CN110597281A - A Method for Acquiring Parameters of Automatic Landing Longitudinal Flight Control System - Google Patents
A Method for Acquiring Parameters of Automatic Landing Longitudinal Flight Control System Download PDFInfo
- Publication number
- CN110597281A CN110597281A CN201910834396.2A CN201910834396A CN110597281A CN 110597281 A CN110597281 A CN 110597281A CN 201910834396 A CN201910834396 A CN 201910834396A CN 110597281 A CN110597281 A CN 110597281A
- Authority
- CN
- China
- Prior art keywords
- carrier
- landing
- control system
- automatic
- parameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- RZVHIXYEVGDQDX-UHFFFAOYSA-N 9,10-anthraquinone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 RZVHIXYEVGDQDX-UHFFFAOYSA-N 0.000 title claims abstract description 29
- 238000000034 method Methods 0.000 title claims abstract description 23
- 238000013459 approach Methods 0.000 claims abstract description 13
- 238000005457 optimization Methods 0.000 claims abstract description 11
- 238000012937 correction Methods 0.000 claims description 33
- 230000004044 response Effects 0.000 claims description 31
- 230000008859 change Effects 0.000 claims description 13
- 238000012546 transfer Methods 0.000 claims description 5
- 238000011056 performance test Methods 0.000 claims description 4
- 238000004364 calculation method Methods 0.000 claims description 3
- 241000272517 Anseriformes Species 0.000 claims description 2
- 238000012360 testing method Methods 0.000 description 3
- 230000003416 augmentation Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 238000011217 control strategy Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/10—Simultaneous control of position or course in three dimensions
- G05D1/101—Simultaneous control of position or course in three dimensions specially adapted for aircraft
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
本发明公开了一种自动着舰纵向飞行控制系统的参数获取方法,首先将描述舰载机着舰纵向运动的线性小扰动模型作为被控对象,基于F/A‑18A舰载机自动着舰纵向控制律构建自动着舰纵向飞行控制系统模型,然后将系统稳定性理论、F/A‑18A舰载机飞行数据和控制系统优化方法相结合,针对自动着舰纵向飞行控制系统具有的级联嵌套回路结构,自俯仰角速度控制回路起,由内向外、逐个回路地校正了自动驾驶仪、进场功率补偿系统和引导律3个部分的待定参数。上述方法简便、高效,可使自动着舰飞行控制系统具备良好的纵向操纵性能,具有较高的实用价值。
The invention discloses a parameter acquisition method of an automatic landing longitudinal flight control system. Firstly, the linear small disturbance model describing the longitudinal movement of the carrier-based aircraft is used as the controlled object, based on the automatic landing of the F/A-18A carrier-based aircraft The longitudinal control law constructs the model of the longitudinal flight control system of the automatic landing, and then combines the system stability theory, the flight data of the F/A-18A carrier aircraft and the optimization method of the control system, aiming at the cascade control system of the longitudinal flight control system of the automatic landing. With the nested loop structure, starting from the pitch rate control loop, the undetermined parameters of the autopilot, the approach power compensation system and the guidance law are calibrated loop by loop from the inside to the outside. The above method is simple and efficient, can make the automatic landing flight control system have good longitudinal maneuverability, and has high practical value.
Description
技术领域technical field
本发明涉及航空工程起降技术领域,尤其涉及一种自动着舰纵向飞行控制系统参数获取方法。The invention relates to the technical field of aeronautical engineering take-off and landing, in particular to a method for acquiring parameters of an automatic landing longitudinal flight control system.
背景技术Background technique
舰载机着舰阶段,环境干扰因素复杂,但控制精度要求高,因而飞行员操作难度很大。为提升着舰成功率、减轻飞行员执行着舰任务的压力,美国海军自上世纪50年代起开始研究全自动着舰技术,通过自动着舰引导系统(Automatic Carrier Landing System,ACLS)使舰载机“无需手控、全天候、全自动”回收。目前,ACLS已大量投入实战,成为辅助舰载机着舰的最有效工具之一,特别是在飞行员无法胜任的极端情况 (如大雾和沙尘天气),ACLS发挥了不可替代的重要作用,例如用于保障F-18和F-35舰载机自动上舰的AN/SPN-46系统,以及引导中型无人旋翼机“火力侦察兵”全自动回收的 UCARS系统。During the landing stage of carrier-based aircraft, the environmental interference factors are complex, but the control accuracy is high, so the pilot operation is very difficult. In order to improve the success rate of landing and reduce the pressure on pilots to perform landing tasks, the U.S. Navy has been researching fully automatic landing technology since the 1950s. Through the Automatic Carrier Landing System (ACLS), the carrier-based aircraft "No manual control, all-weather, fully automatic" recycling. At present, ACLS has been put into actual combat in large quantities and has become one of the most effective tools for assisting carrier-based aircraft to land on the ship. Especially in extreme situations where pilots are not competent (such as heavy fog and dusty weather), ACLS has played an irreplaceable and important role. For example, the AN/SPN-46 system used to ensure the automatic boarding of F-18 and F-35 carrier aircraft, and the UCARS system that guides the automatic recovery of the medium-sized unmanned rotorcraft "Fire Scout".
ACLS主要由甲板运动补偿系统和飞行控制系统(Flight Control System,FCS)组成,FCS分为舰载系统和机载系统:舰载部分负责解算自动着舰引导律,机载部分按照功能又分为控制增稳系统(Control Augmentation System,CAS),即自动驾驶仪,以及进场功率补偿系统(Approach Power Compensation System,APCS)。为使舰载机尽快消除进场轨迹误差,精确跟踪指令下滑道,ACLS必须有良好的纵向操纵性能,纵向FCS参数是制约该性能实现的关键。但现有技术中,由于自动着舰纵向FCS具有级联嵌套的多反馈回路结构,待定参数较多,采用传统的根轨迹校正方法或纯凭工程经验进行试凑来调整这些参数效率很低。ACLS is mainly composed of deck motion compensation system and flight control system (Flight Control System, FCS). FCS is divided into shipboard system and airborne system: the shipboard part is responsible for solving the automatic landing guidance law, and the airborne part is divided into In order to control the stability augmentation system (Control Augmentation System, CAS), that is, the autopilot, and the approach power compensation system (Approach Power Compensation System, APCS). In order for the carrier-based aircraft to eliminate the approach trajectory error as soon as possible and accurately track the commanded glide slope, ACLS must have good longitudinal maneuverability, and the longitudinal FCS parameter is the key to restricting the realization of this performance. However, in the prior art, since the automatic landing longitudinal FCS has a cascaded nested multi-feedback loop structure, there are many undetermined parameters, and it is very inefficient to adjust these parameters by using the traditional root locus correction method or by trial and error purely based on engineering experience .
发明内容Contents of the invention
本发明的目的是提供一种自动着舰纵向飞行控制系统参数获取方法,该方法简便、高效,可使自动着舰飞行控制系统具备良好的纵向操纵性能,具有较高实用价值。The object of the present invention is to provide a method for obtaining parameters of an automatic landing longitudinal flight control system, which is simple and efficient, enables the automatic landing flight control system to have good longitudinal maneuverability, and has high practical value.
本发明的目的是通过以下技术方案实现的:The purpose of the present invention is achieved through the following technical solutions:
一种自动着舰纵向飞行控制系统参数获取方法,所述方法包括以下步骤:A method for obtaining parameters of an automatic landing longitudinal flight control system, the method comprising the following steps:
步骤1、将描述舰载机着舰纵向运动的线性小扰动模型作为被控对象,基于F/A-18A 舰载机自动着舰纵向控制律构建自动着舰纵向飞行控制系统模型;Step 1. Taking the linear small disturbance model describing the longitudinal motion of the carrier-based aircraft as the controlled object, the automatic landing longitudinal flight control system model is constructed based on the longitudinal control law of the F/A-18A carrier-based aircraft's automatic landing;
步骤2、根据舰载机着舰控制的精度要求并参考F/A-18A舰载机自动着舰性能测试结果,设定自动着舰纵向飞行控制系统参数校正目标;Step 2. According to the accuracy requirements of carrier-based aircraft landing control and referring to the test results of the automatic landing performance of the F/A-18A carrier-based aircraft, set the automatic landing longitudinal flight control system parameter correction target;
步骤3、基于所构建的模型计算出俯仰角速率控制回路的传递函数,并根据控制理论中的稳定性判据缩小俯仰角速率控制回路参数KQ、KI和KP的取值范围;Step 3, calculate the transfer function of the pitch rate control loop based on the constructed model, and narrow the value range of the pitch rate control loop parameters K Q , KI and K P according to the stability criterion in the control theory;
步骤4、优化俯仰角速率控制回路对幅度0.01rad角速率指令的阶跃响应,当优化结果与F/A-18A舰载机自动着舰俯仰角速率控制回路的性能测试情况相接近时可停止优化,获得俯仰角速率控制回路的参数;Step 4. Optimize the step response of the pitch rate control loop to the angular rate command with an amplitude of 0.01rad, and stop when the optimization result is close to the performance test of the pitch rate control loop of the F/A-18A carrier aircraft automatic landing Optimize to obtain the parameters of the pitch rate control loop;
步骤5、固定步骤4得到的参数校正结果,以F/A-18A舰载机着舰阶段垂直速度响应性能为优化目标,通过优化自动驾驶仪对高度变化率偏差指令的阶跃响应校正自动驾驶仪中待定参数;Step 5, fix the parameter correction results obtained in step 4, take the vertical velocity response performance of the F/A-18A carrier-based aircraft as the optimization goal, and correct the autopilot by optimizing the step response of the autopilot to the altitude change rate deviation command Parameters to be determined in the instrument;
步骤6、固定步骤4、步骤5得到的参数校正结果,对进场功率补偿系统APCS参数进行校正,主要是调节Ke和KαP两个控制增益;Step 6, fix the parameter correction results obtained in steps 4 and 5, and correct the APCS parameters of the approach power compensation system, mainly to adjust the two control gains of K e and K αP ;
步骤7、固定步骤6得到的参数校正结果,再进行步骤5,之后重复进行步骤6和5的操作,直到高度变化率和迎角的响应都达到参数校正目标为止;Step 7. Fix the parameter correction result obtained in step 6, then proceed to step 5, and then repeat the operations of steps 6 and 5 until the response of the altitude change rate and angle of attack both reach the parameter correction target;
步骤8、固定步骤7得到的参数校正结果,通过优化舰载机进场高度的阶跃响应来校正引导律参数KH。Step 8, fix the parameter correction result obtained in step 7, and correct the guidance law parameter K H by optimizing the step response of the approach height of the carrier aircraft.
由上述本发明提供的技术方案可以看出,上述方法简便、高效,可使自动着舰飞行控制系统具备良好的纵向操纵性能,具有较高的实用价值。It can be seen from the above-mentioned technical solution provided by the present invention that the above-mentioned method is simple and efficient, can make the automatic landing flight control system have good longitudinal maneuverability, and has high practical value.
附图说明Description of drawings
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图。In order to illustrate the technical solutions of the embodiments of the present invention more clearly, the drawings that need to be used in the description of the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only some embodiments of the present invention. Those of ordinary skill in the art can also obtain other drawings based on these drawings on the premise of not paying creative work.
图1为本发明实施例提供的自动着舰纵向飞行控制系统参数获取方法流程示意图;Fig. 1 is a schematic flowchart of a method for acquiring parameters of an automatic landing longitudinal flight control system provided by an embodiment of the present invention;
图2为本发明所举实例自动着舰纵向飞行控制系统内回路参数全部获取后的仿真结果示意图。Fig. 2 is a schematic diagram of the simulation result after all the internal loop parameters of the automatic landing longitudinal flight control system of the example of the present invention are acquired.
具体实施方式Detailed ways
下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明的保护范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some of the embodiments of the present invention, not all of them. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
下面将结合附图对本发明实施例作进一步地详细描述,如图1所示为本发明实施例提供的自动着舰飞行控制系统的参数获取方法流程示意图,所述方法包括:The embodiment of the present invention will be further described in detail below in conjunction with the accompanying drawings. As shown in FIG. 1, it is a schematic flowchart of a method for obtaining parameters of an automatic landing flight control system provided by an embodiment of the present invention. The method includes:
步骤1、将描述舰载机着舰纵向运动的线性小扰动模型作为被控对象,基于F/A-18A 舰载机自动着舰纵向控制律构建自动着舰纵向飞行控制系统模型;Step 1. Taking the linear small disturbance model describing the longitudinal motion of the carrier-based aircraft as the controlled object, the automatic landing longitudinal flight control system model is constructed based on the longitudinal control law of the F/A-18A carrier-based aircraft's automatic landing;
在该步骤中,具体采用能描述舰载机着舰纵向运动的线性小扰动模型作为被控对象,其表达式为:In this step, the linear small disturbance model that can describe the longitudinal motion of the carrier-based aircraft is used as the controlled object, and its expression is:
其中:in:
x=[ΔvI ΔαI Δq Δθ Δh]T,u=[Δδe Δδc Δδp]T,vI表示地速,即惯性速度,m/s;αI表示地速迎角或称惯性迎角,rad;q表示俯仰角速度, rad/s;θ表示俯仰角,rad;h表示高度,m;nz表示法向过载,g;γ表示航迹角,rad;控制向量u中的3个分量依次表示升降舵偏转角、鸭翼偏转角、有效油门开度的扰动量,单位均为°;Δ表示物理量与其基准值(标称值)的偏差量,下标“*”表示变量的基准值 (标称值),如vI*=70m/s,下同;常值矩阵A-F,具体如表1所示:x=[Δv I Δα I Δq Δθ Δh] T , u=[Δδ e Δδ c Δδ p ] T , v I means ground speed, that is, inertial speed, m/s; α I means ground speed angle of attack or inertial angle of attack, rad; q means pitch angular velocity, rad/s; θ means pitch angle, rad; h means height, m ; n z represents the normal overload, g; γ represents the track angle, rad; the three components in the control vector u represent the disturbance of the elevator deflection angle, the canard deflection angle and the effective throttle opening in turn, and the unit is °; Δ represents the deviation between the physical quantity and its reference value (nominal value), and the subscript "*" represents the reference value (nominal value) of the variable, such as v I* = 70m/s, the same below; the constant value matrix AF, specifically as Table 1 shows:
F/A-18A舰载机自动着舰纵向飞行控制律由自动驾驶仪、进场功率补偿系统(APCS) 和外回路引导律3部分组成,其中自动驾驶仪控制律包含俯仰角速率控制回路。F/A-18A 的APCS采用维持迎角恒定的油门控制策略,将现有技术中的F/A-18A舰载机油门控制律进行适当简化后,得到APCS控制律表达式为:The longitudinal flight control law of F/A-18A carrier-based aircraft automatic landing is composed of three parts: autopilot, approach power compensation system (APCS) and outer loop guidance law. The autopilot control law includes the pitch rate control loop. The APCS of the F/A-18A adopts the throttle control strategy of maintaining a constant angle of attack. After properly simplifying the throttle control law of the F/A-18A carrier-based aircraft in the prior art, the expression of the APCS control law is obtained as follows:
式中,δec为升降舵俯仰指令,KαP、KαI、Ke、Kq、Knz均为控制增益。In the formula, δ ec is the elevator pitch command, and K αP , K αI , Ke , K q , K nz are control gains.
另外,由于F/A-18A舰载机以进场高度变化率作为自动驾驶仪直接控制状态,考虑到舰载机着舰阶段速度基本保持不变,由的扰动表达式(3)可知,控制等效为控制γ。为改善系统阻尼,对舰载机垂向加速度(法向过载)的控制也是必要的。In addition, since the F/A-18A carrier-based aircraft uses the rate of change of approach altitude as the direct control state of the autopilot, considering that the speed of the carrier-based aircraft remains basically unchanged during the landing stage, the The disturbance expression (3) shows that the control Equivalent to control γ. In order to improve the system damping, it is also necessary to control the vertical acceleration (normal overload) of the carrier aircraft.
表1舰载机线性运动模型的系数矩阵A-FTable 1 Coefficient matrix A-F of carrier-based aircraft linear motion model
步骤2、根据舰载机着舰控制的精度要求并参考F/A-18A舰载机自动着舰性能测试结果,设定自动着舰纵向飞行控制系统参数校正目标;Step 2. According to the accuracy requirements of carrier-based aircraft landing control and referring to the test results of the automatic landing performance of the F/A-18A carrier-based aircraft, set the automatic landing longitudinal flight control system parameter correction target;
具体实现中,所设定的校正目标如下表2所示;In the specific implementation, the set calibration goals are shown in Table 2 below;
表2系统参数校正目标Table 2 System parameter calibration target
步骤3、基于所构建的模型计算出俯仰角速率控制回路的传递函数,并根据控制理论中的稳定性判据缩小俯仰角速率控制回路参数KQ、KI和KP的取值范围;Step 3, calculate the transfer function of the pitch rate control loop based on the constructed model, and narrow the value range of the pitch rate control loop parameters K Q , KI and K P according to the stability criterion in the control theory;
在该步骤中,控制增益KQ与滞后—超前滤波器(参数为T1和T2,且规定T1>T2)相串联,二者都在俯仰角速率反馈回路中,而KI和KP分别为俯仰角速率控制回路前向通道传递函数的积分增益和比例增益。In this step, the control gain K Q is connected in series with the lag-lead filter (the parameters are T 1 and T 2 , and T 1 > T 2 ), both of which are in the pitch rate feedback loop, and K I and K P are the integral gain and proportional gain of the forward channel transfer function of the pitch rate control loop, respectively.
步骤4、优化俯仰角速率控制回路对幅度0.01rad角速率指令的阶跃响应,当优化结果与F/A-18A舰载机自动着舰俯仰角速率控制回路的性能测试情况相近时可停止优化,获得俯仰角速率控制回路的参数;Step 4. Optimize the step response of the pitch rate control loop to the angular rate command with an amplitude of 0.01rad. When the optimization result is similar to the performance test of the pitch rate control loop for the automatic landing of the F/A-18A carrier aircraft, the optimization can be stopped , to obtain the parameters of the pitch rate control loop;
在优化前,应根据步骤3的计算结果选择参数取值范围,并将阶跃响应的性能指标设置为:调节时间不大于3s、稳态误差1%、超调量小于200%;Before optimization, the parameter value range should be selected according to the calculation results of step 3, and the performance index of the step response should be set as follows: the adjustment time is not greater than 3s, the steady-state error is 1%, and the overshoot is less than 200%;
执行该步骤后,获得的俯仰角速率控制回路的参数为:After performing this step, the parameters of the obtained pitch rate control loop are:
KQ=1.174 KI=522.268 KP=362.242 T1=1.766 T2=0.766K Q =1.174 K I =522.268 K P =362.242 T 1 =1.766 T 2 =0.766
步骤5、固定步骤4得到的参数校正结果,以F/A-18A舰载机着舰阶段垂直速度响应性能为优化目标,通过优化自动驾驶仪对高度变化率偏差指令的阶跃响应校正自动驾驶仪中待定参数;Step 5, fix the parameter correction results obtained in step 4, take the vertical velocity response performance of the F/A-18A carrier-based aircraft as the optimization goal, and correct the autopilot by optimizing the step response of the autopilot to the altitude change rate deviation command Parameters to be determined in the instrument;
在该步骤中,需要校正自动驾驶仪的参数和它们分别在舰载机航迹角反馈和法向过载反馈回路中;校正方法与前两步类似,首先计算响应的传递函数,根据控制理论中的稳定性判据缩小待定参数的取值范围,再设置15%以内的超调量、4.5s调节时间、1%稳态误差等阶跃性能指标来优化自动驾驶仪对高度变化率偏差指令的阶跃响应。In this step, the parameters of the autopilot need to be corrected and They are respectively in the carrier aircraft track angle feedback and normal overload feedback loop; the correction method is similar to the previous two steps, first calculate The transfer function of the response, according to the stability criterion in the control theory, narrows the value range of the undetermined parameters, and then sets the step performance indicators such as the overshoot within 15%, the adjustment time of 4.5s, and the steady-state error of 1% to optimize the automatic Pilot step response to altitude rate deviation command.
步骤6、固定步骤4、步骤5得到的参数校正结果,对进场功率补偿系统APCS参数进行校正,主要调节Ke和KαP两个控制增益参数;Step 6, fixing the parameter correction results obtained in steps 4 and 5, correcting the APCS parameters of the approach power compensation system, mainly adjusting the two control gain parameters K e and K αP ;
该步骤中,根据F/A-18A舰载机在着舰阶段的迎角控制能力,设定校正目标为:舰载机迎角在响应高度变化率阶跃指令后回到标称值的时间不超过5s;In this step, according to the angle of attack control capability of the F/A-18A carrier-based aircraft in the landing phase, the correction target is set as: the time for the carrier-based aircraft to return to the nominal value after the angle of attack of the carrier-based aircraft responds to the step command of the altitude change rate Not more than 5s;
该步骤需要校正的全部参数由式(2)给出,根据舰载机迎角扰动Δα、航迹角扰动Δγ和俯仰角扰动Δθ之间的关系式(4)可知,前面的参数校正过程不能保证Δα收敛到 0,加之无法用常规指标界定Δα对高度变化率偏差指令的阶跃响应,并考虑到该控制系统的高阶属性,因此难以借助软件工具或者理论计算来优化APCS参数,可基于经验调试完成,主要是调节Ke和KαP两个控制增益。All the parameters that need to be corrected in this step are given by formula (2). According to the relationship formula (4) between the attack angle disturbance Δα, track angle disturbance Δγ and pitch angle disturbance Δθ of the carrier-based aircraft, the previous parameter correction process cannot To ensure that Δα converges to 0, and it is impossible to use conventional indicators to define the step response of Δα to the deviation command of the altitude change rate, and to take into account the high-order properties of the control system, it is difficult to optimize the APCS parameters with the help of software tools or theoretical calculations, which can be based on The empirical debugging is completed, mainly to adjust the two control gains of K e and K αP .
Δθ=Δα+Δγ (4)Δθ=Δα+Δγ (4)
另外,由于系统各控制回路之间存在耦合性,该步骤很可能降低步骤5的参数校正效果,即对舰载机垂直速度响应性能造成不良影响。In addition, due to the coupling between the control loops of the system, this step is likely to reduce the parameter correction effect of step 5, that is, it will have a negative impact on the vertical velocity response performance of the carrier aircraft.
步骤7、固定步骤6得到的参数校正结果,再进行步骤5,之后重复进行步骤6和5的操作,直到高度变化率和迎角的响应都达到参数校正目标为止;Step 7. Fix the parameter correction result obtained in step 6, then proceed to step 5, and then repeat the operations of steps 6 and 5 until the response of the altitude change rate and angle of attack both reach the parameter correction target;
该步骤主要为提升系统对高度变化率和迎角的综合控制效果,当迎角响应满足要求后,将步骤6得到的APCS参数固定,再用步骤5优化参数和之后固定自动驾驶仪参数,再次调节APCS参数…这样反复进行几次步骤5和6的操作,即可完成自动着舰纵向飞行控制系统内回路全部参数的设计,使舰载机高度变化率和迎角的响应都满足参数校正目标。This step is mainly to improve the comprehensive control effect of the system on the altitude change rate and angle of attack. When the angle of attack response meets the requirements, fix the APCS parameters obtained in step 6, and then use step 5 to optimize the parameters and Then fix the autopilot parameters and adjust the APCS parameters again... In this way, repeat the operations of steps 5 and 6 several times to complete the design of all parameters in the inner loop of the automatic landing longitudinal flight control system, so that the altitude change rate of the carrier aircraft and the response The corner responses all meet the parameter calibration objectives.
举例来说,执行该步骤的参数校正结果如下,相应的仿真结果如图2所示,显然,执行该步骤后,系统对高度变化率指令的响应情况优于F/A-18A舰载机的测试结果。For example, the parameter correction results of this step are as follows, and the corresponding simulation results are shown in Figure 2. Obviously, after this step is executed, the response of the system to the altitude change rate command is better than that of the F/A-18A carrier-based aircraft Test Results.
Kq=120Ke=4KαI=40KαP=-95Knz=20。 K q =120K e =4K αI =40K αP =−95K nz =20.
步骤8、固定步骤7得到的参数校正结果,通过优化舰载机进场高度的阶跃响应来校正引导律参数KH。Step 8, fix the parameter correction result obtained in step 7, and correct the guidance law parameter K H by optimizing the step response of the approach height of the carrier aircraft.
该步骤中,根据舰载机着舰轨迹纠偏的一般要求,选取阶跃响应性能指标为超调量 3%以内、调节时间不大于8s、稳态误差1%以内,并综合考虑该状态响应的超调量和调节时间来最终确定引导律参数。执行该步骤后,得到表3所示参数校正结果:In this step, according to the general requirements of carrier-based aircraft landing trajectory correction, the step response performance index is selected to be within 3% of the overshoot, the adjustment time is not greater than 8s, and the steady-state error is within 1%, and the state response is comprehensively considered. Overshoot and adjustment time to finally determine the guiding law parameters. After performing this step, the parameter correction results shown in Table 3 are obtained:
表3引导律参数校正结果Table 3 Guidance law parameter correction results
值得注意的是,本发明实施例中未作详细描述的内容属于本领域专业技术人员公知的现有技术。It should be noted that the content not described in detail in the embodiments of the present invention belongs to the prior art known to those skilled in the art.
综上所述,本发明实施例所述方法具有如下优点:In summary, the method described in the embodiment of the present invention has the following advantages:
(1)根据舰载机着舰控制的一般要求以及F/A-18A舰载机自动着舰系统对指令响应的实测数据,量化了参数校正目标,提高了参数校正效率和参数设计结果的实用性;(1) According to the general requirements of carrier-based aircraft landing control and the actual measurement data of the F/A-18A carrier-based aircraft's automatic landing system to the command response, the parameter correction target is quantified, which improves the efficiency of parameter correction and the practicality of parameter design results sex;
(2)通过自动控制理论中的稳定性判据缩小待定参数的取值范围,大大节省了参数校正的工作量,提高了参数校正效率。(2) The value range of undetermined parameters is narrowed by the stability criterion in the automatic control theory, which greatly saves the workload of parameter correction and improves the efficiency of parameter correction.
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。The above is only a preferred embodiment of the present invention, but the scope of protection of the present invention is not limited thereto. Any person familiar with the technical field can easily conceive of changes or changes within the technical scope disclosed in the present invention. Replacement should be covered within the protection scope of the present invention. Therefore, the protection scope of the present invention should be determined by the protection scope of the claims.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910834396.2A CN110597281A (en) | 2019-09-04 | 2019-09-04 | A Method for Acquiring Parameters of Automatic Landing Longitudinal Flight Control System |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910834396.2A CN110597281A (en) | 2019-09-04 | 2019-09-04 | A Method for Acquiring Parameters of Automatic Landing Longitudinal Flight Control System |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110597281A true CN110597281A (en) | 2019-12-20 |
Family
ID=68857464
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910834396.2A Pending CN110597281A (en) | 2019-09-04 | 2019-09-04 | A Method for Acquiring Parameters of Automatic Landing Longitudinal Flight Control System |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110597281A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111538236A (en) * | 2020-03-02 | 2020-08-14 | 中国人民解放军海军航空大学 | A Longitudinal Overload Control Method for Aircraft Based on Fractional Approximate Differential Realization of Damping |
CN112596539A (en) * | 2020-12-04 | 2021-04-02 | 中国航空工业集团公司成都飞机设计研究所 | Differential extraction, construction and synchronization method for flight control stability augmentation controlled variable |
CN114942649A (en) * | 2022-06-06 | 2022-08-26 | 北京石油化工学院 | Airplane pitching attitude and track angle decoupling control method based on backstepping method |
CN120003723A (en) * | 2025-04-21 | 2025-05-16 | 中国航空工业集团公司沈阳飞机设计研究所 | A test method for the stability reserve of a fixed point when the aircraft is automatically controlled to land on the deck |
CN120024500A (en) * | 2025-04-21 | 2025-05-23 | 中国航空工业集团公司沈阳飞机设计研究所 | Power compensation method and system for aircraft landing on deck with constant angle of attack |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102854885A (en) * | 2012-08-24 | 2013-01-02 | 南京航空航天大学 | Longitudinal deck motion compensation method for shipboard aircraft landing |
CN109782785A (en) * | 2019-01-28 | 2019-05-21 | 南京航空航天大学 | Aircraft automatic landing control method based on direct force control |
CN109814375A (en) * | 2019-01-30 | 2019-05-28 | 中国船舶重工集团公司第七一九研究所 | A kind of quick setting method of autonomous underwater vehicle Heading control parameter |
US20190265731A1 (en) * | 2018-02-28 | 2019-08-29 | Honeywell International Inc. | Apparatus and method for providing enhanced autopilot mode awareness for a pilot of an aircraft |
-
2019
- 2019-09-04 CN CN201910834396.2A patent/CN110597281A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102854885A (en) * | 2012-08-24 | 2013-01-02 | 南京航空航天大学 | Longitudinal deck motion compensation method for shipboard aircraft landing |
US20190265731A1 (en) * | 2018-02-28 | 2019-08-29 | Honeywell International Inc. | Apparatus and method for providing enhanced autopilot mode awareness for a pilot of an aircraft |
CN109782785A (en) * | 2019-01-28 | 2019-05-21 | 南京航空航天大学 | Aircraft automatic landing control method based on direct force control |
CN109814375A (en) * | 2019-01-30 | 2019-05-28 | 中国船舶重工集团公司第七一九研究所 | A kind of quick setting method of autonomous underwater vehicle Heading control parameter |
Non-Patent Citations (3)
Title |
---|
张智等: "针对舰艉流抑制的ACLS纵向控制律优化设计", 《哈尔滨工程大学学报》 * |
李晖等: "舰载机自动着舰引导控制律参数整定", 《计算机仿真》 * |
董然: "ACLS纵向内回路控制系统研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑》 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111538236A (en) * | 2020-03-02 | 2020-08-14 | 中国人民解放军海军航空大学 | A Longitudinal Overload Control Method for Aircraft Based on Fractional Approximate Differential Realization of Damping |
CN111538236B (en) * | 2020-03-02 | 2022-07-29 | 中国人民解放军海军航空大学 | A Longitudinal Overload Control Method for Aircraft Based on Fractional Approximate Differential Realization of Damping |
CN112596539A (en) * | 2020-12-04 | 2021-04-02 | 中国航空工业集团公司成都飞机设计研究所 | Differential extraction, construction and synchronization method for flight control stability augmentation controlled variable |
CN112596539B (en) * | 2020-12-04 | 2022-08-23 | 中国航空工业集团公司成都飞机设计研究所 | Differential extraction, construction and synchronization method for flight control stability augmentation controlled variable |
CN114942649A (en) * | 2022-06-06 | 2022-08-26 | 北京石油化工学院 | Airplane pitching attitude and track angle decoupling control method based on backstepping method |
CN114942649B (en) * | 2022-06-06 | 2022-12-06 | 北京石油化工学院 | Airplane pitching attitude and track angle decoupling control method based on backstepping method |
CN120003723A (en) * | 2025-04-21 | 2025-05-16 | 中国航空工业集团公司沈阳飞机设计研究所 | A test method for the stability reserve of a fixed point when the aircraft is automatically controlled to land on the deck |
CN120024500A (en) * | 2025-04-21 | 2025-05-23 | 中国航空工业集团公司沈阳飞机设计研究所 | Power compensation method and system for aircraft landing on deck with constant angle of attack |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110597281A (en) | A Method for Acquiring Parameters of Automatic Landing Longitudinal Flight Control System | |
CN109062237B (en) | Active disturbance rejection attitude control method for unmanned tiltrotor aircraft | |
Li et al. | Transition optimization for a VTOL tail-sitter UAV | |
CN107807663A (en) | Unmanned plane based on Self Adaptive Control, which is formed into columns, keeps control method | |
CN108873929B (en) | A method and system for autonomous landing of a fixed-wing aircraft | |
CN114942649B (en) | Airplane pitching attitude and track angle decoupling control method based on backstepping method | |
CN106444822B (en) | A kind of stratospheric airship path tracking control method based on space vector field guidance | |
CN107608385B (en) | Unmanned helicopter formation control method and control system | |
La Civita et al. | Design and flight testing of a high-bandwidth h-infinity loop shaping controller for a robotic helicopter | |
CN104932531B (en) | A kind of optimal anti-input saturation control method of quadrotor based on sliding formwork control | |
CN109634296A (en) | Small drone catapult-assisted take-off control system and method based on the robust theory of servomechanism | |
CN114200827A (en) | A multi-constraint dual-channel control method for a supersonic large maneuvering target | |
CN109542111A (en) | Unmanned plane hedgehopping control method based on segmented | |
CN115079565B (en) | Variable-coefficient guidance method, device and aircraft with drop angle constraints | |
CN107450313A (en) | UAV autopilot control system based on Self Adaptive Control | |
CN110262558B (en) | Control method for fixed-point landing of unmanned aerial vehicle | |
Fan et al. | Design and Verification of Attitude Control System for a Boost-Glide Rocket | |
Zhang et al. | Design and flight stability analysis of the UAV close cooperative formation control laws | |
Merrick | Study of the application of an implicit model-following flight controller to lift-fan VTOL aircraft | |
Beh et al. | Control law design and flight test results of the experimental aircraft X-31A | |
Guo | Design of Fixed-Wing UAV Control System Based on Active Disturbance Rejection Control | |
Xu et al. | Three-loop Feedback Anti-wind Disturbance Control for The VTOL Aircraft without Vector Thrust | |
Markland | Design of optimal and suboptimal stability augmentation systems | |
CN114740874B (en) | Unmanned aerial vehicle rocket boosting, launching and rolling gesture control method | |
Wang et al. | Design and Simulation Verification of Aircraft Altitude Control Based on Hybrid Algorithm |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |