CN110597183A - An Efficient Compensation Method for Key Grinding Errors - Google Patents
An Efficient Compensation Method for Key Grinding Errors Download PDFInfo
- Publication number
- CN110597183A CN110597183A CN201910752446.2A CN201910752446A CN110597183A CN 110597183 A CN110597183 A CN 110597183A CN 201910752446 A CN201910752446 A CN 201910752446A CN 110597183 A CN110597183 A CN 110597183A
- Authority
- CN
- China
- Prior art keywords
- error
- axis
- coordinate system
- representing
- actual
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/404—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/35—Nc in input of data, input till input file format
- G05B2219/35408—Calculate new position data from actual data to compensate for contour error
Landscapes
- Engineering & Computer Science (AREA)
- Human Computer Interaction (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Numerical Control (AREA)
Abstract
本发明公开了一种磨齿关键误差高效补偿方法,首先基于成形磨齿机床几何误差分布及机床实际运动链,构建磨齿加工实际前向运动学模型,反映几何误差影响下刀具坐标系中的刀具位姿与工件坐标系中的刀位数据间的函数关系;然后,基于实际逆向运动学补偿原理,推导误差补偿后的运动轴实际运动指令的解析表达式,揭示几何误差、理想刀位数据与实际运动指令间的映射规律;最后,根据共轭磨削原理,建立几何误差‑齿面误差模型,计算评价实际齿廓、齿向精度,并针对齿廓偏差的关键误差源进行识别,对实际逆向运动学补偿方法进行简化,实现面向齿廓偏差消减的高效误差补偿。
The invention discloses a high-efficiency compensation method for key errors in gear grinding. Firstly, based on the geometric error distribution of a form grinding machine tool and the actual kinematic chain of the machine tool, the actual forward kinematics model of gear grinding processing is constructed to reflect the position in the tool coordinate system under the influence of geometric errors. The functional relationship between the tool pose and the tool position data in the workpiece coordinate system; then, based on the actual inverse kinematics compensation principle, the analytical expression of the actual motion command of the motion axis after error compensation is derived, revealing the geometric error, the ideal tool position data The mapping law between the actual motion command and the actual motion command; finally, according to the principle of conjugate grinding, the geometric error-tooth surface error model is established, the actual tooth profile and tooth direction accuracy are calculated and evaluated, and the key error sources of the tooth profile deviation are identified. The actual inverse kinematics compensation method is simplified to realize efficient error compensation for tooth profile deviation reduction.
Description
技术领域technical field
本发明涉及数控机床误差分析与精度控制技术领域,特别是一种磨齿关键误差高效补偿方法。The invention relates to the technical field of error analysis and precision control of numerical control machine tools, in particular to an efficient compensation method for key errors of gear grinding.
背景技术Background technique
数控成形磨齿机是一种用于齿轮精加工的专用机床,磨齿精度受多源误差协同影响,包括机床几何误差、热误差、力误差、伺服控制误差等。其中,几何误差被认为是准静态误差,不随时间变化或变化微小,可被补偿消除。CNC form gear grinding machine is a special machine tool for gear finishing. The gear grinding accuracy is affected by multi-source errors, including machine tool geometry error, thermal error, force error, servo control error, etc. Among them, the geometric error is considered to be a quasi-static error, which does not change or changes slightly with time, and can be eliminated by compensation.
为补偿多轴机床几何误差,专家学者已提出大量方法,包括微分算子解耦方法、迭代回归计算方法、微分误差预测法等。现有误差补偿方法效率较低,且主要集中于求解刀具相对于工件的终端误差矢量,并不关注该终端误差矢量对加工工件的具体影响。In order to compensate the geometric errors of multi-axis machine tools, experts and scholars have proposed a large number of methods, including differential operator decoupling methods, iterative regression calculation methods, differential error prediction methods, etc. The existing error compensation methods are inefficient, and mainly focus on solving the terminal error vector of the tool relative to the workpiece, and do not pay attention to the specific influence of the terminal error vector on the workpiece.
此外,也有学者提出针对普通五轴数控机床几何误差的实际逆向运动学补偿法,在后处理过程中实现几何误差补偿,该方法补偿效率较高。但成形磨齿机作为齿轮专用加工机床,虽然机床结构并不特殊,但是由于螺旋磨削、共轭接触等加工特征,以及齿轮精度评价指标具有特殊性等问题,目前暂未有针对成形磨齿机基于实际逆向运动学的几何误差补偿方法。In addition, some scholars have proposed an actual inverse kinematics compensation method for the geometric error of ordinary five-axis CNC machine tools, which can realize geometric error compensation in the post-processing process, and the compensation efficiency of this method is relatively high. However, the form gear grinding machine is a special processing machine tool for gears. Although the structure of the machine tool is not special, due to the processing characteristics such as spiral grinding and conjugate contact, as well as the particularity of the gear accuracy evaluation index, there is currently no special tool for form grinding gear. Machine geometric error compensation method based on actual inverse kinematics.
另外,现有的实际逆向运动学法是针对几何误差对刀位数据的影响进行补偿,由于不考虑实际磨齿过程,最终对单个磨齿精度评价指标的提升并不一定完全理想。In addition, the existing actual inverse kinematics method is to compensate for the influence of geometric errors on the tool position data. Since the actual grinding process is not considered, the final improvement of the single grinding accuracy evaluation index may not be completely ideal.
发明内容Contents of the invention
有鉴于此,本发明的目的在于提供一种磨齿关键误差高效补偿方法,可以推导误差补偿后的运动轴实际运动指令的解析表达式,揭示几何误差、理想刀位数据与实际运动指令间的映射规律;并针对齿廓精度、齿向精度等齿轮精度评价依据的关键误差源进行分析,从而对传统实际逆向运动学方法进行简化,实现对齿廓偏差、齿向偏差等磨齿误差高效补偿。In view of this, the purpose of the present invention is to provide an efficient compensation method for the key error of gear grinding, which can deduce the analytical expression of the actual motion command of the motion axis after error compensation, and reveal the geometric error, the ideal tool position data and the actual motion command. Mapping law; and analyze the key error sources of gear accuracy evaluation basis such as tooth profile accuracy and tooth direction accuracy, so as to simplify the traditional actual inverse kinematics method and realize efficient compensation for tooth grinding errors such as tooth profile deviation and tooth direction deviation .
为达到上述目的,本发明提供如下技术方案:To achieve the above object, the present invention provides the following technical solutions:
本发明提供的磨齿关键误差高效补偿方法,包括以下步骤:The high-efficiency compensation method for gear grinding key errors provided by the present invention includes the following steps:
步骤一:成形磨削系统几何误差建模;Step 1: Modeling the geometric error of the form grinding system;
(1)成形磨削系统几何误差分析:根据成形磨齿机床基本结构确定机床全运动链及成形磨齿机几何误差;所述机床全运动链包括从RCS参考坐标系到WCS工件坐标系的工件链RCw和从RCS参考坐标系到TCS刀具坐标系的刀具链RXZAYt;(1) Geometric error analysis of the form grinding system: determine the full kinematic chain of the machine tool and the geometric error of the form grinding machine according to the basic structure of the form grinding machine tool; the full kinematic chain of the machine tool includes the workpiece from the RCS reference coordinate system to the WCS workpiece coordinate system Chain RCw and tool chain RXZAYt from RCS reference coordinate system to TCS tool coordinate system;
(2)构建实际前向运动学模型,具体如下:(2) Construct the actual forward kinematics model, as follows:
建立工件链的实际前向运动学模型:Model the actual forward kinematics of the workpiece chain:
建立刀具链的实际前向运动学模型:Model the actual forward kinematics of the toolchain:
建立磨齿机床全运动链的实际前向运动学模型:Establish the actual forward kinematics model of the whole kinematic chain of the gear grinding machine:
步骤二:基于实际逆向运动学的几何误差补偿方法Step 2: Geometric error compensation method based on actual inverse kinematics
(1)基于实际逆向运动学补偿原理进行后续的误差补偿策略;(1) Follow-up error compensation strategy based on the actual inverse kinematics compensation principle;
(2)获取旋转轴实际运动指令解析表达式:利用理想刀轴矢量数据与机床几何误差间的映射关系,求解旋转轴的实际运动指令解析表达式;(2) Obtain the analytical expression of the actual motion command of the rotary axis: use the mapping relationship between the ideal tool axis vector data and the geometric error of the machine tool to solve the analytical expression of the actual motion command of the rotary axis;
(3)获取直线轴实际运动指令解析表达式:根据求得旋转轴的实际运动指令解析表达式,利用理想刀具位置数据与机床几何误差间的映射关系,求解直线轴的实际运动指令解析表达式;(3) Obtain the analytical expression of the actual motion command of the linear axis: According to the analytical expression of the actual motion command of the rotary axis, use the mapping relationship between the ideal tool position data and the geometric error of the machine tool to solve the analytical expression of the actual motion command of the linear axis ;
步骤三:关键误差识别及补偿模型简化Step 3: Key error identification and compensation model simplification
(1)几何误差-齿面误差模型(1) Geometric error-tooth surface error model
(2)对齿廓偏差、螺旋线偏差分别进行关键误差源的识别分析;(2) Identify and analyze key error sources for tooth profile deviation and helix deviation;
(3)关键误差高效补偿方法:根据运动轴的实际运动指令解析表达式,求得对应关键误差源补偿后的数控代码,实现齿廓偏差消减的高效误差补偿。(3) Efficient compensation method for key errors: According to the analytical expression of the actual motion command of the motion axis, the NC code corresponding to the key error source after compensation is obtained, and the efficient error compensation for tooth profile deviation reduction is realized.
进一步,所述步骤一中的几何误差包括与位置无关的几何误差PIGEs和与位置相关的几何误差PDGEs。Further, the geometric errors in the first step include position-independent geometric errors PIGEs and position-dependent geometric errors PDGEs.
进一步,所述实际前向运动学模型按照以下步骤构建:Further, the actual forward kinematics model is constructed according to the following steps:
计算相邻部件坐标系间的理想位姿变换矩阵:即通过顺序连乘安装矩阵TpQN和运动矩阵TmQN得到;Calculate the ideal pose transformation matrix between the coordinate systems of adjacent parts: that is, it is obtained by sequentially multiplying the installation matrix T pQN and the motion matrix T mQN ;
计算实际位姿变换矩阵:即通过顺序连乘安装矩阵TpQN、安装误差矩阵TpeQN、运动矩阵TmQN和运动误差矩阵TmeQN得到;Calculate the actual pose transformation matrix: it is obtained by sequentially multiplying the installation matrix T pQN , the installation error matrix T peQN , the motion matrix T mQN and the motion error matrix T meQN ;
按照以下公式计算工件链的实际前向运动学模型:Calculate the actual forward kinematic model of the workpiece chain according to the following formula:
其中,in,
表示WCS(工件坐标系)到RCS(参考坐标系)的实际变换矩阵; Indicates the actual transformation matrix from WCS (workpiece coordinate system) to RCS (reference coordinate system);
TRC表示C轴坐标系到RCS(参考坐标系)的实际变换矩阵;T RC represents the actual transformation matrix from the C-axis coordinate system to the RCS (reference coordinate system);
TCW表示WCS(工件坐标系)到C轴坐标系的实际变换矩阵;T CW represents the actual transformation matrix from WCS (workpiece coordinate system) to C-axis coordinate system;
TpRC表示C轴坐标系到RCS(参考坐标系)的安装矩阵;T pRC represents the installation matrix from the C-axis coordinate system to the RCS (reference coordinate system);
TpeRC表示C轴坐标系到RCS(参考坐标系)的安装误差矩阵;T peRC represents the installation error matrix from the C-axis coordinate system to the RCS (reference coordinate system);
TmRC表示C轴坐标系到RCS(参考坐标系)的运动矩阵;T mRC represents the motion matrix from the C-axis coordinate system to the RCS (reference coordinate system);
TmeRC表示C轴坐标系到RCS(参考坐标系)的运动误差矩阵;T meRC represents the motion error matrix from the C-axis coordinate system to the RCS (reference coordinate system);
TpCW表示WCS(工件坐标系)到C轴坐标系的安装矩阵;T pCW represents the installation matrix from WCS (workpiece coordinate system) to C-axis coordinate system;
TpeCW表示WCS(工件坐标系)到C轴坐标系的安装误差矩阵;T peCW represents the installation error matrix from WCS (workpiece coordinate system) to C-axis coordinate system;
TmCW表示WCS(工件坐标系)到C轴坐标系的运动矩阵;T mCW represents the motion matrix from WCS (workpiece coordinate system) to C-axis coordinate system;
TmeCW表示WCS(工件坐标系)到C轴坐标系的运动误差矩阵;T meCW represents the motion error matrix from WCS (workpiece coordinate system) to C-axis coordinate system;
按照以下公式计算刀具链的实际前向运动学模型:The actual forward kinematic model of the tool chain is calculated according to the following formula:
其中,in,
表示TCS(刀具坐标系)到RCS(参考坐标系)的实际变换矩阵; Indicates the actual transformation matrix from TCS (tool coordinate system) to RCS (reference coordinate system);
TRX表示X轴坐标系到RCS(参考坐标系)的实际变换矩阵;T RX represents the actual transformation matrix from the X-axis coordinate system to the RCS (reference coordinate system);
TXZ表示Z轴坐标系到X轴坐标系的实际变换矩阵;T XZ represents the actual transformation matrix from the Z-axis coordinate system to the X-axis coordinate system;
TZA表示A轴坐标系到Z轴坐标系的实际变换矩阵;T ZA represents the actual transformation matrix from the A-axis coordinate system to the Z-axis coordinate system;
TAY表示Y轴坐标系到A轴坐标系的实际变换矩阵;T AY represents the actual transformation matrix from the Y-axis coordinate system to the A-axis coordinate system;
TYT表示TCS(刀具坐标系)到Y轴坐标系的实际变换矩阵;T YT represents the actual transformation matrix from TCS (tool coordinate system) to Y-axis coordinate system;
TpRX表示X轴坐标系到RCS(参考坐标系)的安装矩阵;T pRX represents the installation matrix from the X-axis coordinate system to the RCS (reference coordinate system);
TpeRX表示X轴坐标系到RCS(参考坐标系)的安装误差矩阵;T peRX represents the installation error matrix from the X-axis coordinate system to the RCS (reference coordinate system);
TmRX表示X轴坐标系到RCS(参考坐标系)的运动矩阵;T mRX represents the motion matrix from the X-axis coordinate system to the RCS (reference coordinate system);
TmeRX表示X轴坐标系到RCS(参考坐标系)的运动误差矩阵;T meRX represents the motion error matrix from the X-axis coordinate system to the RCS (reference coordinate system);
TpXZ表示Z轴坐标系到X轴坐标系的安装矩阵;T pXZ represents the installation matrix from the Z-axis coordinate system to the X-axis coordinate system;
TpeXZ表示Z轴坐标系到X轴坐标系的安装误差矩阵;T peXZ represents the installation error matrix from the Z-axis coordinate system to the X-axis coordinate system;
TmXZ表示Z轴坐标系到X轴坐标系的运动矩阵;T mXZ represents the motion matrix from the Z-axis coordinate system to the X-axis coordinate system;
TmeXZ表示Z轴坐标系到X轴坐标系的运动误差矩阵;T meXZ represents the motion error matrix from the Z-axis coordinate system to the X-axis coordinate system;
TpZA表示A轴坐标系到Z轴坐标系的安装矩阵;T pZA represents the installation matrix from the A-axis coordinate system to the Z-axis coordinate system;
TpeZA表示A轴坐标系到Z轴坐标系的安装误差矩阵;T peZA represents the installation error matrix from the A-axis coordinate system to the Z-axis coordinate system;
TmZA表示A轴坐标系到Z轴坐标系的运动矩阵;T mZA represents the motion matrix from the A-axis coordinate system to the Z-axis coordinate system;
TmeZA表示A轴坐标系到Z轴坐标系的运动误差矩阵;T meZA represents the motion error matrix from the A-axis coordinate system to the Z-axis coordinate system;
TpAY表示Y轴坐标系到A轴坐标系的安装矩阵;T pAY represents the installation matrix from the Y-axis coordinate system to the A-axis coordinate system;
TpeAY表示Y轴坐标系到A轴坐标系的安装误差矩阵;T peAY represents the installation error matrix from the Y-axis coordinate system to the A-axis coordinate system;
TmAY表示Y轴坐标系到A轴坐标系的运动矩阵;T mAY represents the motion matrix from the Y-axis coordinate system to the A-axis coordinate system;
TmeAY表示Y轴坐标系到A轴坐标系的运动误差矩阵;T meAY represents the motion error matrix from the Y-axis coordinate system to the A-axis coordinate system;
TpYT表示TCS(刀具坐标系)到Y轴坐标系的安装矩阵;T pYT represents the installation matrix from TCS (tool coordinate system) to Y-axis coordinate system;
TpeYT表示TCS(刀具坐标系)到Y轴坐标系的安装误差矩阵;T peYT represents the installation error matrix from TCS (tool coordinate system) to Y-axis coordinate system;
TmYT表示TCS(刀具坐标系)到Y轴坐标系的运动矩阵;T mYT represents the motion matrix from TCS (tool coordinate system) to Y-axis coordinate system;
TmeYT表示TCS(刀具坐标系)到Y轴坐标系的运动误差矩阵;T meYT represents the motion error matrix from TCS (tool coordinate system) to Y-axis coordinate system;
其中,in,
b11~b34表示矩阵运算后,各元素的值;b 11 ~ b 34 indicate that after matrix operation, the value of each element;
按照以下公式计算建立磨齿机床全运动链的实际前向运动学模型:Calculate and establish the actual forward kinematics model of the whole kinematic chain of the gear grinding machine according to the following formula:
其中,in,
表示TCS(刀具坐标系)到WCS(工件坐标系)的实际变换矩阵; Indicates the actual transformation matrix from TCS (tool coordinate system) to WCS (workpiece coordinate system);
表示WCS(工件坐标系)到RCS(参考坐标系)的实际变换矩阵; Indicates the actual transformation matrix from WCS (workpiece coordinate system) to RCS (reference coordinate system);
表示TCS(刀具坐标系)到RCS(参考坐标系)的实际变换矩阵; Indicates the actual transformation matrix from TCS (tool coordinate system) to RCS (reference coordinate system);
按照以下公式计算几何误差影响下的刀位数据:Calculate the tool position data under the influence of geometric error according to the following formula:
其中,in,
Q′w=[i′,j′,k′]T表示实际刀轴矢量数据;Q′ w =[i′,j′,k′] T represents the actual tool axis vector data;
Pw′=[x′,y′,z′]T表示实际刀尖位置数据;P w '=[x',y',z'] T represents the actual tool nose position data;
Qt表示TCS中的刀轴矢量;Q t represents the tool axis vector in TCS;
Pt表示TCS中的刀尖位置;P t represents the position of the tool tip in TCS;
i′,j′,k′表示实际刀轴矢量数据的x,y,z坐标;i', j', k' represent the x, y, z coordinates of the actual tool axis vector data;
x′,y′,z′表示实际刀尖位置数据的x,y,z坐标。x', y', z' represent the x, y, z coordinates of the actual tool nose position data.
进一步,所述步骤二中的后续的误差补偿策略按照以下方式进行:Further, the subsequent error compensation strategy in the step 2 is performed in the following manner:
以保证理想刀位数据不变为目标,认为运动轴运动指令会受几何误差影响而发生改变,误差补偿后的实际运动指令值可以根据上式进行反向求解,从而求得实际加工代码,实现误差补偿。With the goal of keeping the ideal tool position data unchanged, it is considered that the motion command of the motion axis will be changed due to the influence of geometric errors. The actual motion command value after error compensation can be reversely solved according to the above formula, so as to obtain the actual processing code and realize error compensation.
进一步,所述步骤二中还包括以下步骤:Further, the step 2 also includes the following steps:
确定理想刀位数据,所述理想刀位数据包括刀具位置数据和刀轴矢量数据;Determining ideal tool position data, the ideal tool position data includes tool position data and tool axis vector data;
按照以下公式计算刀具位置数据和刀轴矢量数据间的映射关系:Calculate the mapping relationship between the tool position data and the tool axis vector data according to the following formula:
其中,in,
表示TCS(刀具坐标系)到WCS(工件坐标系)的实际变换矩阵; Indicates the actual transformation matrix from TCS (tool coordinate system) to WCS (workpiece coordinate system);
Pw=[x,y,z]T表示理想刀尖位置数据;P w =[x,y,z] T represents the ideal tool nose position data;
Qw=[i,j,k]T表示理想刀轴矢量数据;Q w =[i, j, k] T represents the ideal tool axis vector data;
Pt=[0,0,0]T表示TCS中的刀尖位置;P t =[0,0,0] T represents the tool nose position in TCS;
Qt=[0,0,1]T表示TCS中的刀轴矢量。Q t =[0,0,1] T represents the tool axis vector in TCS.
进一步,所述步骤二中的旋转轴实际运动指令解析表达式,按照以下方式得到:Further, the analytic expression of the actual motion command of the rotary axis in the second step is obtained in the following manner:
利用理想刀轴矢量数据与机床几何误差间的映射关系,求解旋转轴的A轴实际运动指令和C轴实际运动指令;Use the mapping relationship between the ideal tool axis vector data and the geometric error of the machine tool to solve the actual motion command of the A axis and the actual motion command of the C axis of the rotary axis;
按照以下公式计算A轴实际运动指令的解析表达式为:The analytical expression for calculating the actual motion command of the A-axis according to the following formula is:
其中,in,
A表示A轴实际运动指令;A represents the actual movement command of the A axis;
arccos()表示反余弦函数;arccos() represents the arccosine function;
εy(C)表示C轴运动y向角度误差;ε y (C) represents the y-direction angle error of C-axis movement;
εx(C)表示C轴运动x向角度误差;ε x (C) represents the angular error of the C-axis motion in the x direction;
εx(X)表示X轴运动x向角度误差;ε x (X) represents the x-direction angle error of the X-axis movement;
εx(Y)表示Y轴运动x向角度误差;ε x (Y) represents the angular error of the Y-axis movement in the x direction;
εx(Z)表示Z轴运动x向角度误差;ε x (Z) represents the angular error of the Z-axis movement in the x direction;
εx(A)表示A轴运动x向角度误差;ε x (A) represents the angular error of the A-axis movement in the x direction;
SYZ表示Y、Z轴间垂直度误差;S YZ indicates the verticality error between Y and Z axes;
αCY表示C轴安装x向角度误差;α CY represents the x-direction angle error of C-axis installation;
表示正切角; Indicates the tangent angle;
k表示理想刀轴矢量数据z坐标;k represents the z coordinate of the ideal tool axis vector data;
j表示理想刀轴矢量数据y坐标;j represents the y coordinate of the ideal tool axis vector data;
i表示理想刀轴矢量数据x坐标;i represents the x coordinate of the ideal tool axis vector data;
或者or
按照以下公式计算C轴实际运动指令的解析表达式为:The analytical expression for calculating the actual motion command of the C-axis according to the following formula is:
其中,in,
C表示C轴实际运动指令;C represents the actual movement command of the C axis;
arcsin()表示反正弦函数;arcsin() represents the arcsine function;
εy(Y)表示Y轴运动y向角度误差;ε y (Y) represents the y-direction angle error of the Y-axis movement;
εy(A)表示A轴运动y向角度误差;ε y (A) represents the y-direction angle error of A-axis movement;
εy(Z)表示Z轴运动y向角度误差;ε y (Z) represents the y-direction angle error of the Z-axis motion;
εy(X)表示X轴运动y向角度误差;ε y (X) represents the angular error in the y direction of the X-axis movement;
εy(C)表示C轴运动y向角度误差;ε y (C) represents the y-direction angle error of C-axis movement;
εz(C)表示C轴运动z向角度误差;ε z (C) represents the angular error in the z direction of the C-axis motion;
εz(Z)表示Z轴运动z向角度误差;ε z (Z) represents the z-direction angle error of Z-axis movement;
εz(X)表示X轴运动z向角度误差;ε z (X) represents the angular error of the X-axis motion in the z direction;
εx(C)表示C轴运动x向角度误差;ε x (C) represents the angular error of the C-axis motion in the x direction;
βCX表示C轴安装y向角度误差;β CX represents the y-direction angle error of C-axis installation;
SZX表示Z、X轴间垂直度误差;S ZX indicates the verticality error between the Z and X axes;
βAZ表示A轴安装y向角度误差;β AZ represents the y-direction angle error of A-axis installation;
γAY表示A轴安装z向角度误差;γ AY indicates the z-direction angle error of A-axis installation;
或者or
按照以下公式计算直线轴实际运动指令解析表达式,所述直线轴实际运动指令解析表达式包括Y轴实际运动指令的解析表达式和Z轴实际运动指令的解析表达式和X轴实际运动指令的解析表达式;The analytic expression of the actual motion command of the linear axis is calculated according to the following formula, and the analytic expression of the actual motion command of the linear axis includes the analytic expression of the actual motion command of the Y axis, the analytical expression of the actual motion command of the Z axis, and the expression of the actual motion command of the X axis. Analytical expression;
所述Y轴实际运动指令的解析表达式为:The analytical expression of the actual motion command of the Y-axis is:
Y={-sinC(x+zεy(C)-yεz(C)+δx(C))-cosC(y+xεz(C)-zεx(C)+δy(C))Y={-sinC(x+zε y (C)-yε z (C)+δ x (C))-cosC(y+xε z (C)-zε x (C)+δ y (C))
-(δz(A)+δz(Y))sinA+(δy(A)+δy(Y))cosA+δy(X)+δy(Z)+δAy-zεx(X)-(δ z (A)+δ z (Y))sinA+(δ y (A)+δ y (Y))cosA+δ y (X)+δ y (Z)+δ Ay -zε x (X)
+zαCY-δCy}/((εx(Z)+εx(A)+SYZ)sinA-cosA)+zα CY -δ Cy }/((ε x (Z)+ε x (A)+S YZ )sinA-cosA)
其中,in,
Y表示Y轴实际运动指令;Y represents the actual movement command of the Y axis;
x表示理想刀尖位置数据x坐标;x represents the x coordinate of ideal tool nose position data;
y表示理想刀尖位置数据y坐标;y represents the y coordinate of the ideal tool nose position data;
z表示理想刀尖位置数据z坐标;z represents the z coordinate of the ideal tool nose position data;
δx(C)表示C轴运动x向线性误差;δ x (C) represents the linear error of the C-axis movement in the x direction;
δy(C)表示C轴运动y向线性误差;δ y (C) represents the linear error of the C-axis movement in the y direction;
δz(A)表示A轴运动z向线性误差;δ z (A) represents the linear error of the A-axis movement in the z direction;
δz(Y)表示Y轴运动z向线性误差;δ z (Y) represents the linear error of the Y-axis motion in the z direction;
δy(A)表示A轴运动y向线性误差;δ y (A) represents the y-direction linear error of A-axis motion;
δy(Y)表示Y轴运动y向线性误差;δ y (Y) represents the linear error of the Y-axis movement in the y direction;
SYZ表示Y、Z轴间垂直度误差;S YZ indicates the verticality error between Y and Z axes;
αCY表示C轴安装x向角度误差;α CY represents the x-direction angle error of C-axis installation;
δy(X)表示X轴运动y向线性误差;δ y (X) represents the linear error of the X-axis movement in the y direction;
δy(Z)表示Z轴运动y向线性误差;δ y (Z) represents the y-direction linear error of Z-axis movement;
δCy表示C轴安装y向线性误差;δ Cy represents the y-direction linear error of the C-axis installation;
δAy表示A轴安装y向线性误差;δ Ay represents the y-direction linear error of A-axis installation;
所述Z轴实际运动指令的解析表达式为:The analytical expression of the Z-axis actual motion command is:
Z={x(-cosA(εy(C)+βCXcosC+(εx(X)+εx(Z)+εx(A)+SYZ-αCY)sinC)-sinA(sinC+εz(C)cosC))Z={x(-cosA(ε y (C)+β CX cosC+(ε x (X)+ε x (Z)+ε x (A)+S YZ -α CY )sinC)-sinA(sinC+ε z (C)cosC))
+y(cosA(εx(C)+βCXsinC-(εx(X)+εx(Z)+εx(A)+SYZ-αCY)cosC)-sinA(cosC-εz(C)sinC))+y(cosA(ε x (C)+β CX sinC-(ε x (X)+ε x (Z)+ε x (A)+S YZ -α CY )cosC)-sinA(cosC-ε z ( C) sin C))
+z(cosA-(εx(X)+εx(Z)+εx(A)+SYZ-αCY-εx(C)cosC+εy(C)sinC)sinA)+z(cosA-(ε x (X)+ε x (Z)+ε x (A)+S YZ -α CY -ε x (C)cosC+ε y (C)sinC)sinA)
-cosA((δy(A)+δy(Y))sinA+(δz(A)+δz(Y))cosA+δz(X)+δz(Z)+δAz-δz(C))-cosA((δ y (A)+δ y (Y))sinA+(δ z (A)+δ z (Y))cosA+δ z (X)+δ z (Z)+δ Az -δ z ( C))
+sinA((δy(A)+δy(Y))cosA-(δz(A)+δz(Y))sinA+δy(X)+δy(Z)+δAy-δCy-δy(C)cosC-δx(C)sinC)}+sinA((δ y (A)+δ y (Y))cosA-(δ z (A)+δ z (Y))sinA+δ y (X)+δ y (Z)+δ Ay -δ Cy -δ y (C)cosC-δ x (C)sinC)}
/(cosA-(εx(X)+εx(Z)+εx(A)+SYZ-εx(X))sinA)/(cosA-(ε x (X)+ε x (Z)+ε x (A)+S YZ -ε x (X))sinA)
其中,in,
Z表示Z轴实际运动指令;Z represents the actual motion command of the Z axis;
δz(X)表示X轴运动z向线性误差;δ z (X) represents the linear error of the X-axis motion in the z direction;
δz(Z)表示Z轴运动z向线性误差;δ z (Z) represents the linear error of the Z-axis motion in the z direction;
δz(C)表示C轴运动z向线性误差;δ z (C) represents the linear error of the C-axis motion in the z direction;
δAz表示A轴安装z向线性误差;δ Az represents the linear error of the A-axis installation in the z direction;
δy(C)表示C轴运动y向线性误差;δ y (C) represents the linear error of the C-axis movement in the y direction;
δx(C)表示C轴运动x向线性误差;δ x (C) represents the linear error of the C-axis movement in the x direction;
所述X轴实际运动指令的解析表达式为:The analytical expression of the actual motion command of the X-axis is:
X=x(cosC-εz(C)sinC)+y(-sinC-εz(C)cosC)+z(βCX+εy(C)cosC+εx(C)sinC)X=x(cosC-ε z (C)sinC)+y(-sinC-ε z (C)cosC)+z(β CX +ε y (C)cosC+ε x (C)sinC)
-Z(εy(X)+SZX)-Y((εy(X)+εy(Z)+SZX+βAZ)sinA-(εz(X)+εz(Z)+γAY)cosA-SYX-εz(A))-Z(ε y (X)+S ZX )-Y((ε y (X)+ε y (Z)+S ZX +β AZ )sinA-(ε z (X)+ε z (Z)+γ AY )cosA-S YX -ε z (A))
-(δx(X)+δx(Y)+δx(Z)+δx(A)-δCx)+δx(C)cosC-δy(C)sinC-(δ x (X)+δ x (Y)+δ x (Z)+δ x (A)-δ Cx )+δ x (C)cosC-δ y (C)sinC
其中,in,
X表示X轴实际运动指令;X represents the actual motion command of the X-axis;
δx(X)表示X轴运动x向线性误差;δ x (X) represents the linear error of the X-axis motion in the x direction;
δx(Y)表示Y轴运动x向线性误差;δ x (Y) represents the linear error of the Y-axis movement in the x direction;
δx(Z)表示Z轴运动x向线性误差;δ x (Z) represents the linear error of the Z-axis movement in the x direction;
δx(A)表示A轴运动x向线性误差;δ x (A) represents the linear error of the A-axis movement in the x direction;
δCx表示C轴安装x向线性误差;δ Cx represents the linear error of the C-axis installation in the x direction;
δx(C)表示C轴运动x向线性误差;δ x (C) represents the linear error of the C-axis movement in the x direction;
δy(C)表示C轴运动y向线性误差;δ y (C) represents the linear error of the C-axis movement in the y direction;
εz(C)表示C轴运动z向角度误差;ε z (C) represents the angular error in the z direction of the C-axis motion;
εy(C)表示C轴运动y向角度误差;ε y (C) represents the y-direction angle error of C-axis movement;
εz(A)表示A轴运动z向角度误差;ε z (A) represents the angular error of the A-axis movement in the z direction;
SYX表示Y、X轴间垂直度误差;S YX indicates the verticality error between the Y and X axes;
SZX表示Z、X轴间垂直度误差;S ZX indicates the verticality error between the Z and X axes;
γAY表示A轴安装z向角度误差;γ AY indicates the z-direction angle error of A-axis installation;
εz(Z)表示Z轴运动z向角度误差;ε z (Z) represents the z-direction angle error of Z-axis movement;
εz(X)表示X轴运动z向角度误差;ε z (X) represents the angular error of the X-axis motion in the z direction;
βAZ表示A轴安装y向角度误差;β AZ represents the y-direction angle error of A-axis installation;
εy(Z)表示Z轴运动y向角度误差;ε y (Z) represents the y-direction angle error of the Z-axis movement;
εy(X)表示X轴运动y向角度误差;ε y (X) represents the angular error in the y direction of the X-axis motion;
εy(X)表示X轴运动y向角度误差。ε y (X) represents the angular error in the y direction of the X-axis motion.
进一步,所述步骤三中的几何误差-刀具空间位姿误差模型是按照以下公式建立:Further, the geometric error-tool space pose error model in the step 3 is established according to the following formula:
其中,in,
△i表示刀轴矢量数据x坐标误差;△i represents the x-coordinate error of the tool axis vector data;
△j表示刀轴矢量数据y坐标误差;△j represents the y coordinate error of the tool axis vector data;
△k表示刀轴矢量数据z坐标误差;△k represents the z coordinate error of the tool axis vector data;
△z表示刀尖位置数据z坐标误差;△z represents the z coordinate error of the tool nose position data;
△y表示刀尖位置数据y坐标误差;△y represents the y coordinate error of the tool nose position data;
△x表示刀尖位置数据x坐标误差;△x represents the x coordinate error of the tool nose position data;
Q′w表示实际刀轴矢量数据;Q′ w represents the actual tool axis vector data;
P′w表示实际刀尖位置数据;P′ w represents the actual tool nose position data;
Qw表示理想刀轴矢量数据;Q w represents the ideal tool axis vector data;
Pw表示理想刀尖位置数据;P w represents the ideal tool nose position data;
表示TCS(刀具坐标系)到WCS(工件坐标系)的实际变换矩阵; Indicates the actual transformation matrix from TCS (tool coordinate system) to WCS (workpiece coordinate system);
表示TCS(刀具坐标系)到WCS(工件坐标系)的理想变换矩阵; Indicates the ideal transformation matrix from TCS (tool coordinate system) to WCS (workpiece coordinate system);
Qt表示TCS中的刀轴矢量;Q t represents the tool axis vector in TCS;
Pt表示TCS中的刀尖位置。P t represents the tool tip position in TCS.
进一步,所述几何误差-齿面位姿误差模型是通过以下公式建立的:Further, the geometric error-tooth surface pose error model is established by the following formula:
建立砂轮轴向廓形参数方程:Establish the parameter equation of the axial profile of the grinding wheel:
其中,in,
rwap表示砂轮轴向廓形;r wap represents the axial profile of the grinding wheel;
表示砂轮轴向廓形x坐标; Indicates the x-coordinate of the axial profile of the grinding wheel;
表示砂轮轴向廓形y坐标; Indicates the y-coordinate of the axial profile of the grinding wheel;
η表示砂轮轴向廓形参数,η represents the axial profile parameter of the grinding wheel,
φ表示砂轮轴向廓形的回转角度,φ represents the rotation angle of the axial profile of the grinding wheel,
rwt表示TCS中的砂轮廓形,其中第一个上标指代砂轮,第二个上标表示TCS;r wt represents the sand profile in TCS, where the first superscript refers to the grinding wheel, and the second superscript represents TCS;
建立TCS中的砂轮曲面双参数方程:Establish the two-parameter equation of the grinding wheel surface in TCS:
其中,in,
表示TCS中的砂轮廓形x坐标; Indicates the x-coordinate of the sand profile in TCS;
表示TCS中的砂轮廓形y坐标; Indicates the y-coordinate of the sand profile in TCS;
表示TCS中的砂轮廓形z坐标; Indicates the z coordinate of the sand profile in TCS;
rwt表示TCS中的砂轮廓形;r wt represents the sand profile in TCS;
按照以下公式计算TCS中的砂轮曲面的单位法矢:Calculate the unit normal vector of the grinding wheel surface in TCS according to the following formula:
nwt表示TCS中的砂轮单位法矢;n wt represents the unit normal vector of the grinding wheel in TCS;
表示rwt对η的偏导; Represents the partial derivative of r wt to η;
表示rwt对φ的偏导; Indicates the partial derivative of r wt to φ;
按照以下公式计算WCS中砂轮曲面参数方程:Calculate the grinding wheel surface parameter equation in WCS according to the following formula:
其中,in,
rwwi表示WCS中的砂轮理想廓形;r wwi represents the ideal profile of the grinding wheel in WCS;
nwwi表示WCS中的砂轮理想单位法矢;n wwi represents the ideal unit normal vector of the grinding wheel in WCS;
表示TCS(刀具坐标系)到WCS(工件坐标系)的理想变换矩阵; Indicates the ideal transformation matrix from TCS (tool coordinate system) to WCS (workpiece coordinate system);
rwt表示TCS中的砂轮廓形;r wt represents the sand profile in TCS;
nwt表示TCS中的砂轮单位法矢;n wt represents the unit normal vector of the grinding wheel in TCS;
rwwa表示WCS中的砂轮实际廓形;r wwa represents the actual profile of the grinding wheel in WCS;
nwwa表示WCS中的砂轮实际单位法矢;n wwa represents the actual unit normal vector of the grinding wheel in WCS;
表示TCS(刀具坐标系)到WCS(工件坐标系)的实际变换矩阵; Indicates the actual transformation matrix from TCS (tool coordinate system) to WCS (workpiece coordinate system);
rwt表示TCS中的砂轮廓形;r wt represents the sand profile in TCS;
nwt表示TCS中的砂轮单位法矢;n wt represents the unit normal vector of the grinding wheel in TCS;
r和n的第一个上标指代砂轮,第二个上标表示WCS,第三个上标表示理想状态i或实际状态a;The first superscript of r and n refers to the grinding wheel, the second superscript indicates WCS, and the third superscript indicates ideal state i or actual state a;
按照以下公式计算磨削接触点:Calculate the grinding contact point according to the following formula:
f=(kgw×rww+pkgw)·nww=0f=(k gw ×r ww +pk gw )·n ww =0
其中,in,
kgw表示WCS中的齿轮轴线;k gw represents the gear axis in WCS;
rww表示从WCS原点到砂轮曲面上一点的径矢;r ww represents the radial vector from the origin of WCS to a point on the surface of the grinding wheel;
p表示螺旋参数;p represents the spiral parameter;
nww表示WCS中砂轮曲面上的一点的单位法矢;n ww represents the unit normal vector of a point on the surface of the grinding wheel in WCS;
按照以下公式计算齿面数值模型:Calculate the tooth surface numerical model according to the following formula:
其中,in,
rgw表示齿面坐标向量;r gw represents the tooth surface coordinate vector;
ngw表示齿面单位法矢;n gw represents the unit normal vector of the tooth surface;
表示第k条接触线上第j个离散点的坐标向量; Represents the coordinate vector of the jth discrete point on the kth contact line;
表示第k条接触线上第j个离散点的单位法矢; Indicates the unit normal vector of the jth discrete point on the kth contact line;
λ表示磨削形成的齿面的接触线构成条数;λ represents the number of contact lines on the tooth surface formed by grinding;
N表示接触线上的离散接触点构成个数;N represents the number of discrete contact points on the contact line;
按照以下公式建立齿面位姿误差模型:The tooth surface pose error model is established according to the following formula:
其中,in,
δTS表示齿面位置误差;δ TS represents the tooth surface position error;
εTS表示齿面姿态误差;ε TS represents the attitude error of the tooth surface;
δx,δy,δz表示齿面位置x,y,z向误差;δ x , δ y , δ z represent the errors in the x, y, and z directions of the tooth surface position;
εx,εy,εz表示齿面姿态x,y,z向误差;ε x , ε y , ε z represent the tooth surface attitude x, y, z direction error;
rgwa表示实际齿面坐标向量;r gwa represents the actual tooth surface coordinate vector;
ngwa表示实际齿面单位法矢;n gwa represents the unit normal vector of the actual tooth surface;
rgwi表示理想齿面坐标向量;r gwi represents the ideal tooth surface coordinate vector;
ngwi表示理想齿面单位法矢。n gwi represents the unit normal vector of the ideal tooth surface.
按照以下公式建立齿面法向误差模型:The tooth surface normal error model is established according to the following formula:
δn=dot(δTS,ngwi)=dot(rgwa-rgwi,ngwi)δn=dot(δ TS ,n gwi )=dot(r gwa -r gwi ,n gwi )
其中,in,
δn表示齿面法向误差;δn represents the normal error of the tooth surface;
ngwi表示理想齿面单位法矢;n gwi represents the unit normal vector of the ideal tooth surface;
dot()表示点积运算;dot() means dot product operation;
rgwa表示实际齿面坐标向量;r gwa represents the actual tooth surface coordinate vector;
ngwi表示理想齿面单位法矢。n gwi represents the unit normal vector of the ideal tooth surface.
进一步,所述齿廓偏差的关键误差源的识别分析具体步骤如下:Further, the specific steps of identifying and analyzing the key error sources of the tooth profile deviation are as follows:
1)基于采样序列生成随机采样矩阵HN×2m;1) Generate a random sampling matrix H N×2m based on the sampling sequence;
其中,N表示每项误差的采样数,m表示误差数量;Among them, N represents the number of samples for each error, and m represents the number of errors;
2)根据随机采样矩阵HN×2m构建几何误差输入矩阵AN×m、BN×m和AB i N×m;2) Construct geometric error input matrices A N×m , B N×m and A B i N×m according to the random sampling matrix H N×2m ;
将HN×2m的前m列作为矩阵A,后m列作为矩阵B,并构建m个衍生矩阵AB i;Take the first m columns of H N×2m as matrix A, and the last m columns as matrix B, and construct m derived matrices A B i ;
3)将输入矩阵的每一行作为一组几何误差参数,共有N(m+2)组;3) Each row of the input matrix is used as a set of geometric error parameters, and there are N (m+2) sets in total;
并将由A、B和AB i拆解出的每一组误差分别带入齿廓偏差模型Fα=f(G)中,And bring each group of errors disassembled by A, B and A B i into the tooth profile deviation model F α =f(G),
其中,G表示几何误差集合,Among them, G represents the set of geometric errors,
计算N(m+2)次,得到相应的齿廓偏差f(A)、f(B)、f(AB i);Calculate N(m+2) times to obtain the corresponding tooth profile deviation f(A), f(B), f(A B i );
最后,利用蒙特卡洛估计式计算几何误差元素的敏感指数,包括一阶敏感指数Si和全局敏感指数STi:Finally, the sensitivity index of geometric error elements is calculated by using the Monte Carlo estimation formula, including the first-order sensitivity index S i and the global sensitivity index S Ti :
其中,in,
Si表示第i个误差元素的一阶敏感指数;S i represents the first-order sensitivity index of the i-th error element;
STi表示第i个误差元素的全局敏感指数;S Ti represents the global sensitivity index of the i-th error element;
V表示误差模型输出总方差;V represents the total variance of the error model output;
f(B)j表示矩阵B第j行输入误差对应的齿廓偏差;f(B) j represents the tooth profile deviation corresponding to the input error in row j of matrix B;
表示矩阵第j行输入误差对应的齿廓偏差; representation matrix The tooth profile deviation corresponding to the input error in line j;
f(A)j表示矩阵A第j行输入误差对应的齿廓偏差;f(A) j represents the tooth profile deviation corresponding to the input error in row j of matrix A;
N表示每项误差的采样数。N represents the number of samples for each error.
本发明的有益效果在于:The beneficial effects of the present invention are:
本发明提供了一种磨齿关键误差高效补偿方法,首先基于成形磨齿机床几何误差分布及机床实际运动链,构建磨齿加工实际前向运动学模型,反映几何误差影响下刀具坐标系中的刀具位姿与工件坐标系中的刀位数据间的函数关系;然后,基于实际逆向运动学补偿原理,推导误差补偿后的运动轴实际运动指令的解析表达式,揭示几何误差、理想刀位数据与实际运动指令间的映射规律;最后,根据共轭磨削原理,建立几何误差-齿面误差模型,计算评价实际齿廓、齿向精度,并针对齿廓偏差的关键误差源进行识别,对实际逆向运动学补偿方法进行简化,实现面向齿廓偏差消减的高效误差补偿。The invention provides an efficient compensation method for the key errors of gear grinding. First, based on the geometric error distribution of the form grinding machine tool and the actual kinematic chain of the machine tool, the actual forward kinematics model of the gear grinding process is constructed to reflect the position in the tool coordinate system under the influence of the geometric error. The functional relationship between the tool pose and the tool position data in the workpiece coordinate system; then, based on the actual inverse kinematics compensation principle, the analytical expression of the actual motion command of the motion axis after error compensation is derived, revealing the geometric error, ideal tool position data The mapping law between the actual motion command and the actual motion command; finally, according to the principle of conjugate grinding, the geometric error-tooth surface error model is established, the actual tooth profile and tooth direction accuracy are calculated and evaluated, and the key error sources of the tooth profile deviation are identified. The actual inverse kinematics compensation method is simplified to realize efficient error compensation for tooth profile deviation reduction.
本发明的其他优点、目标和特征在某种程度上将在随后的说明书中进行阐述,并且在某种程度上,基于对下文的考察研究对本领域技术人员而言将是显而易见的,或者可以从本发明的实践中得到教导。本发明的目标和其他优点可以通过下面的说明书来实现和获得。Other advantages, objects and features of the present invention will be set forth in the following description to some extent, and to some extent, will be obvious to those skilled in the art based on the investigation and research below, or can be obtained from Taught in the practice of the present invention. The objects and other advantages of the invention may be realized and attained by the following specification.
附图说明Description of drawings
为了使本发明的目的、技术方案和有益效果更加清楚,本发明提供如下附图进行说明:In order to make the purpose, technical scheme and beneficial effect of the present invention clearer, the present invention provides the following drawings for illustration:
图1为成形磨齿机结构简图。Figure 1 is a schematic diagram of the structure of the profile gear grinding machine.
图2为机床全运动链及41项几何误差示意图。Figure 2 is a schematic diagram of the full kinematic chain of the machine tool and 41 geometric errors.
图3为关键误差识别流程图。Figure 3 is a flow chart of key error identification.
图4为齿廓偏差的误差源敏感指数示意图。Fig. 4 is a schematic diagram of error source sensitivity index of tooth profile deviation.
图5为磨齿关键误差高效补偿方法流程图。Fig. 5 is a flowchart of an efficient compensation method for key errors of gear grinding.
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好的理解本发明并能予以实施,但所举实施例不作为对本发明的限定。The present invention will be further described below in conjunction with the accompanying drawings and specific embodiments, so that those skilled in the art can better understand the present invention and implement it, but the examples given are not intended to limit the present invention.
如图5所示,本实施例提供的一种磨齿关键误差高效补偿方法,包括以下步骤:As shown in Fig. 5, a method for efficiently compensating key gear grinding errors provided by this embodiment includes the following steps:
步骤一:成形磨削系统几何误差建模;Step 1: Modeling the geometric error of the form grinding system;
(1)成形磨削系统几何误差分析(1) Analysis of geometric error of form grinding system
如图1所示的tYAZXRCw型五轴成形磨齿机床基本结构,包括X、Y、Z三直线运动轴和两旋转轴,R表示机床基座,t表示刀具,也即砂轮,w表示工件齿轮。The basic structure of the tYAZXRCw five-axis form grinding machine tool shown in Figure 1 includes three linear motion axes of X, Y, and Z and two rotation axes. R represents the base of the machine tool, t represents the tool, that is, the grinding wheel, and w represents the workpiece gear. .
机床全运动链由从RCS(参考坐标系)到WCS(工件坐标系)的工件链RCw,从RCS到TCS(刀具坐标系)的刀具链RXZAYt构成。The full kinematic chain of the machine tool is composed of the workpiece chain RCw from RCS (reference coordinate system) to WCS (workpiece coordinate system), and the tool chain RXZAYt from RCS to TCS (tool coordinate system).
将X轴设为无安装误差的基本轴,Z设为副轴,机床坐标系(参考坐标系)的原点设为各运动轴处于零位时,A和C旋转轴的中心线交点。在对五个运动轴、机座、工件、刀具都配置相应子坐标系的基础上,考虑如表1所示的位置无关几何误差(PIGEs)和位置相关几何误差(PDGEs),机床实际全运动链如图2所示,图2为机床全运动链及41项几何误差。Set the X axis as the basic axis without installation error, Z as the auxiliary axis, and the origin of the machine tool coordinate system (reference coordinate system) as the intersection of the centerlines of the A and C rotation axes when each movement axis is at zero. On the basis of configuring the corresponding sub-coordinate systems for the five motion axes, machine base, workpiece, and tool, considering the position-independent geometric errors (PIGEs) and position-dependent geometric errors (PDGEs) shown in Table 1, the actual full motion of the machine tool The chain is shown in Figure 2, which shows the full motion chain of the machine tool and 41 geometric errors.
表1成形磨齿机几何误差元素Table 1 Geometric error elements of form gear grinding machine
其中,in,
δx(X),δy(X),δz(X)表示X轴运动x,y,z向线性误差;δ x (X), δ y (X), δ z (X) represent the linear error of the x, y, and z directions of the X-axis movement;
δx(Y),δy(Y),δz(Y)表示Y轴运动x,y,z向线性误差;δ x (Y), δ y (Y), δ z (Y) represent the linear error of the Y-axis movement in x, y, and z directions;
δx(Z),δy(Z),δz(Z)表示Z轴运动x,y,z向线性误差;δ x (Z), δ y (Z), δ z (Z) represent the linear error of the Z-axis movement in x, y, and z directions;
δx(A),δy(A),δz(A)表示A轴运动x,y,z向线性误差;δ x (A), δ y (A), δ z (A) represent the linear error of A-axis movement in x, y, and z directions;
δx(C),δy(C),δz(C)表示C轴运动x,y,z向线性误差;δ x (C), δ y (C), δ z (C) represent the linear error of C-axis movement in x, y, and z directions;
εx(X),εy(X),εz(X)表示X轴运动x,y,z向角度误差;ε x (X), ε y (X), ε z (X) represent the angular error of the x, y, and z directions of the X-axis movement;
εx(Y),εy(Y),εz(Y)表示Y轴运动x,y,z向角度误差;ε x (Y), ε y (Y), ε z (Y) represent the angular error in the x, y, and z directions of the Y-axis movement;
εx(Z),εy(Z),εz(Z)表示Z轴运动x,y,z向角度误差;ε x (Z), ε y (Z), ε z (Z) represent the angular error in the x, y, and z directions of the Z-axis movement;
εx(A),εy(A),εz(A)表示A轴运动x,y,z向角度误差;ε x (A), ε y (A), ε z (A) represent the angular error of the A-axis movement in x, y, and z directions;
εx(C),εy(C),εz(C)表示C轴运动x,y,z向角度误差;ε x (C), ε y (C), ε z (C) represent the angular error in the x, y, and z directions of the C-axis movement;
SYX,SYZ表示Y、X轴间垂直度误差和Y、Z轴间垂直度误差;S YX , S YZ indicates the verticality error between Y and X axes and the verticality error between Y and Z axes;
SZX表示Z、X轴间垂直度误差;S ZX indicates the verticality error between the Z and X axes;
δAy,δAz,βAZ,γAY表示A轴安装y,z向线性误差和C轴安装y,z向角度误差;δ Ay , δ Az , β AZ , γ AY represent the linear error of A-axis installation in y and z direction and the installation of C-axis in y and z direction angular error;
δCx,δCy,αCY,βCX表示C轴安装x,y向线性误差和C轴安装x,y向角度误差;δ Cx , δ Cy , α CY , β CX indicate the linear error of C-axis installation in x and y directions and the angular error of C-axis installation in x and y directions;
(2)构建实际前向运动学模型(2) Build the actual forward kinematics model
若相邻部件坐标系间(例N到Q坐标系)的理想位姿变换矩阵可由顺序连乘安装矩阵TpQN、运动矩阵TmQN得到。If the ideal pose transformation matrix between adjacent component coordinate systems (for example, N to Q coordinate system) can be obtained by multiplying the installation matrix T pQN and the motion matrix T mQN sequentially .
实际位姿变换矩阵可由顺序连乘安装矩阵TpQN、安装误差矩阵TpeQN、运动矩阵TmQN、运动误差矩阵TmeQN获得。The actual pose transformation matrix can be obtained by multiplying the installation matrix T pQN , the installation error matrix T peQN , the motion matrix T mQN , and the motion error matrix T meQN sequentially .
则针对工件链(RCw)而言,WCS相对于RCS的实际变换矩阵,也即工件链的实际前向运动学模型为:Then for the workpiece chain (RCw), the actual transformation matrix of WCS relative to RCS, that is, the actual forward kinematics model of the workpiece chain is:
同理,可以建立刀具链的实际前向运动学模型,也即TCS相对于RCS的实际变换矩阵:In the same way, the actual forward kinematics model of the tool chain can be established, that is, the actual transformation matrix of TCS relative to RCS:
其中,in,
对刀具链和工具链的实际前向运动学模型进行整合,可以建立磨齿机床全运动链的实际前向运动学模型,也即TCS相对于WCS的实际变换矩阵:By integrating the actual forward kinematics model of the tool chain and the tool chain, the actual forward kinematics model of the whole kinematic chain of the gear grinding machine can be established, that is, the actual transformation matrix of TCS relative to WCS:
由此,可知TCS相对于WCS的实际变换矩阵实质上是一个以运动轴理想运动指令和几何误差为自变量的矩阵函数。From this, it can be seen that the actual transformation matrix of TCS relative to WCS is essentially a matrix function with the ideal motion command of the motion axis and the geometric error as independent variables.
若将其与TCS中的刀尖位置Pt和刀轴矢量Qt相乘,即可得到几何误差影响下的刀位数据:If it is multiplied by the tool nose position P t and the tool axis vector Q t in TCS, the tool position data under the influence of geometric error can be obtained:
其中,P′w=[x′,y′,z′]T和Q′w=[i′,j′,k′]T分别表示实际刀尖位置和实际刀轴矢量。Among them, P′ w =[x′,y′,z′] T and Q′ w =[i′,j′,k′] T represent the actual tool nose position and the actual tool axis vector, respectively.
步骤二:基于实际逆向运动学的几何误差补偿方法Step 2: Geometric error compensation method based on actual inverse kinematics
(1)实际逆向运动学补偿原理(1) Actual inverse kinematics compensation principle
步骤一实际提供了一种考虑几何误差影响的实际刀位数据显式计算方法,可以通过已知的运动轴理想运动指令和测量标定的几何误差求解实际刀位数据。Step 1 actually provides an explicit calculation method of actual tool position data considering the influence of geometric error, which can solve the actual tool position data through the known ideal motion command of the motion axis and the measured and calibrated geometric error.
后续的误差补偿策略通常为:先计算实际刀位数据和理想刀位数据间的误差矢量,然后在不改变理想加工代码的基础上,添加一个与该矢量大小相等、方向相反的补偿矢量,并反向求解出相应的补偿加工代码,从而实现误差补偿,提升加工精度。The subsequent error compensation strategy is usually: first calculate the error vector between the actual tool position data and the ideal tool position data, and then add a compensation vector that is equal to the vector and opposite in direction without changing the ideal machining code, and Reversely solve the corresponding compensation processing code, so as to realize error compensation and improve processing accuracy.
为简化误差补偿的计算流程,提高补偿效率,本实施例中以保证理想刀位数据不变为目标,运动轴运动指令会受几何误差影响而发生改变,误差补偿后的实际运动指令值可以根据上式反向求解得到,从而求得实际加工代码,实现误差补偿。In order to simplify the calculation process of error compensation and improve the compensation efficiency, in this embodiment, the goal is to ensure that the ideal tool position data remains unchanged. The motion command of the motion axis will be changed due to the influence of geometric errors. The actual motion command value after error compensation can be calculated according to The above formula is reversely solved, so as to obtain the actual processing code and realize error compensation.
因此,理想刀位数据被先行给定,包括刀具位置数据和刀轴矢量数据,也即刀尖位置Pw=[x,y,z]T和刀轴矢量Qw=[i,j,k]T。同时,TCS中的刀尖位置和刀轴矢量分别为Pt=[0,0,0]T和Qt=[0,0,1]T,则两者间的映射关系可表示为:Therefore, the ideal tool position data is given in advance, including tool position data and tool axis vector data, that is, tool nose position P w =[x,y,z] T and tool axis vector Q w =[i,j,k ] T. At the same time, the tool nose position and tool axis vector in TCS are P t =[0,0,0] T and Q t =[0,0,1] T respectively, and the mapping relationship between them can be expressed as:
也即,That is,
(2)旋转轴实际运动指令解析表达式推导(2) Derivation of the analytical expression of the actual motion command of the rotary axis
考虑到刀轴矢量数据不受直线轴运动影响,先利用理想刀轴矢量数据与机床几何误差间的映射关系,分离求解旋转轴的实际运动指令A和C,Considering that the tool axis vector data is not affected by the motion of the linear axis, first use the mapping relationship between the ideal tool axis vector data and the geometric error of the machine tool to separate and solve the actual motion commands A and C of the rotary axis,
也即,That is,
其中,in,
表示WCS(工件坐标系)到RCS(参考坐标系)的实际变换矩阵; Indicates the actual transformation matrix from WCS (workpiece coordinate system) to RCS (reference coordinate system);
表示TCS(刀具坐标系)到RCS(参考坐标系)的实际变换矩阵; Indicates the actual transformation matrix from TCS (tool coordinate system) to RCS (reference coordinate system);
若将C轴运动矩阵函数分离转换到等式左边,化简可得If the C-axis motion matrix function is separated and converted to the left side of the equation, it can be simplified to get
其中,in,
TmCW表示WCS(工件坐标系)到C轴坐标系的运动矩阵;T mCW represents the motion matrix from WCS (workpiece coordinate system) to C-axis coordinate system;
TmeCW表示WCS(工件坐标系)到C轴坐标系的运动误差矩阵;T meCW represents the motion error matrix from WCS (workpiece coordinate system) to C-axis coordinate system;
TpeCW表示WCS(工件坐标系)到C轴坐标系的安装误差矩阵;T peCW represents the installation error matrix from WCS (workpiece coordinate system) to C-axis coordinate system;
因此,可得:Therefore, we can get:
(TmCWTmeCW)[i,j,k,0]T=[b13-b33βCX,b23+b33αCY,b33+b13βCX-b23αCY,0]T (T mCW T meCW )[i,j,k,0] T =[b 13 -b 33 β CX ,b 23 +b 33 α CY ,b 33 +b 13 β CX -b 23 α CY ,0] T
由于等式左边是只与C轴旋转运动相关的矩阵函数,根据旋转不变理论,可知刀轴矢量的z向数据不受C轴旋转运动影响。Since the left side of the equation is a matrix function related only to the rotation of the C axis, according to the theory of rotation invariance, it can be known that the z-direction data of the tool axis vector is not affected by the rotation of the C axis.
因此,可将式中z向刀轴矢量的计算公式单独提取出来,并省略二阶及以上高阶项,得到只与运动指令A相关的等式,Therefore, the calculation formula of the z-direction tool axis vector in the formula can be extracted separately, and the second-order and higher-order items can be omitted to obtain the equation related only to the motion command A,
-εy(C)i+εx(C)j+k=cosA-(εx(X)+εx(Y)+εx(Z)+εx(A)+SYZ-αCY)sinA-ε y (C)i+ε x (C)j+k=cosA-(ε x (X)+ε x (Y)+ε x (Z)+ε x (A)+S YZ -α CY ) sinA
根据辅助角公式及三角反函数可得,实际A轴运动指令的解析表达式为:According to the auxiliary angle formula and trigonometric inverse function, the analytical expression of the actual A-axis motion command is:
其中, in,
同理,若将A轴运动矩阵函数分离转换到等式右边,化简可得:Similarly, if the A-axis motion matrix function is separated and converted to the right side of the equation, it can be simplified to get:
其中,in,
TpeZA表示A轴坐标系到Z轴坐标系的安装误差矩阵;T peZA represents the installation error matrix from the A-axis coordinate system to the Z-axis coordinate system;
TmZA表示A轴坐标系到Z轴坐标系的运动矩阵;T mZA represents the motion matrix from the A-axis coordinate system to the Z-axis coordinate system;
TmeZA表示A轴坐标系到Z轴坐标系的运动误差矩阵;T meZA represents the motion error matrix from the A-axis coordinate system to the Z-axis coordinate system;
表示TCS(刀具坐标系)到A轴坐标系的实际变换矩阵; Indicates the actual transformation matrix from TCS (tool coordinate system) to A-axis coordinate system;
表示WCS(工件坐标系)到RCS(参考坐标系)的实际变换矩阵; Indicates the actual transformation matrix from WCS (workpiece coordinate system) to RCS (reference coordinate system);
由于等式右边是只与A轴旋转运动相关的矩阵函数,根据旋转不变理论,可知刀轴矢量的x向数据不受A轴旋转运动影响。因此,可将式中x向刀轴矢量的计算公式单独提取出来,并省略二阶及以上高阶项,得到只与运动指令C相关的等式,Since the right side of the equation is a matrix function related only to the rotation of the A axis, according to the theory of rotation invariance, it can be known that the x-direction data of the tool axis vector is not affected by the rotation of the A axis. Therefore, the calculation formula of the x-direction tool axis vector in the formula can be extracted separately, and the second-order and higher-order terms can be omitted to obtain the equation related only to the motion command C,
[(i(εz(X)+εz(Z)+γAY-εz(C))-j+kεx(C))]sinC+[(i(ε z (X)+ε z (Z)+γ AY -ε z (C))-j+kε x (C))]sinC+
[i+j(εz(X)+εz(Z)+γAY-εz(C))+kεy(C)]cosC[i+j(ε z (X)+ε z (Z)+γ AY -ε z (C))+kε y (C)]cosC
=εy(Y)+εy(A)-k(βCX-εy(X)-εy(Z)-SZX-βAZ)=ε y (Y)+ε y (A)-k(β CX -ε y (X)-ε y (Z)-S ZX -β AZ )
根据辅助角公式及三角反函数可得,According to the auxiliary angle formula and trigonometric inverse function,
sin(C+φ)=εy(Y)+εy(A)-k(βCX-εy(X)-εy(Z)-SZX-βAZ)sin(C+φ)=ε y (Y)+ε y (A)-k(β CX -ε y (X)-ε y (Z)-S ZX -β AZ )
其中,in,
从而,可得实际C轴运动指令解析表达式为:Thus, the analytic expression of the actual C-axis motion command can be obtained as:
(3)直线轴实际运动指令解析表达式推导(3) Derivation of the analytical expression of the actual motion command of the linear axis
基于已经求得旋转轴的实际运动指令,利用理想刀具位置数据与机床几何误差间的映射关系,求解直线轴的实际运动指令:Based on the actual motion command of the rotary axis, the actual motion command of the linear axis is solved by using the mapping relationship between the ideal tool position data and the geometric error of the machine tool:
也即,That is,
其中,in,
TpRX表示X轴坐标系到RCS(参考坐标系)的安装矩阵;T pRX represents the installation matrix from the X-axis coordinate system to the RCS (reference coordinate system);
TpeRX表示X轴坐标系到RCS(参考坐标系)的安装误差矩阵;T peRX represents the installation error matrix from the X-axis coordinate system to the RCS (reference coordinate system);
TmRX表示X轴坐标系到RCS(参考坐标系)的运动矩阵;T mRX represents the motion matrix from the X-axis coordinate system to the RCS (reference coordinate system);
TmeRX表示X轴坐标系到RCS(参考坐标系)的运动误差矩阵;T meRX represents the motion error matrix from the X-axis coordinate system to the RCS (reference coordinate system);
TpXZ表示Z轴坐标系到X轴坐标系的安装矩阵;T pXZ represents the installation matrix from the Z-axis coordinate system to the X-axis coordinate system;
TpeXZ表示Z轴坐标系到X轴坐标系的安装误差矩阵;T peXZ represents the installation error matrix from the Z-axis coordinate system to the X-axis coordinate system;
TmXZ表示Z轴坐标系到X轴坐标系的运动矩阵;T mXZ represents the motion matrix from the Z-axis coordinate system to the X-axis coordinate system;
TmeXZ表示Z轴坐标系到X轴坐标系的运动误差矩阵;T meXZ represents the motion error matrix from the Z-axis coordinate system to the X-axis coordinate system;
TpZA表示A轴坐标系到Z轴坐标系的安装矩阵;T pZA represents the installation matrix from the A-axis coordinate system to the Z-axis coordinate system;
TpeZA表示A轴坐标系到Z轴坐标系的安装误差矩阵;T peZA represents the installation error matrix from the A-axis coordinate system to the Z-axis coordinate system;
TmZA表示A轴坐标系到Z轴坐标系的运动矩阵;T mZA represents the motion matrix from the A-axis coordinate system to the Z-axis coordinate system;
TmeZA表示A轴坐标系到Z轴坐标系的运动误差矩阵;T meZA represents the motion error matrix from the A-axis coordinate system to the Z-axis coordinate system;
TpAY表示Y轴坐标系到A轴坐标系的安装矩阵;T pAY represents the installation matrix from the Y-axis coordinate system to the A-axis coordinate system;
TpeAY表示Y轴坐标系到A轴坐标系的安装误差矩阵;T peAY represents the installation error matrix from the Y-axis coordinate system to the A-axis coordinate system;
TmAY表示Y轴坐标系到A轴坐标系的运动矩阵;T mAY represents the motion matrix from the Y-axis coordinate system to the A-axis coordinate system;
TmeAY表示Y轴坐标系到A轴坐标系的运动误差矩阵;T meAY represents the motion error matrix from the Y-axis coordinate system to the A-axis coordinate system;
TpYT表示TCS(刀具坐标系)到Y轴坐标系的安装矩阵;T pYT represents the installation matrix from TCS (tool coordinate system) to Y-axis coordinate system;
TpeYT表示TCS(刀具坐标系)到Y轴坐标系的安装误差矩阵;T peYT represents the installation error matrix from TCS (tool coordinate system) to Y-axis coordinate system;
TmYT表示TCS(刀具坐标系)到Y轴坐标系的运动矩阵;T mYT represents the motion matrix from TCS (tool coordinate system) to Y-axis coordinate system;
TmeYT表示TCS(刀具坐标系)到Y轴坐标系的运动误差矩阵。T meYT represents the motion error matrix from TCS (tool coordinate system) to Y-axis coordinate system.
基于分块计算的平移特征分离理论,可将其化为:Based on the translational feature separation theory of block calculation, it can be transformed into:
TmeRX表示X轴坐标系到RCS(参考坐标系)的运动误差矩阵;T meRX represents the motion error matrix from the X-axis coordinate system to the RCS (reference coordinate system);
TpeXZ表示Z轴坐标系到X轴坐标系的安装误差矩阵;T peXZ represents the installation error matrix from the Z-axis coordinate system to the X-axis coordinate system;
TmeXZ表示Z轴坐标系到X轴坐标系的运动误差矩阵;T meXZ represents the motion error matrix from the Z-axis coordinate system to the X-axis coordinate system;
TpeZA表示A轴坐标系到Z轴坐标系的安装误差矩阵;T peZA represents the installation error matrix from the A-axis coordinate system to the Z-axis coordinate system;
TmZA表示A轴坐标系到Z轴坐标系的运动矩阵;T mZA represents the motion matrix from the A-axis coordinate system to the Z-axis coordinate system;
TmeZA表示A轴坐标系到Z轴坐标系的运动误差矩阵;T meZA represents the motion error matrix from the A-axis coordinate system to the Z-axis coordinate system;
TpeAY表示Y轴坐标系到A轴坐标系的安装误差矩阵;T peAY represents the installation error matrix from the Y-axis coordinate system to the A-axis coordinate system;
TmeAY表示Y轴坐标系到A轴坐标系的运动误差矩阵;T meAY represents the motion error matrix from the Y-axis coordinate system to the A-axis coordinate system;
若设If set
其中,in,
f11~f34表示TmeRXTpeXZ矩阵运算后,各矩阵元素的值;f 11 ~ f 34 represent the value of each matrix element after T meRX T peXZ matrix operation;
g11~g34表示表示TmeRXTpeXZTmeXZTpeZATmZATmeZATpeAY矩阵运算后,各矩阵元素的值;g 11 ~ g 34 represent the value of each matrix element after T meRX T peXZ T meXZ T peZA T mZA T meZA T peAY matrix operation;
h11~h34表示表示上述矩阵连乘后,得到的各矩阵元素的值;h 11 ~ h 34 represent the value of each matrix element obtained after multiplying the above matrices;
可得,Available,
将其展开为多项式方程组,可得:Expanding it into a system of polynomial equations, we get:
根据上式,可以得出含误差的直线轴运动指令(X、Y、Z)的解析表达式。According to the above formula, the analytical expression of the error-containing linear axis motion command (X, Y, Z) can be obtained.
由于f33=1,f23=-εx(X),则③×f23-②,并省略二阶以上高阶项,可得:Since f 33 =1, f 23 =-ε x (X), then ③×f 23 -②, and omitting higher-order items above the second order, we can get:
x(f23a31-a21)+y(f23a32-a22)+z(f23a33-a23)+(f23a34-a24)-f23h34+h24=Y(f23g32-g22)x(f 23 a 31 -a 21 )+y(f 23 a 32 -a 22 )+z(f 23 a 33 -a 23 )+(f 23 a 34 -a 24 )-f 23 h 34 +h 24 =Y(f 23 g 32 -g 22 )
因此,Y轴实际运动指令的解析表达式为:Therefore, the analytical expression of the actual motion command of the Y-axis is:
Y={-sinC(x+zεy(C)-yεz(C)+δx(C))-cosC(y+xεz(C)-zεx(C)+δy(C))Y={-sinC(x+zε y (C)-yε z (C)+δ x (C))-cosC(y+xε z (C)-zε x (C)+δ y (C))
-(δz(A)+δz(Y))sinA+(δy(A)+δy(Y))cosA+δy(X)+δy(Z)+δAy-zεx(X)-(δ z (A)+δ z (Y))sinA+(δ y (A)+δ y (Y))cosA+δ y (X)+δ y (Z)+δ Ay -zε x (X)
+zαCY-δCy}/((εx(Z)+εx(A)+SYZ)sinA-cosA)+zα CY -δ Cy }/((ε x (Z)+ε x (A)+S YZ )sinA-cosA)
由③×g22-②×g32,并省略二阶以上高阶项,可得:From ③×g 22 -②×g 32 , and omitting higher-order terms above the second order, we can get:
x(-cosA(εy(C)+βCXcosC+(εx(X)+εx(Z)+εx(A)+SYZ-αCY)sinC)-sinA(sinC+εz(C)cosC))x(-cosA(ε y (C)+β CX cosC+(ε x (X)+ε x (Z)+ε x (A)+S YZ -α CY )sinC)-sinA(sinC+ε z (C ) cos C))
+y(cosA(εx(C)+βCXsinC-(εx(X)+εx(Z)+εx(A)+SYZ-αCY)cosC)-sinA(cosC-εz(C)sinC))+y(cosA(ε x (C)+β CX sinC-(ε x (X)+ε x (Z)+ε x (A)+S YZ -α CY )cosC)-sinA(cosC-ε z ( C) sin C))
+z(cosA-(εx(X)+εx(Z)+εx(A)+SYZ-αCY-εx(C)cosC+εy(C)sinC)sinA)+z(cosA-(ε x (X)+ε x (Z)+ε x (A)+S YZ -α CY -ε x (C)cosC+ε y (C)sinC)sinA)
-cosA((δy(A)+δy(Y))sinA+(δz(A)+δz(Y))cosA+δz(X)+δz(Z)+δAz-δz(C))-cosA((δ y (A)+δ y (Y))sinA+(δ z (A)+δ z (Y))cosA+δ z (X)+δ z (Z)+δ Az -δ z ( C))
+sinA((δy(A)+δy(Y))cosA-(δz(A)+δz(Y))sinA+δy(X)+δy(Z)+δAy-δCy-δy(C)cosC-δx(C)sinC)+sinA((δ y (A)+δ y (Y))cosA-(δ z (A)+δ z (Y))sinA+δ y (X)+δ y (Z)+δ Ay -δ Cy -δ y (C)cosC-δ x (C)sinC)
=Z(cosA-(εx(X)+εx(Z)+εx(A)+SYZ-εx(X))sinA)=Z(cosA-(ε x (X)+ε x (Z)+ε x (A)+S YZ -ε x (X))sinA)
因此,Z轴实际运动指令的解析表达式为:Therefore, the analytical expression of the Z-axis actual motion command is:
Z={x(-cosA(εy(C)+βCXcosC+(εx(X)+εx(Z)+εx(A)+SYZ-αCY)sinC)-sinA(sinC+εz(C)cosC))Z={x(-cosA(ε y (C)+β CX cosC+(ε x (X)+ε x (Z)+ε x (A)+S YZ -α CY )sinC)-sinA(sinC+ε z (C)cosC))
+y(cosA(εx(C)+βCXsinC-(εx(X)+εx(Z)+εx(A)+SYZ-αCY)cosC)-sinA(cosC-εz(C)sinC))+y(cosA(ε x (C)+β CX sinC-(ε x (X)+ε x (Z)+ε x (A)+S YZ -α CY )cosC)-sinA(cosC-ε z ( C) sin C))
+z(cosA-(εx(X)+εx(Z)+εx(A)+SYZ-αCY-εx(C)cosC+εy(C)sinC)sinA)+z(cosA-(ε x (X)+ε x (Z)+ε x (A)+S YZ -α CY -ε x (C)cosC+ε y (C)sinC)sinA)
-cosA((δy(A)+δy(Y))sinA+(δz(A)+δz(Y))cosA+δz(X)+δz(Z)+δAz-δz(C))-cosA((δ y (A)+δ y (Y))sinA+(δ z (A)+δ z (Y))cosA+δ z (X)+δ z (Z)+δ Az -δ z ( C))
+sinA((δy(A)+δy(Y))cosA-(δz(A)+δz(Y))sinA+δy(X)+δy(Z)+δAy-δCy-δy(C)cosC-δx(C)sinC)}+sinA((δ y (A)+δ y (Y))cosA-(δ z (A)+δ z (Y))sinA+δ y (X)+δ y (Z)+δ Ay -δ Cy -δ y (C)cosC-δ x (C)sinC)}
/(cosA-(εx(X)+εx(Z)+εx(A)+SYZ-εx(X))sinA)/(cosA-(ε x (X)+ε x (Z)+ε x (A)+S YZ -ε x (X))sinA)
基于已求得的Y、Z轴实际运动指令,根据式①可得:Based on the obtained actual motion commands of the Y and Z axes, according to formula ①, it can be obtained:
X=xa11+ya12+za13+a14-h14-Zf13-Yg12 X=xa 11 +ya 12 +za 13 +a 14 -h 14 -Zf 13 -Yg 12
因此,X轴实际运动指令的解析表达式为:Therefore, the analytical expression of the actual motion command of the X-axis is:
X=x(cosC-εz(C)sinC)+y(-sinC-εz(C)cosC)+z(βCX+εy(C)cosC+εx(C)sinC)X=x(cosC-ε z (C)sinC)+y(-sinC-ε z (C)cosC)+z(β CX +ε y (C)cosC+ε x (C)sinC)
-Z(εy(X)+SZX)-Y((εy(X)+εy(Z)+SZX+βAZ)sinA-(εz(X)+εz(Z)+γAY)cosA-SYX-εz(A))-Z(ε y (X)+S ZX )-Y((ε y (X)+ε y (Z)+S ZX +β AZ )sinA-(ε z (X)+ε z (Z)+γ AY )cosA-S YX -ε z (A))
-(δx(X)+δx(Y)+δx(Z)+δx(A)-δCx)+δx(C)cosC-δy(C)sinC-(δ x (X)+δ x (Y)+δ x (Z)+δ x (A)-δ Cx )+δ x (C)cosC-δ y (C)sinC
至此,数控成形磨齿机床五个运动轴的实际运动指令与几何误差及理想刀位数据的映射规律均已清楚表示。在理想刀位数据被给定且机床几何误差被有效标定的前提下,可根据上述解析表达式直接求得带误差补偿的实际数控加工指令,从而实现误差补偿。So far, the mapping rules of the actual motion command, geometric error and ideal tool position data of the five motion axes of the NC form gear grinding machine have been clearly expressed. Under the premise that the ideal tool position data is given and the geometric error of the machine tool is calibrated effectively, the actual NC machining instruction with error compensation can be directly obtained according to the above analytical expression, so as to realize error compensation.
步骤三:关键误差识别及补偿模型简化Step 3: Key error identification and compensation model simplification
(1)几何误差-齿面误差模型(1) Geometric error-tooth surface error model
数控成形磨齿前向运动学模型描述的是齿轮与砂轮坐标系间的位置、姿态间的变换关系。若将考虑几何误差的实际情形与忽略误差影响的理想状态进行作差比较,再与TCS中的砂轮中心位置和姿态的齐次坐标作乘积,即可建立磨齿机床的几何误差-刀具空间位姿误差模型,也即WCS中砂轮与齿坯间的相对位姿误差:The forward kinematics model of CNC form grinding gear describes the transformation relationship between the position and attitude of the gear and the grinding wheel coordinate system. If the actual situation considering the geometric error is compared with the ideal state ignoring the influence of the error, and then multiplied by the homogeneous coordinates of the center position and attitude of the grinding wheel in TCS, the geometric error-tool space position of the gear grinding machine can be established The pose error model, that is, the relative pose error between the grinding wheel and the gear blank in WCS:
考虑到几何误差-刀具空间误差模型忽略了刀具与工件曲面间的切削运动干涉对加工效果的影响,需要基于实际磨削过程中的材料去除机理,进一步构建从刀具空间误差到齿面位姿误差的映射模型,从而建立更能直接反应几何误差对齿面位姿误差影响的几何误差-齿面位姿误差模型。Considering that the geometric error-tool space error model ignores the influence of the cutting motion interference between the tool and the workpiece surface on the machining effect, it is necessary to further construct the model from the tool space error to the tooth surface pose error based on the material removal mechanism in the actual grinding process. In order to establish a geometric error-tooth surface pose error model that can more directly reflect the influence of geometric errors on the tooth surface pose error.
根据共轭磨削原理,以η表示砂轮轴向廓形参数,建立砂轮轴向廓形参数方程:According to the principle of conjugate grinding, the axial profile parameter of the grinding wheel is represented by η, and the axial profile parameter equation of the grinding wheel is established:
以φ表示砂轮轴向廓形的回转角度,rwt表示砂轮廓形参数方程,其中第一个上标指代砂轮,第二个上标表示TCS,则可建立TCS中的砂轮曲面双参数方程:Let φ represent the rotation angle of the axial profile of the grinding wheel, and r wt represent the parametric equation of the sand profile, where the first superscript refers to the grinding wheel, and the second superscript represents TCS, then the two-parameter equation of the grinding wheel surface in TCS can be established :
其中,in,
由此可得,TCS中的砂轮曲面的单位法矢为:From this, it can be obtained that the unit normal vector of the grinding wheel surface in TCS is:
基于前向运动学模型所建立的齿轮与砂轮坐标系间的变换关系,可以得到理想情况下和实际状态下,WCS中砂轮曲面参数方程为:Based on the transformation relationship between the gear and the grinding wheel coordinate system established by the forward kinematics model, the parameter equation of the grinding wheel surface in WCS under ideal conditions and actual conditions can be obtained as follows:
其中,r和n的第一个上标指代砂轮,第二个上标表示WCS,第三个上标表示理想状态i或实际状态a。Among them, the first superscript of r and n refers to the grinding wheel, the second superscript indicates WCS, and the third superscript indicates ideal state i or actual state a.
在砂轮已知时,砂轮和齿轮的共轭磨削接触条件可表示为:从WCS原点向砂轮回转面上的一点作径矢rww,如果这一点绕齿轮轴线kgw作螺旋运动时的线速度矢量与其在砂轮曲面上的法线nww垂直,则该点就是磨削接触点。When the grinding wheel is known, the conjugate grinding contact condition between the grinding wheel and the gear can be expressed as the radial vector r ww from the origin of WCS to a point on the surface of rotation of the grinding wheel, if this point makes a spiral motion around the gear axis k gw The velocity vector is perpendicular to its normal line n ww on the surface of the grinding wheel, then this point is the grinding contact point.
f=(kgw×rww+pkgw)·nww=0f=(k gw ×r ww +pk gw )·n ww =0
分别将理想和实际状态下的rww和nww带入上式,可以通过将磨削轨迹离散化,并采用二分法求得磨削接触线的数值解。若磨削形成的齿面由λ条接触线构成,而每条接触线由n个离散接触点构成,则齿面数值模型可表示为:Bringing r ww and n ww under ideal and actual conditions into the above formula respectively, the numerical solution of the grinding contact line can be obtained by discretizing the grinding trajectory and using the dichotomy method. If the tooth surface formed by grinding is composed of λ contact lines, and each contact line is composed of n discrete contact points, the numerical model of the tooth surface can be expressed as:
可将实际状态和理想状态下齿面进行作差比较,建立齿面位姿误差模型,The difference between the actual state and the ideal state can be compared, and the tooth surface pose error model can be established.
基于几何误差-齿面位姿误差模型,可将齿面位置误差与理想齿面法矢进行点积运算,从而建立齿面法向误差模型,也即Based on the geometric error-tooth surface pose error model, the tooth surface position error and the ideal tooth surface normal vector can be calculated by dot product, so as to establish the tooth surface normal error model, that is,
δn=dot(δTS,ngwi)=(rgwa-rgwi,ngwi)δn=dot(δ TS ,n gwi )=(r gwa -r gwi ,n gwi )
由于磨削齿面由含n个离散点的λ条接触线共同构成,若将第k条接触线的法向误差旋转变换到齿轮端截面上,便可获得相应的齿廓偏差曲线,进一步分析可得到齿廓总偏差(Fα)、齿廓形状偏差(ffα)和齿廓斜率偏差(fHα)等评价指标;若将λ条接触线上的所有第j点的法向误差单独提取出来,便可获得相应的螺旋线偏差曲线,进一步分析可得到螺旋线总偏差(Fβ)、螺旋线形状偏差(ffβ)和螺旋线斜率偏差(fHβ)等评价指标。Since the ground tooth surface is composed of λ contact lines containing n discrete points, if the normal error rotation of the kth contact line is transformed to the gear end section, the corresponding tooth profile deviation curve can be obtained, and further analysis Evaluation indicators such as the total tooth profile deviation (F α ), tooth profile shape deviation (f fα ) and tooth profile slope deviation (f Hα ) can be obtained; if the normal errors of all the jth points on the λ contact line are extracted separately Then the corresponding helix deviation curve can be obtained, and further analysis can obtain the evaluation indexes such as the total deviation of the helix (F β ), the deviation of the helix shape (f fβ ) and the deviation of the slope of the helix (f Hβ ).
(2)关键误差源识别流程(2) Key error source identification process
如图3所示,图3为关键误差识别流程,根据Sobol法,可针对齿廓偏差、螺旋线偏差分别进行关键误差源的识别分析,以齿廓偏差的关键误差源分析为例。As shown in Figure 3, Figure 3 is the key error identification process. According to the Sobol method, the identification and analysis of key error sources can be carried out for tooth profile deviation and helix deviation respectively. Taking the analysis of key error sources of tooth profile deviation as an example.
1)基于采样序列生成随机采样矩阵HN×2m,该矩阵是考虑输入误差几何项的概率分布构造的。其中,N表示每项误差的采样数,m表示误差数量。1) A random sampling matrix H N×2m is generated based on the sampling sequence, which is constructed considering the probability distribution of the input error geometric items. Among them, N represents the sampling number of each error, and m represents the number of errors.
2)根据随机采样矩阵HN×2m构建几何误差输入矩阵AN×m、BN×m和AB i N×m。将HN×2m的前m列作为矩阵A,后m列作为矩阵B,并构建m个衍生矩阵AB i,它除了第i列等于B的第i列外,其余的列来自于A。2) Construct the geometric error input matrices A N×m , B N×m and A B i N×m according to the random sampling matrix H N×2m . Take the first m columns of H N×2m as matrix A, and the last m columns as matrix B, and construct m derived matrices A B i , except that the i-th column is equal to the i-th column of B, and the rest of the columns come from A.
3)将输入矩阵的每一行作为一组几何误差参数,共有N(m+2)组。并将由A、B和AB i拆解出的每一组误差分别带入齿廓偏差模型Fα=f(G)中,G表示几何误差集合,计算N(m+2)次,得到相应的齿廓偏差f(A)、f(B)、f(AB i)。最后,利用蒙特卡洛估计式计算几何误差元素的敏感指数,包括一阶敏感指数Si和全局敏感指数STi。3) Each row of the input matrix is used as a set of geometric error parameters, and there are N (m+2) sets in total. And bring each group of errors dismantled from A, B and A B i into the tooth profile deviation model F α =f(G), G represents the geometric error set, calculate N(m+2) times, and get the corresponding The tooth profile deviation f(A), f(B), f(A B i ). Finally, the sensitivity indices of geometric error elements are calculated by Monte Carlo estimation formula, including the first-order sensitivity index S i and the global sensitivity index S Ti .
比较齿廓偏差的几何误差元素的全局敏感指数大小,即可判断齿廓总偏差的关键误差源。The key error source of the total tooth profile deviation can be judged by comparing the global sensitivity index of the geometric error elements of the tooth profile deviation.
(3)关键误差高效补偿方法(3) Efficient compensation method for key errors
如图4所示,基图4为齿廓偏差的误差源敏感指数,于识别出的关键误差源,忽略其他几何误差影响,对误差补偿模型进行简化。例如,齿廓偏差的几何误差源敏感指数。该图横坐标表示误差序号,但不计Y轴几何误差;纵坐标表示误差敏感指数。As shown in Figure 4, the base figure 4 is the error source sensitivity index of the tooth profile deviation, which is based on the identified key error source, ignoring the influence of other geometric errors, and simplifying the error compensation model. For example, the geometric error source sensitivity index for tooth profile deviation. The abscissa of the figure represents the error serial number, but the Y-axis geometric error is not counted; the ordinate represents the error sensitivity index.
若以0.05为敏感阈值,初步判断出齿廓偏差的关键误差序号为:4、10、17、27、28、29、32、33,也即几何误差项εx(X)、εx(Z)、εx(A)、εx(C)、εy(C)、εz(C)、αCY、βCX。If 0.05 is used as the sensitive threshold, the key error numbers for preliminary judgment of tooth profile deviation are: 4, 10, 17, 27, 28, 29, 32, 33, that is, the geometric error items ε x (X), ε x (Z ), ε x (A), ε x (C), ε y (C), ε z (C), α CY , β CX .
由此,可将步骤二(2)、(3)中的旋转轴、直线轴的实际运动指令解析表达式简化为:Therefore, the analytical expressions of the actual motion commands of the rotary axis and linear axis in steps 2 (2) and (3) can be simplified as:
其中, in,
其中, in,
Y={-sinC(x+zεy(C)-yεz(C))-cosC(y+xεz(C)-zεx(C))-zεx(X)+zαCY}Y={-sinC(x+zε y (C)-yε z (C))-cosC(y+xε z (C)-zε x (C))-zε x (X)+zα CY }
/((εx(Z)+εx(A))sinA-cosA)/((ε x (Z)+ε x (A))sinA-cosA)
Z={x(-cosA(εy(C)+βCXcosC+(εx(X)+εx(Z)+εx(A)-αCY)sinC)-sinA(sinC+εz(C)cosC))Z={x(-cosA(ε y (C)+β CX cosC+(ε x (X)+ε x (Z)+ε x (A)-α CY )sinC)-sinA(sinC+ε z (C ) cos C))
+y(cosA(εx(C)+βCXsinC-(εx(X)+εx(Z)+εx(A)-αCY)cosC)-sinA(cosC-εz(C)sinC))+y(cosA(ε x (C)+β CX sinC-(ε x (X)+ε x (Z)+ε x (A)-α CY )cosC)-sinA(cosC-ε z (C)sinC ))
+z(cosA-(εx(X)+εx(Z)+εx(A)-αCY-εx(C)cosC+εy(C)sinC)sinA)}+z(cosA-(ε x (X)+ε x (Z)+ε x (A)-α CY -ε x (C)cosC+ε y (C)sinC)sinA)}
/(cosA-(εx(Z)+εx(A))sinA)/(cosA-(ε x (Z)+ε x (A))sinA)
X=x(cosC-εz(C)sinC)+y(-sinC-εz(C)cosC)+z(βCX+εy(C)cosC+εx(C)sinC)X=x(cosC-ε z (C)sinC)+y(-sinC-ε z (C)cosC)+z(β CX +ε y (C)cosC+ε x (C)sinC)
根据上述简化后的运动轴的实际运动指令解析表达式,可以求得相应关键误差补偿后的数控代码,替代原代码运行,即可实现针对齿廓偏差消减的高效误差补偿。According to the above-mentioned simplified analytical expression of the actual motion command of the motion axis, the NC code after the corresponding key error compensation can be obtained, and the original code can be replaced to run, and the efficient error compensation for tooth profile deviation reduction can be realized.
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。The above-mentioned embodiments are only preferred embodiments for fully illustrating the present invention, and the protection scope of the present invention is not limited thereto. Equivalent substitutions or transformations made by those skilled in the art on the basis of the present invention are all within the protection scope of the present invention. The protection scope of the present invention shall be determined by the claims.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910752446.2A CN110597183B (en) | 2019-08-15 | 2019-08-15 | Efficient compensation method for gear grinding key errors |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910752446.2A CN110597183B (en) | 2019-08-15 | 2019-08-15 | Efficient compensation method for gear grinding key errors |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110597183A true CN110597183A (en) | 2019-12-20 |
CN110597183B CN110597183B (en) | 2020-07-28 |
Family
ID=68854423
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910752446.2A Active CN110597183B (en) | 2019-08-15 | 2019-08-15 | Efficient compensation method for gear grinding key errors |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110597183B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112966450A (en) * | 2021-04-12 | 2021-06-15 | 重庆大学 | Worm gear female machine key error identification method and key error iterative compensation method |
CN113741342A (en) * | 2021-08-31 | 2021-12-03 | 西安交通大学 | Five-axis linkage track error tracing method |
CN114002998A (en) * | 2021-11-03 | 2022-02-01 | 重庆大学 | Synchronous Control Method of Geometric Error and Thermal Error of Tooth Grinder |
CN114055321A (en) * | 2021-11-06 | 2022-02-18 | 深圳华数机器人有限公司 | Grinding and polishing pressure real-time compensation method based on numerical control system |
CN114690709A (en) * | 2022-04-01 | 2022-07-01 | 重庆大学 | Face gear grinding tooth face error model creation method considering whole-process machine tool geometric error influence and grinding tooth precision evaluation method |
CN114707260A (en) * | 2022-03-21 | 2022-07-05 | 重庆大学 | Analysis Method of Grinding Path Error of Eccentric Shaft Cylindrical Grinder |
CN118952210A (en) * | 2024-09-04 | 2024-11-15 | 华中科技大学 | A high-precision force-position control method, system and terminal for "robot-end effector" dual-stage collaboration |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102728904A (en) * | 2012-03-22 | 2012-10-17 | 浙江嘉力宝精机股份有限公司 | Numeric control forming gear grinding machine |
CN203364731U (en) * | 2013-07-24 | 2013-12-25 | 东南大学 | Tooth surface self-reference large-scale straight tooth cylindrical tooth wheel pitch deviation measuring apparatus |
CN104007700A (en) * | 2014-05-29 | 2014-08-27 | 北京工业大学 | Three-axis numerical control machine tool key geometric error identification method based on global sensitivity analysis |
CN105631131A (en) * | 2015-12-29 | 2016-06-01 | 重庆大学 | Form grinding axial modification error compensation method |
CN106325207A (en) * | 2016-10-08 | 2017-01-11 | 南京工业大学 | Actual inverse kinematics compensation method for geometric error of five-axis numerical control gear making machine tool |
JP2018001340A (en) * | 2016-07-01 | 2018-01-11 | トヨタ自動車株式会社 | Method of manufacturing gear |
CN107966957A (en) * | 2017-11-27 | 2018-04-27 | 重庆大学 | A kind of numerical control worm gear-grinding machine space error decoupling compensation method |
CN109521729A (en) * | 2018-11-14 | 2019-03-26 | 内蒙古工业大学 | A kind of three axis numerically controlled machine can compensate for and not can compensate for geometric error separation method |
-
2019
- 2019-08-15 CN CN201910752446.2A patent/CN110597183B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102728904A (en) * | 2012-03-22 | 2012-10-17 | 浙江嘉力宝精机股份有限公司 | Numeric control forming gear grinding machine |
CN203364731U (en) * | 2013-07-24 | 2013-12-25 | 东南大学 | Tooth surface self-reference large-scale straight tooth cylindrical tooth wheel pitch deviation measuring apparatus |
CN104007700A (en) * | 2014-05-29 | 2014-08-27 | 北京工业大学 | Three-axis numerical control machine tool key geometric error identification method based on global sensitivity analysis |
CN105631131A (en) * | 2015-12-29 | 2016-06-01 | 重庆大学 | Form grinding axial modification error compensation method |
JP2018001340A (en) * | 2016-07-01 | 2018-01-11 | トヨタ自動車株式会社 | Method of manufacturing gear |
CN106325207A (en) * | 2016-10-08 | 2017-01-11 | 南京工业大学 | Actual inverse kinematics compensation method for geometric error of five-axis numerical control gear making machine tool |
CN107966957A (en) * | 2017-11-27 | 2018-04-27 | 重庆大学 | A kind of numerical control worm gear-grinding machine space error decoupling compensation method |
CN109521729A (en) * | 2018-11-14 | 2019-03-26 | 内蒙古工业大学 | A kind of three axis numerically controlled machine can compensate for and not can compensate for geometric error separation method |
Non-Patent Citations (1)
Title |
---|
杨勇: "《大型数控滚齿机加工误差及补偿研究》", 《工程科技Ⅰ辑》 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112966450A (en) * | 2021-04-12 | 2021-06-15 | 重庆大学 | Worm gear female machine key error identification method and key error iterative compensation method |
CN113741342A (en) * | 2021-08-31 | 2021-12-03 | 西安交通大学 | Five-axis linkage track error tracing method |
CN114002998A (en) * | 2021-11-03 | 2022-02-01 | 重庆大学 | Synchronous Control Method of Geometric Error and Thermal Error of Tooth Grinder |
CN114055321A (en) * | 2021-11-06 | 2022-02-18 | 深圳华数机器人有限公司 | Grinding and polishing pressure real-time compensation method based on numerical control system |
CN114055321B (en) * | 2021-11-06 | 2024-04-19 | 深圳华数机器人有限公司 | Grinding and polishing pressure real-time compensation method based on numerical control system |
CN114707260A (en) * | 2022-03-21 | 2022-07-05 | 重庆大学 | Analysis Method of Grinding Path Error of Eccentric Shaft Cylindrical Grinder |
CN114690709A (en) * | 2022-04-01 | 2022-07-01 | 重庆大学 | Face gear grinding tooth face error model creation method considering whole-process machine tool geometric error influence and grinding tooth precision evaluation method |
CN118952210A (en) * | 2024-09-04 | 2024-11-15 | 华中科技大学 | A high-precision force-position control method, system and terminal for "robot-end effector" dual-stage collaboration |
Also Published As
Publication number | Publication date |
---|---|
CN110597183B (en) | 2020-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110597183A (en) | An Efficient Compensation Method for Key Grinding Errors | |
CN109014437B (en) | Screening Method for Key Geometric Errors of Form Grinding Machine Based on Tooth Surface Error Model | |
Zhang et al. | An accurate prediction method of cutting forces in 5-axis flank milling of sculptured surface | |
Zhang et al. | Machining accuracy reliability during the peripheral milling process of thin-walled components | |
Pechard et al. | Geometrical deviations versus smoothness in 5-axis high-speed flank milling | |
CN102591257A (en) | Parameter curve cutter path oriented numerical control system contour error control method | |
Xia et al. | An identification method for crucial geometric errors of gear form grinding machine tools based on tooth surface posture error model | |
CN103034166A (en) | Recognition method of critical geometrical error source of machine tool | |
CN106774152A (en) | A kind of modeling method of Digit Control Machine Tool position correlation geometric error | |
Nguyen et al. | Determination of workpiece profile and influence of singular point in helical grooving | |
CN104678888A (en) | Tool path generating method for multi-axis machining complex curved surface of constraint circular tool based on motion of machine tool | |
CN103971019A (en) | Method for predicting workpiece machining energy consumption based on geometrical characteristics | |
Sun et al. | Analytical modeling and simulation of the envelope surface in five-axis flank milling with cutter runout | |
CN102073301A (en) | Five-axis spline interpolation device with cutter length compensation function | |
Tutunea-Fatan et al. | Determination of geometry-based errors for interpolated tool paths in five-axis surface machining | |
CN102495593A (en) | Optimized cutter selecting method for numerical control milling for free-form surface | |
Khodaygan | Manufacturing error compensation based on cutting tool location correction in machining processes | |
CN105204430A (en) | Five-axis post-processing method based on machine tool entity model | |
Liu et al. | A novel CNC machining method for enveloping surface | |
CN112989520B (en) | An identification method for key error terms of worm gear machine | |
Wang et al. | A generating method for digital gear tooth surfaces | |
Zhang et al. | Intelligent machining of complex aviation components | |
Ding et al. | Semidefinite programming for Chebyshev fitting of spatial straight line with applications to cutter location planning and tolerance evaluation | |
Manikandan et al. | A turning simulation environment for geometric error estimation of thin-walled parts | |
CN117506547A (en) | Method, system and device for detecting contour error of numerical control machine tool |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |