CN110599307B - A method and device for recommending products - Google Patents
A method and device for recommending products Download PDFInfo
- Publication number
- CN110599307B CN110599307B CN201910877288.3A CN201910877288A CN110599307B CN 110599307 B CN110599307 B CN 110599307B CN 201910877288 A CN201910877288 A CN 201910877288A CN 110599307 B CN110599307 B CN 110599307B
- Authority
- CN
- China
- Prior art keywords
- attribute value
- user
- attribute
- determining
- target
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 62
- 238000004590 computer program Methods 0.000 claims description 17
- 238000012163 sequencing technique Methods 0.000 claims 1
- 239000000047 product Substances 0.000 description 197
- 230000000875 corresponding effect Effects 0.000 description 67
- 238000010586 diagram Methods 0.000 description 13
- 230000008569 process Effects 0.000 description 13
- 230000006870 function Effects 0.000 description 9
- 230000006872 improvement Effects 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 238000012549 training Methods 0.000 description 4
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 3
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 3
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 2
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 2
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 239000010979 ruby Substances 0.000 description 1
- 229910001750 ruby Inorganic materials 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/95—Retrieval from the web
- G06F16/953—Querying, e.g. by the use of web search engines
- G06F16/9535—Search customisation based on user profiles and personalisation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2415—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on parametric or probabilistic models, e.g. based on likelihood ratio or false acceptance rate versus a false rejection rate
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/06—Buying, selling or leasing transactions
- G06Q30/0601—Electronic shopping [e-shopping]
- G06Q30/0631—Item recommendations
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Accounting & Taxation (AREA)
- Finance (AREA)
- General Engineering & Computer Science (AREA)
- Strategic Management (AREA)
- Artificial Intelligence (AREA)
- Marketing (AREA)
- Economics (AREA)
- Development Economics (AREA)
- Probability & Statistics with Applications (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Business, Economics & Management (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Biology (AREA)
- Evolutionary Computation (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
技术领域Technical Field
本申请实施例涉及计算机技术领域,尤其涉及一种商品推荐的方法及装置。The embodiments of the present application relate to the field of computer technology, and more particularly to a method and device for recommending products.
背景技术Background Art
目前,服务平台可以向用户提供商品推荐的服务,在提高服务平台上各种商品销量的同时,也可以向用户提供多样的商品选择,从而给用户带来了良好的购物体验。At present, the service platform can provide users with product recommendation services. While increasing the sales of various products on the service platform, it can also provide users with a variety of product choices, thus bringing users a good shopping experience.
在实际应用中,服务平台可以基于历史购物记录、浏览记录等,构建出用户的用户画像,进而在后续过程中通过该用户画像,将用户喜欢、感兴趣的商品类别的商品推荐给用户。In actual applications, the service platform can build a user profile of the user based on historical shopping records, browsing records, etc., and then use the user profile to recommend products in the product categories that the user likes and is interested in to the user in the subsequent process.
然而,现有技术中服务平台通常只是从用户感兴趣的商品类别的商品中选取一些商品推荐给用户,而用户在查询指定商品时,服务平台通常并不能按照用户的实际情况,确定将哪一商户所出售的指定商品推荐给用户。However, in the prior art, the service platform usually only selects some products from the product categories that the user is interested in and recommends them to the user. When the user searches for a specific product, the service platform usually cannot determine which merchant sells the specific product to recommend to the user according to the user's actual situation.
因此,如何能够基于用户的实际情况,从出售该指定商品的众多商户中选取适合该用户的商户,并将该商户所出售的指定商品推荐给用户,则是一个亟待解决的问题。Therefore, how to select a merchant suitable for the user from among the many merchants selling the designated commodity based on the actual situation of the user, and recommend the designated commodity sold by the merchant to the user, is a problem to be solved urgently.
发明内容Summary of the invention
本申请实施例提供一种商品推荐的方法及装置,以部分的解决现有技术存在的上述问题。The embodiments of the present application provide a method and device for product recommendation to partially solve the above-mentioned problems existing in the prior art.
本申请实施例采用下述技术方案:The present application embodiment adopts the following technical solutions:
本申请实施例提供了一种商品推荐的方法,包括:The present application embodiment provides a method for recommending products, including:
基于用户的用户标识,确定向所述用户推荐的目标商品;Determining a target commodity to be recommended to the user based on the user identifier of the user;
查询所述目标商品对应的属性信息,以及根据所述用户标识,查询所述用户的属性信息;Querying the attribute information corresponding to the target product, and querying the attribute information of the user according to the user identifier;
将所述用户的属性信息和所述目标商品的属性信息输入到预先训练出的预测模型中,以确定所述用户对指定属性的属性值落入不同预设区间内的所述目标商品进行下单的概率分布;Inputting the attribute information of the user and the attribute information of the target product into a pre-trained prediction model to determine the probability distribution of the user placing an order for the target product whose attribute value of a specified attribute falls within different preset intervals;
根据所述概率分布以及确定出的所述不同预设区间分别对应的参考属性值,确定所述目标商品在所述指定属性上的属性值期望;Determining an expected attribute value of the target product on the specified attribute according to the probability distribution and the determined reference attribute values corresponding to the different preset intervals;
根据各商户所提供的各商品的商品标识,查询出提供所述目标商品的各商户;According to the commodity identifiers of the commodities provided by the merchants, query the merchants that provide the target commodity;
确定查询到的各商户针对所述目标商品的所述指定属性所设置的属性值;Determine the attribute value set by each queried merchant for the designated attribute of the target product;
针对每个属性值,根据所述属性值期望,确定所述用户对具有该属性值的所述目标商品进行下单的下单概率;For each attribute value, determining, according to the attribute value expectation, an order probability of the user placing an order for the target product having the attribute value;
根据针对每个属性值确定出的各下单概率,从查询到的各商户中确定需要向所述用户进行推荐的商户,作为目标商户;According to each order probability determined for each attribute value, determine a merchant that needs to be recommended to the user from among the queried merchants as a target merchant;
确定所述目标商户提供的所述目标商品的商品信息,作为推荐信息,并基于所述用户标识,将所述推荐信息发送给所述用户所持有的终端进行显示,以向所述用户推荐所述目标商户所提供的所述目标商品。The product information of the target product provided by the target merchant is determined as recommendation information, and based on the user identifier, the recommendation information is sent to a terminal held by the user for display, so as to recommend the target product provided by the target merchant to the user.
本申请实施例提供了一种商品推荐的装置,包括:The present application embodiment provides a device for recommending products, including:
商品确定模块,用于基于用户的用户标识,确定向所述用户推荐的目标商品;A commodity determination module, used to determine a target commodity to be recommended to the user based on the user identifier of the user;
第一查询模块,用于查询所述目标商品对应的属性信息,以及根据所述用户标识,查询所述用户的属性信息;A first query module, used to query the attribute information corresponding to the target product, and query the attribute information of the user according to the user identifier;
概率分布确定模块,用于将所述用户的属性信息和所述目标商品的属性信息输入到预先训练出的预测模型中,以确定所述用户对指定属性的属性值落入不同预设区间内的所述目标商品进行下单的概率分布;A probability distribution determination module, used to input the attribute information of the user and the attribute information of the target product into a pre-trained prediction model to determine the probability distribution of the user placing an order for the target product whose attribute value of a specified attribute falls within different preset intervals;
期望确定模块,用于根据所述概率分布以及确定出的所述不同预设区间分别对应的参考属性值,确定所述目标商品在所述指定属性上的属性值期望;An expectation determination module, configured to determine an expectation of an attribute value of the target product on the specified attribute according to the probability distribution and the determined reference attribute values corresponding to the different preset intervals;
第二查询模块,用于根据各商户所提供的各商品的商品标识,查询出提供所述目标商品的各商户;The second query module is used to query each merchant that provides the target commodity according to the commodity identifier of each commodity provided by each merchant;
属性值确定模块,用于确定查询到的各商户针对所述目标商品的所述指定属性所设置的属性值;An attribute value determination module, used to determine the attribute value set by each queried merchant for the specified attribute of the target product;
概率确定模块,用于针对每个属性值,根据所述属性值期望,确定所述用户对具有该属性值的所述目标商品进行下单的下单概率;A probability determination module, configured to determine, for each attribute value, the probability of the user placing an order for the target product having the attribute value according to the attribute value expectation;
商户确定模块,用于根据针对每个属性值确定出的各下单概率,从查询到的各商户中确定需要向所述用户进行推荐的商户,作为目标商户;A merchant determination module, used to determine a merchant that needs to be recommended to the user as a target merchant from among the queried merchants according to the order placement probabilities determined for each attribute value;
推荐模块,用于确定所述目标商户提供的所述目标商品的商品信息,作为推荐信息,并基于所述用户标识,将所述推荐信息发送给所述用户所持有的终端进行显示,以向所述用户推荐所述目标商户所提供的所述目标商品。The recommendation module is used to determine the commodity information of the target commodity provided by the target merchant as the recommendation information, and based on the user identifier, send the recommendation information to the terminal held by the user for display, so as to recommend the target commodity provided by the target merchant to the user.
本申请实施例提供了一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现上述商品推荐的方法。An embodiment of the present application provides a computer-readable storage medium, wherein the storage medium stores a computer program, and when the computer program is executed by a processor, the above-mentioned method for recommending products is implemented.
本申请实施例提供了一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现上述商品推荐的方法。An embodiment of the present application provides an electronic device, including a memory, a processor, and a computer program stored in the memory and executable on the processor, wherein the processor implements the above-mentioned product recommendation method when executing the program.
本申请实施例采用的上述至少一个技术方案能够达到以下有益效果:At least one of the above technical solutions adopted in the embodiments of the present application can achieve the following beneficial effects:
在本申请实施例提供的商品推荐的方法中,基于用户的用户标识,确定向所述用户推荐的目标商品,查询该目标商品对应的属性信息,以及根据该用户标识,查询该用户标识对应用户的属性信息,将查询到的该目标商品对应的属性信息以及该用户的属性信息输入到预先训练出的预测模型中,以确定该用户对指定属性的属性值落入不同预设区间内的该目标商品进行下单的概率分布,根据该概率分布以及确定出的不同预设区间分别对应的参考属性值,确定该目标商品在指定属性上的属性值期望,根据各商户所提到的各商品的商品标识,查询出提供该目标商品的各商户,确定查询到的各商户针对该目标商品的指定属性所设置的属性值,并针对每个属性值,根据该属性值期望,确定该用户对具有该属性值的该目标商品进行下单的下单概率,根据针对每个属性值确定出的各下单概率,从查询到的各商户中确定需要向该用户进行推荐的商户,作为目标商户,进而确定该目标商户提供的该目标商品的商品信息,作为推荐信息,并基于该用户标识,将该推荐信息发送给该用户所持有的终端进行显示,以向该用户推荐该目标商户所提供的该目标商品。In the commodity recommendation method provided in the embodiment of the present application, based on the user's user identification, a target commodity recommended to the user is determined, attribute information corresponding to the target commodity is queried, and based on the user identification, attribute information of the user corresponding to the user identification is queried, and the queried attribute information corresponding to the target commodity and the attribute information of the user are input into a pre-trained prediction model to determine the probability distribution of the user placing an order for the target commodity whose attribute value of the specified attribute falls within different preset intervals, and based on the probability distribution and the reference attribute values corresponding to the determined different preset intervals, the attribute value expectation of the target commodity on the specified attribute is determined, and based on the commodities mentioned by each merchant, the attribute information of each merchant is input into a pre-trained prediction model to determine the probability distribution of the user placing an order for the target commodity whose attribute value of the specified attribute falls within different preset intervals. The product identification of the target product is used to query various merchants that provide the target product, determine the attribute values set by the queried merchants for the specified attributes of the target product, and for each attribute value, determine the order probability of the user placing an order for the target product with the attribute value according to the attribute value expectation, and according to each order probabilities determined for each attribute value, determine a merchant that needs to be recommended to the user from among the queried merchants as the target merchant, and then determine the product information of the target product provided by the target merchant as the recommendation information, and based on the user identification, send the recommendation information to the terminal held by the user for display, so as to recommend the target product provided by the target merchant to the user.
从上述方法中可以看出,服务平台可以通过预先训练的预测模型,确定出该目标商品在指定属性上的属性值期望,该属性值期望表明了用户所期望的该目标商品的属性值,换句话说,该属性值期望有效的反映了用户针对该目标商品的实际要求,因此,服务平台后续基于该属性值期望向用户推荐与该用户实际需求相符的商户所提供的该目标商品,相对于现有技术而言,可以给用户带来极大的便利。It can be seen from the above method that the service platform can determine the expected attribute value of the target product on the specified attribute through a pre-trained prediction model. The expected attribute value indicates the attribute value of the target product expected by the user. In other words, the expected attribute value effectively reflects the user's actual requirements for the target product. Therefore, the service platform subsequently recommends the target product provided by the merchant that meets the user's actual needs based on the expected attribute value. Compared with the existing technology, this can bring great convenience to the user.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:The drawings described herein are used to provide a further understanding of the present application and constitute a part of the present application. The illustrative embodiments of the present application and their descriptions are used to explain the present application and do not constitute an improper limitation on the present application. In the drawings:
图1为本申请实施例提供的一种商品推荐的方法的流程示意图;FIG1 is a schematic diagram of a flow chart of a method for recommending products according to an embodiment of the present application;
图2为本申请实施例提供的通过确定出的高斯分布向用户推荐商品的示意图;FIG2 is a schematic diagram of recommending products to users through a determined Gaussian distribution according to an embodiment of the present application;
图3为本申请实施例提供的一种商品推荐的装置示意图;FIG3 is a schematic diagram of a device for recommending goods provided in an embodiment of the present application;
图4为本申请实施例提供的对应于图1的电子设备示意图。FIG. 4 is a schematic diagram of an electronic device corresponding to FIG. 1 provided in an embodiment of the present application.
具体实施方式DETAILED DESCRIPTION
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请具体实施例及相应的附图对本申请技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。In order to make the purpose, technical solution and advantages of the present application clearer, the technical solution of the present application will be clearly and completely described below in combination with the specific embodiments of the present application and the corresponding drawings. Obviously, the described embodiments are only part of the embodiments of the present application, not all of the embodiments. Based on the embodiments in the present application, all other embodiments obtained by ordinary technicians in this field without making creative work are within the scope of protection of the present application.
以下结合附图,详细说明本申请各实施例提供的技术方案。The technical solutions provided by various embodiments of the present application are described in detail below in conjunction with the accompanying drawings.
图1为本申请实施例提供的一种商品推荐的方法的流程示意图,具体包括以下步骤:FIG1 is a flow chart of a method for recommending products according to an embodiment of the present application, which specifically includes the following steps:
S101:基于用户的用户标识,确定向所述用户推荐的目标商品。S101: Determine a target commodity to be recommended to the user based on the user identification of the user.
为了使用户能够得到更好的购物体验,在本申请实施例中,服务平台可以向用户进行商品推荐。其中,服务平台向用户进行商品推荐的具体触发形式可以有很多。例如,用户可以在诸如手机、平板电脑等终端设备,或是安装在终端设备的应用(Application,App)中输入目标信息。终端或App可以接收用户输入的目标信息,并基于该用户的用户标识生成相应的信息查询请求(用户标识可以是指诸如用户账号、手机号、身份证号等标识信息)。终端可以将该信息查询请求发送给服务平台,相应的,服务平台可以从携带有该用户标识的信息查询请求中确定出该终端接收到的目标信息,并根据该目标信息,确定出该目标信息对应的目标商品。其中,这里提到的目标信息可以是指用于对商品进行标识的信息,如,商品名称、商品规格、商品类目等。而这里提到的目标商品,即是指用户所要查询的需要服务平台向其推荐的商品。In order to enable users to get a better shopping experience, in an embodiment of the present application, the service platform can recommend products to users. Among them, there can be many specific triggering forms for the service platform to recommend products to users. For example, the user can enter the target information in a terminal device such as a mobile phone, a tablet computer, or an application (Application, App) installed in the terminal device. The terminal or App can receive the target information entered by the user and generate a corresponding information query request based on the user's user identifier (the user identifier can refer to identification information such as user account, mobile phone number, ID number, etc.). The terminal can send the information query request to the service platform, and accordingly, the service platform can determine the target information received by the terminal from the information query request carrying the user identifier, and determine the target product corresponding to the target information based on the target information. Among them, the target information mentioned here can refer to information used to identify the product, such as product name, product specifications, product category, etc. The target product mentioned here refers to the product that the user wants to query and needs to be recommended by the service platform.
再例如,当用户启动终端中安装的App时,终端可以基于用户在该App中登录的用户账号,向该App对应的服务平台发送携带有用户标识的信息查询请求(该用户标识可以是指该用户账号,也可以是指通过该用户账号查询到的诸如用户的手机号、身份证号等标识信息)。相应的,服务平台可以根据接收到的信息查询请求中携带的用户标识,以及预先统计出的各用户感兴趣的商品类别以及商品,查询出该用户感兴趣的商品,进而可以将查询出的这些商品,确定为需要向该用户推荐的目标商品。For another example, when a user starts an App installed in a terminal, the terminal can send an information query request carrying a user identifier to the service platform corresponding to the App based on the user account logged in by the user in the App (the user identifier can refer to the user account, or can refer to identification information such as the user's mobile phone number, ID number, etc. queried through the user account). Correspondingly, the service platform can query the products that the user is interested in based on the user identifier carried in the received information query request, as well as the product categories and products that each user is interested in that have been pre-counted, and then these queried products can be determined as target products that need to be recommended to the user.
再例如,服务平台可以主动向该用户进行商品推荐,即,用户无需通过终端或是App向服务平台发送信息查询请求,服务平台即可主动根据用户的用户标识(即用户账号、手机号、身份证号等标识信息),以及预先统计出的各用户感兴趣的商品类别以及商品,查询出该用户感兴趣的商品,进而可以将查询出的这些商品,确定为需要向该用户推荐的目标商品。而其他的触发形式在此就不一一举例说明了。For another example, the service platform can actively recommend products to the user, that is, the user does not need to send an information query request to the service platform through a terminal or App. The service platform can actively query the products that the user is interested in based on the user's user identification (i.e. user account, mobile phone number, ID number and other identification information) and the pre-counted product categories and products that each user is interested in, and then determine these queried products as target products that need to be recommended to the user. Other trigger forms are not given examples here one by one.
需要说明的是,基于预先统计出的各用户感兴趣的商品类别以及商品,来确定需要向该用户推荐的目标商品时,最终可能确定出多个需要向该用户推荐的目标商品,而针对每个目标商品,服务平台均可以通过本申请实施例提供的商品推荐方法,向该用户进行商品推荐。It should be noted that when determining the target products that need to be recommended to the user based on the pre-counted product categories and products that each user is interested in, it may eventually be determined that multiple target products need to be recommended to the user. For each target product, the service platform can recommend the product to the user through the product recommendation method provided in the embodiment of the present application.
S102:查询所述目标商品对应的属性信息,以及根据所述用户标识,查询所述用户的属性信息。S102: Query the attribute information corresponding to the target product, and query the attribute information of the user according to the user identifier.
S103:将所述用户的属性信息和所述目标商品的属性信息输入到预先训练出的预测模型中,以确定所述用户对指定属性的属性值落入不同预设区间内的所述目标商品进行下单的概率分布。S103: Inputting the attribute information of the user and the attribute information of the target product into a pre-trained prediction model to determine the probability distribution of the user placing an order for the target product whose attribute value of a specified attribute falls within different preset intervals.
服务平台在确定出该目标信息对应的目标商品后,可以根据该目标商品的商品标识,查询出该目标商品对应的属性信息,并且,根据该信息查询请求中携带的该用户标识,查询出该用户标识对应用户的属性信息。其中,用户的属性信息可以是指用户画像,该属性信息可以反映出诸如用户喜好、用户购买每类商品的平均消费额度等用户特征。同理,这里提到的目标商品的属性信息可以是指该目标商品的商品画像,目标商品的属性信息可以有效的反映出诸如该目标商品的商品类型、商品销量、商品售价等特征。After determining the target product corresponding to the target information, the service platform can query the attribute information corresponding to the target product based on the product identifier of the target product, and query the attribute information of the user corresponding to the user identifier based on the user identifier carried in the information query request. Among them, the user's attribute information may refer to a user portrait, and the attribute information may reflect user characteristics such as user preferences and the average amount of money spent by the user on each type of product. Similarly, the attribute information of the target product mentioned here may refer to the product portrait of the target product, and the attribute information of the target product may effectively reflect characteristics such as the product type, product sales volume, and product price of the target product.
服务平台将该用户的属性信息和该目标商品的属性信息输入到预先训练的预测模型,从而确定出该用户对指定属性的属性值落入不同预设区间内的该目标商品进行下单的概率分布。其中,该指定属性可以包括商品的价格、规格等商品属性。为了便于描述,下面将仅以商品的价格为指定属性,对本申请实施例提供的商品推荐的方法进行说明。相应的,当指定属性为商品的价格时,指定属性的属性值是指商品的具体售价。The service platform inputs the attribute information of the user and the attribute information of the target product into a pre-trained prediction model, thereby determining the probability distribution of the user placing an order for the target product whose attribute value of the specified attribute falls within different preset intervals. Among them, the specified attribute may include product attributes such as price and specifications of the product. For ease of description, the method for product recommendation provided in the embodiment of the present application will be described below only with the price of the product as the specified attribute. Accordingly, when the specified attribute is the price of the product, the attribute value of the specified attribute refers to the specific selling price of the product.
上述概率分布主要用于表征该用户对不同价格范围的该目标商品进行下单的概率情况。在本申请实施例中,可以预先统计出各商户出售该目标商品的各具体售价,并通过人为划分的方式,将各具体售价按照从低到高的顺序排序,得到价格序列,进而将该价格序列划分成预设数量的价格区间,得到各预设区间。当然,也可以预先统计出各商户出售该目标商品的最高价和最低价,并将从最低价到最高价这一价格范围划分成预设数量的价格区间,从而得到各预设区间。The above probability distribution is mainly used to characterize the probability of the user placing an order for the target product in different price ranges. In the embodiment of the present application, the specific selling prices of the target product sold by each merchant can be counted in advance, and the specific selling prices can be sorted from low to high by artificial division to obtain a price sequence, and then the price sequence is divided into a preset number of price intervals to obtain each preset interval. Of course, the highest price and the lowest price of the target product sold by each merchant can also be counted in advance, and the price range from the lowest price to the highest price can be divided into a preset number of price intervals to obtain each preset interval.
通过上述预测模型,服务平台可以确定出该用户对各预设区间的该目标商品进行下单的概率分布。例如,服务平台通过该预测模型确定出的概率分布为:[0.08、0.15、0.26、0.48、0.03],其中,0.08表示该用户对具体售价落入第一个预设区间的商品A(即目标商品)进行下单的概率,0.15表示该用户对具体售价落入第二个预设区间的商品A(即目标商品)进行下单的概率,以此类推。Through the above prediction model, the service platform can determine the probability distribution of the user placing an order for the target product in each preset interval. For example, the probability distribution determined by the service platform through the prediction model is: [0.08, 0.15, 0.26, 0.48, 0.03], where 0.08 represents the probability of the user placing an order for product A (i.e., the target product) whose specific price falls within the first preset interval, 0.15 represents the probability of the user placing an order for product A (i.e., the target product) whose specific price falls within the second preset interval, and so on.
S104:根据所述概率分布以及确定出的所述不同预设区间分别对应的参考属性值,确定所述目标商品在所述指定属性上的属性值期望。S104: Determine an expected attribute value of the target product on the specified attribute according to the probability distribution and the determined reference attribute values corresponding to the different preset intervals.
服务平台可以根据确定出的该概率分布,确定该目标商品在该指定属性上的属性值期望。具体的,服务平台可以确定出不同预设区间分别对应的参考属性值。对于每个预设区间来说,该预设区间对应的参考属性值用于从整体上表征出该预设区间中属性值的大小。The service platform can determine the expected attribute value of the target product on the specified attribute based on the determined probability distribution. Specifically, the service platform can determine the reference attribute values corresponding to different preset intervals. For each preset interval, the reference attribute value corresponding to the preset interval is used to characterize the size of the attribute value in the preset interval as a whole.
在本申请实施例中,服务平台可以通过确定平均值的方式,来确定参考属性值。具体的,针对每个预设区间,服务平台可以将位于该预设区间内的该商品的各属性值的平均值,确定该为预设区间对应的参考属性值。例如,假设预设区间为:[19.0、19.5、19.8、20.5、21.3],服务平台可以将该预设区间中包含的这些具体售价进行平均,从而将得到的平均值:20.02,进而可以将20.02作为该预设区间对应的参考属性值。In an embodiment of the present application, the service platform can determine the reference attribute value by determining an average value. Specifically, for each preset interval, the service platform can determine the average value of each attribute value of the commodity within the preset interval as the reference attribute value corresponding to the preset interval. For example, assuming the preset interval is: [19.0, 19.5, 19.8, 20.5, 21.3], the service platform can average the specific selling prices contained in the preset interval, thereby obtaining an average value of: 20.02, and then 20.02 can be used as the reference attribute value corresponding to the preset interval.
服务平台也可以通过确定中位数的方式,来确定参考属性值。具体的,针对每个预设区间,服务平台可以将位于该预设区间内的该目标商品的各属性值的中位数,确定为该预设区间对应的参考属性值。继续沿用上例,在预设区间[19.0、19.5、19.8、20.5、21.3]中,中位数为19.8,则服务平台可以将中位数19.8作为该预设区间对应的参考属性值。The service platform can also determine the reference attribute value by determining the median. Specifically, for each preset interval, the service platform can determine the median of each attribute value of the target product within the preset interval as the reference attribute value corresponding to the preset interval. Continuing with the above example, in the preset interval [19.0, 19.5, 19.8, 20.5, 21.3], the median is 19.8, then the service platform can use the median 19.8 as the reference attribute value corresponding to the preset interval.
服务平台可以通过上述说明的方式,确定出各预设区间对应的参考属性值,进而根据上述概率分布以及各预设区间对应的参考属性值,确定出该目标商品在该指定属性上的属性值期望。具体的,针对每个预设区间,服务平台可以根据该概率分布,确定出该预设区间对应的概率,而后,将该预设区间对应的概率和该预设区间对应的参考属性值的乘积,作为该预设区间对应的第一乘积。服务平台可以将各预设区间对应的第一乘积进行加和,从而确定出该目标商品在该指定属性上的属性值期望。其中,这里将该预设区间对应的概率和该预设区间对应的参考属性值的乘积称之为第一乘积,主要用于和后续提到的第二乘积进行区分,而对于“第一”和“第二”本身来说,没有其他特殊的含义。The service platform can determine the reference attribute value corresponding to each preset interval in the manner described above, and then determine the expected attribute value of the target product on the specified attribute based on the above probability distribution and the reference attribute value corresponding to each preset interval. Specifically, for each preset interval, the service platform can determine the probability corresponding to the preset interval based on the probability distribution, and then use the product of the probability corresponding to the preset interval and the reference attribute value corresponding to the preset interval as the first product corresponding to the preset interval. The service platform can add up the first products corresponding to each preset interval to determine the expected attribute value of the target product on the specified attribute. Among them, the product of the probability corresponding to the preset interval and the reference attribute value corresponding to the preset interval is called the first product, which is mainly used to distinguish it from the second product mentioned later, and there is no other special meaning for "first" and "second" themselves.
例如,假设预先针对商品B划分出了5个预设区间,这5个预设区间对应的参考属性值分别为:19.8、21.3、22.2、23.1、24.1。服务平台通过预测模型确定出的该用户对具体售价落入不同预设区间内的商品进行下单的概率分布为:[0.08、0.15、0.26、0.48、0.03]。服务平台可以通过下面的公式,确定出该属性值期望。For example, suppose that five preset intervals are pre-divided for commodity B, and the reference attribute values corresponding to these five preset intervals are: 19.8, 21.3, 22.2, 23.1, and 24.1. The service platform determines through the prediction model that the probability distribution of the user placing an order for commodities with specific prices falling within different preset intervals is: [0.08, 0.15, 0.26, 0.48, 0.03]. The service platform can determine the expected attribute value through the following formula.
其中,Pk表示在概率分布中第k个预设区间所对应的概率,Pricek表示第k个预设区间所对应的参考属性值,Exp表示确定出的属性值期望。Wherein, P k represents the probability corresponding to the kth preset interval in the probability distribution, Price k represents the reference attribute value corresponding to the kth preset interval, and Exp represents the determined attribute value expectation.
服务平台确定出的属性值期望,用于表征用户购买该目标商品所期望的属性值。即,当指定属性为商品的价格时,该属性值期望实际上是指该用户购买该目标商品时所期望的具体售价。服务平台后续可以通过该属性值期望,从服务平台各商户中,确定出售该目标商品所制定的具体售价接近该属性值期望的商户,并将该商户所出售的该目标商品推荐给该用户。The attribute value expectation determined by the service platform is used to characterize the attribute value expected by the user when purchasing the target product. That is, when the specified attribute is the price of the product, the attribute value expectation actually refers to the specific selling price expected by the user when purchasing the target product. The service platform can subsequently determine the merchant whose specific selling price for selling the target product is close to the attribute value expectation from the merchants on the service platform through the attribute value expectation, and recommend the target product sold by the merchant to the user.
S105:根据各商户所提供的各商品的商品标识,查询出提供所述目标商品的各商户。S105: Querying merchants that provide the target commodity based on the commodity identifiers of the commodities provided by the merchants.
S106:确定查询到的各商户针对所述目标商品的所述指定属性所设置的属性值。S106: Determine the attribute value set by each queried merchant for the designated attribute of the target product.
在本说明书中,服务平台中记录了各商户所提供的商品,即,记录了各商户都出售了哪些商品。所以,服务平台可以根据记录的各商户提供的商品(即各商户所出售的商品)的商品标识,查询出提供该目标商品的各商户,换句话说,服务平台可以查询出有哪些商户出售该目标商品。In this specification, the service platform records the commodities provided by each merchant, that is, records which commodities each merchant sells. Therefore, the service platform can query the merchants that provide the target commodity according to the commodity identifiers of the recorded commodities provided by each merchant (that is, the commodities sold by each merchant). In other words, the service platform can query which merchants sell the target commodity.
进一步地,服务平台可以根据记录的各商户针对各自提供的商品所设置的属性值,确定出查询到的各商户针对该目标商品的指定属性所设置的属性值。即,当该指定属性为商品的价格时,服务平台需要确定出售该目标商品的各商户针对该目标商品的各自具体售价(即属性值)。Furthermore, the service platform can determine the attribute values set by each merchant for the designated attribute of the target product according to the recorded attribute values set by each merchant for the products they provide. That is, when the designated attribute is the price of the product, the service platform needs to determine the specific selling price (i.e., attribute value) of each merchant selling the target product for the target product.
需要说明的是,服务平台执行步骤S104的时机可以有很多,服务平台可以在确定该目标信息对应的目标商品后,执行步骤S104,也可以在确定出属性值期望后,执行步骤S104,抑或是确定上述概率分布后,执行步骤S104。其他的时机在此就不一一举例说明了。It should be noted that the service platform can perform step S104 at many times. The service platform can perform step S104 after determining the target product corresponding to the target information, after determining the attribute value expectation, or after determining the above-mentioned probability distribution. Other times are not described one by one here.
S107:针对每个属性值,根据所述属性值期望,确定所述用户对具有该属性值的所述目标商品进行下单的下单概率。S107: For each attribute value, according to the attribute value expectation, determining the order probability of the user placing an order for the target product having the attribute value.
服务平台确定出各商户提供的该目标商品的指定属性的属性值后,可以针对每个属性值,将该属性值与确定出的属性值期望进行比较,进而确定出用户对具有该属性值的目标商品进行下单的下单概率。其中,若是该属性值与该属性值期望在数值上越接近,则用户对具有该属性值的该目标商品进行下单的下单概率越高,而若该属性值与该属性值期望在数值上相差越多,则用户对具有该属性值的该目标商品进行下单的下单概率越低。After the service platform determines the attribute values of the designated attributes of the target product provided by each merchant, it can compare the attribute value with the determined attribute value expectation for each attribute value, and then determine the probability of the user placing an order for the target product with the attribute value. Among them, if the attribute value is closer to the attribute value expectation in terms of value, the probability of the user placing an order for the target product with the attribute value is higher, and if the attribute value is more different from the attribute value expectation in terms of value, the probability of the user placing an order for the target product with the attribute value is lower.
在本申请实施例中,针对每个属性值,服务平台可以通过预设算法,确定出用户对具有该属性值的该目标商品进行下单的下单概率。具体的,服务平台可以将该属性值与该属性值期望作为预设算法的输入,而该预设算法的输出则是用户对具有该属性值的该目标商品进行下单的下单概率。需要指出的是,该预设算法的具体形式可以有很多,在此不做具体的限定,只需保证属性值和属性值期望之间的差值的大小,与确定出的下单概率的大小是成负相关关系的即可。In an embodiment of the present application, for each attribute value, the service platform can determine the probability of a user placing an order for the target product having the attribute value through a preset algorithm. Specifically, the service platform can use the attribute value and the attribute value expectation as the input of the preset algorithm, and the output of the preset algorithm is the probability of a user placing an order for the target product having the attribute value. It should be pointed out that the specific form of the preset algorithm can be many, and no specific limitation is made here. It only needs to ensure that the size of the difference between the attribute value and the attribute value expectation is negatively correlated with the size of the determined order probability.
S108:根据针对每个属性值确定出的各下单概率,从查询到的各商户中确定需要向所述用户进行推荐的商户,作为目标商户。S108: According to each ordering probability determined for each attribute value, determine a merchant that needs to be recommended to the user from among the queried merchants as a target merchant.
S109:确定所述目标商户提供的所述目标商品的商品信息,作为推荐信息,并基于所述用户标识,将所述推荐信息发送给所述用户所持有的终端进行显示,以向所述用户推荐所述目标商户所提供的所述目标商品。S109: Determine the product information of the target product provided by the target merchant as recommendation information, and send the recommendation information to the terminal held by the user for display based on the user identifier, so as to recommend the target product provided by the target merchant to the user.
服务平台可以将提供该目标商品的各商户,按照确定出的各下单概率从大到小的顺序,从高到低进行排序,并将排在设定排位之前的商户作为目标商户,进而将该目标商户以及该目标商户提供的该目标商品推荐给用户。其中,服务平台可以将该目标商户所提供的该目标商品的商品信息作为推荐信息发送给该用户所持有的终端(如,当前登录用户账号的终端),以使该终端将该推荐信息进行显示,或是通过相应的App显示该推荐信息。这样一来,即实现了服务平台将该目标商户提供的该目标商品推荐给该用户。The service platform can sort the merchants that provide the target product from high to low according to the determined order probabilities, and use the merchants ranked before the set ranking as target merchants, and then recommend the target merchant and the target product provided by the target merchant to the user. Among them, the service platform can send the product information of the target product provided by the target merchant as recommendation information to the terminal held by the user (such as the terminal of the currently logged-in user account), so that the terminal displays the recommendation information, or displays the recommendation information through the corresponding App. In this way, the service platform recommends the target product provided by the target merchant to the user.
当然,服务平台在确定出各下单概率后,也可以通过其他的方式确定该目标商户。例如,服务平台可以根据确定出的各下单概率、各商户的浏览量、各商户的销售量、各商户的星级以及各预设权重,对各商户进行打分,进而将评分靠前的商户作为目标商户,并将目标商户以及目标商户提供的该目标商品推荐给用户;再例如,服务平台可以先按照各下单概率从高到低的顺序,对各商户进行排序,而后,服务平台可以从排在设定排位之前的商户中,选取投诉量低于设定阈值的商户作为目标商户,进而将目标商户以及目标商户提供的该目标商品推荐给用户。其他方式在此就不详细举例说明了。Of course, after determining the order probabilities, the service platform can also determine the target merchant in other ways. For example, the service platform can score each merchant according to the determined order probabilities, the number of views of each merchant, the sales volume of each merchant, the star rating of each merchant, and the preset weights, and then use the merchants with higher scores as target merchants, and recommend the target merchants and the target products provided by the target merchants to the user; for another example, the service platform can first sort the merchants in order of the order probabilities from high to low, and then the service platform can select the merchants with complaints below the set threshold from the merchants ranked before the set ranking as the target merchants, and then recommend the target merchants and the target products provided by the target merchants to the user. Other methods will not be explained in detail here.
从上述方法中可以看出,服务平台可以通过预先训练的预测模型,确定出该目标商品在指定属性上的属性值期望,该属性值期望表明了用户所期望的该目标商品的属性值,换句话说,该属性值期望有效的反映了用户针对该目标商品的实际要求。因此,服务平台后续基于该属性值期望向用户推荐与该用户实际需求相符的商户所提供的该目标商品,从而给用户带来了良好的购物体验以及极大的便利。From the above method, it can be seen that the service platform can determine the expected attribute value of the target product on the specified attribute through the pre-trained prediction model. The expected attribute value indicates the attribute value of the target product expected by the user. In other words, the expected attribute value effectively reflects the actual requirements of the user for the target product. Therefore, the service platform subsequently recommends the target product provided by the merchant that meets the actual needs of the user based on the expected attribute value, thereby bringing a good shopping experience and great convenience to the user.
在本申请实施例中,服务平台确定出上述属性值期望后,可以进一步根据该属性值期望,确定该目标商品在该指定属性上的属性值方差,进而根据该属性值期望以及属性值方差,确定该目标商品在该指定属性上的高斯分布。其中,服务平台可以根据确定出的概率分布、不同预设区间分别对应的参考属性值以及该属性值期望,确定该目标商品在该指定属性上的属性值方差。In the embodiment of the present application, after the service platform determines the above-mentioned attribute value expectation, it can further determine the attribute value variance of the target product on the specified attribute based on the attribute value expectation, and then determine the Gaussian distribution of the target product on the specified attribute based on the attribute value expectation and the attribute value variance. The service platform can determine the attribute value variance of the target product on the specified attribute based on the determined probability distribution, the reference attribute values corresponding to different preset intervals, and the attribute value expectation.
具体的,服务平台针对每个预设区间,可以确定出该预设区间对应的参考属性值与该属性值期望之间的差值,而后,确定该预设区间在该概率分布上对应的概率与该差值的平方的乘积,并将该乘积作为该预设区间对应的第二乘积。服务平台可以将不同预设区间分别对应的第二乘积的和值,确定为属性值方差。以指定属性为商品的价格为例,具体可以参考下面的公式:Specifically, for each preset interval, the service platform can determine the difference between the reference attribute value corresponding to the preset interval and the expected attribute value, and then determine the product of the probability corresponding to the preset interval on the probability distribution and the square of the difference, and use the product as the second product corresponding to the preset interval. The service platform can determine the sum of the second products corresponding to different preset intervals as the attribute value variance. Taking the price of the commodity as an example, the following formula can be used for specific reference:
在该公式中,Pk表示在概率分布中第k个预设区间所对应的概率,Pricek表示第k个预设区间所对应的参考属性值,Exp表示确定出的属性值期望,Var2表示确定出的属性值方差。In this formula, P k represents the probability corresponding to the kth preset interval in the probability distribution, Price k represents the reference attribute value corresponding to the kth preset interval, Exp represents the determined attribute value expectation, and Var 2 represents the determined attribute value variance.
在确定出该属性值方差后,可以构建相应的高斯分布:N(Exp,Var2),进而在后续的过程中,通过该高斯分布,确定出各下单概率,并向用户进行商品推荐,如图2所示。After determining the variance of the attribute value, the corresponding Gaussian distribution can be constructed: N(Exp, Var 2 ). Then, in the subsequent process, the Gaussian distribution is used to determine the order probabilities and recommend products to the user, as shown in FIG2 .
图2为本申请实施例提供的通过确定出的高斯分布向用户推荐商品的示意图。FIG2 is a schematic diagram of recommending products to users through a determined Gaussian distribution according to an embodiment of the present application.
假设,服务平台查询出商户A将商品a(即目标商品)的价格定为:30,服务平台可以从确定出的高斯分布中,确定出商品a的价格为30时,用户对该商品a的下单概率。以此类推,服务平台通过这种方式,确定出用户针对不同价格的商品a进行下单的各下单概率,以通过各下单概率,确定需要推荐给用户的商户以及该商户所出售的商品a。Assume that the service platform finds out that merchant A sets the price of product a (i.e., the target product) as 30. The service platform can determine the probability of a user placing an order for product a when the price of product a is 30 from the determined Gaussian distribution. Similarly, the service platform determines the order probabilities of users placing orders for product a at different prices in this way, and determines the merchant that needs to be recommended to the user and the product a sold by the merchant through each order probability.
在本申请实施例中,服务平台确定出的属性值期望用于表征该用户购买该目标商品时所期望的该目标商品的属性值,所以,该属性值期望其实是与该用户以及该目标商品相对应的,而属性值方差由于是通过该属性值期望确定出的,所以,属性值方差与该用户以及该目标商品也是相对应的。进一步地,由该属性值方差以及属性值期望所确定出的高斯分布,也是和该用户以及该目标商品相对应的。In the embodiment of the present application, the attribute value expectation determined by the service platform is used to characterize the attribute value of the target product that the user expects when purchasing the target product, so the attribute value expectation is actually corresponding to the user and the target product, and the attribute value variance is determined by the attribute value expectation, so the attribute value variance is also corresponding to the user and the target product. Further, the Gaussian distribution determined by the attribute value variance and the attribute value expectation is also corresponding to the user and the target product.
换句话说,服务平台确定出的高斯分布是与用户本身和用户所要购买的商品相关的,该高斯分布是符合该用户以及该目标商品实际情况的。基于此,服务平台可以通过该高斯分布,向该用户推荐符合该用户实际需求的商品,从而给用户带来的极大的方便以及良好的用户体验。In other words, the Gaussian distribution determined by the service platform is related to the user and the product that the user wants to buy, and the Gaussian distribution is consistent with the actual situation of the user and the target product. Based on this, the service platform can recommend products that meet the actual needs of the user through the Gaussian distribution, thereby bringing great convenience and good user experience to the user.
在本申请实施例中,服务平台可以预先对上述预测模型进行训练。具体的,服务平台可以获取到各用户的历史订单数据作为训练样本,并以这些历史订单数据中包含的商品的指定属性的属性值所落入的预设区间作为训练目标,对该预测模型进行训练。由于该预测模型的训练方式为现有的常规方式,所以,在此不对预测模型的训练过程作详细说明了。In the embodiment of the present application, the service platform can pre-train the above prediction model. Specifically, the service platform can obtain the historical order data of each user as a training sample, and use the preset intervals in which the attribute values of the specified attributes of the goods contained in these historical order data fall as training targets to train the prediction model. Since the training method of the prediction model is an existing conventional method, the training process of the prediction model is not described in detail here.
还需说明的是,上述是以指定属性为商品的价格为例,对本申请提供的商品推荐的方法进行说明的。而本申请实施例提供的商品推荐方法也同样适用于指定属性为其他商品属性的情况。例如,当目标商品为储纳箱,指定属性为储纳箱的储纳空间大小时,上述预设区间即是预先按照各商户出售的各储纳箱的储纳空间大小划分出的。服务平台可以通过预先训练的预测模型,确定出用户对储纳空间大小位于不同预设区间内的储纳箱进行下单的概率分布,并根据该概率分布,确定出该用户针对储纳箱的储纳空间期望(即属性值期望),进而将出售的储纳箱的储纳空间大小接近该储纳空间期望的商户推荐给该用户,以及将该商户所出售的储纳箱推荐给该用户。具体过程与上述基本相同,在此不再详细赘述了。It should also be noted that the above is an example of the price of a commodity with a specified attribute, and the method for recommending commodities provided by the present application is described. The commodity recommendation method provided by the embodiment of the present application is also applicable to the case where the specified attribute is the attribute of other commodities. For example, when the target commodity is a storage box and the specified attribute is the storage space size of the storage box, the above preset interval is pre-divided according to the storage space size of each storage box sold by each merchant. The service platform can determine the probability distribution of the user placing an order for a storage box with a storage space size within different preset intervals through a pre-trained prediction model, and according to the probability distribution, determine the storage space expectation (i.e., attribute value expectation) of the user for the storage box, and then recommend the merchant whose storage space size of the storage box sold is close to the storage space expectation to the user, and recommend the storage box sold by the merchant to the user. The specific process is basically the same as above, and will not be described in detail here.
以上为本申请的一个或多个实施例提供的商品推荐的方法,基于同样的思路,本申请实施例还提供了相应的商品推荐的装置,如图3所示。The above is a method for recommending goods provided by one or more embodiments of the present application. Based on the same idea, the embodiments of the present application also provide a corresponding device for recommending goods, as shown in FIG. 3 .
图3为本申请实施例提供的一种商品推荐的装置示意图,具体包括:FIG3 is a schematic diagram of a device for recommending products provided in an embodiment of the present application, which specifically includes:
商品确定模块301,用于基于用户的用户标识,确定向所述用户推荐的目标商品;A commodity determination module 301 is used to determine a target commodity recommended to the user based on the user identifier of the user;
第一查询模块302,用于查询所述目标商品对应的属性信息,根据所述信息查询请求中携带的用户标识,查询所述用户标识对应用户的属性信息;The first query module 302 is used to query the attribute information corresponding to the target product, and query the attribute information of the user corresponding to the user identifier according to the user identifier carried in the information query request;
概率分布确定模块303,用于将所述用户的属性信息和所述目标商品的属性信息输入到预先训练出的预测模型中,以确定所述用户对指定属性的属性值落入不同预设区间内的所述目标商品进行下单的概率分布;The probability distribution determination module 303 is used to input the attribute information of the user and the attribute information of the target product into a pre-trained prediction model to determine the probability distribution of the user placing an order for the target product whose attribute value of the specified attribute falls within different preset intervals;
期望确定模块304,用于根据所述概率分布以及确定出的所述不同预设区间分别对应的参考属性值,确定所述目标商品在所述指定属性上的属性值期望;An expectation determination module 304 is used to determine the attribute value expectation of the target product on the specified attribute according to the probability distribution and the determined reference attribute values corresponding to the different preset intervals;
第二查询模块305,用于根据各商户所提供的各商品的商品标识,查询出提供所述目标商品的各商户;The second query module 305 is used to query each merchant that provides the target commodity according to the commodity identifier of each commodity provided by each merchant;
属性值确定模块306,用于确定查询到的各商户针对所述目标商品的所述指定属性所设置的属性值;The attribute value determination module 306 is used to determine the attribute value set by each queried merchant for the designated attribute of the target product;
概率确定模块307,用于针对每个属性值,根据所述属性值期望,确定所述用户对具有该属性值的所述目标商品进行下单的下单概率;A probability determination module 307, configured to determine, for each attribute value, according to the attribute value expectation, the probability of the user placing an order for the target product having the attribute value;
商户确定模块308,用于根据针对每个属性值确定出的各下单概率,从查询到的各商户中确定需要向所述用户进行推荐的商户,作为目标商户;A merchant determination module 308, configured to determine a merchant that needs to be recommended to the user as a target merchant from among the merchants found according to the order placement probabilities determined for each attribute value;
推荐模块309,用于确定所述目标商户提供的所述目标商品的商品信息,作为推荐信息,并基于所述用户标识,将所述推荐信息发送给所述用户所持有的终端进行显示,以向所述用户推荐所述目标商户所提供的所述目标商品。The recommendation module 309 is used to determine the product information of the target product provided by the target merchant as recommendation information, and send the recommendation information to the terminal held by the user for display based on the user identifier to recommend the target product provided by the target merchant to the user.
可选地,所述期望确定模块304具体用于,针对每个预设区间,将位于该预设区间内的所述目标商品的各属性值的平均值,确定为该预设区间对应的参考属性值;或针对每个预设区间,将位于该预设区间内的所述目标商品的各属性值的中位数,确定为该预设区间对应的参考属性值。Optionally, the expectation determination module 304 is specifically used to, for each preset interval, determine the average value of each attribute value of the target product within the preset interval as the reference attribute value corresponding to the preset interval; or for each preset interval, determine the median of each attribute value of the target product within the preset interval as the reference attribute value corresponding to the preset interval.
可选地,所述期望确定模块304具体用于,针对每个预设区间,根据所述概率分布,确定该预设区间所对应的概率;将该预设区间对应的概率和该预设区间对应的参考属性值的乘积,作为该预设区间对应的第一乘积;将各预设区间对应的各第一乘积的和值,确定为所述属性值期望。Optionally, the expectation determination module 304 is specifically used to, for each preset interval, determine the probability corresponding to the preset interval according to the probability distribution; take the product of the probability corresponding to the preset interval and the reference attribute value corresponding to the preset interval as the first product corresponding to the preset interval; and determine the sum of the first products corresponding to the preset intervals as the attribute value expectation.
可选地,所述概率确定模块307具体用于,根据所述属性值期望,确定所述目标商品在所述指定属性上的属性值方差;根据所述属性值期望以及所述属性值方差,确定所述目标商品在所述指定属性上的高斯分布;针对每个属性值,根据所述高斯分布,确定所述用户对具有该属性值的所述目标商品进行下单的下单概率。Optionally, the probability determination module 307 is specifically used to determine the attribute value variance of the target product on the specified attribute based on the attribute value expectation; determine the Gaussian distribution of the target product on the specified attribute based on the attribute value expectation and the attribute value variance; for each attribute value, determine the order probability of the user placing an order for the target product with the attribute value based on the Gaussian distribution.
可选地,所述概率确定模块307具体用于,根据所述概率分布、不同预设区间分别对应的参考属性值以及所述属性值期望,确定所述目标商品在所述指定属性上的属性值方差。Optionally, the probability determination module 307 is specifically configured to determine the attribute value variance of the target product on the specified attribute according to the probability distribution, reference attribute values corresponding to different preset intervals, and the attribute value expectation.
可选地,所述概率确定模块307具体用于,针对每个预设区间,确定该预设区间对应的参考属性值与所述属性值期望之间的差值;确定该预设区间在所述概率分布上对应的概率与所述差值的平方的乘积,并将所述乘积作为该预设区间对应的第二乘积;将不同预设区间分别对应的第二乘积的和值,确定为所述属性值方差。Optionally, the probability determination module 307 is specifically used to determine, for each preset interval, the difference between the reference attribute value corresponding to the preset interval and the expected attribute value; determine the product of the probability corresponding to the preset interval on the probability distribution and the square of the difference, and use the product as the second product corresponding to the preset interval; and determine the sum of the second products corresponding to different preset intervals as the attribute value variance.
可选地,所述商户确定模块308具体用于,按照确定出的各下单概率从大到小的顺序,将查询到的各商户从高到低进行排序,并将排在设定排位之前的商户作为目标商户。Optionally, the merchant determination module 308 is specifically configured to sort the queried merchants from high to low according to the determined order placement probabilities from large to small, and select merchants ranked before a set ranking as target merchants.
可选地,所述指定属性包括:商品的价格。Optionally, the specified attributes include: price of the product.
本申请实施例还提供了一种计算机可读存储介质,该存储介质存储有计算机程序,计算机程序可用于执行上述图1提供的商品推荐的方法。An embodiment of the present application also provides a computer-readable storage medium, which stores a computer program. The computer program can be used to execute the product recommendation method provided in FIG. 1 above.
本申请实施例还提供了图4所示的电子设备的示意结构图。如图4所述,在硬件层面,该电子设备包括处理器、内部总线、网络接口、内存以及非易失性存储器,当然还可能包括其他业务所需要的硬件。处理器从非易失性存储器中读取对应的计算机程序到内存中然后运行,以实现上述图1所述的商品推荐的方法。当然,除了软件实现方式之外,本说明书并不排除其他实现方式,比如逻辑器件抑或软硬件结合的方式等等,也就是说以下处理流程的执行主体并不限定于各个逻辑单元,也可以是硬件或逻辑器件。The embodiment of the present application also provides a schematic structural diagram of an electronic device shown in FIG4. As shown in FIG4, at the hardware level, the electronic device includes a processor, an internal bus, a network interface, a memory, and a non-volatile memory, and of course may also include hardware required for other services. The processor reads the corresponding computer program from the non-volatile memory into the memory and then runs it to implement the method for recommending goods described in FIG1 above. Of course, in addition to software implementations, this specification does not exclude other implementations, such as logic devices or a combination of software and hardware, etc., that is to say, the execution subject of the following processing flow is not limited to each logic unit, but can also be hardware or logic devices.
在20世纪90年代,对于一个技术的改进可以很明显地区分是硬件上的改进(例如,对二极管、晶体管、开关等电路结构的改进)还是软件上的改进(对于方法流程的改进)。然而,随着技术的发展,当今的很多方法流程的改进已经可以视为硬件电路结构的直接改进。设计人员几乎都通过将改进的方法流程编程到硬件电路中来得到相应的硬件电路结构。因此,不能说一个方法流程的改进就不能用硬件实体模块来实现。例如,可编程逻辑器件(Programmable Logic Device,PLD)(例如现场可编程门阵列(Field Programmable GateArray,FPGA))就是这样一种集成电路,其逻辑功能由用户对器件编程来确定。由设计人员自行编程来把一个数字系统“集成”在一片PLD上,而不需要请芯片制造厂商来设计和制作专用的集成电路芯片。而且,如今,取代手工地制作集成电路芯片,这种编程也多半改用“逻辑编译器(logic compiler)”软件来实现,它与程序开发撰写时所用的软件编译器相类似,而要编译之前的原始代码也得用特定的编程语言来撰写,此称之为硬件描述语言(Hardware Description Language,HDL),而HDL也并非仅有一种,而是有许多种,如ABEL(Advanced Boolean Expression Language)、AHDL(Altera Hardware DescriptionLanguage)、Confluence、CUPL(Cornell University Programming Language)、HDCal、JHDL(Java Hardware Description Language)、Lava、Lola、MyHDL、PALASM、RHDL(RubyHardware Description Language)等,目前最普遍使用的是VHDL(Very-High-SpeedIntegrated Circuit Hardware Description Language)与Verilog。本领域技术人员也应该清楚,只需要将方法流程用上述几种硬件描述语言稍作逻辑编程并编程到集成电路中,就可以很容易得到实现该逻辑方法流程的硬件电路。In the 1990s, improvements to a technology could be clearly distinguished as hardware improvements (for example, improvements to the circuit structure of diodes, transistors, switches, etc.) or software improvements (improvements to the method flow). However, with the development of technology, many improvements to the method flow today can be regarded as direct improvements to the hardware circuit structure. Designers almost always obtain the corresponding hardware circuit structure by programming the improved method flow into the hardware circuit. Therefore, it cannot be said that an improvement in a method flow cannot be implemented using a hardware entity module. For example, a programmable logic device (PLD) (such as a field programmable gate array (FPGA)) is such an integrated circuit whose logical function is determined by the user's programming of the device. Designers can "integrate" a digital system on a PLD by programming it themselves, without having to ask a chip manufacturer to design and produce a dedicated integrated circuit chip. Moreover, nowadays, instead of manually making integrated circuit chips, this kind of programming is mostly implemented by "logic compiler" software, which is similar to the software compiler used when developing and writing programs, and the original code before compilation must also be written in a specific programming language, which is called hardware description language (HDL). There is not only one HDL, but many kinds, such as ABEL (Advanced Boolean Expression Language), AHDL (Altera Hardware Description Language), Confluence, CUPL (Cornell University Programming Language), HDCal, JHDL (Java Hardware Description Language), Lava, Lola, MyHDL, PALASM, RHDL (Ruby Hardware Description Language), etc. The most commonly used ones are VHDL (Very-High-Speed Integrated Circuit Hardware Description Language) and Verilog. Those skilled in the art should also know that it is only necessary to program the method flow slightly in the above-mentioned hardware description languages and program it into the integrated circuit, and then it is easy to obtain the hardware circuit that implements the logic method flow.
控制器可以按任何适当的方式实现,例如,控制器可以采取例如微处理器或处理器以及存储可由该(微)处理器执行的计算机可读程序代码(例如软件或固件)的计算机可读介质、逻辑门、开关、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑控制器和嵌入微控制器的形式,控制器的例子包括但不限于以下微控制器:ARC 625D、Atmel AT91SAM、Microchip PIC18F26K20以及Silicone Labs C8051F320,存储器控制器还可以被实现为存储器的控制逻辑的一部分。本领域技术人员也知道,除了以纯计算机可读程序代码方式实现控制器以外,完全可以通过将方法步骤进行逻辑编程来使得控制器以逻辑门、开关、专用集成电路、可编程逻辑控制器和嵌入微控制器等的形式来实现相同功能。因此这种控制器可以被认为是一种硬件部件,而对其内包括的用于实现各种功能的装置也可以视为硬件部件内的结构。或者甚至,可以将用于实现各种功能的装置视为既可以是实现方法的软件模块又可以是硬件部件内的结构。The controller can be implemented in any appropriate manner, for example, the controller can take the form of a microprocessor or processor and a computer-readable medium storing a computer-readable program code (such as software or firmware) that can be executed by the (micro)processor, a logic gate, a switch, an application-specific integrated circuit (ASIC), a programmable logic controller, and an embedded microcontroller. Examples of controllers include, but are not limited to, the following microcontrollers: ARC 625D, Atmel AT91SAM, Microchip PIC18F26K20, and Silicone Labs C8051F320. The memory controller can also be implemented as part of the control logic of the memory. Those skilled in the art also know that in addition to implementing the controller in a purely computer-readable program code manner, the controller can be implemented in the form of a logic gate, a switch, an application-specific integrated circuit, a programmable logic controller, and an embedded microcontroller by logically programming the method steps. Therefore, this controller can be considered as a hardware component, and the devices included therein for implementing various functions can also be regarded as structures within the hardware component. Or even, the devices for implementing various functions can be regarded as both software modules for implementing the method and structures within the hardware component.
上述实施例阐明的系统、装置、模块或单元,具体可以由计算机芯片或实体实现,或者由具有某种功能的产品来实现。一种典型的实现设备为计算机。具体的,计算机例如可以为个人计算机、膝上型计算机、蜂窝电话、相机电话、智能电话、个人数字助理、媒体播放器、导航设备、电子邮件设备、游戏控制台、平板计算机、可穿戴设备或者这些设备中的任何设备的组合。The systems, devices, modules or units described in the above embodiments may be implemented by computer chips or entities, or by products with certain functions. A typical implementation device is a computer. Specifically, the computer may be, for example, a personal computer, a laptop computer, a cellular phone, a camera phone, a smart phone, a personal digital assistant, a media player, a navigation device, an email device, a game console, a tablet computer, a wearable device, or a combination of any of these devices.
为了描述的方便,描述以上装置时以功能分为各种单元分别描述。当然,在实施本申请时可以把各单元的功能在同一个或多个软件和/或硬件中实现。For the convenience of description, the above device is described in various units according to their functions. Of course, when implementing the present application, the functions of each unit can be implemented in the same or multiple software and/or hardware.
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。Those skilled in the art will appreciate that embodiments of the present invention may be provided as methods, systems, or computer program products. Therefore, the present invention may take the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, the present invention may take the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program code.
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present invention is described with reference to the flowchart and/or block diagram of the method, device (system), and computer program product according to the embodiment of the present invention. It should be understood that each process and/or box in the flowchart and/or block diagram, as well as the combination of the process and/or box in the flowchart and/or block diagram can be implemented by computer program instructions. These computer program instructions can be provided to a processor of a general-purpose computer, a special-purpose computer, an embedded processor or other programmable data processing device to produce a machine, so that the instructions executed by the processor of the computer or other programmable data processing device produce a device for implementing the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer-readable memory that can direct a computer or other programmable data processing device to work in a specific manner, so that the instructions stored in the computer-readable memory produce a manufactured product including an instruction device that implements the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions may also be loaded onto a computer or other programmable data processing device so that a series of operational steps are executed on the computer or other programmable device to produce a computer-implemented process, whereby the instructions executed on the computer or other programmable device provide steps for implementing the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.
在一个典型的配置中,计算设备包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。In a typical configuration, a computing device includes one or more processors (CPU), input/output interfaces, network interfaces, and memory.
内存可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。内存是计算机可读介质的示例。The memory may include non-permanent storage in a computer-readable medium, random access memory (RAM) and/or non-volatile memory in the form of read-only memory (ROM) or flash RAM. The memory is an example of a computer-readable medium.
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。Computer readable media include permanent and non-permanent, removable and non-removable media that can be implemented by any method or technology to store information. Information can be computer readable instructions, data structures, program modules or other data. Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory or other memory technology, compact disk read-only memory (CD-ROM), digital versatile disk (DVD) or other optical storage, magnetic cassettes, magnetic tape magnetic disk storage or other magnetic storage devices or any other non-transmission media that can be used to store information that can be accessed by a computing device. As defined herein, computer readable media does not include temporary computer readable media (transitory media), such as modulated data signals and carrier waves.
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。It should also be noted that the terms "include", "comprises" or any other variations thereof are intended to cover non-exclusive inclusion, so that a process, method, commodity or device including a series of elements includes not only those elements, but also other elements not explicitly listed, or also includes elements inherent to such process, method, commodity or device. In the absence of more restrictions, the elements defined by the sentence "comprises a ..." do not exclude the existence of other identical elements in the process, method, commodity or device including the elements.
本领域技术人员应明白,本申请的实施例可提供为方法、系统或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。Those skilled in the art will appreciate that the embodiments of the present application may be provided as methods, systems or computer program products. Therefore, the present application may adopt the form of a complete hardware embodiment, a complete software embodiment or an embodiment in combination with software and hardware. Moreover, the present application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) that contain computer-usable program code.
本申请可以在由计算机执行的计算机可执行指令的一般上下文中描述,例如程序模块。一般地,程序模块包括执行特定任务或实现特定抽象数据类型的例程、程序、对象、组件、数据结构等等。也可以在分布式计算环境中实践本申请,在这些分布式计算环境中,由通过通信网络而被连接的远程处理设备来执行任务。在分布式计算环境中,程序模块可以位于包括存储设备在内的本地和远程计算机存储介质中。The present application may be described in the general context of computer-executable instructions executed by a computer, such as program modules. Generally, program modules include routines, programs, objects, components, data structures, etc. that perform specific tasks or implement specific abstract data types. The present application may also be practiced in distributed computing environments where tasks are performed by remote processing devices connected through a communication network. In a distributed computing environment, program modules may be located in local and remote computer storage media, including storage devices.
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于系统实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。Each embodiment in this specification is described in a progressive manner, and the same or similar parts between the embodiments can be referred to each other, and each embodiment focuses on the differences from other embodiments. In particular, for the system embodiment, since it is basically similar to the method embodiment, the description is relatively simple, and the relevant parts can be referred to the partial description of the method embodiment.
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。The above is only an embodiment of the present application and is not intended to limit the present application. For those skilled in the art, the present application may have various changes and variations. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present application should be included in the scope of the claims of the present application.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910877288.3A CN110599307B (en) | 2019-09-17 | 2019-09-17 | A method and device for recommending products |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910877288.3A CN110599307B (en) | 2019-09-17 | 2019-09-17 | A method and device for recommending products |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110599307A CN110599307A (en) | 2019-12-20 |
CN110599307B true CN110599307B (en) | 2024-11-05 |
Family
ID=68860184
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910877288.3A Active CN110599307B (en) | 2019-09-17 | 2019-09-17 | A method and device for recommending products |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110599307B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111222332B (en) * | 2020-01-06 | 2021-09-21 | 华南理工大学 | Commodity recommendation method combining attention network and user emotion |
CN111259222B (en) * | 2020-01-22 | 2023-08-22 | 北京百度网讯科技有限公司 | Item recommendation method, system, electronic device and storage medium |
CN111861630B (en) * | 2020-06-01 | 2024-06-14 | 深圳汇商通盈科技有限公司 | Method and device for displaying information of merchant and terminal equipment |
CN113283960B (en) * | 2021-05-18 | 2022-08-19 | 河南中钢网科技集团股份有限公司 | Vertical e-commerce platform commodity intelligent recommendation method based on big data analysis and cloud computing and cloud service platform |
CN113435966B (en) * | 2021-06-22 | 2022-06-03 | 布瑞克农业大数据科技集团有限公司 | Product transaction method and system |
CN113487379B (en) * | 2021-06-24 | 2023-01-13 | 上海淇馥信息技术有限公司 | Product recommendation method and device based on conversation mode and electronic equipment |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107578332A (en) * | 2017-09-22 | 2018-01-12 | 深圳乐信软件技术有限公司 | A method, device, equipment and storage medium for recommending cash commodities |
CN109711887A (en) * | 2018-12-28 | 2019-05-03 | 拉扎斯网络科技(上海)有限公司 | Generation method and device of mall recommendation list, electronic equipment and computer medium |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004054439A (en) * | 2002-07-17 | 2004-02-19 | Nippon Telegr & Teleph Corp <Ntt> | Marketing strategy formulation support method, device, and program based on customer behavior analysis |
CN110189195A (en) * | 2019-05-14 | 2019-08-30 | 北京三快在线科技有限公司 | Method and device for product recommendation |
-
2019
- 2019-09-17 CN CN201910877288.3A patent/CN110599307B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107578332A (en) * | 2017-09-22 | 2018-01-12 | 深圳乐信软件技术有限公司 | A method, device, equipment and storage medium for recommending cash commodities |
CN109711887A (en) * | 2018-12-28 | 2019-05-03 | 拉扎斯网络科技(上海)有限公司 | Generation method and device of mall recommendation list, electronic equipment and computer medium |
Also Published As
Publication number | Publication date |
---|---|
CN110599307A (en) | 2019-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110599307B (en) | A method and device for recommending products | |
JP5965911B2 (en) | Data processing based on online trading platform | |
WO2019192261A1 (en) | Payment mode recommendation method and device and equipment | |
US20180232438A1 (en) | Title display method and apparatus | |
CN111639255B (en) | Recommendation method and device for search keywords, storage medium and electronic equipment | |
CN108648006B (en) | Shop recommendation method and device | |
CN107368510A (en) | A kind of shop search ordering method and device | |
CN103618668A (en) | Method and device for pushing and receiving microblogs | |
CN111160950A (en) | Resource information processing and outputting method and device | |
WO2019154096A1 (en) | Information sharing method and device | |
CN107609047A (en) | Application recommendation method and device, mobile device and storage medium | |
US9600535B2 (en) | Method and system for limiting share of voice of individual users | |
CN107391540A (en) | A kind of small routine methods of exhibiting, device and grader | |
CN110363570B (en) | Method and device for displaying categories in application, electronic equipment and storage medium | |
WO2018095307A1 (en) | Method and device for releasing evaluation information | |
CN105989066A (en) | Information processing method and device | |
CN114329207A (en) | Multi-service information sequencing system, method, storage medium and electronic equipment | |
CN113343095A (en) | Model training and information recommendation method and device | |
CN107392406A (en) | A kind of decision in the face of risk factor screening method and device for decision in the face of risk | |
US10282474B2 (en) | Category constrained queries | |
CN111639269A (en) | Site recommendation method and device | |
CN112435094A (en) | Information interaction method and device, storage medium and electronic equipment | |
CN111143546A (en) | Method and device for obtaining recommendation language and electronic equipment | |
CN110570271A (en) | Information recommendation method, device, electronic device and readable storage medium | |
CN118134603A (en) | Commodity recommendation method and device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |