CN110603341A - Al-Mg-Si-Mn-Fe casting alloy - Google Patents
Al-Mg-Si-Mn-Fe casting alloy Download PDFInfo
- Publication number
- CN110603341A CN110603341A CN201980002032.6A CN201980002032A CN110603341A CN 110603341 A CN110603341 A CN 110603341A CN 201980002032 A CN201980002032 A CN 201980002032A CN 110603341 A CN110603341 A CN 110603341A
- Authority
- CN
- China
- Prior art keywords
- aluminum casting
- casting alloy
- alloy
- new aluminum
- another embodiment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 248
- 239000000956 alloy Substances 0.000 title claims abstract description 248
- 238000005266 casting Methods 0.000 title claims abstract description 192
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 192
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 192
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 76
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 57
- 229910052742 iron Inorganic materials 0.000 claims abstract description 53
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 46
- 239000012535 impurity Substances 0.000 claims abstract description 24
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 22
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 15
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 15
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 15
- 229910052712 strontium Inorganic materials 0.000 claims abstract description 13
- 239000011777 magnesium Substances 0.000 claims description 68
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 29
- 239000010703 silicon Substances 0.000 claims description 29
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 24
- 238000005336 cracking Methods 0.000 claims description 18
- 150000001875 compounds Chemical class 0.000 claims description 17
- 229910005347 FeSi Inorganic materials 0.000 claims description 14
- 230000035939 shock Effects 0.000 claims description 3
- 229910000838 Al alloy Inorganic materials 0.000 abstract description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 58
- 239000011572 manganese Substances 0.000 description 38
- 239000000203 mixture Substances 0.000 description 15
- 239000010936 titanium Substances 0.000 description 13
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 12
- 239000011651 chromium Substances 0.000 description 9
- 101100072002 Arabidopsis thaliana ICME gene Proteins 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 8
- 239000002245 particle Substances 0.000 description 5
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 3
- 229910052735 hafnium Inorganic materials 0.000 description 3
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 229910052706 scandium Inorganic materials 0.000 description 3
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 3
- 238000007711 solidification Methods 0.000 description 3
- 230000008023 solidification Effects 0.000 description 3
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 3
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 3
- 229910021365 Al-Mg-Si alloy Inorganic materials 0.000 description 2
- 229910015136 FeMn Inorganic materials 0.000 description 2
- 238000004512 die casting Methods 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 238000005476 soldering Methods 0.000 description 2
- 229910018125 Al-Si Inorganic materials 0.000 description 1
- 229910018520 Al—Si Inorganic materials 0.000 description 1
- 229910019752 Mg2Si Inorganic materials 0.000 description 1
- 229910000676 Si alloy Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000007734 materials engineering Methods 0.000 description 1
- 238000010120 permanent mold casting Methods 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/06—Alloys based on aluminium with magnesium as the next major constituent
- C22C21/08—Alloys based on aluminium with magnesium as the next major constituent with silicon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D21/00—Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
- B22D21/002—Castings of light metals
- B22D21/007—Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D21/00—Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
- B22D21/02—Casting exceedingly oxidisable non-ferrous metals, e.g. in inert atmosphere
- B22D21/04—Casting aluminium or magnesium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/047—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Continuous Casting (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Mold Materials And Core Materials (AREA)
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
Abstract
公开了新的铝铸造(铸)合金。所述新的铝铸造合金大体上包含从2.5wt.%至5.0wt.%的Mg,从0.70wt.%至2.5wt.%的Si,从0.40wt.%至1.50wt.%的Mn,从0.15wt.%至0.60wt.%的Fe,任选地至多0.15wt.%的Ti,任选地至多0.10wt.%的Sr,任选地至多0.15wt.%的Zr、Sc、Hf、V和Cr中的任何一种,其余部分是铝和不可避免的杂质,其中Mg/Si比(以重量百分比计)是从1.7至3.6。所述新的铝铸造合金可以被高压压模铸造例如形成汽车部件。所述新的铝合金可以例如以F或T5回火提供。
New aluminum casting (casting) alloys are disclosed. The new aluminum casting alloys generally comprise from 2.5 wt.% to 5.0 wt.% Mg, from 0.70 wt.% to 2.5 wt.% Si, from 0.40 wt.% to 1.50 wt.% Mn, from 0.15 wt.% to 0.60 wt.% Fe, optionally up to 0.15 wt.% Ti, optionally up to 0.10 wt.% Sr, optionally up to 0.15 wt.% Zr, Sc, Hf, V and Cr, the remainder being aluminum and unavoidable impurities, wherein the Mg/Si ratio (in weight percent) is from 1.7 to 3.6. The new aluminum casting alloys can be high pressure die cast, for example, to form automotive parts. The new aluminum alloys can be supplied, for example, in F or T5 tempers.
Description
背景技术Background technique
铝合金可以用于多种应用。例如,铝铸造(casting)(铸(foundry))合金用于几十种行业,包括例如汽车行业和消费电子行业。Aluminum alloys can be used in a variety of applications. For example, aluminum casting (foundry) alloys are used in dozens of industries including, for example, the automotive industry and the consumer electronics industry.
发明内容Contents of the invention
概括地,本公开内容涉及新的铝铸造(铸)合金和相关产品。新的铝铸造合金大体上包含(并且在某些情况下,由如下成分组成或基本上由如下成分组成)从2.5wt.%至5.0wt.%的Mg,从0.70wt.%至2.5wt.%的Si,从0.40wt.%至1.5wt.%的Mn,从0.10wt.%至0.60wt.%的Fe,任选地至多0.15wt.%的Ti,任选地至多0.10wt.%的Sr,以及任选地至多0.15wt.%的Zr、Sc、Hf、V和Cr中的任何一种,其余部分是铝和不可避免的杂质,其中镁与硅(Mg/Si)的重量比是从1.7:1至3.6:1。新的铝铸造合金可以实现改进的特性的组合,比如改进的强度、延展性、可铸造性、耐压模焊接性(die soldering resistance)和品质指数(quality index)等中的两种或更多种的组合。In general, the present disclosure relates to new aluminum casting (casting) alloys and related products. The new aluminum casting alloys generally comprise (and in some cases consist of or consist essentially of) from 2.5 wt.% to 5.0 wt.% Mg, from 0.70 wt.% to 2.5 wt. % of Si, from 0.40wt.% to 1.5wt.% of Mn, from 0.10wt.% to 0.60wt.% of Fe, optionally up to 0.15wt.% of Ti, optionally up to 0.10wt.% of Sr, and optionally up to 0.15 wt.% of any of Zr, Sc, Hf, V, and Cr, with the remainder being aluminum and unavoidable impurities, wherein the weight ratio of magnesium to silicon (Mg/Si) is From 1.7:1 to 3.6:1. New aluminum casting alloys can achieve improved combinations of properties, such as two or more of improved strength, ductility, castability, die soldering resistance, and quality index, among others combination of species.
i.组成i.Composition
如上所指出的,新的铝铸造合金大体上包含从2.5wt.%至5.0wt.%的Mg。在一个实施方案中,新的铝铸造合金包含不大于4.75wt.%的Mg。在另一个实施方案中,新的铝铸造合金包含不大于4.60wt.%的Mg。在一个实施方案中,新的铝铸造合金包含至少2.75wt.%的Mg。在另一个实施方案中,新的铝铸造合金包含至少3.0wt.%的Mg。As noted above, the new aluminum casting alloys generally contain from 2.5 wt.% to 5.0 wt.% Mg. In one embodiment, the new aluminum casting alloy comprises no greater than 4.75 wt.% Mg. In another embodiment, the new aluminum casting alloy comprises not greater than 4.60 wt.% Mg. In one embodiment, the new aluminum casting alloy comprises at least 2.75 wt.% Mg. In another embodiment, the new aluminum casting alloy comprises at least 3.0 wt. % Mg.
如上所指出的,新的铝铸造合金大体上包含从0.70wt.%至2.5wt.%的Si。在一个实施方案中,新的铝铸造合金包含至少0.80wt.%的Si。在另一个实施方案中,新的铝铸造合金包含至少0.90wt.%的Si。在又另一个实施方案中,新的铝铸造合金包含至少0.95wt.%的Si。在另一个实施方案中,新的铝铸造合金包含至少1.00wt.%的Si。在又另一个实施方案中,新的铝铸造合金包含至少1.05wt.%的Si。在另一个实施方案中,新的铝铸造合金包含至少1.10wt.%的Si。在又另一个实施方案中,新的铝铸造合金包含至少1.15wt.%的Si。在另一个实施方案中,新的铝铸造合金包含至少1.20wt.%的Si。在一个实施方案中,新的铝铸造合金包含不大于2.4wt.%的Si。在另一个实施方案中,新的铝铸造合金包含不大于2.3wt.%的Si。在又另一个实施方案中,新的铝铸造合金包含不大于2.2wt.%的Si。在另一个实施方案中,新的铝铸造合金包含不大于2.1wt.%的Si。在又另一个实施方案中,新的铝铸造合金包含不大于2.0wt.%的Si。As noted above, the new aluminum casting alloys generally contain from 0.70 wt.% to 2.5 wt.% Si. In one embodiment, the new aluminum casting alloy comprises at least 0.80 wt.% Si. In another embodiment, the new aluminum casting alloy comprises at least 0.90 wt.% Si. In yet another embodiment, the novel aluminum casting alloy comprises at least 0.95 wt.% Si. In another embodiment, the new aluminum casting alloy comprises at least 1.00 wt. % Si. In yet another embodiment, the novel aluminum casting alloy comprises at least 1.05 wt.% Si. In another embodiment, the new aluminum casting alloy comprises at least 1.10 wt.% Si. In yet another embodiment, the new aluminum casting alloy comprises at least 1.15 wt.% Si. In another embodiment, the new aluminum casting alloy comprises at least 1.20 wt.% Si. In one embodiment, the new aluminum casting alloy contains no greater than 2.4 wt.% Si. In another embodiment, the new aluminum casting alloys contain no greater than 2.3 wt.% Si. In yet another embodiment, the new aluminum casting alloys contain no greater than 2.2 wt.% Si. In another embodiment, the new aluminum casting alloys contain no greater than 2.1 wt.% Si. In yet another embodiment, the new aluminum casting alloys contain no greater than 2.0 wt.% Si.
如上所指出的,新的铝铸造合金中镁与硅的重量比大体上是从1.7:1至3.6:1(wt.%Mg/wt.%Si)。在一个实施方案中,新的铝铸造合金中镁与硅的重量比是至少1.8:1。在另一个实施方案中,新的铝铸造合金中镁与硅的重量比是至少1.85:1。在一个实施方案中,新的铝铸造合金中镁与硅的重量比是不大于3.6:1。在另一个实施方案中,新的铝铸造合金中镁与硅的重量比是不大于3.5:1。As noted above, the weight ratio of magnesium to silicon in the new aluminum casting alloys is generally from 1.7:1 to 3.6:1 (wt.% Mg/wt.% Si). In one embodiment, the weight ratio of magnesium to silicon in the new aluminum casting alloy is at least 1.8:1. In another embodiment, the weight ratio of magnesium to silicon in the new aluminum casting alloy is at least 1.85:1. In one embodiment, the weight ratio of magnesium to silicon in the new aluminum casting alloy is no greater than 3.6:1. In another embodiment, the weight ratio of magnesium to silicon in the new aluminum casting alloy is no greater than 3.5:1.
在一个实施方案中,新的铝铸造合金包含足以促进生产无裂纹铸造产品(例如,无裂纹高压压模铸造产品)的量的镁和硅。无裂纹产品是这样的产品,所述产品充分无裂纹,使得它可以用于其预期目的。在一个实施方案中,新的铝铸造合金包含足以实现不大于0.30的热裂倾向指数(HCTI)(比如本文公开的任何低HCTI值)的量的镁和硅。In one embodiment, the novel aluminum casting alloys comprise magnesium and silicon in amounts sufficient to facilitate the production of crack-free cast products (eg, crack-free high pressure die cast products). A crack-free product is one that is sufficiently free of cracks such that it can be used for its intended purpose. In one embodiment, the new aluminum casting alloys comprise magnesium and silicon in amounts sufficient to achieve a Hot Cracking Tendency Index (HCTI) of no greater than 0.30, such as any of the low HCTI values disclosed herein.
如上所指出的,新的铝铸造合金大体上包含从0.40wt.%至1.5wt.%的Mn。在一个实施方案中,新的铝铸造合金包含至少0.45wt.%的Mn。在另一个实施方案中,新的铝铸造合金包含至少0.50wt.%的Mn。在又另一个实施方案中,新的铝铸造合金包含至少0.55wt.%的Mn。在另一个实施方案中,新的铝铸造合金包含至少0.60wt.%的Mn。在一个实施方案中,新的铝铸造合金包含不大于1.45wt.%的Mn。在另一个实施方案中,新的铝铸造合金包含不大于1.40wt.%的Mn。在又另一个实施方案中,新的铝铸造合金包含不大于1.35wt.%的Mn。在另一个实施方案中,新的铝铸造合金包含不大于1.30wt.%的Mn。在又另一个实施方案中,新的铝铸造合金包含不大于1.25wt.%的Mn。在另一个实施方案中,新的铝铸造合金包含不大于1.20wt.%的Mn。As noted above, the new aluminum casting alloys generally contain from 0.40 wt.% to 1.5 wt.% Mn. In one embodiment, the new aluminum casting alloy comprises at least 0.45 wt.% Mn. In another embodiment, the new aluminum casting alloy comprises at least 0.50 wt.% Mn. In yet another embodiment, the new aluminum casting alloy comprises at least 0.55 wt.% Mn. In another embodiment, the new aluminum casting alloy comprises at least 0.60 wt.% Mn. In one embodiment, the new aluminum casting alloy contains not greater than 1.45 wt.% Mn. In another embodiment, the new aluminum casting alloys contain not greater than 1.40 wt.% Mn. In yet another embodiment, the new aluminum casting alloy comprises not greater than 1.35 wt.% Mn. In another embodiment, the new aluminum casting alloys contain not greater than 1.30 wt.% Mn. In yet another embodiment, the new aluminum casting alloys comprise not greater than 1.25 wt.% Mn. In another embodiment, the new aluminum casting alloys contain not greater than 1.20 wt.% Mn.
如上所指出的,新的铝铸造合金大体上包含从0.10wt.%至0.60wt.%的Fe。在一个实施方案中,新的铝铸造合金包含至少0.12wt.%的Fe。在另一个实施方案中,新的铝铸造合金包含至少0.15wt.%的Fe。在又另一个实施方案中,新的铝铸造合金包含至少0.20wt.%的Fe。在另一个实施方案中,新的铝铸造合金包含至少0.25wt.%的Fe。在又另一个实施方案中,新的铝铸造合金包含至少0.30wt.%的Fe。在另一个实施方案中,新的铝铸造合金包含至少0.35wt.%的Fe。在一个实施方案中,新的铝铸造合金包含不大于0.55wt.%的Fe。在另一个实施方案中,新的铝铸造合金包含不大于0.50wt.%的Fe。在又另一个实施方案中,新的铝铸造合金包含不大于0.45wt.%的Fe。As noted above, the new aluminum casting alloys generally contain from 0.10 wt.% to 0.60 wt.% Fe. In one embodiment, the new aluminum casting alloy comprises at least 0.12 wt.% Fe. In another embodiment, the new aluminum casting alloy comprises at least 0.15 wt.% Fe. In yet another embodiment, the new aluminum casting alloy comprises at least 0.20 wt.% Fe. In another embodiment, the new aluminum casting alloy comprises at least 0.25 wt.% Fe. In yet another embodiment, the new aluminum casting alloy comprises at least 0.30 wt.% Fe. In another embodiment, the new aluminum casting alloy comprises at least 0.35 wt.% Fe. In one embodiment, the new aluminum casting alloy contains no greater than 0.55 wt.% Fe. In another embodiment, the new aluminum casting alloys contain no greater than 0.50 wt.% Fe. In yet another embodiment, the new aluminum casting alloy contains no greater than 0.45 wt.% Fe.
在一个实施方案中,新的铝铸造合金包含足以促进形成α相颗粒同时限制形成β相颗粒的量的铁和锰。在一个实施方案中,至少由于铁含量的原因,新的铝铸造合金包含不大于0.012wt.%的β-Al5FeSi化合物。在另一个实施方案中,新的铝铸造合金包含不大于0.010wt.%的β-Al5FeSi化合物。在又另一个实施方案中,新的铝铸造合金包含不大于0.008wt.%的β-Al5FeSi化合物。在另一个实施方案中,新的铝铸造合金包含不大于0.006wt.%的β-Al5FeSi化合物。在又另一个实施方案中,新的铝铸造合金包含不大于0.004wt.%的β-Al5FeSi化合物。在另一个实施方案中,新的铝铸造合金包含不大于0.002wt.%的β-Al5FeSi化合物。在又另一个实施方案中,新的铝铸造合金包含不大于0.001wt.%的β-Al5FeSi化合物。在另一个实施方案中,新的铝铸造合金包含不大于0.0005wt.%的β-Al5FeSi化合物。In one embodiment, the new aluminum casting alloys comprise iron and manganese in amounts sufficient to promote the formation of alpha phase particles while limiting the formation of beta phase particles. In one embodiment, at least due to the iron content, the new aluminum casting alloy contains no greater than 0.012 wt. % of β-Al5FeSi compound. In another embodiment, the new aluminum casting alloys contain no greater than 0.010 wt. % of β-Al5FeSi compound. In yet another embodiment, the new aluminum casting alloy comprises not greater than 0.008 wt. % of β-Al5FeSi compound. In another embodiment, the new aluminum casting alloys contain no greater than 0.006 wt. % of β-Al5FeSi compound. In yet another embodiment, the new aluminum casting alloy comprises no greater than 0.004 wt. % of β-Al5FeSi compound. In another embodiment, the new aluminum casting alloys contain no greater than 0.002 wt. % of β-Al5FeSi compound. In yet another embodiment, the new aluminum casting alloys contain no greater than 0.001 wt. % of β-Al5FeSi compound. In another embodiment, the new aluminum casting alloys contain no greater than 0.0005 wt.% β-Al5FeSi compound.
在一个实施方案中,新的铝铸造合金可以包含足以满足以下要求的量的镁和硅:(0.4567*Mg–0.5)<=Si<=(0.4567*Mg+0.2)。In one embodiment, the new aluminum casting alloy may contain magnesium and silicon in amounts sufficient to meet the requirement: (0.4567*Mg−0.5)<=Si<=(0.4567*Mg+0.2).
在一个实施方案中,新的铝铸造合金可以包含足以满足以下要求的量的镁、硅、锰和铁:In one embodiment, the new aluminum casting alloy may contain magnesium, silicon, manganese and iron in amounts sufficient to meet the following requirements:
(1)wt.%Si≤(0.4567*(wt.%Mg)+0.2*(wt.%Mg)+0.25*(wt.%Fe);和(1) wt.%Si≤(0.4567*(wt.%Mg)+0.2*(wt.%Mg)+0.25*(wt.%Fe); and
(2)wt.%Si≥(0.4567*(wt.%Mg)+0.2*(wt.%Mg)+0.25*(wt.%Fe)-0.6)。(2) wt.%Si≥(0.4567*(wt.%Mg)+0.2*(wt.%Mg)+0.25*(wt.%Fe)-0.6).
如上所指出的,新的铝铸造合金可以任选地包含至多0.15wt.%的Ti。在一个实施方案中,新的铝铸造合金包含至少0.01wt.%的Ti。在另一个实施方案中,新的铝铸造合金包含至少0.03wt.%的Ti。在又另一个实施方案中,新的铝铸造合金包含至少0.05wt.%的Ti。在另一个实施方案中,新的铝铸造合金包含至少0.07wt.%的Ti。在一个实施方案中,新的铝铸造合金包含不大于0.13wt.%的Ti。在另一个实施方案中,新的铝铸造合金包含不大于0.115wt.%的Ti。在另一个实施方案中,新的铝铸造合金包含不大于0.10wt.%的Ti。在一个实施方案中,新的铝铸造合金包含足以促进晶粒细化同时限制/避免形成初级(primary)含钛颗粒的量的钛。在一些实施方案中,钛作为杂质包含在新的铝铸造合金中。As noted above, the new aluminum casting alloys may optionally contain up to 0.15 wt.% Ti. In one embodiment, the new aluminum casting alloy comprises at least 0.01 wt.% Ti. In another embodiment, the new aluminum casting alloy comprises at least 0.03 wt. % Ti. In yet another embodiment, the new aluminum casting alloy comprises at least 0.05 wt.% Ti. In another embodiment, the new aluminum casting alloy comprises at least 0.07 wt.% Ti. In one embodiment, the new aluminum casting alloy contains not greater than 0.13 wt.% Ti. In another embodiment, the new aluminum casting alloy contains not greater than 0.115 wt.% Ti. In another embodiment, the new aluminum casting alloys contain no greater than 0.10 wt.% Ti. In one embodiment, the novel aluminum casting alloys comprise titanium in an amount sufficient to promote grain refinement while limiting/avoiding the formation of primary titanium-containing particles. In some embodiments, titanium is included as an impurity in the new aluminum casting alloy.
如上所指出的,新的铝铸造合金可以任选地包含至多0.10wt.%的Sr。在一个实施方案中,新的铝铸造合金包含足以促进Mg2Si共晶的改性同时限制/避免形成初级含锶颗粒的量的锶。在一个实施方案中,新的铝铸造合金包含至少0.005wt.%的Sr。在一个实施方案中,新的铝铸造合金包含不大于0.08wt.%的Sr。在另一个实施方案中,新的铝铸造合金包含不大于0.05wt.%的Sr。在一些实施方案中,锶作为杂质包含在新的铝铸造合金中。As noted above, the new aluminum casting alloys may optionally contain up to 0.10 wt.% Sr. In one embodiment, the new aluminum casting alloy comprises strontium in an amount sufficient to promote modification of the Mg2Si eutectic while limiting/avoiding the formation of primary strontium - containing particles. In one embodiment, the new aluminum casting alloy comprises at least 0.005 wt.% Sr. In one embodiment, the new aluminum casting alloy comprises no greater than 0.08 wt.% Sr. In another embodiment, the new aluminum casting alloys contain no greater than 0.05 wt.% Sr. In some embodiments, strontium is included as an impurity in the new aluminum casting alloy.
如上所指出的,新的铝铸造合金可以任选地包含至多0.15wt.%的Zr、Sc、Hf、V和Cr中的任何一种。在一个实施方案中,新的铝铸造合金包含足以促进固溶强化同时限制/避免形成含锆、钪、铪、钒和铬的初级颗粒的量的锆、钪、铪、钒和/或铬。在一个实施方案中,新的铝铸造合金包含至少0.01wt.%的Zr、Sc、Hf、V和Cr中的任何一种。在另一个实施方案中,新的铝铸造合金包含至少0.03wt.%的Zr、Sc、Hf、V和Cr中的任何一种。在又另一个实施方案中,新的铝铸造合金包含至少0.05wt.%的Zr、Sc、Hf、V和Cr中的任何一种。在一个实施方案中,新的铝铸造合金包含不大于0.10wt.%的Zr、Sc、Hf、V和Cr中的任何一种。在一些实施方案中,锆作为杂质包含在新的铝铸造合金中。在一些实施方案中,钪作为杂质包含在新的铝铸造合金中。在一些实施方案中,铪作为杂质包含在新的铝铸造合金中。在一些实施方案中,钒作为杂质包含在新的铝铸造合金中。在一些实施方案中,铬作为杂质包含在新的铝铸造合金中。As noted above, the new aluminum casting alloys may optionally contain up to 0.15 wt. % of any of Zr, Sc, Hf, V and Cr. In one embodiment, the novel aluminum casting alloys comprise zirconium, scandium, hafnium, vanadium and/or chromium in amounts sufficient to promote solid solution strengthening while limiting/avoiding the formation of primary particles comprising zirconium, scandium, hafnium, vanadium and chromium. In one embodiment, the new aluminum casting alloy comprises at least 0.01 wt. % of any one of Zr, Sc, Hf, V and Cr. In another embodiment, the new aluminum casting alloy comprises at least 0.03 wt. % of any one of Zr, Sc, Hf, V and Cr. In yet another embodiment, the new aluminum casting alloy comprises at least 0.05 wt. % of any of Zr, Sc, Hf, V, and Cr. In one embodiment, the new aluminum casting alloy contains no greater than 0.10 wt. % of any of Zr, Sc, Hf, V and Cr. In some embodiments, zirconium is included as an impurity in the new aluminum casting alloy. In some embodiments, scandium is included as an impurity in the new aluminum casting alloy. In some embodiments, hafnium is included as an impurity in the new aluminum casting alloy. In some embodiments, vanadium is included as an impurity in the new aluminum casting alloy. In some embodiments, chromium is included as an impurity in the new aluminum casting alloy.
新的铝铸造合金的其余部分大体上是铝和不可避免的杂质。在一个实施方案中,新的铝铸造合金包含不大于0.30wt.%的不可避免的杂质,并且其中新的铝铸造合金包含所述不可避免的杂质中的不大于0.10wt.%的任何一种元素。在另一个实施方案中,新的铝铸造合金包含不大于0.15wt.%的不可避免的杂质,并且其中新的铝铸造合金包含所述不可避免的杂质中的不大于0.05wt.%的任何一种元素。在又另一个实施方案中,新的铝铸造合金包含不大于0.10wt.%的不可避免的杂质,并且其中新的铝铸造合金包含所述不可避免的杂质中的不大于0.03wt.%的任何一种元素。The remainder of the new aluminum casting alloy is essentially aluminum and unavoidable impurities. In one embodiment, the new aluminum foundry alloy contains no more than 0.30 wt.% of unavoidable impurities, and wherein the new aluminum foundry alloy contains no more than 0.10 wt.% of any of said unavoidable impurities element. In another embodiment, the new aluminum foundry alloy contains no more than 0.15 wt.% of unavoidable impurities, and wherein the new aluminum foundry alloy contains no more than 0.05 wt.% of any of said unavoidable impurities kind of element. In yet another embodiment, the new aluminum foundry alloy contains no more than 0.10 wt.% of unavoidable impurities, and wherein the new aluminum foundry alloy contains no more than 0.03 wt.% of any of said unavoidable impurities an element.
ii.加工ii. processing
新的铝铸造合金可以使用任何合适的铸造方法来铸造。在一个实施方案中,新的铝铸造合金是作为锭料或坯料的直接冷铸件。在另一个实施方案中,将新的铝铸造合金成型铸造为成型铸造产品(例如,复杂成型铸造产品,比如复杂汽车部件)。在一个实施方案中,成型铸造产品是汽车结构部件。在另一个实施方案中,成型铸造产品是门框。在另一个实施方案中,成型铸造产品是减震塔(shock tower)。在另一个实施方案中,成型铸造产品是用于汽车的通道(tunnel)结构。The new aluminum casting alloys can be cast using any suitable casting method. In one embodiment, the new aluminum casting alloy is direct chill casting as an ingot or billet. In another embodiment, the new aluminum casting alloys are shape cast into shape cast products (eg, complex shape cast products such as complex automotive parts). In one embodiment, the shape cast product is an automotive structural part. In another embodiment, the shape cast product is a door frame. In another embodiment, the shape cast product is a shock tower. In another embodiment, the shape cast product is a tunnel structure for an automobile.
在一个实施方案中,成型铸造包括高压压模铸造。在另一个实施方案中,成型铸造包括永久型模铸造(permanent mold casting)。In one embodiment, shape casting includes high pressure die casting. In another embodiment, shape casting comprises permanent mold casting.
新的铝铸造合金不需要固溶热处理步骤。因此,可以以适当的回火(temper)比如F回火或T5回火来提供新的铝铸造合金。The new aluminum casting alloy does not require a solution heat treatment step. Therefore, new aluminum casting alloys can be provided in suitable tempers such as F temper or T5 temper.
iii.特性iii. Features
如上所指出的,新的铝铸造合金可以实现改进的特性组合,比如改进的强度、延展性、可铸造性、耐压模焊接性和品质指数中的至少两种的组合。机械特性可以根据ASTM E8和B557测量(例如,当定向凝固时)。可铸造性可以使用本文所述的HCTI方法测量。耐压模焊接性可以通过铸造合金测试。As noted above, new aluminum casting alloys may achieve an improved combination of properties, such as a combination of at least two of improved strength, ductility, castability, compression die weldability, and quality index. Mechanical properties can be measured according to ASTM E8 and B557 (eg, when directional solidified). Castability can be measured using the HCTI method described herein. Die weldability can be tested with cast alloys.
在一个实施方案中,新的铝铸造合金实现至少200MPa的极限拉伸强度。在另一个实施方案中,新的铝铸造合金实现至少210MPa的极限拉伸强度。在又另一个实施方案中,新的铝铸造合金实现至少220MPa的极限拉伸强度。在另一个实施方案中,新的铝铸造合金实现至少230MPa的极限拉伸强度。In one embodiment, the new aluminum casting alloy realizes an ultimate tensile strength of at least 200 MPa. In another embodiment, the new aluminum casting alloy realizes an ultimate tensile strength of at least 210 MPa. In yet another embodiment, the new aluminum casting alloy realizes an ultimate tensile strength of at least 220 MPa. In another embodiment, the new aluminum casting alloy realizes an ultimate tensile strength of at least 230 MPa.
在一个实施方案中,新的铝铸造合金实现至少100MPa的拉伸屈服强度。在另一个实施方案中,新的铝铸造合金实现至少105MPa的拉伸屈服强度。在又另一个实施方案中,新的铝铸造合金实现至少110MPa的拉伸屈服强度。在另一个实施方案中,新的铝铸造合金实现至少115MPa的拉伸屈服强度。在另一个实施方案中,新的铝铸造合金实现至少120MPa的拉伸屈服强度。在另一个实施方案中,新的铝铸造合金实现至少125MPa的拉伸屈服强度。任何上述拉伸屈服强度值都可以利用任何上述极限拉伸强度值实现。In one embodiment, the new aluminum casting alloy realizes a tensile yield strength of at least 100 MPa. In another embodiment, the new aluminum casting alloy realizes a tensile yield strength of at least 105 MPa. In yet another embodiment, the new aluminum casting alloy realizes a tensile yield strength of at least 110 MPa. In another embodiment, the new aluminum casting alloy realizes a tensile yield strength of at least 115 MPa. In another embodiment, the new aluminum casting alloy realizes a tensile yield strength of at least 120 MPa. In another embodiment, the new aluminum casting alloy realizes a tensile yield strength of at least 125 MPa. Any of the above tensile yield strength values can be achieved with any of the above ultimate tensile strength values.
在一个实施方案中,新的铝铸造合金实现至少7%的伸长率。在另一个实施方案中,新的铝铸造合金实现至少8%的伸长率。在又另一个实施方案中,新的铝铸造合金实现至少9%的伸长率。在另一个实施方案中,新的铝铸造合金实现至少10%的伸长率。在又另一个实施方案中,新的铝铸造合金实现至少11%的伸长率。在另一个实施方案中,新的铝铸造合金实现至少12%的伸长率。在又另一个实施方案中,新的铝铸造合金实现至少13%的伸长率。在另一个实施方案中,新的铝铸造合金实现至少14%的伸长率。在又另一个实施方案中,新的铝铸造合金实现至少15%的伸长率。在另一个实施方案中,新的铝铸造合金实现至少16%或更高的伸长率。任何上述伸长率值都可以利用任何上述极限拉伸强度或拉伸屈服强度值实现。In one embodiment, the new aluminum casting alloy achieves an elongation of at least 7%. In another embodiment, the new aluminum casting alloy realizes an elongation of at least 8%. In yet another embodiment, the new aluminum casting alloy achieves an elongation of at least 9%. In another embodiment, the new aluminum casting alloy realizes an elongation of at least 10%. In yet another embodiment, the new aluminum casting alloy achieves an elongation of at least 11%. In another embodiment, the new aluminum casting alloy achieves an elongation of at least 12%. In yet another embodiment, the new aluminum casting alloy achieves an elongation of at least 13%. In another embodiment, the new aluminum casting alloy achieves an elongation of at least 14%. In yet another embodiment, the new aluminum casting alloy achieves an elongation of at least 15%. In another embodiment, the new aluminum casting alloy achieves an elongation of at least 16% or greater. Any of the above values of elongation can be achieved with any of the above values of ultimate tensile strength or tensile yield strength.
在一个实施方案中,新的铝铸造合金实现不大于0.30的HCTI。在另一个实施方案中,新的铝铸造合金实现不大于0.25的HCTI。在又另一个实施方案中,新的铝铸造合金实现不大于0.20的HCTI。在另一个实施方案中,新的铝铸造合金实现不大于0.15或更低的HCTI。In one embodiment, the new aluminum casting alloys achieve an HCTI of no greater than 0.30. In another embodiment, the new aluminum casting alloys achieve an HCTI of no greater than 0.25. In yet another embodiment, the new aluminum casting alloys achieve an HCTI of no greater than 0.20. In another embodiment, the new aluminum casting alloys achieve an HCTI of no greater than 0.15 or lower.
在一个实施方案中,新的铝铸造合金是耐压模焊接的,其中铸态(as-cast)铝合金产品从压模中被移出而不损伤铸造产品和/或未粘附至压模。模粘(die soldering)可能在高压压模铸造期间发生,其中熔融铝焊接(solder)至压模表面。在一些实施方案中,本文所述的新的铝铸造合金可以在不焊接至压模的情况下铸造。In one embodiment, the new aluminum casting alloy is die weldable, wherein the as-cast aluminum alloy product is removed from the die without damaging the cast product and/or without sticking to the die. Die soldering can occur during high pressure die casting where molten aluminum is soldered to the die surface. In some embodiments, the new aluminum casting alloys described herein can be cast without welding to a die.
在以下具体实施方式中公开了特征的这些和其他组合。These and other combinations of features are disclosed in the following detailed description.
附图说明Description of drawings
图1是示出实施例1合金的硅含量对热裂倾向指数的曲线图。FIG. 1 is a graph showing silicon content versus hot cracking propensity index for the alloy of Example 1. FIG.
图2是示出实施例2合金的硅含量对热裂倾向指数的曲线图。FIG. 2 is a graph showing silicon content versus hot cracking propensity index for the alloy of Example 2. FIG.
图3是示出实施例3合金的硅含量对热裂倾向指数的曲线图。FIG. 3 is a graph showing silicon content versus hot cracking propensity index for the alloy of Example 3. FIG.
图4是示出实施例4合金的锰含量对热裂倾向指数的曲线图。FIG. 4 is a graph showing manganese content versus hot cracking propensity index for the alloy of Example 4. FIG.
图5a是示出基于ICME建模的作为Mn和Fe含量的函数的β相含量(以wt.%示出)的曲线图;3.6wt.%的Mg和1.5wt.%的Si的量保持恒定。Figure 5a is a graph showing the beta phase content (shown in wt.%) as a function of Mn and Fe content based on ICME modeling; the amounts of 3.6 wt.% Mg and 1.5 wt.% Si were kept constant .
图5b是示出基于ICME建模的作为Mn和Fe含量的函数的α相含量(以wt.%示出)的曲线图;3.6wt.%的Mg和1.5wt.%的Si的量保持恒定。Figure 5b is a graph showing the alpha phase content (shown in wt.%) as a function of Mn and Fe content based on ICME modeling; the amounts of 3.6 wt.% Mg and 1.5 wt.% Si were kept constant .
图6是示出基于ICME建模的作为Fe含量的函数的β相含量(以wt.%示出)的曲线图;3.6wt.%的Mg、1.5wt%的Si和0.5wt.%的Mn的量保持恒定。Figure 6 is a graph showing beta phase content (shown in wt.%) as a function of Fe content based on ICME modeling; 3.6 wt.% Mg, 1.5 wt.% Si and 0.5 wt.% Mn amount remains constant.
图7a是示出实施例6合金的极限拉伸强度(MPa)对铁含量(wt.%)的曲线图。Figure 7a is a graph showing ultimate tensile strength (MPa) versus iron content (wt.%) for the Example 6 alloy.
图7b是示出实施例6合金的伸长率(%)对铁含量(wt.%)的曲线图。Figure 7b is a graph showing elongation (%) versus iron content (wt.%) for the Example 6 alloy.
图7c是示出实施例6合金的拉伸屈服强度(MPa)对铁含量(wt.%)的曲线图。Figure 7c is a graph showing tensile yield strength (MPa) versus iron content (wt.%) for the Example 6 alloy.
图7d是示出实施例6合金的品质指数(Q,以MPa计)对铁含量(wt.%)的曲线图。Figure 7d is a graph showing quality index (Q in MPa) versus iron content (wt.%) for the Example 6 alloy.
图8a是示出基于ICME建模的作为Si和Mg含量的函数的HCI(计算的热裂指数)的曲线图;0.70wt.%的Mn和0.25wt.%的Fe的量保持恒定。Figure 8a is a graph showing HCI (calculated hot cracking index) as a function of Si and Mg content based on ICME modeling; the amounts of 0.70 wt.% Mn and 0.25 wt.% Fe were kept constant.
图8b是示出基于ICME建模的作为Si和Mg含量的函数的非平衡凝固(non-equilibrium solidification)温度范围(℃)的曲线图;0.70wt.%的Mn和0.25wt.%的Fe的量保持恒定。Figure 8b is a graph showing the non-equilibrium solidification (non-equilibrium solidification) temperature range (°C) as a function of Si and Mg content based on ICME modeling; amount remains constant.
图8c是示出基于ICME建模的作为Si和Mn含量的函数的HCI(计算的热裂指数)的曲线图;4.0wt.%的Mg和0.25wt.%的Fe的量保持恒定。Figure 8c is a graph showing HCI (calculated hot cracking index) as a function of Si and Mn content based on ICME modeling; the amounts of 4.0 wt.% Mg and 0.25 wt.% Fe were kept constant.
图8d是示出基于ICME建模的作为Si和Fe含量的函数的HCI(计算的热裂指数)的曲线图;4.0wt.%的Mg和0.70wt.%的Mn的量保持恒定。Figure 8d is a graph showing HCI (calculated hot cracking index) as a function of Si and Fe content based on ICME modeling; the amounts of 4.0 wt.% Mg and 0.70 wt.% Mn were kept constant.
具体实施方式Detailed ways
实施例1Example 1
将六种铝合金铸造成铅笔探针(pencil probe)铸件。所述铝合金的组成在下表1中给出。Six aluminum alloys were cast into pencil probe castings. The composition of the aluminum alloys is given in Table 1 below.
表1-实施例1合金的组成(所有值均以重量百分比计)Table 1 - Composition of the alloy of Example 1 (all values are in weight percent)
每种合金进行五次测试并且是在不同的连接尺寸下。下表2提供了热裂结果。在下表中,“C”意指在铸造过程中破裂,“OK”意指铸造成功而且无破裂,并且“NF”意指铅笔探针型模未被完全填充。根据结果计算每种合金的热裂倾向指数(“HCTI”)。表2还列出了每种合金的计算的HCTI。Each alloy was tested five times and at different connection sizes. Table 2 below provides the hot crack results. In the table below, "C" means cracked during casting, "OK" means casting was successful without cracking, and "NF" means the pencil probe mold was not completely filled. From the results, a Hot Cracking Tendency Index ("HCTI") was calculated for each alloy. Table 2 also lists the calculated HCTI for each alloy.
合金的热裂倾向指数(HCTI)被定义为The hot cracking tendency index (HCTI) of the alloy is defined as
如果在任何连接杆(connection rod)上均未发现破裂,则HCTI值将为0。如果在所有7个连接杆(从4mm至16mm)中均发现破裂,则HCTI值将为1。因此,对于特定合金,较小的HCTI指示较高的抗热裂性。If no cracks are found on any connection rod, the HCTI value will be 0. If a rupture is found in all 7 connecting rods (from 4mm to 16mm), the HCTI value will be 1. Thus, for a particular alloy, a smaller HCTI indicates higher hot cracking resistance.
表2-实施例1合金的热裂结果Hot cracking results of the alloy of table 2-embodiment 1
图1示出了硅含量对测定的HCTI值的曲线图。如所示,在相似量的Fe、Mn、Mg和Ti时,具有从约1至约2wt.%的Si的合金实现了改进的抗热裂性。这些合金的Mg/Si比是从约2.0至3.0。具有1.56wt.%的Si的合金A4的Mg与Si的比是2.26。Figure 1 shows a graph of silicon content versus measured HCTI values. As shown, alloys with from about 1 to about 2 wt. % Si achieve improved hot cracking resistance at similar amounts of Fe, Mn, Mg, and Ti. The Mg/Si ratio of these alloys is from about 2.0 to 3.0. Alloy A4 with 1.56 wt.% Si has a Mg to Si ratio of 2.26.
实施例2Example 2
按照实施例1,铸造四种另外的合金,并且测定它们的热裂敏感性。与实施例1一样,硅含量再次变化,但是使用较低标称量的镁和锰。实施例2合金的组成示出于下表3中。实施例2合金的HCTI结果示出于下图中。合金B2显示出最佳的抗热裂性。此合金的Mg/Si比是约2.65。Following Example 1, four additional alloys were cast and their hot tear susceptibility determined. As in Example 1, the silicon content was varied again, but lower nominal amounts of magnesium and manganese were used. The composition of the Example 2 alloy is shown in Table 3 below. The HCTI results for the Example 2 alloy are shown in the figure below. Alloy B2 shows the best hot cracking resistance. The Mg/Si ratio of this alloy is about 2.65.
表3-实施例2合金的组成(所有值均以重量百分比计)The composition of table 3-embodiment 2 alloy (all values are by weight percentage)
图2示出了Al-2.5Mg-1.1Mn-x%Si合金的实验测量的热裂倾向指数。具有0.96wt.%的Si和2.54wt.%的Mg的合金B2显示出最佳的抗热裂性。此合金的Mg/Si比是约2.65。Figure 2 shows the experimentally measured hot cracking propensity index for Al-2.5Mg-1.1Mn-x%Si alloys. Alloy B2 with 0.96 wt.% Si and 2.54 wt.% Mg showed the best hot cracking resistance. The Mg/Si ratio of this alloy is about 2.65.
实施例3Example 3
按照实施例1,铸造四种另外的合金,并且测定它们的热裂敏感性。与实施例1一样,硅含量再次变化,但是使用较高标称量的镁和较低标称量的锰。实施例3合金的组成示出于下表4中。实施例3合金的HCTI结果示出于图3中。如所示,所有合金的HCTI大体上良好。Mg/Si比为2.22的合金C3实现了最低的HCTI。Following Example 1, four additional alloys were cast and their hot tear susceptibility determined. As in Example 1, the silicon content was varied again, but with a higher nominal amount of magnesium and a lower nominal amount of manganese. The composition of the Example 3 alloy is shown in Table 4 below. The HCTI results for the Example 3 alloy are shown in FIG. 3 . As shown, the HCTI of all alloys is generally good. Alloy C3 with a Mg/Si ratio of 2.22 achieves the lowest HCTI.
表4-实施例3合金的组成(所有值均以重量百分比计)The composition of table 4-embodiment 3 alloy (all values are by weight percent)
实施例1-3的结果指示Mg/Si(重量比)应为从约1.7至约3.6,优选从约2.0至约3.0以促进抗热裂性。The results of Examples 1-3 indicate that the Mg/Si (weight ratio) should be from about 1.7 to about 3.6, preferably from about 2.0 to about 3.0 to promote hot crack resistance.
实施例4Example 4
按照实施例1,铸造四种另外的合金,并且测定它们的热裂敏感性。这次,锰含量变化,以3.6wt.%的标称的镁的量和1.5wt.%的标称的硅的量为目标。实施例4合金的组成示出于下表5中。实施例4合金的HCTI结果示出于图4中。如所示,所有合金的HCTI大体上良好。具有1.20wt.%的Mn的合金D4实现了最佳的HCTI结果。Following Example 1, four additional alloys were cast and their hot tear susceptibility determined. This time, the manganese content was varied to target a nominal magnesium amount of 3.6 wt.% and a nominal silicon amount of 1.5 wt.%. The composition of the Example 4 alloy is shown in Table 5 below. The HCTI results for the Example 4 alloy are shown in FIG. 4 . As shown, the HCTI of all alloys is generally good. Alloy D4 with 1.20 wt.% Mn achieved the best HCTI results.
表5-实施例4合金的组成(所有值均以重量百分比计)The composition of table 5-embodiment 4 alloy (all values are by weight percentage)
实施例5Example 5
按照实施例1,铸造四种另外的合金,并且测定它们的热裂敏感性。这次,铁含量变化,以3.45wt.%的标称的镁的量、1.55wt.%的标称的硅的量和0.90wt.%的标称的锰的量为目标。实施例5合金的组成示出于下表6中。实施例5合金的HCTI结果示出于下图中。如所示,所有合金的HCTI大体上良好。具有0.29wt.%的Fe的合金E4实现了最佳的HCTI结果。Following Example 1, four additional alloys were cast and their hot tear susceptibility determined. This time, the iron content was varied to target a nominal magnesium amount of 3.45 wt.%, a nominal silicon amount of 1.55 wt.%, and a nominal manganese amount of 0.90 wt.%. The composition of the Example 5 alloy is shown in Table 6 below. The HCTI results for the Example 5 alloy are shown in the figure below. As shown, the HCTI of all alloys is generally good. Alloy E4 with 0.29 wt.% Fe achieved the best HCTI results.
表6-实施例5合金的组成(所有值均以重量百分比计)The composition of table 6-embodiment 5 alloy (all values are by weight percentage)
这些结果是意料之外的。铁不利地影响Al-Si铸合金的机械特性,这是因为铁作为大的初级(primary)或伪初级(pseudo-primary)化合物存在,该化合物增加硬度但是降低延展性。考虑到这些改进的HCTI结果,进行建模(ICME-综合计算材料工程)。这些结果显示,通过控制Fe和Mn含量,可以潜在地避免形成有害的针状β-Al5FeSi。图5a、5b和6示出了锰与铁含量和β-Al5FeSi与α-Al15FeMn3Si2相颗粒的体积分数之间的相关性(对于Al-3.6Mg-1.5Si合金)。向Al-Mg-Si合金中添加Mn可以促进α-Al15FeMn3Si2相的形成并且限制或防止β-Al5FeSi相的形成。例如,使用增加的铁的量,具有从0.4至0.6wt.%的Mn的Al-3.6Mg-1.5Si合金降低了β-Al5FeSi相的量。如图6所示,通过将铁从0.15wt.%增加至0.4wt.%,β-Al5FeSi相的量从约0.018wt.%降低至基本上0wt.%。因此,由于合金中铁的增加和β-Al5FeSi相的相应减少,可以实现具有改进的特性(例如,伸长率)的合金。These results were unexpected. Iron adversely affects the mechanical properties of Al-Si cast alloys because iron is present as a large primary or pseudo-primary compound that increases hardness but reduces ductility. Modeling (ICME - Integrated Computational Materials Engineering) was performed taking into account these improved HCTI results. These results show that the formation of detrimental acicular β-Al 5 FeSi can potentially be avoided by controlling the Fe and Mn contents. Figures 5a, 5b and 6 show the correlation between manganese and iron content and the volume fraction of β-Al 5 FeSi and α-Al 15 FeMn 3 Si 2 phase particles (for Al-3.6Mg-1.5Si alloy). The addition of Mn to Al-Mg-Si alloys can promote the formation of α-Al 15 FeMn 3 Si 2 phase and limit or prevent the formation of β-Al 5 FeSi phase. For example, Al-3.6Mg-1.5Si alloys with Mn from 0.4 to 0.6 wt.% reduce the amount of β-Al 5 FeSi phase with increasing amounts of iron. As shown in Figure 6, by increasing iron from 0.15 wt.% to 0.4 wt.%, the amount of β-Al 5 FeSi phase is reduced from about 0.018 wt.% to substantially 0 wt.%. Thus, alloys with improved properties (eg, elongation) can be achieved due to the increase in iron in the alloy and the corresponding reduction in the β-Al 5 FeSi phase.
实施例6Example 6
通过定向凝固铸造八种另外的合金。所有合金的铁含量变化。第一组(F)以3.6wt.%的标称的镁的量、1.5wt.%的标称的硅的量和0.90wt.%的标称的锰的量为目标。第二组(G)以4.0wt.%的标称的镁的量、1.7wt.%的标称的硅的量和0.65wt.%的标称的锰的量为目标。实施例6合金的组成示出于下表7中。Eight additional alloys were cast by directional solidification. The iron content of all alloys varies. The first group (F) targets a nominal magnesium amount of 3.6 wt.%, a nominal silicon amount of 1.5 wt.%, and a nominal manganese amount of 0.90 wt.%. The second group (G) targets a nominal magnesium amount of 4.0 wt.%, a nominal silicon amount of 1.7 wt.%, and a nominal manganese amount of 0.65 wt.%. The composition of the Example 6 alloy is shown in Table 7 below.
表6-实施例5合金的组成(所有值均以重量百分比计)The composition of table 6-embodiment 5 alloy (all values are by weight percentage)
根据ASTM E8和B557测试定向凝固合金的机械特性,其结果提供在下表7中。还测试实施例5合金的机械特性,因此那些结果也包括在表7中。还提供了品质指数(Q)。(Q=UTS+150*log(伸长率))。与这些特性和合金组成有关的各种曲线图提供在图7a-7d中。The mechanical properties of directionally solidified alloys were tested according to ASTM E8 and B557, the results of which are provided in Table 7 below. The mechanical properties of the Example 5 alloy were also tested, so those results are also included in Table 7. A quality index (Q) is also provided. (Q=UTS+150*log(elongation)). Various graphs relating these properties and alloy compositions are provided in Figures 7a-7d.
表7-合金E1-E4、F1-F4和G1-G4的特性Table 7 - Properties of Alloys E1-E4, F1-F4 and G1-G4
实施例7-实验建模Example 7 - Experimental Modeling
基于现有实验,对各种铝合金组成进行建模。结果示于图8a-8b中。这些建模结果指示,对于以为0.7wt.%的Mn和0.25wt.%的Fe为目标的Al-Mg-Si合金,控制镁和硅可能是有用的,以使得(以重量百分比计的所有值):(0.4567*Mg–0.5)<=Si<=(0.4567*Mg+0.2)。Based on existing experiments, various aluminum alloy compositions were modeled. The results are shown in Figures 8a-8b. These modeling results indicate that for an Al-Mg-Si alloy targeting 0.7 wt.% Mn and 0.25 wt.% Fe, it may be useful to control magnesium and silicon such that (all values in weight percent ): (0.4567*Mg-0.5)<=Si<=(0.4567*Mg+0.2).
对另外的铝合金进行类似的建模,如图8c-8d所示。这些建模结果指示,随着锰或铁含量增加,硅含量需要增加。这些结果进一步指示,按照以下控制镁、硅、锰和铁可能是有用的:Similar modeling was performed for other aluminum alloys, as shown in Figures 8c-8d. These modeling results indicate that as the manganese or iron content increases, the silicon content needs to increase. These results further indicate that it may be useful to control magnesium, silicon, manganese and iron as follows:
(0.4567*Mg+0.2*Mn+0.25*Fe–0.6)<=Si<=(0.4567*Mg+0.2*Mn+0.25*Fe)(0.4567*Mg+0.2*Mn+0.25*Fe–0.6)<=Si<=(0.4567*Mg+0.2*Mn+0.25*Fe)
尽管已经详细描述了本公开内容的各种实施方案,但是显然本领域技术人员将设想到那些实施方案的修改和改进。然而,应当明确地理解,此类修改和改进在本公开内容的精神和范围内。While various embodiments of the present disclosure have been described in detail, it is evident that modifications and improvements of those embodiments will occur to those skilled in the art. However, it should be expressly understood that such modifications and improvements are within the spirit and scope of the present disclosure.
Claims (37)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862667930P | 2018-05-07 | 2018-05-07 | |
US62/667,930 | 2018-05-07 | ||
PCT/US2019/030924 WO2019217319A1 (en) | 2018-05-07 | 2019-05-06 | Al-Mg-Si-Mn-Fe CASTING ALLOYS |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110603341A true CN110603341A (en) | 2019-12-20 |
Family
ID=68466843
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201980002032.6A Pending CN110603341A (en) | 2018-05-07 | 2019-05-06 | Al-Mg-Si-Mn-Fe casting alloy |
Country Status (11)
Country | Link |
---|---|
US (1) | US20190352745A1 (en) |
EP (2) | EP4234123A3 (en) |
JP (1) | JP7438134B2 (en) |
KR (1) | KR102747986B1 (en) |
CN (1) | CN110603341A (en) |
CA (1) | CA3099043A1 (en) |
DE (1) | DE202019105466U1 (en) |
ES (1) | ES2949017T3 (en) |
MX (1) | MX2020011679A (en) |
PL (1) | PL3589766T3 (en) |
WO (1) | WO2019217319A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102441402B1 (en) | 2016-11-16 | 2022-09-07 | 현대자동차주식회사 | Sliding apparatus of bus seat |
KR102780397B1 (en) * | 2022-12-21 | 2025-03-12 | 주식회사 삼기 | Non-heat treatment type aluminum alloy and manufacturing method of aluminum alloy parts using the same |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1384264A (en) * | 1972-02-09 | 1975-02-19 | Honsel Werke Ag | Structural parts produced from aluminium-containing alloys |
EP0687742A1 (en) * | 1994-06-16 | 1995-12-20 | ALUMINIUM RHEINFELDEN GmbH | Die casting alloy |
JP2002146463A (en) * | 2000-11-02 | 2002-05-22 | Nippon Light Metal Co Ltd | Aluminum alloy for die casting |
US20050199318A1 (en) * | 2003-06-24 | 2005-09-15 | Doty Herbert W. | Castable aluminum alloy |
JP2009108409A (en) * | 2007-10-12 | 2009-05-21 | Hitachi Metals Ltd | Al-Mg TYPE ALUMINUM ALLOY FOR FORGING, WITH EXCELLENT TOUGHNESS, AND CAST MEMBER COMPOSED THEREOF |
JP2011137200A (en) * | 2009-12-28 | 2011-07-14 | Kobe Steel Ltd | Aluminum alloy sheet for heat insulator and method for producing the same |
CN105283568A (en) * | 2013-12-13 | 2016-01-27 | 力拓加铝国际有限公司 | Aluminum casting alloy with improved high-temperature performance |
US20160222493A1 (en) * | 2013-10-08 | 2016-08-04 | National University Corporation University Of Toyama | Casting aluminum alloy and casting produced using the same |
CN106191572A (en) * | 2016-06-29 | 2016-12-07 | 余姚市弘顺机械有限公司 | A kind of auto parts machinery aluminium alloy and the pressure casting method of auto parts machinery |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60245759A (en) * | 1984-05-21 | 1985-12-05 | Nippon Light Metal Co Ltd | Aluminum alloy for casting |
JP2002105611A (en) | 2000-09-26 | 2002-04-10 | Ahresty Corp | Manufacturing method of automobile parts by die casting |
FR2827306B1 (en) * | 2001-07-10 | 2004-10-22 | Pechiney Aluminium | HIGH DUCTILITY ALUMINUM ALLOY FOR PRESSURE CASTING |
US20030143102A1 (en) * | 2001-07-25 | 2003-07-31 | Showa Denko K.K. | Aluminum alloy excellent in cutting ability, aluminum alloy materials and manufacturing method thereof |
JP5355320B2 (en) * | 2009-09-10 | 2013-11-27 | 日産自動車株式会社 | Aluminum alloy casting member and manufacturing method thereof |
EP2471967B1 (en) * | 2010-12-28 | 2014-07-09 | Casa Maristas Azterlan | Method for obtaining improved mechanical properties in recycled aluminium castings free of platelet-shaped beta-phases |
AT511397B1 (en) * | 2011-05-03 | 2013-02-15 | Sag Motion Ag | METHOD OF REFINING AND PERMITTING MODIFICATION OF AIMGSI ALLOYS |
JP5882380B2 (en) | 2013-04-09 | 2016-03-09 | 株式会社神戸製鋼所 | Manufacturing method of aluminum alloy sheet for press forming |
EP3159422B1 (en) * | 2016-04-19 | 2018-06-13 | Rheinfelden Alloys GmbH & Co. KG | Alloy for pressure die casting |
DE112016006826T5 (en) | 2016-06-10 | 2019-01-10 | GM Global Technology Operations LLC | MAGNESIUM-BASED ALUMINUM ALLOY FOR THIN WALL CASTING |
JP6836266B2 (en) | 2016-12-27 | 2021-02-24 | 学校法人常翔学園 | Al-Mg-Si based aluminum alloy cast plate and its manufacturing method |
-
2019
- 2019-05-06 MX MX2020011679A patent/MX2020011679A/en unknown
- 2019-05-06 EP EP23175753.5A patent/EP4234123A3/en not_active Withdrawn
- 2019-05-06 CA CA3099043A patent/CA3099043A1/en active Pending
- 2019-05-06 KR KR1020207034302A patent/KR102747986B1/en active Active
- 2019-05-06 WO PCT/US2019/030924 patent/WO2019217319A1/en unknown
- 2019-05-06 JP JP2020561716A patent/JP7438134B2/en active Active
- 2019-05-06 PL PL19773328.0T patent/PL3589766T3/en unknown
- 2019-05-06 DE DE202019105466.2U patent/DE202019105466U1/en active Active
- 2019-05-06 CN CN201980002032.6A patent/CN110603341A/en active Pending
- 2019-05-06 EP EP19773328.0A patent/EP3589766B1/en active Active
- 2019-05-06 ES ES19773328T patent/ES2949017T3/en active Active
- 2019-05-07 US US16/405,061 patent/US20190352745A1/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1384264A (en) * | 1972-02-09 | 1975-02-19 | Honsel Werke Ag | Structural parts produced from aluminium-containing alloys |
EP0687742A1 (en) * | 1994-06-16 | 1995-12-20 | ALUMINIUM RHEINFELDEN GmbH | Die casting alloy |
JP2002146463A (en) * | 2000-11-02 | 2002-05-22 | Nippon Light Metal Co Ltd | Aluminum alloy for die casting |
US20050199318A1 (en) * | 2003-06-24 | 2005-09-15 | Doty Herbert W. | Castable aluminum alloy |
JP2009108409A (en) * | 2007-10-12 | 2009-05-21 | Hitachi Metals Ltd | Al-Mg TYPE ALUMINUM ALLOY FOR FORGING, WITH EXCELLENT TOUGHNESS, AND CAST MEMBER COMPOSED THEREOF |
JP2011137200A (en) * | 2009-12-28 | 2011-07-14 | Kobe Steel Ltd | Aluminum alloy sheet for heat insulator and method for producing the same |
US20160222493A1 (en) * | 2013-10-08 | 2016-08-04 | National University Corporation University Of Toyama | Casting aluminum alloy and casting produced using the same |
CN105283568A (en) * | 2013-12-13 | 2016-01-27 | 力拓加铝国际有限公司 | Aluminum casting alloy with improved high-temperature performance |
CN106191572A (en) * | 2016-06-29 | 2016-12-07 | 余姚市弘顺机械有限公司 | A kind of auto parts machinery aluminium alloy and the pressure casting method of auto parts machinery |
Also Published As
Publication number | Publication date |
---|---|
US20190352745A1 (en) | 2019-11-21 |
PL3589766T3 (en) | 2023-07-31 |
DE202019105466U1 (en) | 2020-01-13 |
JP7438134B2 (en) | 2024-02-26 |
EP3589766A1 (en) | 2020-01-08 |
KR102747986B1 (en) | 2024-12-27 |
WO2019217319A1 (en) | 2019-11-14 |
MX2020011679A (en) | 2020-12-10 |
KR20200140917A (en) | 2020-12-16 |
EP4234123A3 (en) | 2023-09-27 |
EP4234123A2 (en) | 2023-08-30 |
JP2021523291A (en) | 2021-09-02 |
EP3589766B1 (en) | 2023-06-28 |
EP3589766A4 (en) | 2020-09-02 |
ES2949017T3 (en) | 2023-09-25 |
CA3099043A1 (en) | 2019-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7108042B2 (en) | Aluminum diecasting alloy | |
US6824737B2 (en) | Casting alloy | |
CN109072356B (en) | Die casting alloy | |
JP2001220639A (en) | Aluminum casting alloy | |
EP3436616B1 (en) | Aluminum alloys having improved tensile properties | |
CN115961186A (en) | Die-casting aluminum alloy material and preparation method and application thereof | |
EP3914747A1 (en) | Foundry alloys for high-pressure vacuum die casting | |
CN115003832A (en) | Die-cast aluminum alloy for structural components | |
CN110603341A (en) | Al-Mg-Si-Mn-Fe casting alloy | |
JP2003221636A (en) | Al-Mg-Si ALUMINUM ALLOY EXTRUSION MOLDED MATERIAL SHOWING EXCELLENT RESISTANCE TO IMPACT FRACTURE | |
EP3342889B1 (en) | Aluminium casting alloy | |
JP2002235158A (en) | Method for manufacturing extruded high-strength aluminum alloy with excellent bending workability | |
KR101499096B1 (en) | Aluminum alloy and manufacturing method thereof | |
JP7053281B2 (en) | Aluminum alloy clad material and its manufacturing method | |
KR101693984B1 (en) | Aluminum alloy for automobile outer panels and method for producing the same | |
CN115679158A (en) | Casting alloy | |
EP3877562B1 (en) | 2xxx aluminum lithium alloys | |
JP7401080B1 (en) | Manufacturing method of Al alloy for casting | |
EP3342888B1 (en) | Aluminium casting alloy | |
JP2005082865A (en) | Non-heat treated aluminum alloy for die casting, die-cast product using the same alloy, and method for producing the same | |
JP2003301249A (en) | Superplastic forming method for aluminum alloy high strength members | |
JP4238181B2 (en) | High toughness Al alloy casting | |
WO2022217338A1 (en) | Oxidation resistant al-mg high strength die casting foundry alloys | |
CN113215454A (en) | Aluminum alloy with excellent performance for manufacturing mobile phone plate | |
JPH07216486A (en) | Aluminum alloy for squeeze casting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |