A23K10/16Addition of microorganisms or extracts thereof, e.g. single-cell proteins, to feeding-stuff compositions
    • A23K10/18Addition of microorganisms or extracts thereof, e.g. single-cell proteins, to feeding-stuff compositions of live microorganisms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/76Viruses; Subviral particles; Bacteriophages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2795/00Bacteriophages
    • C12N2795/00011Details
    • C12N2795/10011Details dsDNA Bacteriophages
    • C12N2795/10111Myoviridae
    • C12N2795/10121Viruses as such, e.g. new isolates, mutants or their genomic sequences

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Virology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Polymers & Plastics (AREA)
  • Biotechnology (AREA)
  • Oncology (AREA)
  • Food Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Physiology (AREA)
  • Animal Husbandry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Communicable Diseases (AREA)
  • General Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开一株保藏编号为CCTCC M 2019467的大肠杆菌噬菌体vB_EcoM_swi3,该噬菌体属于肌尾噬菌体科,具有呈多面体的头部和可伸缩的尾部结构,头部直径约80nm,尾部长约120nm;在固体培养基上可形成透亮的空斑,周围无晕环,边缘清晰规则,直径约1~1.5mm;该噬菌体对养殖环境中的猪源和鸡源的大肠杆菌,特别是猪源和鸡源的致病性大肠杆菌具有良好的裂解效果,在防治猪大肠杆菌病和鸡大肠杆菌病的药物制剂、饲料添加剂等多个方面具有十分广阔的的应用前景。

The present invention discloses an Escherichia coli phage vB_EcoM_swi3 with a preservation number of CCTCC M 2019467. The phage belongs to the family Myocaudidae and has a polyhedral head and a retractable tail structure. The diameter of the head is about 80 nm, and the length of the tail is about 120 nm; Transparent plaques can be formed on the solid medium, without halos around, with clear and regular edges, and a diameter of about 1-1.5mm; the phage is effective against E. The pathogenic Escherichia coli has a good lysis effect, and has very broad application prospects in the prevention and treatment of porcine colibacillosis and chicken colibacillosis, pharmaceutical preparations, feed additives and other aspects.

Description

大肠杆菌噬菌体vB_EcoM_swi3及其应用Escherichia coliphage vB_EcoM_swi3 and its application

技术领域technical field

本发明属于生物工程领域,尤其涉及一株大肠杆菌噬菌体vB_EcoM_swi3及其应用。The invention belongs to the field of bioengineering, and in particular relates to a coli phage vB_EcoM_swi3 and its application.

背景技术Background technique

大肠杆菌属于条件致病菌,致病力的强弱与大肠杆菌的血清型有关,不同动物之间也存在差异性。其中,猪大肠杆菌病和鸡大肠杆菌病是在养殖环境中广泛存在的,一旦染病会引起腹泻、明显影响动物机体的增重,使动物群体的死亡率急剧上升,发病动物还可以通过粪便等途径传染给其它健康的养殖动物造成大面积感染,而且养殖环境中的猪源和鸡源大肠杆菌会造成动物群体的持续感染,给养殖户造成很大的经济损失。Escherichia coli is an opportunistic pathogen, and the pathogenicity is related to the serotype of Escherichia coli, and there are differences among different animals. Among them, porcine colibacillosis and chicken colibacillosis are widespread in the breeding environment. Once infected, they will cause diarrhea, significantly affect the weight gain of animals, and cause the mortality rate of animal groups to rise sharply. Diseased animals can also pass through feces, etc. coli from pigs and chickens in the breeding environment will cause continuous infection of animal populations, causing great economic losses to farmers.

目前,使用抗生素是养殖场防治大肠杆菌病的主要手段,但是由于抗生素的大量滥用,导致其存在破坏动物肠道微生物菌群结构、抗生素残留、大肠杆菌严重耐药及多重耐药等缺陷,加大了疾病防控的难度,使得养殖成本不断增加,给养殖业的发展造成巨大的阻力。At present, the use of antibiotics is the main means of preventing and treating colibacillosis in farms. However, due to the extensive abuse of antibiotics, it has defects such as destroying the structure of animal intestinal microbial flora, antibiotic residues, severe drug resistance and multi-drug resistance of Escherichia coli. Increased the difficulty of disease prevention and control, making the cost of breeding continues to increase, causing huge resistance to the development of the breeding industry.

噬菌体是一种细菌依赖性病毒,能够特异性的裂解宿主细菌,且与抗生素杀菌的作用机制不同,噬菌体裂解细菌不受细菌耐药性的影响,且无残留,具有研发时间短、成本低、特异性强、给药量少、不破坏正常菌群构成等优点,在耐药菌的防治工作中已取得一系列可喜成果。理论上,任何致病菌都有其对应的噬菌体,但目前我们找到的噬菌体种类和数量只是冰山一角,还有大量的噬菌体资源尚未开发。发掘能同时裂解多种不同动物来源细菌的噬菌体在临床上具有更广阔的应用前景,因此开发具有上述特征的噬菌体制剂对于养殖业的健康快速发展而言意义重大。Phage is a bacteria-dependent virus that can specifically lyse host bacteria, and its mechanism of action is different from that of antibiotics. Bacteria lysed by phage are not affected by bacterial drug resistance and have no residue. It has the advantages of short development time, low cost, With the advantages of strong specificity, less dosage, and no damage to the normal flora, a series of gratifying results have been achieved in the prevention and control of drug-resistant bacteria. Theoretically, any pathogenic bacteria has its corresponding phage, but the type and quantity of phage we have found so far is only the tip of the iceberg, and there are still a large number of phage resources that have not yet been developed. Discovering phages that can simultaneously lyse bacteria from different animal sources has a broader clinical application prospect. Therefore, the development of phage preparations with the above characteristics is of great significance for the healthy and rapid development of the aquaculture industry.

发明内容Contents of the invention

本发明针对上述问题,提出一种能够同时且高效杀灭养殖环境中猪源和鸡源致病性大肠杆菌的噬菌体。In view of the above problems, the present invention proposes a phage capable of simultaneously and efficiently killing pathogenic Escherichia coli from pigs and chickens in a breeding environment.

为了达到上述目的,本发明采用的技术方案为:In order to achieve the above object, the technical scheme adopted in the present invention is:

本发明提供了一种大肠杆菌噬菌体vB_EcoM_swi3,噬菌体保藏号为CCTCC M2019467,于2019年6月19日保藏于中国典型培养物保藏中心,分类命名为猪大肠杆菌噬菌体vB_EcoM_swi3。The invention provides a coli phage vB_EcoM_swi3, the phage preservation number is CCTCC M2019467, which was preserved in the China Center for Type Culture Collection on June 19, 2019, and is classified as porcine coli phage vB_EcoM_swi3.

上述大肠杆菌噬菌体在固体培养基上可以形成透亮的空斑,周围无晕环,边缘清晰规则,直径为1~1.5mm;经透射电子显微镜观察发现,该大肠杆菌噬菌体具有明显的正多面体头部结构和可伸缩的尾部结构,头部直径约80nm,尾部长约120nm,经鉴定该大肠杆菌噬菌体属于肌尾噬菌体科。The above-mentioned coliphage can form translucent plaques on the solid medium, without halos around, with clear and regular edges, and a diameter of 1-1.5mm; it is found by transmission electron microscopy that the coliphage has an obvious regular polyhedral head Structure and retractable tail structure, the diameter of the head is about 80nm, and the length of the tail is about 120nm. It has been identified that the E. coli phage belongs to the family Myocaudaceae.

对上述大肠杆菌噬菌体进行了一系列的性能测定,结果如下:A series of performance tests were carried out on the above-mentioned coliphage, and the results are as follows:

a.通过效价测定和最佳感染复数测定实验得出,该大肠杆菌噬菌体的效价为6.4×108pfu/mL,最佳感染复数为1;a. Through titer determination and optimal multiplicity of infection determination experiments, the titer of the coliphage is 6.4×10 8 pfu/mL, and the optimal multiplicity of infection is 1;

b.通过pH、热及紫外线稳定性实验得出,该大肠杆菌噬菌体在pH6-8的中性条件下性能较为稳定、对紫外线较为敏感、当温度在60℃以下时,活性较为稳定;b. Through pH, heat and ultraviolet stability experiments, it can be concluded that the coliphage has relatively stable performance under neutral conditions of pH 6-8, is more sensitive to ultraviolet rays, and has relatively stable activity when the temperature is below 60°C;

c.通过一步生长曲线测定得出,该大肠杆菌噬菌体的潜伏期约为25min,爆发期约为75min,爆发量约为25;c. Through one-step growth curve measurement, the incubation period of the coliphage is about 25 minutes, the outbreak period is about 75 minutes, and the outbreak amount is about 25 minutes;

d.通过小鼠安全性实验得出,该大肠杆菌噬菌体对小鼠正常生长不产生负面影响,且解剖检查未见异常情况,说明该大肠杆菌噬菌体表现出较高的安全性;d. Through the mouse safety experiment, it can be concluded that the coliphage does not have a negative impact on the normal growth of mice, and no abnormalities are found in the anatomical examination, indicating that the coliphage shows high safety;

e.通过大肠杆菌感染小鼠的治疗实验得出,经过腹腔注射107pfu/mL大肠杆菌噬菌体后的小鼠血液中大肠杆菌E.coli-K88浓度迅速下降,8.5h即可完全清除,血液中的噬菌体也随之消失,粪便中的噬菌体在99h内完全清除,说明该大肠杆菌噬菌体可在短时间内有效清除动物体内的致病性大肠杆菌,且无噬菌体残留;e. According to the treatment experiment of E. coli-infected mice, the concentration of E. coli E.coli-K88 in the blood of mice after intraperitoneal injection of 10 7 pfu/mL coli phage decreased rapidly, and it could be completely cleared in 8.5 hours. The phages in the feces also disappeared, and the phages in the feces were completely cleared within 99 hours, indicating that the coliphages can effectively eliminate pathogenic Escherichia coli in animals in a short period of time, and there is no phage residue;

f.通过大肠杆菌环境消毒实验得出,采用浓度为105pfu/mL的大肠杆菌噬菌体增殖液即可有效的杀灭环境中污染的宿主菌。f. According to the Escherichia coli environmental disinfection experiment, the coli phage proliferation solution with a concentration of 10 5 pfu/mL can effectively kill the polluted host bacteria in the environment.

本发明还提供了大肠杆菌噬菌体在制备同时杀灭猪源和鸡源大肠杆菌生物制品中的应用。The invention also provides the application of the coli phage in the preparation of biological products for simultaneously killing pig-derived and chicken-derived Escherichia coli.

本发明提供的大肠杆菌噬菌体是从自然界中分离得到的一株新的噬菌体,作为细菌的天敌,能够特异性地裂解猪源和鸡源致病性大肠杆菌,而不会破坏正常菌群构成,并且不受细菌耐药性的影响,也不存在药物残留等的问题,具有很高的安全性,在防治大肠杆菌病方面具有良好的应用前景。The Escherichia coli phage provided by the present invention is a new strain of phage isolated from nature. As a natural enemy of bacteria, it can specifically lyse pathogenic Escherichia coli from pigs and chickens without destroying the normal flora composition. Moreover, it is not affected by bacterial drug resistance, does not have problems such as drug residues, has high safety, and has good application prospects in the prevention and treatment of colibacillosis.

作为优选,所述生物制品为饲料添加剂和消毒剂/清洁剂,其中所述饲料添加剂和消毒剂/清洁剂为以纯化的大肠杆菌噬菌体制备的单一制剂或以纯化的所述大肠杆菌噬菌体为主要成分制备的复配制剂。Preferably, the biological product is a feed additive and a disinfectant/cleaner, wherein the feed additive and disinfectant/cleaner are a single preparation prepared from purified coliphage or mainly purified from the purified coliphage Combination formulations prepared from ingredients.

作为优选,猪源大肠杆菌和鸡源大肠杆菌包括致病性大肠杆菌,所述猪源大肠杆菌包括肠产毒型大肠杆菌。Preferably, the porcine-derived E. coli and chicken-derived E. coli include pathogenic E. coli, and the porcine-derived E. coli includes enterotoxigenic E. coli.

作为优选,所述肠产毒型大肠杆菌包括K88型大肠杆菌,所述鸡源致病性大肠杆菌包括O78型大肠杆菌。Preferably, the enterotoxigenic Escherichia coli includes K88 type Escherichia coli, and the chicken-derived pathogenic Escherichia coli includes O78 type Escherichia coli.

本发明还提供了一种消毒剂或清洁剂,为以纯化的大肠杆菌噬菌体制备的单一制剂或以纯化的大肠杆菌噬菌体为主要成分制备的复配制剂,用于防治养殖环境中猪源和鸡源大肠杆菌的污染。The present invention also provides a disinfectant or cleaning agent, which is a single preparation prepared with purified coliphage or a compound preparation prepared with purified coliphage as the main component, which is used to prevent and treat pigs and chickens in the breeding environment. Contamination of source E. coli.

作为优选,所述消毒剂或清洁剂的剂型为液体、冻干粉或片剂;所述养殖环境包括畜禽体内、畜禽体表、畜禽养殖场所地面、畜禽养殖场所空气、畜禽饲料、饮水以及养殖器具。Preferably, the dosage form of the disinfectant or cleaning agent is liquid, freeze-dried powder or tablet; Feed, drinking water and breeding utensils.

本发明又提供了一种饲料添加剂,为以纯化的大肠杆菌噬菌体制备的单一制剂或以纯化的大肠杆菌噬菌体为主要成分制备的复配制剂,添加在畜禽饲料中,用于防治养殖过程中猪源和鸡源大肠杆菌的污染。The present invention also provides a feed additive, which is a single preparation prepared with purified coliphage or a compound preparation prepared with purified coliphage as the main component, which is added to livestock and poultry feed to prevent and control the Escherichia coli contamination of porcine and chicken sources.

作为优选,所述饲料至少包括猪饲料或鸡饲料。Preferably, the feed includes at least pig feed or chicken feed.

作为优选,所述猪源大肠杆菌包括和鸡源大肠杆菌包括致病性大肠杆菌,所述猪源致病性大肠杆菌包括肠产毒型大肠杆菌,所述肠产毒型大肠杆菌包括K88型大肠杆菌,所述鸡源致病性大肠杆菌包括O78型大肠杆菌。Preferably, the porcine-derived E. coli includes pathogenic E. coli and the chicken-derived E. coli includes enterotoxigenic E. coli, and the enterotoxigenic E. coli includes K88 type Escherichia coli, the chicken-derived pathogenic Escherichia coli includes type O78 Escherichia coli.

本发明提供的大肠杆菌噬菌体可作为防治大肠杆菌病的药物制剂的有效成分,以及抑制环境中大肠杆菌增殖的多种产品成分中,包括饲料添加剂、饮用水添加剂和肉制品清洁剂等多种产品。The colibacillus phage provided by the present invention can be used as an active ingredient of pharmaceutical preparations for preventing and treating colibacillosis, and various product components for inhibiting the proliferation of E. coli in the environment, including feed additives, drinking water additives and meat product cleaners, etc. .

本发明提供的大肠杆菌噬菌体是通过以下方法分离得到的:The coliphage provided by the invention is isolated by the following method:

I.实验材料:I. Experimental materials:

粪液污水样品,采集自山东省临沂市猪屠宰场污水、噬菌体宿主菌为猪源致病性大肠杆菌E.coli-K88,由本实验室从发病猪粪便中分离、鉴定并保存。Fecal sewage samples were collected from the sewage of pig slaughterhouses in Linyi City, Shandong Province. The phage host bacteria were pig-derived pathogenic Escherichia coli E.coli-K88, which were isolated, identified and preserved from the feces of diseased pigs by our laboratory.

II.实验方法:II. Experimental method:

将采集的污水样品5ml加入50ml LB液体培养基,然后加入大肠杆菌E.coli-K88菌液500μL,混合均匀后放入37℃恒温培养箱过夜培养。培养物先用四层纱布进行粗过滤,滤液4000rpm离心10min,取上清12000rpm离心15min,然后上清用0.22μm滤器抽滤,获得噬菌体原液。将大肠杆菌E.coli-K88增殖液200μL用棉签均匀涂布于LB固体培养基表面,晾干5min后,滴加10μL噬菌体原液,同时滴加10μL生理盐水作为对照,37℃条件下倒置培养10-12h,观察到点样处无细菌生长有空斑出现的样品则含有可裂解E.coli-K88的噬菌体。Add 5ml of the collected sewage sample to 50ml of LB liquid medium, then add 500μL of Escherichia coli E.coli-K88 bacterial solution, mix well and put it into a 37°C constant temperature incubator for overnight cultivation. The culture was first coarsely filtered with four layers of gauze, the filtrate was centrifuged at 4000rpm for 10min, the supernatant was centrifuged at 12000rpm for 15min, and then the supernatant was filtered with a 0.22μm filter to obtain the phage stock solution. Spread 200 μL of Escherichia coli E.coli-K88 proliferation solution evenly on the surface of LB solid medium with a cotton swab, let it dry for 5 minutes, add 10 μL of phage stock solution dropwise, and at the same time add 10 μL of normal saline as a control, and culture it upside down at 37°C for 10 -12h, it was observed that no bacterial growth and plaques appeared in the spots, which contained bacteriophages capable of cleaving E.coli-K88.

与现有技术相比,本发明的优点和积极效果在于:Compared with prior art, advantage and positive effect of the present invention are:

1、本发明提供了一株新发现的大肠杆菌噬菌体,具有较好的理化因素耐受性、潜隐期短、裂解性能高、安全性好等特点,是一种新型的防治畜禽养殖中细菌疾病的产品和手段;1. The present invention provides a newly discovered Escherichia coli phage, which has the characteristics of better tolerance to physical and chemical factors, short incubation period, high cracking performance, and good safety. Products and means of bacterial diseases;

2、本发明提供的大肠杆菌噬菌体能够高效且同时杀灭养殖环境中及畜禽体内的猪源和鸡源致病性大肠杆菌,尤其是猪源肠产毒型大肠杆菌和鸡源致病性大肠杆菌;2. The coli phage provided by the present invention can efficiently and simultaneously kill pig-derived and chicken-derived pathogenic E. coli in the breeding environment and in livestock and poultry, especially pig-derived enterotoxigenic E. coli and chicken-derived pathogenic Escherichia coli;

3、本发明提供的大肠杆菌噬菌体亲水性良好,可经水线给药,而且易于制备滴注液、喷洒液或淋洗液;该大肠杆菌噬菌体还可制备成单种制剂或与其他噬菌体复配制成复合制剂使用,此外该大肠杆菌噬菌体还可以广泛应用于饲料添加剂、消毒剂和清洁剂等。3. The coliphage provided by the present invention has good hydrophilicity, can be administered through a waterline, and is easy to prepare infusion, spray or rinse solution; the coliphage can also be prepared as a single preparation or combined with other phages It can be compounded and used as a compound preparation. In addition, the coliphage can also be widely used in feed additives, disinfectants, cleaning agents and the like.

附图说明Description of drawings

图1为本发明实施例所提供的大肠杆菌噬菌体vB_EcoM_swi3的透射电镜图片;Fig. 1 is the transmission electron microscope picture of coliphage vB_EcoM_swi3 provided by the embodiment of the present invention;

图2为本发明实施例所提供的大肠杆菌噬菌体vB_EcoM_swi3的PH稳定性结果图;Fig. 2 is a graph showing the pH stability results of coliphage vB_EcoM_swi3 provided by the embodiments of the present invention;

图3为本发明实施例所提供的大肠杆菌噬菌体vB_EcoM_swi3的热稳定性测定结果图;Fig. 3 is the thermostability assay result chart of coliphage vB_EcoM_swi3 provided by the embodiment of the present invention;

图4为本发明实施例所提供的大肠杆菌噬菌体vB_EcoM_swi3的紫外线稳定性测定结果图;Fig. 4 is the result figure of the ultraviolet stability determination of coliphage vB_EcoM_swi3 provided by the embodiment of the present invention;

图5为本发明实施例所提供的大肠杆菌噬菌体vB_EcoM_swi3的一步生长曲线测定结果图;Fig. 5 is a one-step growth curve determination result diagram of coliphage vB_EcoM_swi3 provided by the embodiment of the present invention;

图6为本发明实施例所提供的大肠杆菌噬菌体vB_EcoM_swi3在动物体内杀菌结果图;Fig. 6 is a diagram of the sterilization results of coliphage vB_EcoM_swi3 in animals provided by the embodiment of the present invention;

图7为本发明实施例所提供的大肠杆菌噬菌体vB_EcoM_swi3在粪便中的动态变化图。Fig. 7 is a dynamic change diagram of coliphage vB_EcoM_swi3 in feces provided by the embodiment of the present invention.

具体实施方式Detailed ways

为了更清楚详细地介绍本发明实施例所提供的大肠杆菌噬菌体及其应用,下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to introduce the coliphage and its application provided by the embodiments of the present invention in more detail, the technical solutions in the embodiments of the present invention will be clearly and completely described below. Obviously, the described embodiments are only part of the implementation of the present invention. example, not all examples. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.

实施例1:大肠杆菌噬菌体vB_EcoM_swi3的分离制备Example 1: Isolation and preparation of Escherichia coli phage vB_EcoM_swi3

(1)实验材料:(1) Experimental materials:

粪液污水样品,采集自山东省临沂市猪屠宰场污水、噬菌体宿主菌为大肠杆菌E.coli-K88,由本实验室从发病猪粪便中分离、鉴定并保存。Fecal sewage samples were collected from pig slaughterhouse sewage in Linyi City, Shandong Province. The phage host bacteria was E. coli-K88, which was isolated, identified and preserved from diseased pig feces by our laboratory.

(2)实验方法:(2) Experimental method:

将采集的污水样品5ml加入50ml LB液体培养基,然后加入大肠杆菌E.coli-K88菌液500μL,混合均匀后放入37℃恒温培养箱过夜培养。培养物先用四层纱布进行粗过滤,滤液4000rpm离心10min,取上清12000rpm离心15min,然后上清用0.22μm滤器抽滤,获得噬菌体原液。将大肠杆菌E.coli-K88增殖液200μL用棉签均匀涂布于LB固体培养基表面,晾干5min后,滴加10μL噬菌体原液,同时滴加10μL生理盐水作为对照,37℃条件下倒置培养10-12h,观察到点样处无细菌生长有空斑出现的样品则含有可裂解E.coli-K88的噬菌体。Add 5ml of the collected sewage sample to 50ml of LB liquid medium, then add 500μL of Escherichia coli E.coli-K88 bacterial solution, mix well and put it into a 37°C constant temperature incubator for overnight cultivation. The culture was first coarsely filtered with four layers of gauze, the filtrate was centrifuged at 4000rpm for 10min, the supernatant was centrifuged at 12000rpm for 15min, and then the supernatant was filtered with a 0.22μm filter to obtain the phage stock solution. Spread 200 μL of Escherichia coli E.coli-K88 proliferation solution evenly on the surface of LB solid medium with a cotton swab, let it dry for 5 minutes, add 10 μL of phage stock solution dropwise, and at the same time add 10 μL of normal saline as a control, and culture it upside down at 37°C for 10 -12h, it was observed that no bacterial growth and plaques appeared in the spots, which contained bacteriophages capable of cleaving E.coli-K88.

实施例2:大肠杆菌噬菌体vB_EcoM_swi3的纯化与大量增殖Example 2: Purification and Mass Propagation of Escherichia coli Phage vB_EcoM_swi3

Q1、大肠杆菌噬菌体vB_EcoM_swi3的纯化Q1. Purification of coliphage vB_EcoM_swi3

对上述实施例1中鉴定含有噬菌体的样品进行纯化,具体操作如下:取噬菌体原液100μL,进行10倍比稀释,取各稀释度噬菌体原液100μL与等量过夜培养的E.coli-K88混匀,加入3ml加热至50℃的0.7%的LB半固体培养基中混匀,倾倒入LB琼脂平板上层,静置5min,待其凝固后,37℃条件下倒置培养4-5h,获得形成噬菌斑的双层平板。抠取单个噬菌斑,加入LB液体培养基3ml,40℃水浴30min,12000rpm离心5min,取上清液用0.22μm滤器抽滤,获得噬菌体滤液。取100μL噬菌体滤液,稀释至10-6,加入等体积宿主菌E.coli-K88,双层平板法培养。重复该过程5次,得到纯化的噬菌体。噬菌体在固体培养基上可以形成透亮的空斑,周围无晕环,边缘清晰规则,直径为1~1.5mm。Purify the samples identified to contain phages in the above Example 1. The specific operation is as follows: Take 100 μL of the phage stock solution and perform a 10-fold dilution. Take 100 μL of the phage stock solution at each dilution and mix it with an equal amount of overnight cultured E.coli-K88. Add 3ml of 0.7% LB semi-solid medium heated to 50°C and mix well, pour it into the upper layer of the LB agar plate, let it stand for 5 minutes, wait for it to solidify, and culture it upside down at 37°C for 4-5 hours to obtain the formation of phage plaques double-layer flat panel. Pick out a single phage plaque, add 3ml of LB liquid medium, bathe in 40°C water for 30min, centrifuge at 12000rpm for 5min, take the supernatant and filter it with a 0.22μm filter to obtain the phage filtrate. Take 100 μL of phage filtrate, dilute to 10 -6 , add an equal volume of host bacteria E.coli-K88, and culture in double-layer plate method. This process was repeated 5 times to obtain purified phage. Phages can form translucent plaques on solid medium without halos around them, with clear and regular edges and a diameter of 1-1.5 mm.

Q2、大肠杆菌噬菌体vB_EcoM_swi3的纯化的增殖Q2, Propagation of the purification of coliphage vB_EcoM_swi3

将1mL噬菌体原液和1mL新鲜培养的宿主菌E.coli-K88菌液加入100ml LB液体培养基中,37℃震荡培养9h,加入体积比5%的氯仿,继续震荡培养30min,13000rpm离心15min,取上清,得到噬菌体的大量增殖液;Add 1mL of phage stock solution and 1mL of freshly cultured host strain E.coli-K88 into 100ml of LB liquid medium, culture with shaking at 37°C for 9h, add 5% chloroform by volume, continue shaking for 30min, centrifuge at 13000rpm for 15min, and take supernatant to obtain a large amount of phage proliferation fluid;

噬菌体增殖液中加入DNase I和RNaseA至终浓度为1μg/mL,轻摇混匀之后37℃条件下孵育30min,加入NaCl至终浓度1mol/mL充分混匀,4℃静置1h,13000rpm离心20min,取上清,加入PEG6000至终浓度为10%(W/V),4℃过夜,13000rpm离心25min,弃上清,取沉淀,所得的沉淀用适当体积的生理盐水重悬,并充分洗涤离心管内壁。加入等体积的氯仿,轻柔震荡30s,4℃条件下8000rpm离心15min分离有机相和水相,取水相,得到纯化的噬菌体增殖液,用双层平板法检测纯化的噬菌体;Add DNase I and RNaseA to the phage proliferation solution to a final concentration of 1 μg/mL, shake and mix well, incubate at 37°C for 30 minutes, add NaCl to a final concentration of 1mol/mL and mix well, let stand at 4°C for 1 hour, and centrifuge at 13,000 rpm for 20 minutes , take the supernatant, add PEG6000 to a final concentration of 10% (W/V), overnight at 4°C, centrifuge at 13000rpm for 25min, discard the supernatant, take the precipitate, and resuspend the obtained precipitate with an appropriate volume of normal saline, and wash and centrifuge thoroughly inner wall of the tube. Add an equal volume of chloroform, shake gently for 30s, and centrifuge at 8000rpm for 15min at 4°C to separate the organic phase and the aqueous phase, take the aqueous phase, and obtain the purified phage proliferation solution, and detect the purified phages by the double-layer plate method;

纯化的噬菌体命名为vB_EcoM_swi3,保藏于中国典型培养物保藏中心,保藏单位地址:中国·武汉·武汉大学,保藏号:CCTCC M 2019467,分类命名:猪大肠杆菌噬菌体(Escherichia coli phage),保藏日期为2019年6月19日。The purified phage is named vB_EcoM_swi3, and it is preserved in the China Type Culture Collection Center. The address of the preservation unit is: Wuhan University, Wuhan, China. The preservation number is CCTCC M 2019467. The classification name is: Escherichia coli phage, and the preservation date is June 19, 2019.

实施例3:大肠杆菌噬菌体vB_EcoM_swi3的透射电镜形态观察Example 3: Morphological Observation by Transmission Electron Microscopy of Escherichia coli Phage vB_EcoM_swi3

取20μL纯化的噬菌体增殖液滴于铜网上,静置15min左右,用滤纸吸去多余的液体。在铜网上滴加15μL的2%的磷钨酸(PTA)染色5min,用滤纸吸去多余的染液,干燥后用透射电子显微镜观察。Take 20 μL of the purified phage proliferation solution and drop it on the copper grid, let it stand for about 15 minutes, and absorb the excess liquid with filter paper. Add 15 μL of 2% phosphotungstic acid (PTA) dropwise on the copper mesh for 5 minutes, absorb excess dye solution with filter paper, and observe with a transmission electron microscope after drying.

大肠杆菌噬菌体vB_EcoM_swi3的透射电镜结果如图1所示,大肠杆菌噬菌体vB_EcoM_swi3具有明显的正多面体头部结构和可伸缩的尾部结构,头部直径约为80nm,尾部长约120nm。根据国际病毒分类委员会(ICTV)2018年发表的《病毒分类-国际病毒分类委员会第十次报告》为标准,该噬菌体属于肌尾噬菌体科。The transmission electron microscope results of coliphage vB_EcoM_swi3 are shown in Figure 1. Coliphage vB_EcoM_swi3 has a clear polyhedral head structure and a stretchable tail structure. The diameter of the head is about 80 nm, and the length of the tail is about 120 nm. According to the "Classification of Viruses-The Tenth Report of the International Committee on Taxonomy of Viruses" published by the International Committee on Taxonomy of Viruses (ICTV) in 2018, the bacteriophage belongs to the family Myoviridae.

实施例4:大肠杆菌噬菌体vB_EcoM_swi3的裂解谱检测Example 4: Cleavage Spectrum Detection of Escherichia coli Phage vB_EcoM_swi3

试验选择10株致病性大肠杆菌临床分离株(其中8株从发病猪体内分离,2株从发病鸡体内分离)对大肠杆菌噬菌体vB_EcoM_swi3的裂解谱进行测定。具体操作如下:分别将10株大肠杆菌增殖液200μL均匀涂布于LB固体培养基平板,待菌液完全吸收后,滴加5μL噬菌体滤液于平板上,同时滴加5μL生理盐水作为对照,自然晾干后,于37℃恒温培养箱中倒置培养4-6h,观察并记录结果。In the experiment, 10 pathogenic Escherichia coli clinical isolates (including 8 isolates from diseased pigs and 2 isolates from diseased chickens) were selected to determine the lysis profile of coliphage vB_EcoM_swi3. The specific operation is as follows: 200 μL of 10 strains of Escherichia coli proliferation solution were evenly spread on the LB solid medium plate, and after the bacteria liquid was completely absorbed, 5 μL of phage filtrate was added dropwise on the plate, and 5 μL of normal saline was added dropwise as a control, and left to dry naturally. After drying, culture them upside down in a constant temperature incubator at 37°C for 4-6 hours, observe and record the results.

结果显示,试验选择的10株大肠杆菌菌株在LB固体培养基平板上生长良好,形成菌苔。其中8株大肠杆菌的平板上滴加大肠杆菌噬菌体vB_EcoM_swi3的区域无细菌生长,说明分离到的大肠杆菌噬菌体vB_EcoM_swi3能够裂解10株大肠杆菌中的8株,裂解率为80%,其中6株为猪源大肠杆菌,2株为鸡源大肠杆菌。The results showed that the 10 Escherichia coli strains selected in the experiment grew well on the LB solid medium plate and formed a lawn. Among them, there is no bacterial growth in the area where coliphage vB_EcoM_swi3 is added to the plate of 8 strains of Escherichia coli, indicating that the isolated coliphage vB_EcoM_swi3 can lyse 8 strains of 10 strains of Escherichia coli, and the lysis rate is 80%, of which 6 strains are pig The source of Escherichia coli, 2 strains of chicken Escherichia coli.

表1大肠杆菌噬菌体vB_EcoM_swi3的裂解谱试验结果Table 1 The lysis profile test results of coliphage vB_EcoM_swi3

实施例5:大肠杆菌噬菌体vB_EcoM_swi3的效价测定Example 5: Titer determination of coliphage vB_EcoM_swi3

将大肠杆菌噬菌体vB_EcoM_swi3增殖液依次进行10倍比稀释,取100μL各稀释度的增殖液分别与等体积的宿主菌E.coli-K88菌液混匀,用双层平板法进行噬菌斑计数,每个稀释度做3个平行。根据噬菌斑数量计算噬菌体效价,测得大肠杆菌噬菌体vB_EcoM_swi3的效价6.4×108pfu/mL。The Escherichia coli phage vB_EcoM_swi3 proliferation solution was diluted 10 times sequentially, and 100 μL of the proliferation solution of each dilution was mixed with an equal volume of the host bacteria E.coli-K88 bacteria solution, and the plaques were counted by the double-layer plate method. Three parallels were performed for each dilution. The phage titer was calculated according to the number of plaques, and the titer of Escherichia coli phage vB_EcoM_swi3 was measured to be 6.4×10 8 pfu/mL.

实施例6:大肠杆菌噬菌体vB_EcoM_swi3的最佳感染复数测定Example 6: Determination of optimal multiplicity of infection of coliphage vB_EcoM_swi3

取大肠杆菌噬菌体vB_EcoM_swi3增殖液和培养至对数期的宿主菌E.coli-K88菌液,进行计数。分别按照感染复数为0.001、0.01、0.1、1、10、100和1000的比例混匀,加入5mLLB肉汤,37℃摇床振荡培养4h,12000rpm离心20min,0.22μm滤器抽滤除菌,获得噬菌体增殖液,双层平板法测定噬菌体效价,每组做三个平行,根据测定噬菌体效价测定结果计算最佳感染复数。Take coli phage vB_EcoM_swi3 proliferation fluid and the host bacteria E.coli-K88 bacterial fluid cultured to the logarithmic phase, and count them. Mix according to the ratio of multiplicity of infection 0.001, 0.01, 0.1, 1, 10, 100 and 1000 respectively, add 5 mL of LB broth, shake and culture at 37 ° C for 4 h, centrifuge at 12000 rpm for 20 min, and filter with a 0.22 μm filter to obtain phage For the proliferation solution, the phage titer was determined by the double-layer plate method, and three parallels were performed for each group, and the optimal multiplicity of infection was calculated according to the results of the phage titer determination.

结果显示(表2),当感染复数为1时,大肠杆菌噬菌体vB_EcoM_swi3的效价最高达到8.2×108pfu/mL。因此大肠杆菌噬菌体vB_EcoM_swi3的最佳感染复数为1。The results showed (Table 2) that when the multiplicity of infection was 1, the titer of the coliphage vB_EcoM_swi3 reached a maximum of 8.2×10 8 pfu/mL. Therefore, the optimal MOI of coliphage vB_EcoM_swi3 is 1.

表2大肠杆菌噬菌体vB_EcoM_swi3的最佳感染复数测定结果Table 2 The best multiplicity of infection assay results of coliphage vB_EcoM_swi3

噬菌体数Phage count 宿主菌数Host bacteria count 感染复数multiplicity of infection 4h后噬菌体效价Phage titer after 4h 6.4×10<sup>8</sup>6.4×10<sup>8</sup> 3.9×10<sup>5</sup>3.9×10<sup>5</sup> 10001000 9.7×10<sup>6</sup>9.7×10<sup>6</sup> 6.4×10<sup>8</sup>6.4×10<sup>8</sup> 3.9×10<sup>6</sup>3.9×10<sup>6</sup> 100100 7.9×10<sup>7</sup>7.9×10<sup>7</sup> 6.4×10<sup>8</sup>6.4×10<sup>8</sup> 3.9×10<sup>7</sup>3.9×10<sup>7</sup> 1010 8.7×10<sup>7</sup>8.7×10<sup>7</sup> 6.4×10<sup>8</sup>6.4×10<sup>8</sup> 3.9×10<sup>7</sup>3.9×10<sup>7</sup> 11 8.2×10<sup>8</sup>8.2×10<sup>8</sup> 6.4×10<sup>8</sup>6.4×10<sup>8</sup> 3.4×10<sup>9</sup>3.4×10<sup>9</sup> 0.10.1 1.56×10<sup>8</sup>1.56×10<sup>8</sup> 6.4×10<sup>8</sup>6.4×10<sup>8</sup> 3.4×10<sup>10</sup>3.4×10<sup>10</sup> 0.010.01 9.8×10<sup>6</sup>9.8×10<sup>6</sup> 6.4×10<sup>7</sup>6.4×10<sup>7</sup> 3.4×10<sup>10</sup>3.4×10<sup>10</sup> 0.0010.001 9.4×10<sup>6</sup>9.4×10<sup>6</sup>

实施例7:大肠杆菌噬菌体vB_EcoM_swi3的pH稳定性测定Example 7: pH Stability Determination of Escherichia coli Phage vB_EcoM_swi3

取不同pH值(2、3、4、5、6、7、8、9、10、11、12、13)的LB液体培养基4.5mL,分别加入浓度为108pfu/mL的大肠杆菌噬菌体vB_EcoM_swi3增殖液500μL,37℃水浴孵育,分别于1h、2h、3h取样1ml。对所取样品依次进行10倍比稀释,取100μL各稀释度的增殖液分别与等体积的E.coli-K88菌液混匀,双层平板法测定噬菌体效价,每组三个平行,根据统计结果绘制噬菌体的pH稳定性曲线。Take 4.5 mL of LB liquid medium with different pH values (2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13) and add coliphage at a concentration of 10 8 pfu/mL 500 μL of vB_EcoM_swi3 proliferation solution was incubated in a water bath at 37°C, and 1 ml of samples were taken at 1 h, 2 h, and 3 h. The samples taken were sequentially diluted 10 times, and 100 μL of the proliferation solution of each dilution was mixed with an equal volume of E.coli-K88 bacterial solution, and the phage titer was determined by the double-layer plate method, with three parallels for each group, according to Statistical Results The pH stability curve of the phage was plotted.

结果显示(图2),大肠杆菌噬菌体vB_EcoM_swi3在pH6-8范围内较为稳定,当pH<6或pH>8时,大肠杆菌噬菌体vB_EcoM_swi3的活性随着酸碱度的增加而迅速下降。当pH降低到2时,噬菌体作用1-3h,效价仅为103pfu/mL;当pH升高到13时,作用1h后,大肠杆菌噬菌体vB_EcoM_swi3效价为105pfu/mL;作用2h后,噬菌体效价降低到103pfu/mL。因此,大肠杆菌噬菌体vB_EcoM_swi3在pH6-8的中性条件下稳定。The results showed (Fig. 2) that coliphage vB_EcoM_swi3 was relatively stable in the pH range of 6-8, and when pH<6 or pH>8, the activity of coliphage vB_EcoM_swi3 decreased rapidly with the increase of pH. When the pH is lowered to 2, the phage acts for 1-3 hours, and the titer is only 10 3 pfu/mL; when the pH rises to 13, the titer of coliphage vB_EcoM_swi3 is 10 5 pfu/mL after 1 hour of action; After that, the phage titer decreased to 10 3 pfu/mL. Therefore, coliphage vB_EcoM_swi3 is stable under neutral conditions at pH 6-8.

实施例8:大肠杆菌噬菌体vB_EcoM_swi3的热稳定性测定Example 8: Thermostability assay of coliphage vB_EcoM_swi3

分别将100μL浓度为108pfu/mL的大肠杆菌噬菌体vB_EcoM_swi3增殖液于40℃、50℃、60℃、70℃、80℃水浴中孵育,分别在20min、40min、60min取样,将样品依次做10倍比稀释,取100μL各稀释度的噬菌体增殖液分别与等体积的E.coli-K88菌液混匀,双层平板法测定大肠杆菌噬菌体vB_EcoM_swi3的效价,每个温度设三个平行,根据统计结果绘制噬菌体的热稳定性曲线。Incubate 100 μL of coliphage vB_EcoM_swi3 proliferation solution with a concentration of 10 8 pfu/mL in water baths at 40°C, 50°C, 60°C, 70°C, and 80°C, and take samples at 20 minutes, 40 minutes, and 60 minutes respectively. Doubling dilution, take 100 μL of phage proliferation solution of each dilution and mix with equal volume of E.coli-K88 bacterial solution, and measure the titer of E. coli phage vB_EcoM_swi3 by double-layer plate method. Statistical results Plot the thermostability curve of phage.

结果显示(图3),大肠杆菌噬菌体vB_EcoM_swi3在40℃和50℃条件下,其效价基本保持不变;在60℃条件下,20min内大肠杆菌噬菌体vB_EcoM_swi3的活性基本不受影响,但超过20min后,随着作用时间的延长,噬菌体活性迅速下降,作用60min时,噬菌体效价下降三个数量级以上;当温度为70℃或80℃时,随着作用时间的延长,噬菌体活性迅速下降。因此,当温度在60℃以下的时候,大肠杆菌噬菌体vB_EcoM_swi3活性较稳定。The results showed (Figure 3) that the titer of coliphage vB_EcoM_swi3 remained basically unchanged at 40°C and 50°C; at 60°C, the activity of coliphage vB_EcoM_swi3 was basically unaffected within 20 minutes, but more than 20 minutes Finally, as the action time prolongs, the phage activity decreases rapidly. When the action time is 60 minutes, the phage titer decreases by more than three orders of magnitude; when the temperature is 70°C or 80°C, the phage activity decreases rapidly as the action time prolongs. Therefore, when the temperature is below 60°C, the activity of coliphage vB_EcoM_swi3 is relatively stable.

实施例9:大肠杆菌噬菌体vB_EcoM_swi3的紫外线稳定性测定Example 9: UV Stability Determination of Escherichia coli Phage vB_EcoM_swi3

取4mL浓度为108pfu/mL的大肠杆菌噬菌体vB_EcoM_swi3增殖液,置于干净的平皿中,将其放置在距紫外灯40cm处照射60min。每隔10min取100μL噬菌体增殖液,进行10倍比稀释,取各稀释度的噬菌体增殖液100μL分别与等体积的E.coli-K88菌液混匀,利用双层平板法测定噬菌体效价,每个时间点设三个平行,根据测定结果绘制噬菌体紫外线稳定性曲线。Take 4 mL of coliphage vB_EcoM_swi3 proliferation solution with a concentration of 10 8 pfu/mL, place it in a clean plate, and place it at a distance of 40 cm from the ultraviolet lamp for 60 min of irradiation. Take 100 μL of phage proliferation solution every 10 minutes, and perform 10-fold dilution. Take 100 μL of each dilution of phage proliferation solution and mix it with an equal volume of E.coli-K88 bacterial solution, and use the double-layer plate method to determine the phage titer. Three parallels were set at each time point, and the UV stability curve of phage was drawn according to the measurement results.

结果显示(图4),大肠杆菌噬菌体vB_EcoM_swi3在紫外线下连续照射5min后,噬菌体的活性就开始降低。当在紫外线照射20min时噬菌体的效价下降约一个数量级。当在紫外连续照射40min时,噬菌体的效价下降约两个数量级。当噬菌体连续照射60min时,噬菌体的效价降低到105pfu/mL。说明大肠杆菌噬菌体vB_EcoM_swi3对紫外线较敏感。The results showed ( FIG. 4 ), after the coliphage vB_EcoM_swi3 was continuously irradiated with ultraviolet light for 5 minutes, the activity of the phage began to decrease. The titer of phage decreased by about one order of magnitude when exposed to ultraviolet light for 20 minutes. When continuously irradiated by ultraviolet light for 40 minutes, the titer of phage decreased by about two orders of magnitude. When the phage was continuously irradiated for 60 min, the titer of the phage decreased to 10 5 pfu/mL. It shows that coliphage vB_EcoM_swi3 is more sensitive to ultraviolet light.

实施例10:大肠杆菌噬菌体vB_EcoM_swi3的一步生长曲线Example 10: One-step growth curve of coliphage vB_EcoM_swi3

大肠杆菌噬菌体vB_EcoM_swi3增殖液和过夜培养的宿主菌E.coli-K88菌液各200μL按最佳感染复数比例充分混匀,37℃孵育5min,13000rpm离心30s,LB液体培养基重复洗涤两次,弃上清。用7mL的LB液体培养基重悬沉淀,37℃条件下震荡培养。在不同的时间点(从零时刻开始,前1h每隔5min,第2h每隔20min,第3-4h每隔30min)分别取200μL的增殖液,16000rpm离心1min,取上清,双层平板法测噬菌体效价,每个时间点做三个平行,根据测定结果绘制一步生长曲线,计算噬菌体的潜伏期、爆发期和爆发量。Escherichia coli phage vB_EcoM_swi3 proliferation solution and overnight cultured host bacteria E.coli-K88 200μL each were mixed thoroughly according to the optimal multiplicity of infection ratio, incubated at 37°C for 5min, centrifuged at 13000rpm for 30s, washed twice with LB liquid medium, and discarded. supernatant. Resuspend the pellet with 7 mL of LB liquid medium, and culture with shaking at 37°C. At different time points (starting from time zero, every 5 minutes in the first 1 hour, every 20 minutes in the second hour, and every 30 minutes in the 3rd to 4th hours), 200 μL of the proliferation solution was taken, centrifuged at 16,000 rpm for 1 minute, and the supernatant was taken by double-layer plate method. To measure the phage titer, do three parallels at each time point, draw a one-step growth curve according to the measurement results, and calculate the incubation period, outbreak period and outbreak amount of the phage.

结果显示(图5),大肠杆菌噬菌体vB_EcoM_swi3的潜伏期约为25min,爆发期约为75min,爆发量约为25。The results showed ( FIG. 5 ), the incubation period of coliphage vB_EcoM_swi3 was about 25 minutes, the outbreak period was about 75 minutes, and the outbreak amount was about 25.

实施例11:大肠杆菌噬菌体vB_EcoM_swi3的安全性试验Example 11: Safety test of coliphage vB_EcoM_swi3

(1)实验动物:4周龄昆明小鼠20只,购自青岛大任富城畜牧有限公司。(1) Experimental animals: 20 4-week-old Kunming mice were purchased from Qingdao Daren Fucheng Animal Husbandry Co., Ltd.

(2)实验方法:将4周龄昆明小鼠随机分为2组,每组10只。试验组小鼠腹腔注射108pfu大肠杆菌噬菌体vB_EcoM_swi3的增殖液,对照组腹腔注射等体积无菌LB液体培养基。注射后,在相同环境条件饲养,观察小鼠精神状态。(2) Experimental method: 4-week-old Kunming mice were randomly divided into 2 groups, with 10 mice in each group. The mice in the test group were injected intraperitoneally with 10 8 pfu of coliphage vB_EcoM_swi3 proliferation fluid, and the mice in the control group were injected with the same volume of sterile LB liquid medium. After injection, the mice were raised under the same environmental conditions, and the mental state of the mice was observed.

(3)实验结果:注射12h后,每组处死5只小鼠,观察内脏器官、肠道的变化;剩余5只小鼠定时采集血样和粪样,用双层平板法测定样品中噬菌体效价,检测大肠杆菌噬菌体vB_EcoM_swi3在小鼠体内的代谢动态变化。(3) Experimental results: 12 hours after injection, 5 mice in each group were killed, and the changes in internal organs and intestines were observed; blood samples and feces samples were collected from the remaining 5 mice regularly, and the titer of phage in the samples was determined by double-layer plate method , to detect the metabolic dynamics of coliphage vB_EcoM_swi3 in mice.

最终结果显示,该剂量噬菌体对小鼠生长没有影响,解剖检查未见异常,且在腹腔注射噬菌体23h后,血液和粪便中检测不到噬菌体。The final results showed that this dose of phage had no effect on the growth of mice, no abnormalities were found in the anatomical examination, and 23 hours after intraperitoneal injection of phage, no phage could be detected in blood and feces.

实施例12:大肠杆菌噬菌体vB_EcoM_swi3治疗大肠杆菌感染小鼠实验Example 12: Escherichia coli-infected mice experiment treated with coliphage vB_EcoM_swi3

(1)实验动物:4周龄昆明小鼠50只。(1) Experimental animals: 50 4-week-old Kunming mice.

(2)实验方法:50只4周龄昆明小鼠用于感染试验,分为5组(3个治疗组,1个对照组,1个感染组),每组10只。挑取E.coli-K88单克隆,接种于3ml LB液体培养基中,37℃条件下过夜培养,12000rpm离心5min,去上清,用PBS洗涤3次。PBS重悬菌体,调整菌液浓度为2×108cfu/ml。感染组和3个治疗组分别灌胃108CFU的宿主菌E.coli-K88,建立大肠杆菌感染小鼠模型,对照组灌胃等体积的PBS。2h后,三个治疗组分别腹腔注射105pfu、106pfu和107pfu大肠杆菌噬菌体vB_EcoM_swi3,对照组和感染组腹腔注射等体积的PBS。在相同环境条件饲养,观察各组小鼠的精神状态和生存情况,并对死亡的小鼠进行剖检,观察各内脏器官病变。同时,分别在接菌0.5h、1.5h、2h、5h、6.5h、8.5h、10h、23h、27h、51h后,采集各组存活小鼠的血液和粪便,检测细菌和噬菌体在小鼠体内的代谢动态。(2) Experimental method: 50 4-week-old Kunming mice were used for the infection test, and were divided into 5 groups (3 treatment groups, 1 control group, and 1 infection group), with 10 mice in each group. Pick a single clone of E.coli-K88, inoculate it in 3ml LB liquid medium, culture overnight at 37°C, centrifuge at 12000rpm for 5min, remove the supernatant, and wash 3 times with PBS. Resuspend the bacteria in PBS and adjust the concentration of the bacteria to 2×10 8 cfu/ml. The infection group and the three treatment groups were given intragastric administration of 10 8 CFU of host bacteria E.coli-K88 to establish a mouse model of Escherichia coli infection, and the control group was intragastrically administered an equal volume of PBS. Two hours later, 10 5 pfu, 10 6 pfu and 10 7 pfu of Escherichia coliphage vB_EcoM_swi3 were injected intraperitoneally into the three treatment groups, respectively, and equal volumes of PBS were injected into the control group and infection group. They were raised under the same environmental conditions, and the mental state and survival of the mice in each group were observed, and the dead mice were autopsied to observe the lesions of internal organs. At the same time, after 0.5h, 1.5h, 2h, 5h, 6.5h, 8.5h, 10h, 23h, 27h, and 51h of inoculation, the blood and feces of the surviving mice in each group were collected to detect the presence of bacteria and phages in the mice. metabolic dynamics.

(3)实验结果:结果显示(图6),E.coli-K88在灌胃小鼠30min后就已已经入血,并随着时间的延长呈指数型增长,当灌胃1.5h后,血液中细菌浓度达到了108CFU,接菌小鼠精神萎靡,活动明显减少,出现扎堆的现象。2h后腹腔注射大肠杆菌噬菌体vB_EcoM_swi3,三个治疗组小鼠血液中E.coli-K88浓度迅速下降,接种噬菌体浓度越高,血液中细菌数量下降越快,高剂量治疗组小鼠血液中细菌8.5h即可清除,中剂量组和低剂量组小鼠血液中细菌51h完全清除。(3) Experimental results: The results show (Figure 6), E.coli-K88 has entered the blood of mice 30 minutes after intragastric administration, and it increases exponentially with time. After 1.5 hours of intragastric administration, the blood The concentration of bacteria in the medium reached 10 8 CFU, and the mice inoculated with the bacteria were listless, their activities were significantly reduced, and the phenomenon of clustering appeared. After 2 hours of intraperitoneal injection of coli phage vB_EcoM_swi3, the concentration of E.coli-K88 in the blood of mice in the three treatment groups decreased rapidly. The higher the concentration of inoculated phage, the faster the number of bacteria in the blood decreased. It can be cleared within 1 hour, and the bacteria in the blood of mice in the middle dose group and the low dose group can be completely cleared within 51 hours.

在粪便中的噬菌体随着接种噬菌体剂量的增高,存在的时间延长,高剂量组的噬菌体在99h内即可完全清除(图7)。感染组小鼠在接菌第2d全部死亡,三个治疗组中,低剂量组小鼠死亡1只,其余小鼠全部存活。说明腹腔注射106pfu大肠杆菌噬菌体vB_EcoM_swi3可以有效治疗E.coli-K88引起的感染。The phage in the feces prolongs as the inoculated phage dose increases, and the phage in the high-dose group can be completely eliminated within 99 hours (Fig. 7). All the mice in the infection group died on the 2nd day after inoculation. Among the three treatment groups, one mouse in the low-dose group died, and all the other mice survived. It shows that intraperitoneal injection of 10 6 pfu coli phage vB_EcoM_swi3 can effectively treat the infection caused by E.coli-K88.

实施例13:大肠杆菌噬菌体vB_EcoM_swi3环境消毒实验Example 13: Escherichia coli phage vB_EcoM_swi3 environmental disinfection experiment

将新鲜增殖的宿主菌E.coli-K88菌液浓度调整到106CFU/ml,用喷雾方式均匀喷洒在猪舍地面及料槽表面,然后将喷洒区域分成三个区,将纯化的大肠杆菌噬菌体vB_EcoM_swi3增殖液分别以105PFU、106PFU和107PFU的浓度用喷雾方式分别对三个区的猪舍地面和料槽进行消毒,2h后检测环境中宿主菌E.coli-K88的含量。Adjust the concentration of the freshly proliferated host bacteria E.coli-K88 to 10 6 CFU/ml, spray evenly on the floor of the pig house and the surface of the trough, and then divide the spraying area into three areas, and the purified E. coli The bacteriophage vB_EcoM_swi3 proliferation solution was sprayed to disinfect the ground and trough of the piggery in the three districts at the concentration of 10 5 PFU, 10 6 PFU and 10 7 PFU respectively, and the concentration of the host bacteria E.coli-K88 in the environment was detected after 2 hours. content.

检测结果显示,猪舍中以106CFU喷洒E.coli-K88菌液的三个区域,料槽和地面宿主菌的数量均降到了45CFU以下,说明105PFU的噬菌体增殖液即可有效杀灭环境中污染的宿主菌。The test results showed that in the three areas where the E.coli-K88 bacterial solution was sprayed with 10 6 CFU in the pig house, the number of host bacteria in the trough and the ground dropped below 45 CFU, indicating that the phage proliferation solution of 10 5 PFU can effectively kill Destroy the polluting host bacteria in the environment.

对比例1:猪致病性大肠杆菌噬菌体JS09的分离及其裂解谱检测Comparative Example 1: Isolation of porcine pathogenic coliphage JS09 and detection of its lysis profile

(1)实验材料:(1) Experimental materials:

宿主菌ETEC EK99-F41,猪场污水,40株不同的猪致病性大肠杆菌,1株牛源致病性大肠杆菌以及5株大肠杆菌工程菌;Host bacteria ETEC EK99-F41, pig farm sewage, 40 different strains of porcine pathogenic Escherichia coli, 1 strain of bovine pathogenic Escherichia coli and 5 strains of engineered Escherichia coli;

(2)猪致病性大肠杆菌噬菌体JS09的分离实验:(2) Isolation experiment of porcine pathogenic coliphage JS09:

从猪场采集污水100ml,12000rpm离心15min,取上清,用0.22μm的滤器过滤除菌,获得滤液。在滤液中加入宿主菌ETEC EK99-F41(109CFU/ml),37℃条件下震荡培养过夜。菌液12000rpm离心10min,取上清,用0.22μm的滤器过滤除菌,获得滤液。将宿主菌ETEC EK99-F41菌液均匀涂布于LB平板,晾干后,取10μl滤液滴加在平板表面,37℃倒置培养过夜,观察噬菌斑出现情况,分离获得噬菌体JS09;Collect 100 ml of sewage from a pig farm, centrifuge at 12,000 rpm for 15 minutes, take the supernatant, filter and sterilize with a 0.22 μm filter to obtain a filtrate. The host strain ETEC EK99-F41 (10 9 CFU/ml) was added to the filtrate, and cultured with shaking at 37°C overnight. The bacterial solution was centrifuged at 12000 rpm for 10 min, the supernatant was taken, and sterilized by filtering with a 0.22 μm filter to obtain a filtrate. Evenly spread the host bacterium ETEC EK99-F41 on the LB plate, after drying, take 10 μl of the filtrate dropwise on the surface of the plate, incubate overnight at 37°C, observe the appearance of phage plaques, and isolate and obtain phage JS09;

(3)猪致病性大肠杆菌噬菌体JS09的裂解谱检测:(3) Cleavage spectrum detection of porcine pathogenic coliphage JS09:

实验选择46株不同来源的大肠杆菌临床分离株,对分离到的噬菌体JS09的裂解谱进行测定。具体操作如下:分别取100μl不同的大肠杆菌培养液均匀涂布在LB琼脂平板表面,静置晾干,在表面滴加10μl噬菌体JS09(109PFU/ml),37℃倒置培养过夜,观察噬菌斑出现情况,得到噬菌体对不同来源的大肠杆菌的裂解谱,并记录结果。结果显示,该裂解性噬菌体JS09中可以裂解40株猪源致病性大肠杆菌中的11株,还可以裂解5株大肠杆菌工程菌,对牛源大肠杆菌无裂解作用,其裂解率为21.7%。46 Escherichia coli clinical isolates from different sources were selected in the experiment, and the lysis profile of the isolated phage JS09 was determined. The specific operation is as follows: take 100 μl of different E. coli culture solutions and spread evenly on the surface of LB agar plate, let it stand to dry, add 10 μl of bacteriophage JS09 (10 9 PFU/ml) dropwise on the surface, culture it upside down at 37°C overnight, and observe the The appearance of bacterial plaque was obtained, and the lysis spectrum of Escherichia coli from different sources was obtained, and the results were recorded. The results show that the lytic phage JS09 can lyse 11 of the 40 strains of pig-derived pathogenic E. coli, and can also lyse 5 strains of E. coli engineered bacteria. It has no lytic effect on bovine E. coli, and its lysis rate is 21.7%. .

对比例2:鸡致病性大肠杆菌噬菌体EcP5的裂解谱检测Comparative Example 2: Detection of lysis profile of chicken pathogenic coliphage EcP5

(1)实验材料:(1) Experimental materials:

鸡源致病性大肠杆菌及其裂解性噬菌体EcP5,45株不同的鸡致病性大肠杆菌;Chicken pathogenic Escherichia coli and its lytic phage EcP5, 45 different strains of chicken pathogenic Escherichia coli;

(3)实验方法:(3) Experimental method:

实验选择45株不同的鸡致病性大肠杆菌临床分离株对将裂解性噬菌体EcP5的裂解谱进行测定,具体操作如下:将100μl裂解性噬菌体EcP5分别与100μl 45株不同鸡致病性大肠杆菌混合,静置15min。采用双层琼脂平板法观察噬菌斑的形成情况,得到噬菌体对不同鸡致病性大肠杆菌的裂解谱,并记录结果;In the experiment, 45 different clinical isolates of chicken pathogenic Escherichia coli were selected to measure the lysis spectrum of the lytic phage EcP5. , let stand for 15min. The formation of phage plaques was observed by the double-layer agar plate method, and the lysis profiles of phages to different chicken pathogenic Escherichia coli were obtained, and the results were recorded;

结果显示,该裂解性噬菌体EcP5中能对裂解45株鸡致病性大肠杆菌中的18株,其裂解率为40.0%。The results showed that the lytic phage EcP5 could lyse 18 out of 45 strains of chicken pathogenic Escherichia coli, and the lysis rate was 40.0%.

表3实施例1-13大肠杆菌噬菌体vB_EcoM_swi3与对比例1-2噬菌体裂解谱比较Table 3 Example 1-13 coliphage vB_EcoM_swi3 and comparative example 1-2 phage lysis spectrum comparison

裂解率(%)Lysis rate (%) 裂解大肠杆菌来源lysed E. coli source 实施例1-13Examples 1-13 80%80% 鸡源大肠杆菌、猪源大肠杆菌Escherichia coli from chicken, Escherichia coli from pig 对比例1Comparative example 1 21.7%21.7% 仅裂解猪源大肠杆菌Lysis of porcine E. coli only 对比例2Comparative example 2 40%40% 仅裂解鸡源大肠杆菌Only lysed chicken E. coli

由表3的结果可知,对比例1仅裂解猪源大肠杆菌和实验室中常用的大肠杆菌工程菌,对牛源的大肠杆菌无裂解能力;对比例2仅能单独裂解鸡源大肠杆菌,不能同时裂解其它来源的大肠杆菌,且对比例1-2的裂解率均低于本发明实施例1-13中的大肠杆菌噬菌体vB_EcoM_swi3,由此可见,本发明提供的噬菌体在裂解不同动物来源的大肠杆菌方面具有优势。As can be seen from the results in Table 3, comparative example 1 only cracks pig-derived E. coli and commonly used E. coli engineering bacteria in the laboratory, and has no ability to lyse bovine-derived E. coli; comparative example 2 can only crack chicken-derived E. coli alone, and cannot Escherichia coli from other sources were lysed at the same time, and the lysis rate of Comparative Example 1-2 was lower than that of coliphage vB_EcoM_swi3 in Examples 1-13 of the present invention. It can be seen that the phage provided by the present invention is lysing large intestines from different animal sources. Bacillus has an advantage.

此外本发明提供的噬菌体vB_EcoM_swi3还具有理化因素耐受性好、潜隐期短、裂解性能高、安全性好等优点,可将其制成不同剂型用作饲料添加剂、消毒剂或清洁剂等产品,由此可见本发明提供的大肠杆菌噬菌体vB_EcoM_swi3在防治养殖环境中、畜禽等动物的养殖过程中猪源和鸡源大肠杆菌的污染方面具有十分广阔的应用前景。In addition, the bacteriophage vB_EcoM_swi3 provided by the present invention also has the advantages of good tolerance to physical and chemical factors, short incubation period, high cracking performance, and good safety. It can be made into different dosage forms and used as feed additives, disinfectants or cleaning agents, etc. Therefore, it can be seen that the coliphage vB_EcoM_swi3 provided by the present invention has a very broad application prospect in preventing and controlling the pollution of pig and chicken E. coli in the farming environment and in the breeding process of livestock and poultry and other animals.

序列表sequence listing

<110> 青岛农业大学<110> Qingdao Agricultural University

<120> 大肠杆菌噬菌体vB_EcoM_swi3及其应用<120> Coliphage vB_EcoM_swi3 and its application

<160> 1<160> 1

<170> PatentIn version 3.5<170> PatentIn version 3.5

<210> 1<210> 1

<211> 6468<211> 6468

<212> DNA<212>DNA

<213> 大肠杆菌噬菌体vB_EcoM_swi3<213> Coliphage vB_EcoM_swi3

<400> 1<400> 1

1 TCAGTCCCCT CTAACATACG CAATTACAAC TGTACGAGTT GAGTTTTCCA TTTTGAGCGC1 TCAGTCCCCT CTAACATACG CAATTACAAC TGTACGAGTT GAGTTTTTCCA TTTTGAGCGC

61 CTGACTACCC AGTCCTATTC TTTCCATGCC TTTAGCCAGT TTACTCATCT GACTAATAAC61 CTGACTACCC AGTCCTATTC TTTCCATGCC TTTAGCCAGT TTACTCATCT GACTAATAAC

121 ACAGTTGAAC GGTTTACTAA ACTTAGTCGA CTGGAACTTA ATGTCGACGG ACATCTTTGG121 ACAGTTGAAC GGTTTACTAA ACTTAGTCGA CTGGAACTTA ATGTCGACGG ACATCTTTGG

181 AATAATCTTA TCTGGTAAGT CTGCCTTTGC AGTTGACTCG CCTGTTATCT CCAGAATAGC181 AATAATCTTA TCTGGTAAGT CTGCCTTTGC AGTTGACTCG CCTGTTATCT CCAGAATAGC

241 CTGACCTTCG TCGTACCCAG TAAGCTGGTC CATGACTTCC AGGAACTCAG GAGTGATGGC241 CTGACCTTCG TCGTACCCAG TAAGCTGGTC CATGACTTCC AGGAACTCAG GAGTGATGGC

301 CTGCATATCC ATTTCCATAT TGAAGAACTT CGATACGTCT GGCCATTTGG CTGCTAGTAC301 CTGCATATCC ATTTCCATAT TGAAGAACTT CGATACGTCT GGCCATTTGG CTGCTAGTAC

361 CGGAGCATCC ATCTGTACAC CATCCGCAAA GCCGAAGAAC ATCTGGCCGC GGGCGTATCC361 CGGAGCATCC ATCTGTACAC CATCCGCAAA GCCGAAGAAC ATCTGGCCGC GGGCGTATCC

421 TACACTTGTG GGTTCCATCT TCAGCTTAAC CAGAGCCTCA AGCATTGGTT TGGCTATGGC421 TACACTTGTG GGTTCCATCT TCAGCTTAAC CAGAGCCTCA AGCATTGGTT TGGCTATGGC

481 ACATTCAAAT TCAAAATCTA CGTTCAACTT CTCGCGTATC ATATACTTAC CGTTAGTGGC481 ACATTCAAAT TCAAAATCTA CGTTCAACTT CTCGCGTATC ATATACTTAC CGTTAGTGGC

541 GTAAGCATAA CCATCGCGCA GAAGTAAAGA TGTCGCCCAT ACCTGCGGTG CTTCGTTAGG541 GTAAGCATAA CCATCGCGCA GAAGTAAAGA TGTCGCCCAT ACCTGCGGTG CTTCGTTAGG

601 TACCCACTTG GCTAAGGCAG TTAATACCGG GAGTAATTCG CCATGCGCTG AATACCAGTT601 TACCCACTTG GCTAAGGCAG TTAATACCGG GAGTAATTCG CCATGCGCTG AATACCAGTT

661 GTTAACTGTA GCAAGTGGCG GTATTGGTTC ATTAAGCGCT TGCATTCTTG TTTTAAGTAC661 GTTAACTGTA GCAAGTGGCG GTATTGGTTC ATTAAGCGCT TGCATTCTTG TTTTAAGTAC

721 ACCTGCTGTG ACTGTGAGGT TTCCAGCGGC TGTAATGTTA AAAGTAATCT GTTCAGTTCT721 ACCTGCTGTG ACTGTGAGGT TTCCAGCGGC TGTAATGTTA AAAGTAATCT GTTCAGTTCT

781 TGCCGCATTA ACGGCCTTAC GAAATGATTC AGCATCCACT TGCAGGTCTG GAAATCCTTT781 TGCCGCATTA ACGGCCTTAC GAAATGATTC AGCATCCACT TGCAGGTCTG GAAATCCTTT

841 ACATGGCGCT CGTAGTAATA CGTTCTTGTA GTATGAATGG ATTGTTCCGT CTGCAATCCA841 ACATGGCGCT CGTAGTAATA CGTTCTTGTA GTATGAATGG ATTGTTCCGT CTGCAATCCA

901 TATTTTGCCC ATAAGACCAC TATCAGTATA CTTGATGGGA CGAGCTTGTT GAACGGCAGT901 TATTTTGCCC ATAAGACCAC TATCAGTATA CTTGATGGGA CGAGCTTGTT GAACGGCAGT

961 CTGTATTTGT TTGGTGTCAT AGTTAAACTT GCTCATTTAT ACGGCCATTT GGAGTTTGAT961 CTGTATTTGT TTGGTGTCAT AGTTAAACTT GCTCATTTAT ACGGCCATTT GGAGTTTGAT

1021 GTTTGGCATT GGTTTGTACT TCTCAACCAT TGGCGTAACA TCGGCAGGAG TGAAGTCAAA1021 GTTTGGCATT GGTTTGTACT TCTCAACCAT TGGCGTAACA TCGGCAGGAG TGAAGTCAAA

1081 CACTGACACG TCATAAATTG CATTAATGTC AGGACGACCT TCAAAGTTAG TGTCCAGTGT1081 CACTGACACG TCATAAATTG CATTAATGTC AGGACGACCT TCAAAGTTAG TGTCCAGTGT

1141 AGTATCAGAA TTGCTTACGA TACGTTGCAG GAAAATCTTT GCCGCATCGA TATGATTCTG1141 AGTATCAGAA TTGCTTACGA TACGTTGCAG GAAAATCTTT GCCGCATCGA TATGATTCTG

1201 ATAGATGTGA TAATCACCCA GCGTAACAGT CATATCACCT ACCCCAGTAC CCAGCTCAGC1201 ATAGATGTGA TAATCACCCA GCGTAACAGT CATATCACCT ACCCCAGTAC CCAGCTCAGC

1261 AGCAATGGTA ATCTGCAACA TCTGATGCAA CAGAATATCG TGAGGCAGAC CAAGGATAAC1261 AGCAATGGTA ATCTGCAACA TCTGATGCAA CAGAATATCG TGAGGCAGAC CAAGGATAAC

1321 ATCCGCGCTA CGCATGTGGA ACATCAGCTC TAATTCATTA CGGTTGTTAA TGAACAGCTG1321 ATCCGCGCTA CGCATGTGGA ACATCAGCTC TAATTCATTA CGGTTGTTAA TGAACAGCTG

1381 AAAACCATGG TAACAAGGCG GAAGGGCCAT GGCGTCCATC TCTTGTGGGT TCCATGCCGT1381 AAAACCATGG TAACAAGGCG GAAGGGCCAT GGCGTCCATC TCTTGTGGGT TCCATGCCGT

1441 AATGTATGCC CGGCGGTCAG TAGGCTTAAC CTTCAGCGTT TCAATAACGT CTTTAAGCTG1441 AATGTATGCC CGGCGGTCAG TAGGCTTAAC CTTCAGCGTT TCAATAACGT CTTTAAGCTG

1501 GTTAGTAAGA ACACCATTCT TATAGAATGG CTTAATCCAT GCACGCCGTA CACAGGACCT1501 GTTAGTAAGA ACACCATTCT TATAGAATGG CTTAATCCAT GCACGCCGTA CACAGGACCT

1561 AAGTCACGAT TGTCTGGTGT ACCCCAACGT TTGTTTGCAT CCTGCAGGTT ACCTTCCCAC1561 AAGTCACGAT TGTCTGGTGT ACCCCAACGT TTGTTTGCAT CCTGCAGGTT ACCTTCCCAC

1621 CAGTTGCAGC CAAAGCCTTT GAGTGTGTCG ACGTTTGAAA TGCCGTTGAT AAAGCAGTAA1621 CAGTTGCAGC CAAAGCCTTT GAGTGTGTCG ACGTTTGAAA TGCCGTTGAT AAAGCAGTAA

1681 AGCTCAGCAG CAACAGCTTT GATGTTAACA GGTTTAAATA CCGGCACCAT CAGTTTGTTG1681 AGCTCAGCAG CAACAGCTTT GATGTTAACA GGTTTAAATA CCGGCACCAT CAGTTTGTTG

1741 TCGTTAAAAG CCAGCTTAAA CGCTGTACCA AAACAACGGC GTGTACCAAC ACCTGTACGG1741 TCGTTAAAAG CCAGCTTAAA CGCTGTACCA AAACAACGGC GTGTACCAAC ACCTGTACGG

1801 TCTACAACAT CCTCGCCTTT ACGCAGGATA AAAGAAATGA TGTCGCTGTA AAGAGAATCG1801 TCTACAACAT CCTCGCCTTT ACGCAGGATA AAAGAAATGA TGTCGCTGTA AAGAGAATCG

1861 ACAGTGCTGT ATGTTTTCAT TTAGCCTGGG TTGCTACCCG TTCAAATAGT TCTCTGTCAT1861 ACAGTGCTGT ATGTTTTCAT TTAGCCTGGG TTGCTACCCG TTCAAATAGT TCTCTGTCAT

1921 CGAGCGCCAT AACCGTTTCC CCAGTCGTAG TTCATGATTT GTGGGTAGGG TCGTTTAATC1921 CGAGCGCCAT AACCGTTTCC CCAGTCGTAG TTCATGATTT GTGGGTAGGG TCGTTTAATC

1981 CATACCTTGA TGCGCTTAGG AATAGCCAGC TCACCCTTAC GGCGAATAAA CTCATCGCAT1981 CATACCTTGA TGCGCTTAGG AATAGCCAGC TCACCCTTAC GGCGAATAAA CTCATCGCAT

2041 GTTTCAGGCG GTTCTGTTCC TGCAGCATTA CGCCACCAGG CATCTGCCAT TTGCTTAGCA2041 GTTTCAGGCG GTTCTGTTCC TGCAGCATTA CGCCACCAGG CATCTGCCAT TTGCTTAGCA

2101 TTGCCATGGG CCTCTATATT TACCCAGGTT GTATACACTT CCAGGTTTGA GTAATACACA2101 TTGCCATGGG CCTCTATATT TACCCAGGTT GTATACACTT CCAGGTTTGA GTAATACACA

2161 ACCTTTATAC TGTCAGGTCG TCCCTGCTTC TGGAATAAAG AATAGTTTAC CAGCGTAACA2161 ACCTTTATAC TGTCAGGTCG TCCCTGCTTC TGGAATAAAG AATAGTTTAC CAGCGTAACA

2221 TCTTTATCCA CAACACGAAG CTGACCGTTA GTCATTACCT CTTCTTCTGA TGAAGTGAAG2221 TCTTTATCCA CAACACGAAG CTGACCGTTA GTCATTACCT CTTCTTCTGA TGAAGTGAAG

2281 GCAATGGCAG GTCCGTTAAC TGTAAACTCA AATTCATGTC CGCACATCGG ATATACACCA2281 GCAATGGCAG GTCCGTTAAC TGTAAACTCA AATTCATGTC CGCACATCGG ATATACACCA

2341 TTCTCGTCTG GCGTACTTCC TTTAGCCGGA TGCTTACATG TACGGGCTGC ATAGCCACTT2341 TTCTCGTCTG GCGTACTTCC TTTAGCCGGA TGCTTACATG TACGGGCTGC ATAGCCACTT

2401 ACCTGGTGAC AGATAGGGCA CTCTTTACCG CCAGGTGTTT TCTCTGACCG TTTCTTTTTC2401 ACCTGGTGAC AGATAGGGCA CTCTTTACCG CCAGGTGTTT TCTCTGACCG TTTCTTTTTC

2461 TTCTTACCAA GACGAGGTGG AACAGCCGGG TCGTCAATAG GCCCAAGGTC AATGGTGTTA2461 TTCTTACCAA GACGAGGTGG AACAGCCGGG TCGTCAATAG GCCCAAGGTC AATGGTGTTA

2521 GATGTAAAGT CCATAACAAG ACAGTCATGC TTGCCAGGCG CTGTACGTAA TCCTCGACCA2521 GATGTAAAGT CCATAACAAG ACAGTCATGC TTGCCAGGCG CTGTACGTAA TCCTCGACCA

2581 AGTATCTGCA CCCACAAAGC AACAGACGTG GACGGGCGCA AGATGCCGAG CATATCAATC2581 AGTATCTGCA CCCACAAAGC AACAGACGTG GACGGGCGCA AGATGCCGAG CATATCAATC

2641 TCAGGATAGT CAAATCCTGT AGTCAATACG TTTACGTTTA CACAGACCCG TGCTCGTCCG2641 TCAGGATAGT CAAATCCTGT AGTCAATACG TTTACGTTTA CACAGACCCG TGCTCGTCCG

2701 CTTGTAAACT CTTCCAGTGC GGCTTCACGT TCTTTCTTTG TAAGACCGCC ATGCACAACT2701 CTTGTAAACT CTTCCAGTGC GGCTTCACGT TCTTTCTTTG TAAGACCGCC ATGCACAACT

2761 ACAGTCTGCC ACCCTCGCAG ATTAAATTCG TCTGCTATGT TGTGGGCGTG CTCAACACTT2761 ACAGTCTGCC ACCCTCGCAG ATTAAATTCG TCTGCTATGT TGTGGGCGTG CTCAACACTT

2821 GTGGCAAATA CAAGAACGTG GTTCCTGTCT TTACCGTAGT GCATCATCTC ACGAATAGCC2821 GTGGCAAATA CAAGAACGTG GTTCCTGTCT TTACCGTAGT GCATCATCTC ACGAATAGCC

2881 GCGACTGTTA TACTATGCTG GTTGGCTACC TTCTCAAGCT CTGACGGGAT GTAGTCACCC2881 GCGACTGTTA TACTATGCTG GTTGGCTACC TTCTCAAGCT CTGACGGGAT GTAGTCACCC

2941 ATCCTTTCGC CAACATTACT GGTGTCAATC TTGGTTAACA CTTTCTTGTT GACCAGGCGC2941 ATCCTTTCGC CAACATTACT GGTGTCAATC TTGGTTAACA CTTTCTTGTT GACCAGGCGC

3001 GACAGGAAGC CTTCATTTAC CAGTCGGGTG AATGCGTCAG GTGTTGTAAG GTCATAGCAG3001 GACAGGAAGC CTTCATTTAC CAGTCGGGTG AATGCGTCAG GTGTTGTAAG GTCATAGCAG

3061 ATGTCGGTAA ATATACCACA GTCCAGCAAG TGACCACCTG CCAGGCGATA CGGAGTTGCT3061 ATGTCGGTAA ATATACCACA GTCCAGCAAG TGACCACCTG CCAGGCGATA CGGAGTTGCT

3121 GTGAGTCCTG TTACCTTTAC CTTAGGATTA AGCTCTTTGA AGTGAGCAAT AACCTTACGG3121 GTGAGTCCTG TTACCTTTAC CTTAGGATTA AGCTCTTTGA AGTGAGCAAT AACCTTACGG

3181 TATGTTGTTT CAGACTTCTC AGGAACAAGA TGGGCTTCGT CAATGAATAT AAGATTGAAC3181 TATGTTGTTT CAGACTTCTC AGGAACAAGA TGGGCTTCGT CAATGAATAT AAGATTGAAC

3241 TTACCTGCTT CTTCCAGGTT CTTAATAATT GACTGTACAG ATGCTACAAC GATACGGCCT3241 TTACCTGCTT CTTCCAGGTT CTTAATAATT GACTGTACAG ATGCTACAAC GATACGGCCT

3301 GAAAAGTCTT TATGTCCTGC ACCTGAAGAG TATATTGATA CTGGTGCTTG TGGCCAGTGA3301 GAAAAGTCTT TATGTCCTGC ACCTGAAGAG TATATTGATA CTGGTGCTTG TGGCCAGTGA

3361 CGAACAATCG CTTTGGCGTC TTGTTCAACC AGCTCCTTGA CATGTGTCAA TATAAGAATG3361 CGAACAATCG CTTTGGCGTC TTGTTCAACC AGCTCCTTGA CATGTGTCAA TATAAGAATG

3361 CGCTGACGGG GATAGCTGGT AAGAATATCC TTCATCAGCA TACCAAGCAC AGGTGATTTA3361 CGCTGACGGG GATAGCTGGT AAGAATATCC TTCATCAGCA TACCAAGCAC AGGTGATTTA

3421 CCTGAACCTG TCGGCATGAC AATAAGTGGA TTACCACTAT AAGAATTGAA GTACGACCAC3421 CCTGAACCTG TCGGCATGAC AATAAGTGGA TTACCACTAT AAGAATTGAA GTACGACCAC

3481 CAGGCTGTGA CCGCTTCTTG TTGATACCAG CGAGCTTCAA AAGCCATTCA AACGGACTTG3481 CAGGCTGTGA CCGCTTCTTG TTGATACCAG CGAGCTTCAA AAGCCATTCA AACGGACTTG

3541 GCATTGTTAA ACTCCTCAAC GCTGAATTCA TCGTATACAA TATTATGTGC CCACAAATGG3541 GCATTGTTAA ACTCCTCAAC GCTGAATTCA TCGTATACAA TATTATGTGC CCACAAATGG

3601 GCGACGGCAT TTGCCATACT GTCTTTCCAT TTGGATTGTG AAGCTGTATG AGCCAATGCA3601 GCGACGGCAT TTGCCATACT GTCTTTCCAT TTGGATTGTG AAGCTGTATG AGCCAATGCA

3661 ACTACCCGAA CCAGGTTAAG GTTGGCTATC AGCATATCTG CACAATGTTC GCACGGCGGG3661 ACTACCCGAA CCAGGTTAAG GTTGGCTATC AGCATATCTG CACAATGTTC GCACGGCGGG

3721 TAGGTTATGT AGATGGTAAC CGGGCCTAAT GAAGGAGTGT CTAACTCTCT CCTTATATTA3721 TAGGTTATGT AGATGGTAAC CGGGCCTAAT GAAGGAGTGT CTAACTCTCT CCTTATATTA

3781 GCTAAGGTGT TTATCTCGCT ATGAATAGTT AGAGCGTTCT TAAGGCTATT AGGCACTATT3781 GCTAAGGTGT TTATCTCGCT ATGAATAGTT AGAGCGTTCT TAAGGCTATT AGGCACTATT

3841 CTTATAGAGT CTAACTGCGT AGGCAGACCA TTATATCCAG TGGAAATAAT ACGCTTGTTC3841 CTTATAGAGT CTAACTGCGT AGGCAGACCA TTATATCCAG TGGAAATAAT ACGCTTGTTC

3901 TGGTCCACAA GAACGCTACC GACTTGACGT TTCGGGTCCT TCGACCAGCT CGCAACTTCA3901 TGGTCCACAAA GAACGCTACC GACTTGACGT TTCGGGTCCT TCGACCAGCT CGCAACTTCA

3961 CAAGCTATGC GCATAAACCG CCTGTCCCAC TTGTCCATCT TCTTCTTTTG CATATGAAGC3961 CAAGCTATGC GCATAAACCG CCTGTCCCAC TTGTCCATCT TCTTCTTTTG CATATGAAGC

4021 GCTGGGCTAT TTTTGAGCTG ACGTACGAAG ACGAGACCCT CGAAGTTCAG TCCAAACCTA4021 GCTGGGCTAT TTTTGAGCTG ACGTACGAAG ACGAGACCCT CGAAGTTCAG TCCAAACCTA

4081 AGAAACCTGC AAGAGCGCCA TCAGGCCGTT CCTTCAGCAC AACTGTGCCT GAAGAGTGGA4081 AGAAACCTGC AAGAGCGCCA TCAGGCCGTT CCTTCAGCAC AACTGTGCCT GAAGAGTGGA

4141 TGACTTTCGA CGACGCCCTG ACACGTTGTA TTCGCAATCG TGAAATGAAG ATTAAAGCTG4141 TGACTTTCGA CGACGCCCTG ACACGTTGTA TTCGCAATCG TGAAATGAAG ATTAAAGCTG

4201 TACAGGGTAA TATCACCTTT GTGCCGGCTT TGATTGTTCC TCGCCAGTGG TACTTTGTTG4201 TACAGGGTAA TATCACCTTT GTGCCGGCTT TGATTGTTCC TCGCCAGTGG TACTTTGTTG

4261 ACCTGGACAA CCATGATGAT AATCCAGACA TTGAAGCAAC CCACAAAGCG ATAATTGAGG4261 ACCTGGACAA CCATGATGAT AATCCAGACA TTGAAGCAAC CCACAAAGCG ATAATTGAGG

4321 GGACCCGTGG TGCTTATGCT GAGACGTCAA TCTCTGGCAA AGGGCAACAC ATTGCAATCC4321 GGACCCGTGG TGCTTATGCT GAGACGTCAA TCTCTGGCAA AGGGCAACAC ATTGCAATCC

4381 CTTTACCCTG GACTGCAGCA ACATCTAAAG AGAAAGACGA ACAGCTGGAC ATCAAAATCC4381 CTTTACCCTG GACTGCAGCA ACATCTAAAG AGAAAGACGA ACAGCTGGAC ATCAAAATCC

4441 AGAAGGCTGA GATGTTCCTG GTAATGACAG GCAATGTATT GAGCGAGTTC AATGCTAATC4441 AGAAGGCTGA GATGTTCCTG GTAATGACAG GCAATGTATT GAGCGAGTTC AATGCTAATC

4501 CTGTTTCAGC CCGTGAATGG CATGCAGCAA TTGAGAAGTT CTTTCTTGAA GCAAGCGCAC4501 CTGTTTCAGC CCGTGAATGG CATGCAGCAA TTGAGAAGTT CTTTCTTGAA GCAAGCGCAC

4561 CTGATATTGA TGTTGAGTTT GAGCAAGACG AAGACCGTGG CGAAGAGTAT GACAAAGAGC4561 CTGATATTGA TGTTGAGTTT GAGCAAGACG AAGACCGTGG CGAAGAGTAT GACAAAGAGC

4621 TGTACGAACA GTTAGCCGAC AATACTCGCT GGGCTTTAGA GCACTATCTG AATGAGCATG4621 TGTACGAACA GTTAGCCGAC AATACTCGCT GGGCTTTAGA GCACTATCTG AATGAGCATG

4681 CACCAGACGG TGTTGGTGTA AGTAATGACG GTTCTGAACG TTTGAGCCGC ATACTCAAAG4681 CACCAGACGG TGTTGGTGTA AGTAATGACG GTTCTGAACG TTTGAGCCGC ATACTCAAAG

4741 ACTTGCTTCG TGTAACCCGT AACTACGAAG TTACACAACG CATCTTCATG GCCAGCAAAG4741 ACTTGCTTCG TGTAACCCGT AACTACGAAG TTACACAACG CATCTTCATG GCCAGCAAAG

4801 CTGCAGCATA TGAAGGTCGC AGACCAAGTC GACACAACCT GTCTGTTGAT AAGTACCATC4801 CTGCAGCATA TGAAGGTCGC AGACCAAGTC GACACAACCT GTCTGTTGAT AAGTACCATC

4861 AGTGGTTCAG TCGTGTCGGT AAGACTGTGC TGAAAGAAAT GCAACGTGAC GGCTTATTCG4861 AGTGGTTCAG TCGTGTCGGT AAGACTGTGC TGAAAGAAAT GCAACGTGAC GGCTTATTCG

4921 TTAAGACCAA GTTTGCTCTT GACATCAACA AAGAGTTAGC CAAGAATTCA GGTGTCTCCC4921 TTAAGACCAA GTTTGCTCTT GACATCAACA AAGAGTTAGC CAAGAATTCA GGTGTCTCCC

4981 TGGCTGAGAA TGTTGAGTTC AAGGTCAACG ATGACATTCT GCCTTCTGAT GTATTCGTCA4981 TGGCTGAGAA TGTTGAGTTC AAGGTCAACG ATGACATTCT GCCTTCTGAT GTATTCGTCA

5041 GAACGGCCCC GTCTGGGTTT AAACGGCTTA TTGCTGAGAT ACAGGATAAC ATATCTCCGG5041 GAACGGCCCC GTCTGGGTTT AAACGGCTTA TTGCTGAGAT ACAGGATAAC ATATCTCCGG

5101 CTAACAGGGT TAACGACTAT GCCATCGGCA CAGCTCTTAA CATCCTGAGC AACTGCGCTG5101 CTAACAGGGT TAACGACTAT GCCATCGGCA CAGCTCTTAA CATCCTGAGC AACTGCGCTG

5161 GTCGCAAGTA TGTTTGTCCA GTAGGCGGTC ATGCTAACTT CCTGGTAACC AACATCATTC5161 GTCGCAAGTA TGTTTGTCCA GTAGGCGGTC ATGCTAACTT CCTGGTAACC AACATCATTC

5221 TTGTGGGTGG TTCGTCAATC GGTAAATCGC TGTATACCGA GTTGTTCCCA CAAATCCAGG5221 TTGTGGGTGG TTCGTCAATC GGTAAATCGC TGTATACCGA GTTGTTCCCA CAAATCCAGG

5281 CAAGTGTGCC AGACACATCG CCTATCAGTC TTAACCGTAT CCCAAGGGAA CAGACTTTTG5281 CAAGTGTGCC AGACACATCG CCTATCAGTC TTAACCGTAT CCCAAGGGAA CAGACTTTTG

5341 CAACCAGGAC GTTTGCTGAA CTGATGTCCA ACCCGTCATA CCATTCAGTC CAGTTGTTCT5341 CAACCAGGAC GTTTGCTGAA CTGATGTCCA ACCCGTCATA CCATTCAGTC CAGTTGTTCT

5401 ACCCTGAATT TGGTCTGGCT TTAGGTTCTG GCTTACGCAT GAATCCTAAC AACCCGGACA5401 ACCCTGAATT TGGTCTGGCT TTAGGTTCTG GCTTACGCAT GAATCCTAAC AACCCGGACA

5461 ACTTTCAGAA AGCTCTGATG GACGCTTCAA CCAAGCGTAA GGTTGGTGGT ATACTGACAG5461 ACTTTCAGAA AGCTCTGATG GACGCTTCAA CCAAGCGTAA GGTTGGTGGT ATACTGACAG

5521 GTATCAAACG TGCTAATGCT GACAATGATG TCAAGACAGT AAGCGAACCA TGCTACTCTA5521 GTATCAAACG TGCTAATGCT GACAATGATG TCAAGACAGT AAGCGAACCA TGCTACTCTA

5581 TCCTGGGCGA CTCAACTCAA GAGCTTATCC TTGACAACAC CCGGAAGCAA GACTTCTCAA5581 TCCTGGGCGA CTCAACTCAA GAGCTTATCC TTGACAACAC CCGGAAGCAA GACTTCTCAA

5641 GTGGCTTTTT GCCCCGCTTC CTGTTCATCC CTAACTATGA ACGAGCGGAG TTTGCCAAAC5641 GTGGCTTTTT GCCCCGCTTC CTGTTCATCC CTAACTATGA ACGAGCGGAG TTTGCCAAAC

5701 CTGAGAAGGT AGGACGTCGC CAGCAGATTC GCCGTACTCA ATTCTCCAAA GAGTTGATTG5701 CTGAGAAGGT AGGACGTCGC CAGCAGATTC GCCGTACTCA ATTCTCCAAA GAGTTGATTG

5761 AGAAGCTGGA AGCAATCGCT TATGTGAATG CTATCCCGCC TAACGGTAAA CTAAGGCACG5761 AGAAGCTGGA AGCAATCGCT TATGTGAATG CTATCCCGCC TAACGGTAAA CTAAGGCACG

5821 ACCCGATTCC TATTTACGAC GAATCGGACG ATGATGACTT CCTGTACGAG TACCAGTGCA5821 ACCCGATTCC TATTTACGAC GAATCGGACG ATGATGACTT CCTGTACGAG TACCAGTGCA

5881 ATATTAATGA CATGCGCAAG TATTACAGGG ATAACGAAGT AGCATCTGCC TTTGTGGGCC5881 ATATTAATGA CATGCGCAAG TATTACAGGG ATAACGAAGT AGCATCTGCC TTTGTGGGCC

5941 GAATGGGTGA GTATGTATTC AATATAGCAG CACTGATTGG ATTACTCGAC AACTGGGATA5941 GAATGGGTGA GTATGTATTC AATATAGCAG CACTGATTGG ATTACTCGAC AACTGGGATA

6001 CTCCTGTAAT GACCAGGGAC AACATCGAAT GGGCTTACAA ATATGTGCTT CGTTGTATAA6001 CTCCTGTAAT GACCAGGGAC AACATCGAAT GGGCTTACAA ATATGTGCTT CGTTGTATAA

6061 CCGCTTGGGT CAATAACACA AGCAGGATAG TCGCACCACC AACTACCAAC GCCGAAGTAG6061 CCGCTTGGGT CAATAACACA AGCAGGATAG TCGCACCACC AACTACCAAC GCCGAAGTAG

6121 TGGACGGCTT CCTAAAAGTC TACAGGGACA TTTTGGCCCT TTACGCCAAA AGCGGATGGA6121 TGGACGGCTT CCTAAAAGTC TACAGGGACA TTTTGGCCCT TTACGCCAAA AGCGGATGGA

6181 ACGGTATTGT TAAGCATTAT CCTGAGGGTG TTGTGAGAAG TATCCGGGAA GAACACCTCC6181 ACGGTATTGT TAAGCATTAT CCTGAGGGTG TTGTGAGAAG TATCCGGGAA GAACACCTCC

6241 AGATGAATGG TTTAAGCATA TATGCTATTC GTCAGTCTTT GAGCTGGTTT AAATCGAATT6241 AGATGAATGG TTTAAGCATA TATGCTATTC GTCAGTCTTT GAGCTGGTTT AAATCGAATT

6301 ACGGTTTTAA TATCACAGCT AACAACAAAG TCATTGACGG TATGCTGCAG GATATGATTG6301 ACGGTTTTAA TATCACAGCT AACAACAAAG TCATTGACGG TATGCTGCAG GATATGATTG

6361 ACCAGGACTA TTTAGCAGTT CAAATATATA AGCCCACAAG AGGCCGATCT GCTAACATTT6361 ACCAGGACTA TTTAGCAGTT CAAATATATA AGCCCACAAG AGGCCGATCT GCTAACATTT

6421 ACTGCCTGAC AGAGCGAGGA TATGACACTG CTAAGAAGTT AAAATAA6421 ACTGCCTGAC AGAGCGAGGA TATGACACTG CTAAGAAGTT AAAATAA

Claims (10)

1.大肠杆菌噬菌体vB_EcoM_swi3,其特征在于,噬菌体保藏号为CCTCC M 2019467,于2019年6月19日保藏于中国典型培养物保藏中心,分类命名为猪大肠杆菌噬菌体vB_EcoM_swi3。1. Escherichia coli phage vB_EcoM_swi3, characterized in that the phage preservation number is CCTCC M 2019467, which was deposited in the China Center for Type Culture Collection on June 19, 2019, and was named porcine coli phage vB_EcoM_swi3. 2.如权利要求1所述大肠杆菌噬菌体在制备同时杀灭猪源和鸡源大肠杆菌生物制品中的应用。2. the application of the coliphage as claimed in claim 1 in the preparation of simultaneously killing pig-derived and chicken-derived Escherichia coli biological products. 3.根据权利要求2所述的应用,其特征在于,所述生物制品为饲料添加剂和消毒剂/清洁剂,其中所述饲料添加剂和消毒剂/清洁剂为以纯化的大肠杆菌噬菌体制备的单一制剂或以纯化的所述大肠杆菌噬菌体为主要成分制备的复配制剂。3. application according to claim 2, is characterized in that, described biological product is feed additive and disinfectant/cleaning agent, and wherein said feed additive and disinfectant/cleaning agent are the single preparation with purified coliphage A preparation or a compound preparation prepared with the purified coliphage as the main component. 4.根据权利要求2所述的应用,其特征在于,猪源大肠杆菌和鸡源大肠杆菌包括致病性大肠杆菌,所述猪源大肠杆菌包括肠产毒型大肠杆菌。4. The application according to claim 2, characterized in that the porcine-derived Escherichia coli and chicken-derived Escherichia coli include pathogenic Escherichia coli, and the porcine-derived Escherichia coli includes enterotoxigenic Escherichia coli. 5.根据权利要求4所述的应用,其特征在于,所述肠产毒型大肠杆菌包括K88型大肠杆菌,所述鸡源致病性大肠杆菌包括O78型大肠杆菌。5. The application according to claim 4, wherein the enterotoxigenic Escherichia coli comprises K88 type Escherichia coli, and the chicken-derived pathogenic Escherichia coli comprises O78 type Escherichia coli. 6.消毒剂或清洁剂,其特征在于,为以纯化的如权利要求1所述大肠杆菌噬菌体制备的单一制剂或以纯化的如权利要求1所述大肠杆菌噬菌体为主要成分制备的复配制剂,用于防治养殖环境中猪源或鸡源大肠杆菌的污染。6. Disinfectant or cleaning agent is characterized in that, is the single preparation prepared with purified coliphage as claimed in claim 1 or the composite preparation prepared as main component with purified coliphage as claimed in claim 1 It is used to prevent and control the pollution of E. coli from pigs or chickens in the breeding environment. 7.根据权利要求6所述的消毒剂或清洁剂,其特征在于,所述消毒剂或清洁剂的剂型为液体、冻干粉或片剂;所述养殖环境包括畜禽体内、畜禽体表、畜禽养殖场所地面、畜禽养殖场所空气、畜禽饲料、饮水以及养殖器具。7. The disinfectant or cleaning agent according to claim 6, characterized in that, the dosage form of the disinfectant or cleaning agent is liquid, freeze-dried powder or tablet; Table, ground of livestock and poultry breeding sites, air of livestock and poultry breeding sites, livestock and poultry feed, drinking water and breeding utensils. 8.饲料添加剂,其特征在于,为以纯化的如权利要求1所述大肠杆菌噬菌体制备的单一制剂或以纯化的如权利要求1所述大肠杆菌噬菌体为主要成分制备的复配制剂,添加在畜禽饲料中,用于防治养殖过程中猪源和鸡源大肠杆菌的污染。8. Feed additive, it is characterized in that, for the single preparation prepared with purified coliphage as claimed in claim 1 or the composite preparation prepared as main component with purified coliphage as claimed in claim 1, add in In livestock and poultry feed, it is used to prevent and control the pollution of E. coli from pigs and chickens during the breeding process. 9.根据权利要求8所述的饲料添加剂,其特征在于,所述饲料至少包括猪饲料或鸡饲料。9. The feed additive according to claim 8, characterized in that the feed comprises at least pig feed or chicken feed. 10.根据权利要求6所述的消毒剂或清洁剂或根据权利要求8所述的饲料添加剂,其特征在于,所述猪源大肠杆菌和鸡源大肠杆菌包括致病性大肠杆菌,所述猪源致病性大肠杆菌包括肠产毒型大肠杆菌,所述肠产毒型大肠杆菌包括K88型大肠杆菌,所述鸡源致病性大肠杆菌包括O78型大肠杆菌。10. The disinfectant or cleaning agent according to claim 6 or the feed additive according to claim 8, characterized in that, the porcine-derived Escherichia coli and chicken-derived Escherichia coli include pathogenic Escherichia coli, and the pig-derived Escherichia coli The source pathogenic E. coli includes enterotoxigenic E. coli, the enterotoxigenic E. coli includes K88 type E. coli, and the chicken source pathogenic E. coli includes O78 type E. coli.
CN201911012910.0A 2019-10-23 2019-10-23 Escherichia coliphage vB_EcoM_swi3 and its application Withdrawn CN110607284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911012910.0A CN110607284A (en) 2019-10-23 2019-10-23 Escherichia coliphage vB_EcoM_swi3 and its application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911012910.0A CN110607284A (en) 2019-10-23 2019-10-23 Escherichia coliphage vB_EcoM_swi3 and its application

Publications (1)

Publication Number Publication Date
CN110607284A true CN110607284A (en) 2019-12-24

Family

ID=68895055

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911012910.0A Withdrawn CN110607284A (en) 2019-10-23 2019-10-23 Escherichia coliphage vB_EcoM_swi3 and its application

Country Status (1)

Country Link
CN (1) CN110607284A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111187757A (en) * 2020-01-21 2020-05-22 沈阳丰美生物技术有限公司 Escherichia coli bacteriophage and application thereof, and bactericidal composition and application thereof
CN111349618A (en) * 2020-03-10 2020-06-30 青岛诺安百特生物技术有限公司 Escherichia coli bacteriophage composition and application thereof
CN112280749A (en) * 2020-10-16 2021-01-29 青岛农业大学 Escherichia coli phage vB_EcoM_swi3 and its application
CN113444695A (en) * 2021-06-30 2021-09-28 武汉格瑞农生物科技有限公司 Escherichia coli bacteriophage with high fermentation efficiency and good clinical effect and application thereof
CN113604441A (en) * 2021-08-11 2021-11-05 武汉观海生物科技有限公司 Broad-spectrum bacteriophage for rapidly cracking livestock escherichia coli and application thereof
CN113755451A (en) * 2021-09-03 2021-12-07 广西大学 Escherichia coli bacteriophage GN6 and application thereof
CN113755450A (en) * 2021-09-03 2021-12-07 广西大学 A strain of Escherichia coli GN4-1 and its application
CN113881641A (en) * 2021-10-19 2022-01-04 广西大学 A strain of coliform bacteriophage EP01 and its application
CN115717126A (en) * 2021-08-25 2023-02-28 青岛诺安百特生物技术有限公司 A kind of duck drug-resistant Escherichia coli phage, its phage composition and application thereof
CN115851617A (en) * 2022-10-17 2023-03-28 青岛农业大学 Escherichia coli bacteriophage LHE83 and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006005943A1 (en) * 2004-07-09 2006-01-19 Moredun Research Institute Phage screening assay
CN103946375A (en) * 2011-11-14 2014-07-23 Cj第一制糖株式会社 Novel isolated bacteriophage having e. coli-specific bactericidal activity and antibacterial composition comprising the same
CN107164336A (en) * 2017-07-05 2017-09-15 江苏省农业科学院 A kind of coliphage and its application
CN108179136A (en) * 2016-12-07 2018-06-19 尹特荣生物科技株式会社 Coliphage Esc-COP-9 and its enteropathogenic E. Coli Proliferation Ability purposes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006005943A1 (en) * 2004-07-09 2006-01-19 Moredun Research Institute Phage screening assay
CN103946375A (en) * 2011-11-14 2014-07-23 Cj第一制糖株式会社 Novel isolated bacteriophage having e. coli-specific bactericidal activity and antibacterial composition comprising the same
CN108179136A (en) * 2016-12-07 2018-06-19 尹特荣生物科技株式会社 Coliphage Esc-COP-9 and its enteropathogenic E. Coli Proliferation Ability purposes
CN107164336A (en) * 2017-07-05 2017-09-15 江苏省农业科学院 A kind of coliphage and its application

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TANG WEI: "Isolation and characterization of foodborne Escherichia coli phage", 《JOURNAL OF FOOD SAFETY AND QUALITY》 *
卢国民等: "大肠杆菌噬菌体对肉鸡肠道菌群的影响", 《江苏农业学报》 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111187757A (en) * 2020-01-21 2020-05-22 沈阳丰美生物技术有限公司 Escherichia coli bacteriophage and application thereof, and bactericidal composition and application thereof
CN111349618A (en) * 2020-03-10 2020-06-30 青岛诺安百特生物技术有限公司 Escherichia coli bacteriophage composition and application thereof
CN112280749A (en) * 2020-10-16 2021-01-29 青岛农业大学 Escherichia coli phage vB_EcoM_swi3 and its application
CN113444695B (en) * 2021-06-30 2022-05-27 武汉格瑞农生物科技有限公司 Escherichia coli bacteriophage with high fermentation efficiency and good clinical effect and application thereof
CN113444695A (en) * 2021-06-30 2021-09-28 武汉格瑞农生物科技有限公司 Escherichia coli bacteriophage with high fermentation efficiency and good clinical effect and application thereof
CN113604441A (en) * 2021-08-11 2021-11-05 武汉观海生物科技有限公司 Broad-spectrum bacteriophage for rapidly cracking livestock escherichia coli and application thereof
CN115717126A (en) * 2021-08-25 2023-02-28 青岛诺安百特生物技术有限公司 A kind of duck drug-resistant Escherichia coli phage, its phage composition and application thereof
CN115717126B (en) * 2021-08-25 2024-10-29 青岛诺安百特生物技术有限公司 Duck drug-resistant escherichia coli phage, phage composition and application thereof
CN113755450A (en) * 2021-09-03 2021-12-07 广西大学 A strain of Escherichia coli GN4-1 and its application
CN113755451A (en) * 2021-09-03 2021-12-07 广西大学 Escherichia coli bacteriophage GN6 and application thereof
CN113755451B (en) * 2021-09-03 2023-06-06 广西大学 An Escherichia coli Phage GN6 and Its Application
CN113755450B (en) * 2021-09-03 2023-06-27 广西大学 Escherichia coli phage GN4-1 and application thereof
CN113881641A (en) * 2021-10-19 2022-01-04 广西大学 A strain of coliform bacteriophage EP01 and its application
CN113881641B (en) * 2021-10-19 2023-06-23 广西大学 An Escherichia coli Phage EP01 and Its Application
CN115851617A (en) * 2022-10-17 2023-03-28 青岛农业大学 Escherichia coli bacteriophage LHE83 and application thereof
CN115851617B (en) * 2022-10-17 2024-04-12 青岛农业大学 Escherichia coli phage LHE83 and its application

Similar Documents

Publication Publication Date Title
CN110607284A (en) Escherichia coliphage vB_EcoM_swi3 and its application
WO2022048061A1 (en) Salmonella phage having high temperature tolerance and wide lysis spectrum and composition thereof
CN110438091B (en) A new Klebsiella pneumoniae phage and its application
CN112280749B (en) Escherichia coli phage vB_EcoM_swi3 and its application
JP6130935B2 (en) Novel bacteriophage and antibacterial composition containing the same
CN110144333B (en) Pseudomonas aeruginosa bacteriophage and application thereof
CN113621584B (en) Staphylococcus aureus bacteriophage and antibacterial application thereof
CN110129283A (en) A short-tailed coliphage and its application
CN113583971B (en) Salmonella bacteriophage capable of simultaneously cracking escherichia coli and application thereof
CN101519651B (en) Shigella flexneri phage strain and application thereof
CN113430176B (en) Stable and efficient salmonella furnacalis bacteriophage RDP-SA-21004 and application thereof
CN103289963B (en) Bacteriophage with environment disinfection capability and applications thereof
CN113755450A (en) A strain of Escherichia coli GN4-1 and its application
CN115948348B (en) A broad-spectrum avian source Salmonella phage and its applications and compositions
CN107164336B (en) A kind of coliphage and its application
CN115717126B (en) Duck drug-resistant escherichia coli phage, phage composition and application thereof
CN111057681B (en) A strain of bacteriophage and its application
CN113980913B (en) Proteus mirabilis bacteriophage and application thereof
CN113881641B (en) An Escherichia coli Phage EP01 and Its Application
CN111363724B (en) Novel bacteriophage, bacteriophage mixed preparation and application of novel bacteriophage and bacteriophage mixed preparation in medicine for preventing and treating hemorrhagic pneumonia of mink
CN118497143A (en) Salmonella phage PST-H4 and application thereof
CN106754751B (en) Enterohemorrhagic escherichia coli bacteriophage and application thereof
CN104472550B (en) A kind of broad spectrum type salmonella phage biocontrol bactericide and its application
CN106939302A (en) ETEC phage, biological disinfectant based on the phage and application method thereof
CN114934025A (en) Pseudomonas syringae phage CXP1 and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20191224

WW01 Invention patent application withdrawn after publication