[go: up one dir, main page]

CN110592124A - A gene combination expressing betalain in rice and its application - Google Patents

A gene combination expressing betalain in rice and its application Download PDF

Info

Publication number
CN110592124A
CN110592124A CN201911003738.2A CN201911003738A CN110592124A CN 110592124 A CN110592124 A CN 110592124A CN 201911003738 A CN201911003738 A CN 201911003738A CN 110592124 A CN110592124 A CN 110592124A
Authority
CN
China
Prior art keywords
gene
rice
betalain
seq
optimized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911003738.2A
Other languages
Chinese (zh)
Inventor
田永生
姚泉洪
彭日荷
付晓燕
许晶
高建杰
韩红娟
王波
王丽娟
李振军
张福建
黄悠楠
张文慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Academy of Agricultural Sciences
Original Assignee
Shanghai Academy of Agricultural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Academy of Agricultural Sciences filed Critical Shanghai Academy of Agricultural Sciences
Priority to CN201911003738.2A priority Critical patent/CN110592124A/en
Publication of CN110592124A publication Critical patent/CN110592124A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/37Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
    • C07K14/38Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from Aspergillus
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/825Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving pigment biosynthesis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/22Vectors comprising a coding region that has been codon optimised for expression in a respective host

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biomedical Technology (AREA)
  • Nutrition Science (AREA)
  • Plant Pathology (AREA)
  • Mycology (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Botany (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

一种在水稻中表达产生甜菜红素的基因组合及其应用,包括melo基因、BvDODA1基因和BvCYP76AD1基因,根据水稻的密码子偏好性,将melo基因优化为meloS基因,其核苷酸序列如SEQ ID NO.1所示;将BvDODA1基因优化为BvDODA1S基因,其核苷酸序列如SEQ ID NO.2所示;将BvCYP76AD1基因优化为BvCYP76AD1S基因,其核苷酸序列如SEQ ID NO.3所示,分别与花椰菜花叶病毒的35S启动子和根农杆菌的NOS终止子融合,分别构建对应的基因表达盒,再连接入植物表达载体,获得含上述三基因表达盒的多基因植物转化载体,转化至水稻,获得富含甜菜红素的转基因水稻,其甜菜红素的含量约为2.0‑2.6mg/g FW。

A gene combination for expressing and producing betalain in rice and application thereof, including melo gene, BvDODA1 gene and BvCYP76AD1 gene, according to the codon preference of rice, the melo gene is optimized to the meloS gene, and its nucleotide sequence is as shown in SEQ ID NO.1; BvDODA1 gene is optimized to BvDODA1S gene, and its nucleotide sequence is shown in SEQ ID NO.2; BvCYP76AD1 gene is optimized to BvCYP76AD1S gene, and its nucleotide sequence is shown in SEQ ID NO.3 , respectively fused with the 35S promoter of the cauliflower mosaic virus and the NOS terminator of Agrobacterium rhizogenes, respectively constructing the corresponding gene expression cassette, and then connecting into the plant expression vector to obtain the multigene plant transformation vector containing the above-mentioned three gene expression cassettes, Transform into rice to obtain transgenic rice rich in betalain, and the content of betalain is about 2.0-2.6 mg/g FW.

Description

一种在水稻中表达产生甜菜红素的基因组合及其应用A gene combination expressing betalain in rice and its application

技术领域technical field

本发明属于基因工程领域,具体涉及一种在水稻中表达产生甜菜红素的基因组合及其应用。The invention belongs to the field of genetic engineering, in particular to a gene combination for expressing betalain in rice and its application.

背景技术Background technique

甜菜红素主要成分为甜菜苷(betanin),是从甜菜中提取的天然色素,无毒副作用,色泽鲜艳且含有人体新陈代谢和生长发育所必须的营养成分,所以广泛应用于各种饮料、果味粉、果汁、汽水、糖果、糕点、冰淇淋、罐头、浓缩果汁、雪糕、果冻、香肠食品的着色,既增加了食品的美好外观又提高了食品的营养价值。The main component of betalain is betanin, which is a natural pigment extracted from sugar beet. It has no toxic side effects, bright color and contains nutrients necessary for human metabolism and growth and development. The coloring of powder, juice, soft drink, candy, cake, ice cream, canned food, concentrated juice, ice cream, jelly, sausage food not only increases the beautiful appearance of the food, but also improves the nutritional value of the food.

Tesoriere等(Am.J.Clin.Nutr.(2004)80,391-395,2005)发现食用含有甜菜红素的刺梨果实后,可以明显降低过氧化胁迫造成的脂质损害,提高人体的抗氧化水平;另外Kapadia等(Cancer Lett(1996)100,211-214)发现,甜菜根对老鼠的皮肤癌和肺癌具有显著的抑制作用。(Am.J.Clin.Nutr.(2004) 80, 391-395, 2005) found that consumption of thorn pear fruits containing betalain can significantly reduce lipid damage caused by peroxidative stress and improve the body's resistance to Oxidation levels; in addition, Kapadia et al. (Cancer Lett (1996) 100, 211-214) found that beetroot had a significant inhibitory effect on skin and lung cancer in mice.

由于甜菜红素具有以上作用,所以其被批准作为食品添加剂使用(Moreno etal.,Phytochemistry Reviews,(2008)7(2):261-280),而且甜菜红素还具有抗氧化和促进健康的特性,因而导致其需求量显著增加。Because of the above effects, betalain is approved for use as a food additive (Moreno et al., Phytochemistry Reviews, (2008) 7(2):261-280), and it also has antioxidant and health-promoting properties. , resulting in a significant increase in its demand.

甜菜红素的主要来源是甜菜(Beta vulgaris),但许多因素可以明显影响甜菜中甜菜红素的产量,据文献报道,目前来自甜菜的甜菜红素仅仅只能满足全球食品添加剂需求的10%(Manchali et al.,Stability of betalain pigments of red beet.In RedBeet Biotechnology;Neelwarne,B.,Ed.;Springer US:Boston,MA,55-74.2013)。因此,需要寻求另一种方法来生产甜菜红素从而满足全球食品添加剂的需求。The main source of betacyanin is sugar beet (Beta vulgaris), but many factors can significantly affect the yield of betacyanin in sugar beet. According to literature reports, the current betacyanin from sugar beet can only meet 10% of the global demand for food additives ( Manchali et al., Stability of betalain pigments of red beet. In RedBeet Biotechnology; Neelwarne, B., Ed.; Springer US: Boston, MA, 55-74.2013). Therefore, there is a need to find another way to produce betalain to meet the global demand for food additives.

水稻是一种重要的粮食作物和模式植物,同时,其也是一种优良的生物反应器,如在水稻中生产β-胡萝卜素和人血清蛋白等,然而,水稻中并没有甜菜红素合成途径的相关基因,因此,需要通过基因工程手段构建甜菜红素合成途径并转入水稻,从而获得富含甜菜红素的水稻新材料。Rice is an important food crop and model plant, and at the same time, it is also an excellent bioreactor, such as the production of β-carotene and human serum protein in rice. However, there is no beta-carotene synthesis pathway in rice. Therefore, it is necessary to construct a betalain synthesis pathway by genetic engineering and transfer it into rice, so as to obtain a new rice material rich in betalain.

发明内容SUMMARY OF THE INVENTION

本发明的目的在于提供一种在水稻中表达产生甜菜红素的基因组合及其应用,该基因与花椰菜花叶病毒的35S启动子和根农杆菌的NOS终止子融合,构建基因表达盒,再连接入植物表达载体获得多基因植物转化载体,转化至水稻,获得富含甜菜红素的转基因水稻,其甜菜红素的含量约为2.0-2.6mg/g FW,该水稻不仅可以作为生产甜菜红素的原料,而且还可以作为促进健康的功能性水稻。The object of the present invention is to provide a combination of genes expressing and producing betalain in rice and application thereof, the gene is fused with the 35S promoter of cauliflower mosaic virus and the NOS terminator of Agrobacterium rhizogenes to construct a gene expression cassette, and then Connected into a plant expression vector to obtain a multi-gene plant transformation vector, transformed into rice, to obtain transgenic rice rich in betalain, the content of betalain is about 2.0-2.6mg/g FW, and the rice can not only be used for the production of beet red It can also be used as a functional rice to promote health.

为了达到上述目的,本发明提供如下技术方案:In order to achieve the above object, the present invention provides the following technical solutions:

一种在水稻中表达产生甜菜红素的基因组合,包括melo基因、BvDODA1基因和BvCYP76AD1基因。A combination of genes expressed in rice to produce betalain, including melo gene, BvDODA1 gene and BvCYP76AD1 gene.

进一步,根据水稻的密码子偏好性,所述melo基因优化为meloS基因,其核苷酸序列如SEQ ID NO.1所示;所述BvDODA1基因优化为BvDODA1S基因,其核苷酸序列如SEQ IDNO.2所示;所述BvCYP76AD1基因优化为BvCYP76AD1S基因,其核苷酸序列如SEQ ID NO.3所示。Further, according to the codon preference of rice, the melo gene is optimized as a meloS gene, and its nucleotide sequence is shown in SEQ ID NO. 1; the BvDODA1 gene is optimized as a BvDODA1S gene, and its nucleotide sequence is as shown in SEQ ID NO. .2; the BvCYP76AD1 gene is optimized to the BvCYP76AD1S gene, and its nucleotide sequence is shown in SEQ ID NO.3.

一种多基因植物转化载体,包括植物表达载体,以及分别与花椰菜花叶病毒的35S启动子和根农杆菌的NOS终止子融合的meloS基因、BvDODA1S基因和BvCYP76AD1S基因的基因表达盒。A multi-gene plant transformation vector includes a plant expression vector and gene expression cassettes of meloS gene, BvDODA1S gene and BvCYP76AD1S gene fused with 35S promoter of cauliflower mosaic virus and NOS terminator of Agrobacterium rhizogenes respectively.

进一步,所述植物表达载体为pCAMBIA1301。Further, the plant expression vector is pCAMBIA1301.

所述在水稻中表达产生甜菜红素的基因组合在水稻中的应用。The application of the combination of genes expressed in rice to produce betalain in rice.

一种含甜菜红素的转基因水稻的获得方法,包括以下步骤:A method for obtaining a betalain-containing transgenic rice, comprising the following steps:

1)根据水稻的密码子偏好性,优化melo、BvDODA1和BvCYP76AD1三段基因的序列,将序列优化后的三个基因分别与花椰菜花叶病毒的35S启动子和根农杆菌的NOS终止子融合,分别构建基因表达盒;1) According to the codon preference of rice, the sequences of the three genes of melo, BvDODA1 and BvCYP76AD1 were optimized, and the three genes after sequence optimization were respectively fused with the 35S promoter of cauliflower mosaic virus and the NOS terminator of Agrobacterium tumefaciens, Construct gene expression cassettes respectively;

2)将步骤1)中构建的三个基因表达盒连接入植物表达载体,获得含melo、BvDODA1和BvCYP76AD1三基因表达盒的多基因植物转化载体;2) connecting the three gene expression cassettes constructed in step 1) into a plant expression vector to obtain a multigene plant transformation vector containing the three gene expression cassettes of melo, BvDODA1 and BvCYP76AD1;

3)将步骤2)所述多基因植物转化载体转入农杆菌,转化至水稻,获得富含甜菜红素的转基因水稻。3) The multigene plant transformation vector described in step 2) is transformed into Agrobacterium, and transformed into rice to obtain betalain-rich transgenic rice.

进一步,步骤1)中,所述花椰菜花叶病毒的35S启动子的核苷酸序列分别如SEQ IDNO.4所示;所述根农杆菌的NOS终止子序列如SEQ ID NO.5所示。Further, in step 1), the nucleotide sequences of the 35S promoter of the cauliflower mosaic virus are respectively shown in SEQ ID NO.4; the NOS terminator sequence of the Agrobacterium rhizogenes is shown in SEQ ID NO.5.

优选地,步骤2)中,所述植物表达载体为pCAMBIA1301。Preferably, in step 2), the plant expression vector is pCAMBIA1301.

又,步骤3)中,所述水稻的品种为中花11。Also, in step 3), the variety of the rice is Zhonghua 11.

本发明中,根据水稻密码子的偏好性对米曲霉菌(Aspergillus oryzae)的melo基因、甜菜(Beta vulgaris)的BvDODA1基因和甜菜(Beta vulgaris)的BvCYP76AD1基因进行优化,优化按照以下原则进行:(一)优化基因密码子,按照水稻密码子偏爱,提高基因翻译效率;(二)消除基因内部的常用限制性内切酶的识别位点,便于表达盒构建;(三)消除逆向重复序列、茎环结构和转录终止信号,使基因内部的GC/AT均衡,提高RNA的稳定性;(四)使基因编码蛋白符合N端原则,以提高翻译蛋白的稳定性;(五)优化mRNA二级结构自由能,以提高基因表达效率。In the present invention, the melo gene of Aspergillus oryzae, the BvDODA1 gene of sugar beet (Beta vulgaris) and the BvCYP76AD1 gene of sugar beet (Beta vulgaris) are optimized according to the preference of rice codons, and the optimization is carried out according to the following principles: ( 1) Optimize gene codons to improve gene translation efficiency according to rice codon preference; (2) Eliminate the recognition sites of commonly used restriction endonucleases in genes to facilitate the construction of expression cassettes; (3) Eliminate inverted repeats, stems The loop structure and transcription termination signal balance the GC/AT within the gene and improve the stability of RNA; (4) Make the protein encoded by the gene conform to the N-terminal principle to improve the stability of the translated protein; (5) Optimize the secondary structure of mRNA free energy to improve gene expression efficiency.

本发明将对melo、BvDODA1和BvCYP76AD1优化后获得的meloS基因、BvDODA1S基因和BvCYP76AD1S基因分别与花椰菜花叶病毒的35S启动子和根农杆菌的NOS终止子融合,分别构建对应的基因表达盒,再连接入植物表达载体,获得含上述三基因表达盒的多基因植物转化载体,转化至水稻,获得富含甜菜红素的转基因水稻。In the present invention, the meloS gene, BvDODA1S gene and BvCYP76AD1S gene obtained by optimizing melo, BvDODA1 and BvCYP76AD1 are respectively fused with the 35S promoter of cauliflower mosaic virus and the NOS terminator of Agrobacterium rhizogenes, respectively constructing corresponding gene expression cassettes, and then It is connected into a plant expression vector to obtain a multi-gene plant transformation vector containing the above-mentioned three-gene expression cassette, and transformed into rice to obtain betalain-rich transgenic rice.

与现有技术相比,本发明具有如下有益效果:Compared with the prior art, the present invention has the following beneficial effects:

本发明中,将melo基因、BvDODA1基因和BvCYP76AD1基因结合,优化后在水稻中表达,产生甜菜红素,获得的转基因水稻植株中甜菜红素的含量约为2.0-2.6mg/g FW,既可以作为生产甜菜红素的原材料,还可以作为促进健康的功能性水稻食用,具有重要的生产应用价值。In the present invention, the melo gene, the BvDODA1 gene and the BvCYP76AD1 gene are combined and expressed in rice after optimization to produce betalain, and the content of betalain in the obtained transgenic rice plant is about 2.0-2.6 mg/g FW, which can be either As a raw material for producing betalain, it can also be eaten as a functional rice promoting health, and has important production and application value.

附图说明Description of drawings

图1为本发明实施例1中三基因(meloS、BvDODA1S和BvCYP76AD1S)植物转化载体结构示意图。Fig. 1 is a schematic diagram of the structure of the three-gene (meloS, BvDODA1S and BvCYP76AD1S) plant transformation vector in Example 1 of the present invention.

图2为本发明实施例2中水稻愈伤组织,左:野生型水稻;右:转基因水稻。Figure 2 is the rice callus in Example 2 of the present invention, left: wild-type rice; right: transgenic rice.

图3为本发明实施例2中T0代水稻基因组DNA的外源基因的PCR检测结果,其中,1,2和3为转基因水稻;WT为野生型水稻。Figure 3 is the PCR detection result of the exogenous gene of the T 0 generation rice genomic DNA in Example 2 of the present invention, wherein, 1, 2 and 3 are transgenic rice; WT is wild-type rice.

图4为T1代水稻植株的外源基因的RT-PCR检测结果,其中,1,2和3为转基因水稻;WT为野生型水稻。Figure 4 shows the results of RT-PCR detection of foreign genes in T 1 generation rice plants, wherein 1, 2 and 3 are transgenic rice; WT is wild-type rice.

图5为本发明实施例3中转基因水稻植株的外观表型;其中,BR1、BR2和BR3为转基因水稻;WT为野生型水稻。Figure 5 is the appearance phenotype of the transgenic rice plant in Example 3 of the present invention; wherein, BR1, BR2 and BR3 are transgenic rice; WT is wild-type rice.

图6为本发明实施例3中植株中甜菜红素的质谱测定鉴定图,其中,a为标准品质谱图;b为转基因植株质谱图;c为野生型植株质谱图。Figure 6 is a mass spectrometry identification diagram of betalain in plants in Example 3 of the present invention, wherein a is a standard mass spectrogram; b is a transgenic plant mass spectrogram; c is a wild-type plant mass spectrogram.

具体实施方式Detailed ways

下面结合说明书附图和具体实施例对本发明作出进一步地详细阐述,所述实施例只用于解释本发明,并非用于限定本发明的范围。下述实施例中所使用的试验方法如无特殊说明,均为常规分子生物学方法;所使用的材料、试剂等,如无特殊说明,为可从商业途径得到的试剂和材料The present invention will be further elaborated below with reference to the accompanying drawings and specific embodiments of the description, and the embodiments are only used to explain the present invention, but not to limit the scope of the present invention. The test methods used in the following examples are conventional molecular biology methods unless otherwise specified; the materials, reagents, etc. used are commercially available reagents and materials unless otherwise specified.

本发明实施例中的母液及各培养基配方:The mother liquor in the embodiment of the present invention and each culture medium formula:

一、母液(stock solution)配方1. The formula of stock solution

MSmax母液(10X):NH4NO3 16.5g,KNO3 19.0g,MgSO4·7H2O,3.7g,CaCl2·2H2O4.4g,加水定容至1000ml。MSmax mother liquor (10X): NH 4 NO 3 16.5 g, KNO 3 19.0 g, MgSO 4 ·7H 2 O, 3.7 g, CaCl 2 ·2H 2 O 4.4 g, add water to make up to 1000 ml.

MSmin母液(100X):KI 0.083g,H3BO4 0.62g,MnSO4·2H2O 2.23g,ZnSO4·7H2O0.86g,Na2MoO4·2H2O 0.025g,CuSO4·5H2O 0.0025g,CoCl2·2H2O 0.0025g,加水定容至1000ml。 MSmin mother liquor (100X): KI 0.083g , H3BO4 0.62g , MnSO4 · 2H2O 2.23g , ZnSO4 · 7H2O 0.86g, Na2MoO4 · 2H2O 0.025g, CuSO4 ·5H 2 O 0.0025g, CoCl 2 ·2H 2 O 0.0025g, add water to make up to 1000ml.

N6max母液(10X):KNO3 28.3g,KH2PO4 4.0g,(NH4)2·SO4 4.63g,MgSO4·7H2O1.85g,CaCl2·2H2O 1.66g,加水定容至1000ml。N6max mother liquor (10X): KNO 3 28.3g, KH 2 PO 4 4.0g, (NH 4 ) 2 ·SO 4 4.63g, MgSO 4 ·7H 2 O 1.85g, CaCl 2 ·2H 2 O 1.66g, add water to volume to 1000ml.

N6min母液(100X):KI 0.08g,H3BO4 0.16g,MnSO4·2H2O 0.44g,ZnSO4·7H2O0.15g,加水定容到1000ml。N6min mother liquor (100X): KI 0.08g, H 3 BO 4 0.16g, MnSO 4 ·2H 2 O 0.44g, ZnSO 4 ·7H 2 O 0.15g, add water to make up to 1000ml.

Fe2+-EDTA母液(100X):FeSO4·7H2O 2.78g,Na2EDTA·2H2O 3.73g,单独溶解,然后混合,加水定容至1000ml。Fe 2+ -EDTA mother solution (100X): FeSO 4 ·7H 2 O 2.78g, Na 2 EDTA·2H 2 O 3.73g, dissolved separately, then mixed, and water was added to make up to 1000ml.

维生素母液(100X):烟酸(Nicotinic acid)0.1g,维生素B6(Pyridoxine HCl,VB6)0.1g,维生素B1(Thiaminc HCl,vb1)0.1g,甘氨酸(Glycine)0.2g,肌糖(Inositol)10g,加水定容至1000ml。Vitamin mother solution (100X): niacin (Nicotinic acid) 0.1g, vitamin B6 (Pyridoxine HCl, VB6) 0.1g, vitamin B1 (Thiaminc HCl, vb1) 0.1g, glycine (Glycine) 0.2g, Inositol (Inositol) 10g , add water to 1000ml.

二、培养基配方2. Culture medium formula

共培养培养基:N6max母液(10X):12.5ml,N6min母液(100X)1.25ml,Fe2+-EDTA母液(100X)2.5ml,维生素母液(100X):2.5ml,二氯苯氧乙酸2g/L(2,4-D)0.75ml,酶水解酪素(Casein Enzymatic Hydrolysate)0.2g,蔗糖(Sucrose)5g,琼脂粉(Agarose)1.75g,加水至250ml调pH=5.6用前微波炉融化加5ml 50%葡萄糖和250μl 20g/L乙酰丁香酮。Co-cultivation medium: N6max stock solution (10X): 12.5ml, N6min stock solution (100X) 1.25ml, Fe 2+ -EDTA stock solution (100X) 2.5ml, vitamin stock solution (100X): 2.5ml, dichlorophenoxyacetic acid 2g/ L(2,4-D) 0.75ml, Casein Enzymatic Hydrolysate 0.2g, Sucrose 5g, Agarose 1.75g, add water to 250ml, adjust pH=5.6, melt in microwave before use, add 5ml 50% glucose and 250 μl 20 g/L acetosyringone.

选择培养基:N6max母液(10X)25ml,N6min母液(100X)2.5ml,Fe2+-EDTA母液(100X)2.5ml,维生素母液(100X)2.5ml,二氯苯氧乙酸2g/L(2,4-D)0.625ml,酶水解酪素(CaseinEnzymatic Hydrolysate)0.15g,蔗糖7.5g,琼脂粉1.75g,加水至250ml调pH=6.0,用前融化加潮霉素和羧苄。Selection medium: N6max stock solution (10X) 25ml, N6min stock solution (100X) 2.5ml, Fe 2+ -EDTA stock solution (100X) 2.5ml, vitamin stock solution (100X) 2.5ml, dichlorophenoxyacetic acid 2g/L (2, 4-D) 0.625ml, CaseinEnzymatic Hydrolysate 0.15g, sucrose 7.5g, agar powder 1.75g, add water to 250ml to adjust pH=6.0, melt and add hygromycin and carbenzyl before use.

预分化培养基:MSmax母液(10X)25ml:MSmin母液(100X)2.5ml,Fe2+-EDTA母液(100X)2.5ml,维生素母液(100X)2.5ml,6-苄胺基嘌呤2g/L(6-BA)0.5ml,激动素2g/L(KT)0.5ml,吲哚乙酸1mg/ml(IAA)50μl,酶水解酪素(Casein Enzymatic Hydrolysate)0.15g,蔗糖7.5g,琼脂粉1.75g,加水至250m调pH=5.9,用前融化加潮霉素和羧苄。Pre-differentiation medium: MSmax stock solution (10X) 25ml: MSmin stock solution (100X) 2.5ml, Fe 2+ -EDTA stock solution (100X) 2.5ml, vitamin stock solution (100X) 2.5ml, 6-benzylaminopurine 2g/L ( 6-BA) 0.5ml, kinetin 2g/L (KT) 0.5ml, indole acetic acid 1mg/ml (IAA) 50μl, Casein Enzymatic Hydrolysate 0.15g, sucrose 7.5g, agar powder 1.75g, Add water to 250m to adjust pH=5.9, and add hygromycin and carbenzyl before use.

分化培养基:MSmax母液(10X)100ml,MSmin母液(100X)10ml,Fe2+-EDTA母液(100X)10ml,维生素母液(100X)10ml,6-苄胺基嘌呤2g/L(6-BA)2.0ml,激动素2g/L(KT)2.0ml,吲哚乙酸1mg/ml(IAA)0.2ml,萘乙酸1g/L(NAA)0.2ml,酶水解酪素(Casein EnzymaticHydrolysate)1g,蔗糖30g,植物凝胶(Phytagel)3g,加水至1000ml调pH=6.0,分装小瓶。Differentiation medium: MSmax stock solution (10X) 100ml, MSmin stock solution (100X) 10ml, Fe 2+ -EDTA stock solution (100X) 10ml, vitamin stock solution (100X) 10ml, 6-benzylaminopurine 2g/L (6-BA) 2.0ml, kinetin 2g/L (KT) 2.0ml, indole acetic acid 1mg/ml (IAA) 0.2ml, naphthalene acetic acid 1g/L (NAA) 0.2ml, Casein EnzymaticHydrolysate 1g, sucrose 30g, Phytagel (Phytagel) 3g, add water to 1000ml to adjust pH=6.0, and divide into vials.

生根培养基:MSmax母液(10X)50ml,MSmin母液(100X)5ml,Fe2+-EDTA(100X)10ml,维生素母液(100X)10ml,琼脂粉(Sucrose)20g,植物凝胶(Phytagel)3g,加水至1000ml调pH=5.8,分装小瓶。Rooting medium: MSmax stock solution (10X) 50ml, MSmin stock solution (100X) 5ml, Fe2+-EDTA (100X) 10ml, vitamin stock solution (100X) 10ml, agar powder (Sucrose) 20g, Phytagel (Phytagel) 3g, add water to 1000ml was adjusted to pH=5.8 and divided into vials.

实施例1构建多基因植物表达载体Example 1 Construction of multigene plant expression vector

1、三基因的优化合成1. Optimized synthesis of three genes

优化按照以下原则进行:(一)按照水稻密码子偏爱优化基因密码子,提高基因翻译效率;(二)消除基因内部的常用限制性内切酶的识别位点,便于表达盒构建;(三)消除逆向重复序列、茎环结构和转录终止信号,使基因内部的GC/AT均衡,提高RNA的稳定性;(四)使基因编码蛋白符合N端原则,以提高翻译蛋白的稳定性;(五)优化mRNA二级结构自由能,以提高基因表达效率。The optimization is carried out according to the following principles: (1) Optimize the gene codons according to the rice codon preference to improve the gene translation efficiency; (2) Eliminate the recognition sites of the commonly used restriction endonucleases inside the gene to facilitate the construction of the expression cassette; (3) Eliminate inverted repeat sequences, stem-loop structures and transcription termination signals to balance GC/AT within the gene and improve the stability of RNA; (4) Make the protein encoded by the gene conform to the N-terminal principle to improve the stability of the translation protein; (5) ) to optimize the free energy of mRNA secondary structure to improve gene expression efficiency.

以米曲霉菌(Aspergillus oryzae)的melo基因(GenBank No.D37929.1)为模板,根据水稻密码子偏好性,合成获得SEQ ID NO.1所示DNA序列meloS,克隆到质粒载体,测序确定其序列;以甜菜(Beta vulgaris)的BvDODA1基因(GenBank No.HQ656027.1)为模板,根据水稻密码子偏好性,合成获得SEQ ID NO.2所示DNA序列BvDODA1S,克隆到质粒载体,测序确定其序列;以甜菜(Beta vulgaris)的BvCYP76AD1(GenBank No.HQ656023.1)为模板,根据水稻密码子偏好性,合成获得SEQ ID NO.3所示DNA序列BvCYP76AD1S,克隆到质粒载体,测序确定其序列;以花椰菜花叶病毒的35S启动子为模板,合成获得SEQ ID NO.4所示DNA序列35S启动子,克隆到质粒载体,测序确定其序列;以根农杆菌的NOS终止子为模板,合成获得SEQ ID NO.5所示DNA序列NOS终止子,克隆到质粒载体,测序确定其序列。Using the melo gene (GenBank No. D37929.1) of Aspergillus oryzae as a template, according to the rice codon preference, the DNA sequence meloS shown in SEQ ID NO.1 was synthesized, cloned into a plasmid vector, and sequenced to determine its Sequence; using the BvDODA1 gene (GenBank No.HQ656027.1) of sugar beet (Beta vulgaris) as a template, according to the rice codon preference, the DNA sequence BvDODA1S shown in SEQ ID NO.2 was synthesized and cloned into a plasmid vector, and sequenced to determine its Sequence; using BvCYP76AD1 (GenBank No. HQ656023.1) of sugar beet (Beta vulgaris) as a template, according to the codon preference of rice, the DNA sequence BvCYP76AD1S shown in SEQ ID NO.3 was synthesized, cloned into a plasmid vector, and its sequence was determined by sequencing ; Take the 35S promoter of cauliflower mosaic virus as a template, synthesize the DNA sequence 35S promoter shown in SEQ ID NO.4, clone it into a plasmid vector, and determine its sequence by sequencing; take the NOS terminator of Agrobacterium rhizogenes as a template, synthesize The NOS terminator of the DNA sequence shown in SEQ ID NO. 5 was obtained, cloned into a plasmid vector, and its sequence was determined by sequencing.

2、三个基因表达盒元件的构建:按照改良的“重叠延伸PCR”技术进行元件的拼接(Appl Microbiol Biotechnol.2006,73(1):234-40)。2. Construction of three gene expression cassette elements: splicing of elements was performed according to the modified "overlap extension PCR" technique (Appl Microbiol Biotechnol. 2006, 73(1): 234-40).

2.1meloS基因表达盒的构建:根据上述化学合成的35S启动子、meloS基因和NOS终止子序列设计三对引物P1和P2、P3和P4、P5和P6,相邻元件之间的引物存在20bp的重叠区,引物P1上有EcoRI酶切位点,引物P6上有BamHI酶切位点,具体序列如下:2.1 Construction of the meloS gene expression cassette: three pairs of primers P1 and P2, P3 and P4, P5 and P6 were designed according to the above-mentioned chemically synthesized 35S promoter, meloS gene and NOS terminator sequences, and the primers between adjacent elements had 20bp of primers. In the overlapping region, primer P1 has an EcoRI restriction site, and primer P6 has a BamHI restriction site. The specific sequences are as follows:

P1:GAATTCATGGAGTCAAAGATTCAAATAGAGGACCTAACAGAACTCGCCGTAAAGACTGGC;P1: GAATTCATGGAGTCAAAGATTCAAATAGAGGACCTAACAGAACTCGCCGTAAAGACTGGC;

P2:ATTGGTTCAACAGATGCCATAGTCCCCCGTGTTCTCTCCAAATGAAATGAACTTCCTTAT;P2:ATTGGTTCAACAGATGCCATAGTCCCCCGTGTTCTCTCCAAATGAAATGAACTTCCTTAT;

P3:TGGAGAGAACACGGGGGACTATGGCATCTGTTGAACCAATCAAAACTTTCGAGATTCGTC;P3:TGGAGAGAACACGGGGGGACTATGGCATCTGTTGAACCAATCAAAACTTTCGAGATTCGTC;

P4:GAGGGGTAGTTCGATGTTGGTTAACGCATAGTACCAACAGTGACGTTACGAACACGTTGA;P4:GAGGGGTAGTTCGATGTTGGTTAACGCATAGTACCAACAGTGACGTTACGAACACGTTGA;

P5:CTGTTGGTACTATGCGTTAACCAACATCGAACTACCCCTCACGCATGCATTCATCAATAT;P5: CTGTTGGTACTATGCGTTAACCAACATCGAACTACCCCTCACGCATGCATTCATCAATAT;

P6:GGATCCCATCAACGCAAGACATGCGCACCACGACCGTCTGACAGGAGAGGAATTTCCGAC。P6: GGATCCCATCAACGCAAGACATGCGCACCACGACCGTCTGACAGGAGAGGAATTTCCGAC.

以上述化学合成的35S启动子、meloS基因和NOS终止子的质粒为模板,分别使用P1和P2、P3和P4、P5和P6进行三个元件(35S启动子、meloS基因和NOS终止子)的PCR扩增。Take the plasmid of the above-mentioned chemically synthesized 35S promoter, meloS gene and NOS terminator as template, use P1 and P2, P3 and P4, P5 and P6 respectively to carry out three elements (35S promoter, meloS gene and NOS terminator) PCR amplification.

反应体系:35S启动子(meloS基因或NOS终止子)质粒1μl,2.5mmol/L dNTPs 4μl,Buffer 25μl,KOD Plus(Toyobo日本)聚合酶1U,引物P1(对应meloS基因为P3,对应NOS终止子为P5)1μl,引物P2(对应meloS基因为P4,对应NOS终止子为P6)1μl,ddH2O补至50μl。Reaction system: 35S promoter (meloS gene or NOS terminator) plasmid 1μl, 2.5mmol/L dNTPs 4μl, Buffer 25μl, KOD Plus (Toyobo Japan) polymerase 1U, primer P1 (corresponding to meloS gene is P3, corresponding to NOS terminator) P5) 1 μl, primer P2 (corresponding to meloS gene is P4, corresponding to NOS terminator is P6) 1 μl, ddH 2 O is supplemented to 50 μl.

反应程序为:94℃30s,54℃30s,72℃90s,共45个循环,72℃再延伸10min,通过PAGE电泳分离并回收3个PCR扩增片段,随后将3个扩增片段等摩尔数混合,以混合片段为模板,再以引物P1和P6进行PCR扩增。The reaction program was: 94 °C for 30 s, 54 °C for 30 s, 72 °C for 90 s, a total of 45 cycles, and 72 °C for another 10 min of extension, PAGE electrophoresis was used to separate and recover 3 PCR amplified fragments, and then the 3 amplified fragments were equimolar. Mix and use the mixed fragment as a template, and then perform PCR amplification with primers P1 and P6.

反应体系:混合片段1μl,2.5mmol/L dNTPs 4μl,Buffer 25μl,KOD Plus(Toyobo日本)聚合酶1U,引物P1 1μl,引物P6 1μl,ddH2O至50μl;反应程序为:94℃30s,54℃30s,72℃240s,共45个循环,72℃再延伸10min,获得meloS基因的表达盒,并对该表达盒进行T-vector克隆和重组质粒的核苷酸全序列测定。Reaction system: mixed fragment 1μl, 2.5mmol/L dNTPs 4μl, Buffer 25μl, KOD Plus (Toyobo Japan) polymerase 1U, primer P1 1μl, primer P6 1μl, ddH 2 O to 50μl; reaction program: 94℃ for 30s, 54 30 s at ℃, 240 s at 72 ℃, a total of 45 cycles, and then extended at 72 ℃ for 10 min to obtain the expression cassette of the meloS gene, and the expression cassette was cloned by T-vector and the complete nucleotide sequence of the recombinant plasmid was determined.

2.2BvDODA1S基因表达盒的构建2.2 Construction of BvDODA1S gene expression cassette

根据上述化学合成的35S启动子、BvDODA1S基因和NOS终止子序列设计了三对引物P7和P8、P9和P10、P11和P12,相邻元件之间的引物存在20bp的重叠区,引物P7上有BamHI酶切位点,引物P12上有KpnI酶切位点,具体序列如下:Three pairs of primers P7 and P8, P9 and P10, P11 and P12 were designed according to the above chemically synthesized 35S promoter, BvDODA1S gene and NOS terminator sequences. The primers between adjacent elements have an overlapping region of 20 bp, and primer P7 has BamHI restriction site, primer P12 has KpnI restriction site, the specific sequence is as follows:

P7:GGATCCATGGAGTCAAAGATTCAAATAGAGGACCTAACAGAACTCGCCGTAAAGACTGGC;P7: GGATCCATGGAGTCAAAGATTCAAATAGAGGACCTAACAGAACTCGCCGTAAAGACTGGC;

P8:TCACCATTCATCATCTTCATAGTCCCCCGTGTTCTCTCCAAATGAAATGAACTTCCTTAT;P8:TCACCATTCATCATCTTCATAGTCCCCCGTGTTCTCTCCAAATGAAATGAACTTCCTTAT;

P9:TTGGAGAGAACACGGGGGACTATGAAGATGATGAATGGTGAAGATGCAACTGATCAGATG;P9:TTGGAGAGAACACGGGGGACTATGAAGATGATGAATGGTGAAGATGCAACTGATCAGATG;

P10:GAGGGGTAGTTCGATGTTGGTTAAGCAGAGGTGAACTTGTAGGAACCATGACACAGAGTA;P10:GAGGGGTAGTTCGATGTTGGTTAAGCAGAGGTGAACTTGTAGGAACCATGACACAGAGTA;

P11:ACAAGTTCACCTCTGCTTAACCAACATCGAACTACCCCTCACGCATGCATTCATCAATAT;P11: ACAAGTTCACCTCTGCTTAACCAACATCGAACTACCCCTCACGCATGCATTCATCAATAT;

P12:GGTACCTTGCTTCATCAACGCAAGACATGCGCACCACGACCGTCTGACAGGAGAGGAAT。P12: GGTACCTTGCTTCATCAACGCAAGACATGCGCACCACGACCGTCTGACAGGAGAGGAAT.

以上述化学合成的35S启动子、BvDODA1S基因和NOS终止子的质粒为模板,分别使用上述三对引物P7和P8、P9和P10、P11和P12进行三个原件(35S启动子、BvDODA1S基因和NOS终止子)的PCR扩增。With the above-mentioned chemically synthesized 35S promoter, BvDODA1S gene and the plasmid of NOS terminator as template, use the above-mentioned three pairs of primers P7 and P8, P9 and P10, P11 and P12 to carry out three originals (35S promoter, BvDODA1S gene and NOS respectively). terminator) PCR amplification.

反应体系:化学合成的35S启动子(BvDODA1S基因或NOS终止子)质粒1μl,2.5mmol/L dNTPs 4μl,Buffer 25μl,KOD Plus(Toyobo日本)聚合酶1U,引物P7(对应BvDODA1S基因为P9,对应NOS终止子为P11)1μl,引物P8(对应BvDODA1S基因为P10,对应NOS终止子为P12)1μl,ddH2O补至50μl。Reaction system: chemically synthesized 35S promoter (BvDODA1S gene or NOS terminator) plasmid 1μl, 2.5mmol/L dNTPs 4μl, Buffer 25μl, KOD Plus (Toyobo Japan) polymerase 1U, primer P7 (corresponding to BvDODA1S gene is P9, corresponding to NOS terminator is P11) 1 μl, primer P8 (corresponding to BvDODA1S gene is P10, corresponding NOS terminator is P12) 1 μl, ddH 2 O is supplemented to 50 μl.

反应程序为:94℃30s,54℃30s,72℃90s,共45个循环,72℃再延伸10min,采用PAGE电泳分离并回收3个PCR扩增片段,随后将该3个扩增片段等摩尔数混合,以混合片段为模板,利用引物P7和P12进行PCR扩增。The reaction program was: 94°C for 30s, 54°C for 30s, 72°C for 90s, a total of 45 cycles, and then extended at 72°C for 10 min, PAGE electrophoresis was used to separate and recover 3 PCR amplified fragments, and then the 3 amplified fragments were equimolar. The mixed fragments were used as templates, and PCR amplification was carried out using primers P7 and P12.

反应体系:混合片段1μl,2.5mmol/L dNTPs 4μl,Buffer 25μl,KOD Plus(Toyobo日本)聚合酶1U,引物P7 1μl,引物P12 1μl,ddH2O至50μl。Reaction system: mixed fragment 1μl, 2.5mmol/L dNTPs 4μl, Buffer 25μl, KOD Plus (Toyobo Japan) polymerase 1U, primer P7 1μl, primer P12 1μl, ddH 2 O to 50μl.

反应程序为:94℃30s,54℃30s,72℃180s,共45个循环,72℃再延伸10min,获得BvDODA1S基因的表达盒,并对该表达盒进行T-vector克隆和重组质粒的核苷酸全序列测定。The reaction program was: 94°C for 30s, 54°C for 30s, 72°C for 180s, a total of 45 cycles, and then extended at 72°C for 10 min to obtain the expression cassette of the BvDODA1S gene, and the expression cassette was cloned by T-vector and the nucleosides of the recombinant plasmid. Acid full sequence determination.

2.3BvCYP76AD1S基因表达盒的构建2.3 Construction of BvCYP76AD1S gene expression cassette

根据上述化学合成的35S启动子、BvCYP76AD1S基因和NOS终止子序列设计了三对引物P13和P14、P15和P16、P17和P18,相邻元件之间的引物存在20bp的重叠区,引物P13上有KpnI酶切位点,引物P18上有XhoI酶切位点,具体序列如下:Three pairs of primers P13 and P14, P15 and P16, P17 and P18 were designed according to the chemically synthesized 35S promoter, BvCYP76AD1S gene and NOS terminator sequences. The primers between adjacent elements have an overlapping region of 20 bp. KpnI restriction site, primer P18 has XhoI restriction site, the specific sequence is as follows:

P13:GGTACCATGGAGTCAAAGATTCAAATAGAGGACCTAACAGAACTCGCCGTAAAGACTGGC;P13: GGTACCATGGAGTCAAAGATTCAAATAGAGGACCTAACAGAACTCGCCGTAAAGACTGGC;

P14:GCCAAAGTTGCATGATCCATAGTCCCCCGTGTTCTCTCCAAATGAAATGAACTTCCTTAT;P14: GCCAAAGTTGCATGATCCATAGTCCCCCGTGTTCTCTCCAAATGAAATGAACTTCCTTAT;

P15:TGGAGAGAACACGGGGGACTATGGATCATGCAACTTTGGCAATGATCCTTGCAATCTGGT;P15:TGGAGAGAACACGGGGGGACTATGGATCATGCAACTTTGGCAATGATCCTTGCAATCTGGT;

P16:GAGGGGTAGTTCGATGTTGGTTAGTAACGTGGGATTGGAATCAGTTTCAATGGCTTGGTC;P16:GAGGGGTAGTTCGATGTTGGTTAGTAACGTGGGATTGGAATCAGTTTCAATGGCTTGGTC;

P17:CCAACATCGAACTACCCCTCCCAACATCGAACTACCCCTCACGCATGCATTCATCAATAT;P17:CCAACATCGAACTACCCCTCCCAACATCGAACTACCCCTCACGCATGCATTCATCAATAT;

P18:CTCGAGTTGCTTCATCAACGCAAGACATGCGCACCACGACCGTCTGACAGGAGAGGAATT。P18: CTCGAGTTGCTTCATCAACGCAAGACATGCGCACCACGACCGTCTGACAGGAGAGGAATT.

以上述化学合成的35S启动子、BvCYP76AD1S基因和NOS终止子的质粒为模板,分别使用三对引物P13和P14、P15和P16、P17和P18进行三个元件(35S启动子、BvCYP76AD1S基因和NOS终止子)的PCR扩增。With the above-mentioned chemically synthesized 35S promoter, BvCYP76AD1S gene and the plasmid of NOS terminator as template, use three pairs of primers P13 and P14, P15 and P16, P17 and P18 to carry out three elements (35S promoter, BvCYP76AD1S gene and NOS termination respectively). sub) PCR amplification.

反应体系:化学合成的35S启动子(BvCYP76AD1S基因或NOS终止子)质粒1μl,2.5mmol/L dNTPs 4μl,Buffer 25μl,KOD Plus(Toyobo日本)聚合酶1U,P13(对应BvCYP76AD1S基因为P15,对应NOS终止子为P17,下同)1μl,引物P14(对应BvCYP76AD1S基因为P16,对应NOS终止子为P18)1μl,ddH2O补至50μl。Reaction system: chemically synthesized 35S promoter (BvCYP76AD1S gene or NOS terminator) plasmid 1μl, 2.5mmol/L dNTPs 4μl, Buffer 25μl, KOD Plus (Toyobo Japan) polymerase 1U, P13 (corresponding to BvCYP76AD1S gene is P15, corresponding to NOS Terminator is P17, the same below) 1 μl, primer P14 (corresponding to BvCYP76AD1S gene is P16, corresponding to NOS terminator is P18) 1 μl, ddH 2 O is supplemented to 50 μl.

反应程序为:94℃30s,54℃30s,72℃120s,共45个循环,72℃再延伸10min,通过PAGE电泳分离并回收3个PCR扩增片段,随后将各个扩增片段等摩尔数混合,以混合片段为模板,利用引物P13和P18进行PCR扩增。The reaction program was: 94°C for 30s, 54°C for 30s, 72°C for 120s, a total of 45 cycles, and then extended at 72°C for 10 min. The 3 PCR amplified fragments were separated and recovered by PAGE electrophoresis, and then each amplified fragment was mixed in equimolar numbers. , using the mixed fragment as a template, using primers P13 and P18 for PCR amplification.

反应体系:混合片段1μl,2.5mmol/L dNTPs 4μl,Buffer 25μl,KOD Plus(Toyobo日本)聚合酶1U,P13 1μl,P18 1μ,ddH2O至50μl;反应程序为:94℃30s,54℃30s,72℃240s,共45个循环,72℃再延伸10min,获得BvCYP76AD1S基因的表达盒,并对该表达盒进行T-vector克隆和重组质粒的核苷酸全序列测定。Reaction system: mixed fragment 1μl, 2.5mmol/L dNTPs 4μl, Buffer 25μl, KOD Plus (Toyobo Japan) polymerase 1U, P13 1μl, P18 1μ, ddH 2 O to 50μl; reaction program: 94°C for 30s, 54°C for 30s , 72 ℃ for 240 s, a total of 45 cycles, and then extended at 72 ℃ for 10 min to obtain the expression cassette of BvCYP76AD1S gene, and the expression cassette was cloned by T-vector and the complete nucleotide sequence of the recombinant plasmid was determined.

3.多基因植物转化载体构建3. Construction of multigene plant transformation vector

将上述所获得的meloS基因表达盒重组质粒用EcoRI和BamHI酶切并连接到经同样酶切的pCAMBIA1301载体上获得pCAMBIA1301-meloS重组质粒。The meloS gene expression cassette recombinant plasmid obtained above was digested with EcoRI and BamHI and ligated into the pCAMBIA1301 vector digested with the same enzyme to obtain the pCAMBIA1301-meloS recombinant plasmid.

再将上述所获得的BvDODA1S基因表达盒重组质粒采用BamHI和KpnI酶切并连接到经同样酶切的pCAMBIA1301-meloS重组质粒上即获得pCAMBIA1301-meloS-BvDODA1S重组质粒。The BvDODA1S gene expression cassette recombinant plasmid obtained above was digested with BamHI and KpnI and connected to the pCAMBIA1301-meloS recombinant plasmid digested by the same enzyme to obtain the pCAMBIA1301-meloS-BvDODA1S recombinant plasmid.

最后再将上述所获得的BvCYP76AD1S基因表达盒重组质粒采用KpnI和XhoI酶切并连接到经同样酶切的pCAMBIA1301-meloS-BvDODA1S重组质粒上,即获得含有三基因的多基因植物转化载体pCAMBIA1301-meloS-BvDODA1S-BvCYP76AD1S(图1)。Finally, the recombinant plasmid of the BvCYP76AD1S gene expression cassette obtained above was digested with KpnI and XhoI and connected to the pCAMBIA1301-meloS-BvDODA1S recombinant plasmid that had been digested with the same enzymes to obtain a multigene plant transformation vector pCAMBIA1301-meloS containing three genes. -BvDODA1S-BvCYP76AD1S (Figure 1).

实施例2水稻的转化Example 2 Transformation of Rice

1、转基因水稻的获得及鉴定1. Acquisition and identification of transgenic rice

1.1农杆菌的准备及电击1.1 Agrobacterium preparation and electric shock

1)挑取农杆菌单菌接种于5mL LB液体培养基(利福平50μg/mL,氯霉素100μg/mL)中,28℃,250转/分钟培养20h。1) A single Agrobacterium was picked and inoculated into 5 mL of LB liquid medium (rifampicin 50 μg/mL, chloramphenicol 100 μg/mL), and cultured at 28°C at 250 rpm for 20 h.

2)取1mL菌液转接入20-30mL LB液体培养基(利福平50μg/mL,氯霉素100μg/mL)中,28℃,250转/分钟培养约12h,测OD600≈1.5。2) Transfer 1 mL of bacterial liquid into 20-30 mL of LB liquid medium (rifampicin 50 μg/mL, chloramphenicol 100 μg/mL), and culture at 28°C for about 12 hours at 250 rpm, and measure OD600≈1.5.

3)8000转/分钟,4℃,10min离心收集菌体,重悬于农杆菌转化渗透液(5wt%蔗糖,0.05wt%Silwet L-77)并稀释至OD600≈0.8。3) 8000 rpm, 4°C, 10 min centrifugation to collect bacterial cells, resuspend in Agrobacterium transformation permeate (5wt% sucrose, 0.05wt% Silwet L-77) and dilute to OD600≈0.8.

4)再用0.5倍体积4℃下预冷的无菌水重新充分悬浮菌体,3500g离心10分钟,小心倒去上清。重新充分悬浮菌体于1-2mL经4℃预冷的无菌的10%甘油中,该菌液可立即使用或冻于-70℃存放。4) Resuspend the bacterial cells with 0.5 times the volume of sterile water pre-cooled at 4°C, centrifuge at 3500g for 10 minutes, and carefully pour off the supernatant. Sufficiently resuspend the bacterial cells in 1-2 mL of sterile 10% glycerol pre-chilled at 4°C. The bacterial solution can be used immediately or stored at -70°C.

5)在1.5mL的eppendorf中,加入40μL菌液和1-2μL的质粒DNA(0.4pg-0.3μg),在0.2cm直径的电击杯中混匀,冰上放置1分钟左右。调节电击参数为25μF,2.5kV/cm,400Ω。电击,放电时间为4-5msec。5) In a 1.5 mL eppendorf, add 40 μL bacterial solution and 1-2 μL plasmid DNA (0.4 pg-0.3 μg), mix well in a 0.2 cm diameter electric shock cup, and place on ice for about 1 minute. Adjust the shock parameters to 25μF, 2.5kV/cm, 400Ω. Electric shock, the discharge time is 4-5msec.

6)电击转化后,即在菌体中加入1.0mL表达培养液,在29℃下培养1小时,涂于加入抗菌素的YEB平板(利福平50μg/mL+卡那霉素50μg/mL)。利用以上转化程序,将植物表达载体pCAMBIA1301-meloS-BvDODA1S-BvCYP76AD1S电击转入根癌农杆菌EHA105,获得根癌农杆菌菌株EHA105(pCAMBIA1301-meloS-BvDODA1S-BvCYP76AD1S)。6) After electroshock transformation, add 1.0 mL of expression culture medium to the bacterial cells, culture at 29°C for 1 hour, and spread on YEB plate (rifampicin 50 μg/mL + kanamycin 50 μg/mL) added with antibiotics. Using the above transformation procedure, the plant expression vector pCAMBIA1301-meloS-BvDODA1S-BvCYP76AD1S was electroporated into Agrobacterium tumefaciens EHA105 to obtain Agrobacterium tumefaciens strain EHA105 (pCAMBIA1301-meloS-BvDODA1S-BvCYP76AD1S).

1.2农杆菌侵染及与水稻愈伤组织的共培养1.2 Agrobacterium infection and co-culture with rice callus

1)水稻愈伤组织诱导:1) Rice callus induction:

选取中花11水稻成熟种子(去壳)先用70%乙醇浸泡1min,灭菌水冲洗干净,再用2%次氯酸纳浸泡20min消毒后,以灭菌水反复冲洗干净),置于超净台上的无菌培养皿中,用消毒的滤纸吸干水份,再用解破刀剥取成熟胚,盾片朝上将其接种到培养基上,将胚放置于愈伤诱导培养基(包括MS 4.4g/L、2,4-D 2.5mg/L、干酪素600mg/L、蔗糖30g/L和植物凝胶5g/L,用KOH调pH至5.8,高压灭菌)上进行愈伤培养,25-28℃下暗培养8-10天诱导愈伤组织,待胚芽长成1cm,严格筛选质量好的盾片愈伤组织于NBD2(包括NB及2,4-D 2mg/L)培养基上,25-28℃下暗培养4-7天进行继代培养。Select Zhonghua 11 rice mature seeds (shelled) first soaked in 70% ethanol for 1 min, rinsed with sterilized water, then soaked in 2% sodium hypochlorite for 20 min to disinfect, rinsed repeatedly with sterilized water), placed in a superheated In a sterile petri dish on a clean bench, use sterilized filter paper to absorb water, and then use a dismantling knife to peel off the mature embryos, inoculate them on the medium with the scutellum facing up, and place the embryos on the callus induction medium. (including MS 4.4g/L, 2,4-D 2.5mg/L, casein 600mg/L, sucrose 30g/L and phytogel 5g/L, adjust pH to 5.8 with KOH, autoclave) Wound culture, dark culture at 25-28°C for 8-10 days to induce callus, when the embryo grows to 1cm, the scutellum callus with good quality is strictly screened in NBD2 (including NB and 2,4-D 2mg/L) Subculture was carried out on the culture medium and cultured in the dark for 4-7 days at 25-28°C.

2)侵染用根癌农杆菌培养:2) Infection with Agrobacterium tumefaciens culture:

从YEB平板上挑取带有植物表达载体(pCAMBIA1301-meloS-BvDODA1S-BvCYP76AD1S)的农杆菌EHAl05,接种到5mL含50mg/L卡那霉素的YEB液体培养基中,28℃下在摇床上以每分钟200转的速度振荡培养至OD600=0.5,然后以1:100的比例重新接种到新鲜的YEB培养基中振荡培养,YEB培养基中所含抗生素和培养条件同前。当OD600=0.5时,将菌液以相对离心力6000×g,4℃下离心10分钟,收集农杆菌菌体,用2/3MS+1/3YEB重悬农杆菌至OD600=0.5,备用。Agrobacterium EHAl05 with plant expression vector (pCAMBIA1301-meloS-BvDODA1S-BvCYP76AD1S) was picked from the YEB plate, inoculated into 5 mL of YEB liquid medium containing 50 mg/L kanamycin, at 28°C on a shaker with Shaking at a speed of 200 rpm to OD600=0.5, and then re-inoculated into fresh YEB medium at a ratio of 1:100 for shaking culture. The antibiotics and culture conditions contained in YEB medium are the same as before. When OD600=0.5, the bacterial liquid was centrifuged at 6000×g with relative centrifugal force for 10 minutes at 4°C to collect Agrobacterium cells, and resuspended Agrobacterium with 2/3MS+1/3YEB to OD600=0.5 for use.

3)根癌农杆菌的共培养:3) Co-culture of Agrobacterium tumefaciens:

取生长旺盛的水稻胚性愈伤组织,分割成2mm的小块,至于灭菌培养皿中,加入含有100μmol/L乙酰丁香酮的OD600=0.5的根癌农杆菌菌液,浸泡25min后,用无菌滤纸吸干表面菌液后,将水稻愈伤组织接种于共培养培养基上,28℃下暗培养2-3天。Take the vigorously growing rice embryogenic callus and divide it into small pieces of 2 mm. As for the sterilized petri dish, add the Agrobacterium tumefaciens solution containing 100 μmol/L acetosyringone with OD600=0.5, soak for 25 minutes, and then use After blotting the surface bacterial liquid with sterile filter paper, the rice callus was inoculated on the co-cultivation medium, and cultured in the dark at 28°C for 2-3 days.

4)水稻愈伤组织分化和植株再生4) Rice callus differentiation and plant regeneration

收集共培养后的水稻愈伤组织,用含500mg/L头孢霉素的无菌水冲洗3次,吸去多余水份。Collect the rice callus after co-cultivation, rinse three times with sterile water containing 500 mg/L cephalosporin, and absorb excess water.

将愈伤组织(图2)转入筛选培养基(包括NB medium、2,4-D 0.5mg/L、头孢(cefotaxime)600mg/L和潮霉素25mg/L)中培养12-15天,其中前6-7天进行黑暗培养,后8-9天进行光照培养,光照强度为45-55mmoL·m-2·S-1。随后将已经分化出不定芽的愈伤组织转移到分化培养基RE2-H中培养15天,可使不定芽长成2-4cm的小苗,其中,分化培养基RE2-H包括MS、蔗糖30g/L、山梨糖10-20g/L、水解酪蛋白500mg/L、6-苄胺基嘌呤1mg/L、萘乙酸0.5mg/L、激动素0.5mg/L、玉米素0.2mg/L、潮霉素50mg/L和琼脂粉8mg/L,pH5.8。The callus (Figure 2) was transferred to the selection medium (including NB medium, 2,4-D 0.5mg/L, cefotaxime 600mg/L and hygromycin 25mg/L) for 12-15 days, The first 6-7 days were cultured in dark, and the latter 8-9 days were cultured in light, and the light intensity was 45-55 mmoL·m -2 ·S -1 . Subsequently, the callus that had differentiated adventitious buds was transferred to the differentiation medium RE2-H for 15 days, and the adventitious buds could grow into 2-4 cm seedlings, wherein the differentiation medium RE2-H included MS, sucrose 30 g/ L, sorbose 10-20g/L, hydrolyzed casein 500mg/L, 6-benzylaminopurine 1mg/L, naphthalene acetic acid 0.5mg/L, kinetin 0.5mg/L, zeatin 0.2mg/L, hygromycin 50mg/L of agar and 8mg/L of agar powder, pH 5.8.

最后将这些小苗转移到生根培养基中,2周后生根,移栽到长试管中培养20-30天,将较大的水稻植株,移栽于上海农科院白鹤转基因基地大田。Finally, these seedlings were transferred to rooting medium, rooted after 2 weeks, transplanted into long test tubes for 20-30 days, and the larger rice plants were transplanted into the field of Baihe Transgenic Base of Shanghai Academy of Agricultural Sciences.

2、转基因水稻的鉴定2. Identification of transgenic rice

2.1转化植株基因组DNA PCR检测2.1 PCR detection of transformed plant genomic DNA

对获得的T0代植株叶片,用SDS法抽提基因组DNA作为模版,用PCR扩增方法,分别检测外源基因meloS、BvDODA1S和BvCYP76AD1S。For the leaves of the obtained T 0 generation plants, the genomic DNA was extracted by SDS method as a template, and the exogenous genes meloS, BvDODA1S and BvCYP76AD1S were detected by PCR amplification method.

所用引物如下:The primers used are as follows:

meloZ:atggcatctgttgaaccaatc和meloF:ttaacgcatagtaccaacagt;meloZ: atggcatctgttgaaccaatc and meloF: ttaacgcatagtaccaacagt;

BvDODAZ:atgaagatgattgaatggtgaa和BvDODAF:ttaagcagaggtgaacttgta;BvDODAZ: atgaagatgattgaatggtgaa and BvDODAF: ttaagcagaggtgaacttgta;

BvCYP76ADZ:atggatcatgcaactttggca和BvCYP76ADF:ttagtaacgtgggattggaat。BvCYP76ADZ: atggatcatgcaactttggca and BvCYP76ADF: ttagtaacgtgggattggaat.

所用扩增程序:94℃30s,54℃30s,72℃120s,共45个循环,最后72℃再延伸10min,结果参见图3。The amplification program used: 94°C for 30s, 54°C for 30s, 72°C for 120s, a total of 45 cycles, and a final extension at 72°C for 10 min. The results are shown in Figure 3.

由图3可见,野生型(WT)对照都不能扩出外源基因,转三基因的三个株系都能扩增出上述3个基因,表明外源基因均完整整合进了水稻基因组中。It can be seen from Figure 3 that none of the wild-type (WT) controls can amplify the exogenous genes, and the three transgenic lines can amplify the above three genes, indicating that the exogenous genes are completely integrated into the rice genome.

2.2转基因植株T1种子的RT-PCR检测:2.2 RT-PCR detection of T1 seeds of transgenic plants:

把T1代转基因植株在液氮条件下研磨成粉,再用Trizol方法抽提总RNA,用MMV逆转录试剂盒,oligDT引物反转录为cDNA,用如下引物和扩增条件进行外源meloS、BvDODA1S和BvCYP76AD1S基因的RT-PCR检测,水稻内源Actin 1基因作为内参。The T 1 generation transgenic plants were ground into powder under liquid nitrogen conditions, and then total RNA was extracted by Trizol method, reverse transcribed into cDNA with MMV reverse transcription kit, oligDT primer, and exogenous meloS was carried out with the following primers and amplification conditions , BvDODA1S and BvCYP76AD1S gene RT-PCR detection, rice endogenous Actin 1 gene as an internal reference.

所用引物如下:The primers used are as follows:

meloZ1:ctctgataccatctccgt;meloZ1:ctctgataccatctccgt;

meloF1:gttcgtgagttggttgca;meloF1:gttcgtgagttggttgca;

BvDODAZ1:tcaggacctgggtgggct;BvDODAZ1:tcaggacctgggtgggct;

BvDODAF1:ggttcagaccgaagtgat;BvDODAF1:ggttcagaccgaagtgat;

BvCYP76ADZ1:tgaacactctgctgagct;BvCYP76ADZ1:tgaacactctgctgagct;

BvCYP76ADF1:catctccatacccagaag。BvCYP76ADF1: catctccatacccagaag.

所用扩增程序:94℃30s,54℃30s,72℃30s,共45个循环,最后72℃再延伸10min,结果参见图4。The amplification program used was: 94°C for 30s, 54°C for 30s, 72°C for 30s, a total of 45 cycles, and a final extension at 72°C for 10 min. The results are shown in Figure 4.

结果显示,对照野生型种子不能扩出外源基因,转基因的三个株系都能扩增出上述3个基因(参见图4),表明外源基因在转基因种子中均进行了正确的转录表达。The results showed that the control wild-type seeds could not amplify the exogenous genes, and the three transgenic lines could amplify the above three genes (see Figure 4), indicating that the exogenous genes were correctly transcribed and expressed in the transgenic seeds.

实施例3转基因水稻植株的外观观察及甜菜红素含量检测Example 3 Appearance observation of transgenic rice plants and detection of betalain content

将实施例2中T1代收获的水稻种子进行正常萌发,待植株长到约20cm时可以很明显看出转基因水稻植株具有深红的颜色(图5),初步表明导入上述3基因使得转基因水稻植株中合成了甜菜红素。The rice seeds harvested from T1 generation in Example 2 were normally germinated, and when the plant grew to about 20 cm, it was obvious that the transgenic rice plant had a dark red color (Fig. 5), and it was initially shown that the above-mentioned 3 genes were introduced to make the transgenic rice plant. Synthesis of betalain.

转基因水稻植株中甜菜红素的质谱分析及含量测定:取0.1g水稻植株在冰上研磨成粉末,加入4.5m L pH为5.3的32%乙醇,避光低温振荡(100rpm)提取30min;4℃8000rpm离心5min收集上清;将上清在4℃8000rpm离心5min,将收集的上清低温避光浓缩干燥;最后将干燥的物质加200μL超纯水用于测定。Mass spectrometry analysis and content determination of betalains in transgenic rice plants: Take 0.1 g of rice plants and grind them into powder on ice, add 4.5 mL of 32% ethanol with a pH of 5.3, and extract for 30 min in the dark with low temperature shaking (100 rpm); 4 ℃ The supernatant was collected by centrifugation at 8000 rpm for 5 min; the supernatant was centrifuged at 4° C. 8000 rpm for 5 min, and the collected supernatant was concentrated and dried at low temperature in the dark; finally, the dried substance was added with 200 μL of ultrapure water for determination.

将上述待测样品过0.22μm的有机滤膜,再注入到2mL棕色取样瓶,进样量20μL,采用高效液相进行质谱分析,质谱条件:Capillary,3000V;sample cone,30V;source temp,100℃;desolvation temp,350℃;IE,1.0V;Lock mass,LE(1μg/m L);分子量扫描范围(m/z),50~1200。The above-mentioned sample to be tested was passed through a 0.22 μm organic filter membrane, and then injected into a 2 mL brown sampling bottle with a sample injection volume of 20 μL, and high-performance liquid chromatography was used for mass spectrometry analysis. Mass spectrometry conditions: Capillary, 3000V; sample cone, 30V; source temp, 100 ℃; desolvation temp, 350℃; IE, 1.0V; Lock mass, LE (1μg/mL); molecular weight scan range (m/z), 50~1200.

甜菜红素的含量以甜菜苷当量表示,甜菜苷标准品购自Sigma。The content of betalains was expressed in betanin equivalents, and the standard betalains were purchased from Sigma.

甜菜红素含量(mg/g FW)=A538(MW)V(DF)/εLW。Betaine content (mg/g FW)=A538(MW)V(DF)/εLW.

式中:A538表示在538nm(λmax)的吸光度值;L=1.0cm;DF为稀释倍数;V为体积(mL);W为色素的干重(g);甜菜苷的ε(摩尔消光系数)=65000,MW=551。In the formula: A538 represents the absorbance value at 538nm (λmax); L=1.0cm; DF is the dilution factor; V is the volume (mL); W is the dry weight of the pigment (g); =65000, MW=551.

从质谱图中可以看出,在转基因植株中明显检测出了甜菜苷的存在(图6),而CK中则没有,同时,通过计算得知转基因植株中含有大约2.0-2.6mg/g FW的甜菜苷。It can be seen from the mass spectrometry that the presence of betalains was clearly detected in the transgenic plants (Fig. 6), but not in CK. At the same time, it was calculated that the transgenic plants contained about 2.0-2.6 mg/g FW of betaine. betaine.

序列表sequence listing

<110> 上海市农业科学院<110> Shanghai Academy of Agricultural Sciences

<120> 一种在水稻中表达产生甜菜红素的基因组合及其应用<120> A kind of gene combination expressing and producing betalain in rice and its application

<130> 1911280<130> 1911280

<160> 5<160> 5

<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0

<210> 1<210> 1

<211> 1620<211> 1620

<212> DNA<212> DNA

<213> Aspergillus oryzae<213> Aspergillus oryzae

<400> 1<400> 1

atggcatctg ttgaaccaat caaaactttc gagattcgtc agaagggtcc tgttgagact 60atggcatctg ttgaaccaat caaaactttc gagattcgtc agaagggtcc tgttgagact 60

aaagctgaac gtaagtccat tcgtgatctg aacgaagaag agttggacaa actgattgag 120aaagctgaac gtaagtccat tcgtgatctg aacgaagaag agttggacaa actgattgag 120

gcatggcgtt ggattcaaga tcctgctcgt actggtgaag attccttctt ctaccttgct 180gcatggcgtt ggattcaaga tcctgctcgt actggtgaag attccttctt ctaccttgct 180

ggtctgcatg gtgaaccatt ccgtggtgct ggttaccagt gtctgttgac cgaagagtac 240ggtctgcatg gtgaaccatt ccgtggtgct ggttaccagt gtctgttgac cgaagagtac 240

actgtcttct ccaacaccac ctctgctcaa cgttggaatg atgaacagct gatggctgtt 300actgtcttct ccaacaccac ctctgctcaa cgttggaatg atgaacagct gatggctgtt 300

gagaaggcat tgcgtaaggc atgtcctgat gtttctctgc catactggga tgagtctgac 360gagaaggcat tgcgtaaggc atgtcctgat gtttctctgc catactggga tgagtctgac 360

gatgagactg caaagaaggg tattccattg atcttcactc agaaagagta caagggtaag 420gatgagactg caaagaaggg tattccattg atcttcactc agaaagagta caagggtaag 420

ccaaacccac tgtactccta caccttctct gaacgtattg ttgatcgttt ggctaagttc 480ccaaacccac tgtactccta caccttctct gaacgtattg ttgatcgttt ggctaagttc 480

cctgatgctg actactctaa gccacaaggt tacaagacct gtcgttaccc atactctggt 540cctgatgctg actactctaa gccacaaggt tacaagacct gtcgttaccc atactctggt 540

ctgtgtggtc aggatgacat cgctatcgct caacagcaca acaacttcct ggatgctaac 600ctgtgtggtc aggatgacat cgctatcgct caacagcaca acaacttcct ggatgctaac 600

ttcaaccagg aacagatcac tggtctgctg aactccaatg tcacctcttg gctgaatctg 660ttcaaccagg aacagatcac tggtctgctg aactccaatg tcacctcttg gctgaatctg 660

ggtcagttca ctgacatcga gggtaagcaa gtcaaggctg atactcgttg gaagatccgt 720ggtcagttca ctgacatcga gggtaagcaa gtcaaggctg atactcgttg gaagatccgt 720

aacaactctc attggtgggg tggttactgt catcatggta acatcttgtt cccaacctgg 780aacaactctc attggtgggg tggttactgt catcatggta acatcttgtt cccaacctgg 780

catcgtgcat acttccatcc actggagtct ggtggtaaag agactgaggc taaagccacc 840catcgtgcat acttccatcc actggagtct ggtggtaaag agactgaggc taaagccacc 840

tctcttgctg ttccactgga gtctccacac aatgacatgc atcttgctat tggtggtgtc 900tctcttgctg ttccactgga gtctccacac aatgacatgc atcttgctat tggtggtgtc 900

cagattcctg gtttcaacgt tgatcagtat gctggtgcta acggtgatat gggtgagaac 960cagattcctg gtttcaacgt tgatcagtat gctggtgcta acggtgatat gggtgagaac 960

gatactgctt ccttcgatcc aatcttctac ttccatcact gcttcatcga ctacctgttc 1020gatactgctt ccttcgatcc aatcttctac ttccatcact gcttcatcga ctacctgttc 1020

tggacttggc agaccatgca caagaagact gatgcatccc agatcaccat cttgcctgaa 1080tggacttggc agaccatgca caagaagact gatgcatccc agatcaccat cttgcctgaa 1080

ctgccataca cctacaaggc accaacctct ggtactggtt ccgtcttcaa cgatgttcca 1140ctgccataca cctacaaggc accaacctct ggtactggtt ccgtcttcaa cgatgttcca 1140

cgtctgaact acgatactcc acttgatcca tttcgtgaga atggtgacaa ggtcacttcc 1200cgtctgaact acgatactcc acttgatcca tttcgtgaga atggtgacaa ggtcacttcc 1200

aacaaactgc tgaccttgaa ggacctgcca tacacctaca aggcaccaac ctctggtact 1260aacaaactgc tgaccttgaa ggacctgcca tacacctaca aggcaccaac ctctggtact 1260

ggttccgtct tcaacgatgt tccacgtctg aactacccac tgtctccacc aatcctgcgt 1320ggttccgtct tcaacgatgt tccacgtctg aactacccac tgtctccacc aatcctgcgt 1320

gtctctggta tcaatcgtgc atctatcgct ggttcttttg cactggcaat ctctcagact 1380gtctctggta tcaatcgtgc atctatcgct ggttcttttg cactggcaat ctctcagact 1380

gatcacactg gtaaggctca agtcaaaggt atcgagtctg tcctgtctcg ttggcatgtc 1440gatcacactg gtaaggctca agtcaaaggt atcgagtctg tcctgtctcg ttggcatgtc 1440

caaggttgtg caaactgtca gactcacctg tccaccactg cattcgtccc actgttcgag 1500caaggttgtg caaactgtca gactcacctg tccaccactg cattcgtccc actgttcgag 1500

ctgaacgagg atgatgccaa acgtaaacat gctaacaacg aactggctgt ccatctgcac 1560ctgaacgagg atgatgccaa acgtaaacat gctaacaacg aactggctgt ccatctgcac 1560

actcgtggta atcctggtgg tcaacgtgtt cgtaacgtca ctgttggtac tatgcgttaa 1620actcgtggta atcctggtgg tcaacgtgtt cgtaacgtca ctgttggtac tatgcgttaa 1620

<210> 2<210> 2

<211> 828<211> 828

<212> DNA<212> DNA

<213> Beta vulgaris<213> Beta vulgaris

<400> 2<400> 2

atgaagatga tgaatggtga agatgcaact gatcagatga tcaaagaatc cttcttcatc 60atgaagatga tgaatggtga agatgcaact gatcagatga tcaaagaatc cttcttcatc 60

actcatggta atccaatctt gactgttgaa gacacccatc cattgcgtcc attcttcgag 120actcatggta atccaatctt gactgttgaa gacacccatc cattgcgtcc attcttcgag 120

acttggcgtg agaaaatctt ctctaagaag cctaaggcaa tcctgatcat ctctggtcat 180acttggcgtg agaaaatctt ctctaagaag cctaaggcaa tcctgatcat ctctggtcat 180

tgggagactg tcaaaccaac tgtcaatgct gtccatatca acgacactat ccatgacttc 240tgggagactg tcaaaccaac tgtcaatgct gtccatatca acgacactat ccatgacttc 240

gatgactacc ctgctgctat gtacctgttc aagtaccctg cacctggtgc accagaactg 300gatgactacc ctgctgctat gtacctgttc aagtaccctg cacctggtgc accagaactg 300

gcacgtaaag tcgaggagat tctgaagaag tctggtttcg agactgctga gactgatgaa 360gcacgtaaag tcgaggagat tctgaagaag tctggtttcg agactgctga gactgatgaa 360

aagcgtggtc tggatcatgg tgcatgggtt ccactgatgc tgatgtatcc tgaggctgac 420aagcgtggtc tggatcatgg tgcatgggtt ccactgatgc tgatgtatcc tgaggctgac 420

atccctgtct gccagctgtc tgttcaacca catctggatg gtacttacca ctacaacttg 480atccctgtct gccagctgtc tgttcaacca catctggatg gtacttacca ctacaacttg 480

ggtcgtgcac tggcaccatt gaagaatgat ggtgtcttga tcatcggttc tggttctgca 540ggtcgtgcac tggcaccatt gaagaatgat ggtgtcttga tcatcggttc tggttctgca 540

actcatccac tggatgagac tccacactac ttcgacggtg ttgcaccttg ggctgctgca 600actcatccac tggatgagac tccacactac ttcgacggtg ttgcaccttg ggctgctgca 600

ttcgactctt ggcttcgtaa agcactgatc aacggtcgtt tcgaagaagt caacatctac 660ttcgactctt ggcttcgtaa agcactgatc aacggtcgtt tcgaagaagt caacatctac 660

gagaccaaag caccaaactg gaaactggca catccattcc ctgaacactt ctatccactg 720gagaccaaag caccaaactg gaaactggca catccattcc ctgaacactt ctatccactg 720

catgttgttc ttggtgctgc tggtgagaag tggaaggctg agctgattca ttcttcttgg 780catgttgttc ttggtgctgc tggtgagaag tggaaggctg agctgattca ttcttcttgg 780

gatcatggta ctctgtgtca tggttcctac aagttcacct ctgcttaa 828gatcatggta ctctgtgtca tggttcctac aagttcacct ctgcttaa 828

<210> 3<210> 3

<211> 1494<211> 1494

<212> DNA<212> DNA

<213> Beta vulgaris<213> Beta vulgaris

<400> 3<400> 3

atggatcatg caactttggc aatgatcctt gcaatctggt tcatctcttt tcacttcatc 60atggatcatg caactttggc aatgatcctt gcaatctggt tcatctcttt tcacttcatc 60

aaactgctgt tctcccaaca gactaccaaa ctgcttccac ctggtccaaa gccattgcca 120aaactgctgt tctcccaaca gactaccaaa ctgcttccac ctggtccaaa gccattgcca 120

atcatcggta acatcttgga agtcaccacc accaccactg atgatgtcct tgatgttctt 180atcatcggta acatcttgga agtcaccacc accaccactg atgatgtcct tgatgttctt 180

cttcagctgt tcaagcagaa cgaactgact atgggttctg tcaccaccat tgttgtctcc 240cttcagctgt tcaagcagaa cgaactgact atgggttctg tcaccaccat tgttgtctcc 240

tctgctgatg tcgctaaaga gatgttcttg aagaaggatc atccactgtc caaccgtacc 300tctgctgatg tcgctaaaga gatgttcttg aagaaggatc atccactgtc caaccgtacc 300

attccaaact ctgttactgc tggtgatcat cacaaactga ctatgtcttg gttgcctgtc 360attccaaact ctgttactgc tggtgatcat cacaaactga ctatgtcttg gttgcctgtc 360

tctcctaagt ggcgtaactt ccgtaagatc actgctgtcc acttgctgtc tcctcaacgt 420tctcctaagt ggcgtaactt ccgtaagatc actgctgtcc acttgctgtc tcctcaacgt 420

cttgatgctt gccaaacctt ccgtcatgct aaggtccaac aactgtacga gtacgtccaa 480cttgatgctt gccaaacctt ccgtcatgct aaggtccaac aactgtacga gtacgtccaa 480

gagtgtgcac agaaaggtca agctgttgac atcggtaaag ctgcattcac tacttctctg 540gagtgtgcac agaaaggtca agctgttgac atcggtaaag ctgcattcac tacttctctg 540

aatctgttgt ccaaactgtt cttctccgtc gaactggcac accacaagtc tcatacttct 600aatctgttgt ccaaactgtt cttctccgtc gaactggcac accacaagtc tcatacttct 600

caagagttca aggaactgat ctggaacatc atggaagaca ttggtaagcc taactacgct 660caagagttca aggaactgat ctggaacatc atggaagaca ttggtaagcc taactacgct 660

gactatcttc caatcttggg ttgtgttgat ccatctggta ttcgtcgtcg tttggcatgt 720gactatcttc caatcttggg ttgtgttgat ccatctggta ttcgtcgtcg tttggcatgt 720

tccttcgata agctgatcgc tgtcttccag ggtatcatct gtgaacgtct tgcacctgac 780tccttcgata agctgatcgc tgtcttccag ggtatcatct gtgaacgtct tgcacctgac 780

tcttccacca ccggtaagaa gcctcatcgt tccttcgcta acctggctaa gattcatggt 840tcttccacca ccggtaagaa gcctcatcgt tccttcgcta acctggctaa gattcatggt 840

ccattgatct ccttgcgtct tggtgagatc aaccatctgc ttgttgacat cttcgatgct 900ccattgatct ccttgcgtct tggtgagatc aaccatctgc ttgttgacat cttcgatgct 900

ggtactgaca ccacttcttc caccttcgaa tgggtcatga ccgagttgat ccgtaaccct 960ggtactgaca ccacttcttc caccttcgaa tgggtcatga ccgagttgat ccgtaaccct 960

gagatgatgg agaaggcaca agaagagatc aagcaagtct tgggtaagga caaacagatc 1020gagatgatgg agaaggcaca agaagagatc aagcaagtct tgggtaagga caaacagatc 1020

caggagtctg acatcatcaa cctgccatac ttgcaagcta tcatcaaaga aaccctgcgt 1080caggagtctg acatcatcaa cctgccatac ttgcaagcta tcatcaaaga aaccctgcgt 1080

cttcatccac caactgtctt cctgttgcca cgtaaagctg acactgatgt tgaactgtac 1140cttcatccac caactgtctt cctgttgcca cgtaaagctg acactgatgt tgaactgtac 1140

ggttacattg tccctaaaga tgcacagatc ctggtcaact tgtgggcaat cggtcgtgat 1200ggttacattg tccctaaaga tgcacagatc ctggtcaact tgtgggcaat cggtcgtgat 1200

cctaacgcat ggcagaacgc tgacatcttc tctcctgaac gtttcatcgg ttgtgagatc 1260cctaacgcat ggcagaacgc tgacatcttc tctcctgaac gtttcatcgg ttgtgagatc 1260

gatgtcaaag gtcgtgactt cggtctgttg ccattcggtg ctggtcgtcg tatctgtcct 1320gatgtcaaag gtcgtgactt cggtctgttg ccattcggtg ctggtcgtcg tatctgtcct 1320

ggtatgaatc tggctattcg tatgttgacc ttgatgctgg ctaccttgct tcagttcttc 1380ggtatgaatc tggctattcg tatgttgacc ttgatgctgg ctaccttgct tcagttcttc 1380

aactggaagc tggaaggtga catctctcca aaggacttgg acatggatga gaagttcggt 1440aactggaagc tggaaggtga catctctcca aaggacttgg acatggatga gaagttcggt 1440

atcgcattgc agaagaccaa gccattgaaa ctgattccaa tcccacgtta ctaa 1494atcgcattgc agaagaccaa gccattgaaa ctgattccaa tcccacgtta ctaa 1494

<210> 4<210> 4

<211> 537<211> 537

<212> DNA<212> DNA

<213> Cauliflower virus<213> Cauliflower virus

<400> 4<400> 4

atggagtcaa agattcaaat agaggaccta acagaactcg ccgtaaagac tggcgaacag 60atggagtcaa agattcaaat agaggaccta acagaactcg ccgtaaagac tggcgaacag 60

ttcatacaga gtctcttacg actcaatgac aagaagaaaa tcttcgtcaa catggtggag 120ttcatacaga gtctcttacg actcaatgac aagaagaaaa tcttcgtcaa catggtggag 120

cacgacacac ttgtctactc caaaaatatc aaagatacag tctcagaaga ccaaagggca 180cacgacacac ttgtctactc caaaaatatc aaagatacag tctcagaaga ccaaagggca 180

attgagactt ttcaacaaag ggtaatatcc ggaaacctcc tcggattcca ttgcccagct 240attgagactt ttcaacaaag ggtaatatcc ggaaacctcc tcggattcca ttgcccagct 240

atctgtcact ttattgtgaa gatagtggaa aaggaaggtg gctcctacaa atgccatcat 300atctgtcact ttattgtgaa gatagtggaa aaggaaggtg gctcctacaa atgccatcat 300

tgcgataaag gaaaggccat cgttgaagat gcctctgccg acagtggtcc caaagatgga 360tgcgataaag gaaaggccat cgttgaagat gcctctgccg acagtggtcc caaagatgga 360

cccccaccca cgaggagcat cgtggaaaaa gaagacgttc caaccacgtc ttcaaagcaa 420cccccaccca cgaggagcat cgtggaaaaa gaagacgttc caaccacgtc ttcaaagcaa 420

gtggattgat gtgatatctc cactgacgta agggatgacg cacaatccca ctatccttcg 480gtggattgat gtgatatctc cactgacgta agggatgacg cacaatccca ctatccttcg 480

caagaccctt cctctatata aggaagttca tttcatttgg agagaacacg ggggact 537caagaccctt cctctatata aggaagttca tttcatttgg agagaacacg ggggact 537

<210> 5<210> 5

<211> 865<211> 865

<212> DNA<212> DNA

<213> Agrobacterium<213> Agrobacterium

<400> 5<400> 5

ccaacatcga actacccctc acgcatgcat tcatcaatat tattcatgcg gggaaaggca 60ccaacatcga actacccctc acgcatgcat tcatcaatat tattcatgcg gggaaaggca 60

agattaatcc aactggcaaa tcatccagcg tgattggtaa cttcagttcc agcgacttga 120agattaatcc aactggcaaa tcatccagcg tgattggtaa cttcagttcc agcgacttga 120

ttcgttttgg tgctacccac gttttcaata aggacgagat ggtggagtaa agaaggagtg 180ttcgttttgg tgctacccac gttttcaata aggacgagat ggtggagtaa agaaggagtg 180

cgtcgaagca gatcgttcaa acatttggca ataaagtttc ttaagattga atcctgttgc 240cgtcgaagca gatcgttcaa acatttggca ataaagtttc ttaagattga atcctgttgc 240

cggtcttgcg atgattatca tataatttct gttgaattac gttaagcatg taataattaa 300cggtcttgcg atgattatca tataatttct gttgaattac gttaagcatg taataattaa 300

catgtaatgc atgacgttat ttatgagatg ggtttttatg attagagtcc cgcaattata 360catgtaatgc atgacgttat ttatgagatg ggttttttatg attagagtcc cgcaattata 360

catttaatac gcgatagaaa acaaaatata gcgcgcaaac taggataaat tatcgcgcgc 420catttaatac gcgatagaaa acaaaatata gcgcgcaaac taggataaat tatcgcgcgc 420

ggtgtcatct atgttactag atcgatcaaa cttcggtact gtgtaatgac gatgagcaat 480ggtgtcatct atgttactag atcgatcaaa cttcggtact gtgtaatgac gatgagcaat 480

cgagaggctg actaacaaaa ggtatgccca aaaacaacct ctccaaactg tttcgaattg 540cgagaggctg actaacaaaa ggtatgccca aaaacaacct ctccaaactg tttcgaattg 540

gaagtttctg ctcatgccga caggcataac ttagatattc gcgggctatt cccactaatt 600gaagttttctg ctcatgccga caggcataac ttagatattc gcgggctatt cccactaatt 600

cgtcctgctg gtttgcgcca agataaatca gtgcatctcc ttacaagttc ctctgtcttg 660cgtcctgctg gtttgcgcca agataaatca gtgcatctcc ttacaagttc ctctgtcttg 660

tgaaatgaac tgctgactgc cccccaagaa agcctcctca tctcccagtt ggcggcggct 720tgaaatgaac tgctgactgc cccccaagaa agcctcctca tctcccagtt ggcggcggct 720

gatacaccat cgaaaaccca cgtccgaaca cttgatacat gtgcctgaga aataggccta 780gatacaccat cgaaaaccca cgtccgaaca cttgatacat gtgcctgaga aataggccta 780

cgtccaagag caagtccttt ctgtgctcgt cggaaattcc tctcctgtca gacggtcgtg 840cgtccaagag caagtccttt ctgtgctcgt cggaaattcc tctcctgtca gacggtcgtg 840

cgcatgtctt gcgttgatga agctt 865cgcatgtctt gcgttgatga agctt 865

Claims (10)

1.一种在水稻中表达产生甜菜红素的基因组合,包括melo基因、BvDODA1基因和BvCYP76AD1基因。What is claimed is: 1. A gene combination expressing betalain in rice, comprising melo gene, BvDODA1 gene and BvCYP76AD1 gene. 2.根据权利要求1所述在水稻中表达产生甜菜红素的基因组合,其特征在于,根据水稻的密码子偏好性,所述melo基因优化为meloS基因,其核苷酸序列如SEQ ID NO.1所示;BvDODA1基因优化为BvDODA1S基因,其核苷酸序列如SEQ ID NO.2所示;所述BvCYP76AD1基因优化为BvCYP76AD1S基因,其核苷酸序列如SEQ ID NO.3所示。2. according to the described gene combination that expresses and produces betalain in rice according to claim 1, it is characterized in that, according to the codon preference of rice, described melo gene is optimized as meloS gene, and its nucleotide sequence is such as SEQ ID NO .1; the BvDODA1 gene is optimized to be the BvDODA1S gene, and its nucleotide sequence is shown in SEQ ID NO.2; the BvCYP76AD1 gene is optimized to be the BvCYP76AD1S gene, and its nucleotide sequence is shown in SEQ ID NO.3. 3.一种多基因植物转化载体,包括植物表达载体,以及分别与花椰菜花叶病毒的35S启动子和根农杆菌的NOS终止子融合的meloS基因、BvDODA1S基因和BvCYP76AD1S基因的基因表达盒。3. A multigene plant transformation vector, comprising a plant expression vector, and a gene expression cassette of meloS gene, BvDODA1S gene and BvCYP76AD1S gene fused with the 35S promoter of cauliflower mosaic virus and the NOS terminator of Agrobacterium rhizogenes respectively. 4.根据权利要求3所述多基因植物转化载体,其特征在于,所述植物表达载体为pCAMBIA1301。4. The multigene plant transformation vector according to claim 3, wherein the plant expression vector is pCAMBIA1301. 5.如权利要求1或2所述在水稻中表达产生甜菜红素的基因组合在水稻中的应用。5. The application in rice of expressing the combination of genes for producing betalain in rice according to claim 1 or 2. 6.一种含甜菜红素的转基因水稻的获得方法,包括以下步骤:6. A method for obtaining a transgenic rice containing betalain, comprising the following steps: 1)根据水稻的密码子偏好性,优化melo、BvDODA1和BvCYP76AD1三个基因的序列,将序列优化后的三个基因分别与花椰菜花叶病毒的35S启动子和根农杆菌的NOS终止子融合,分别构建基因表达盒;1) According to the codon preference of rice, the sequences of the three genes melo, BvDODA1 and BvCYP76AD1 were optimized, and the three genes after sequence optimization were respectively fused with the 35S promoter of cauliflower mosaic virus and the NOS terminator of Agrobacterium rhizogenes, Construct gene expression cassettes respectively; 2)将步骤1)中的三个基因表达盒连接入植物表达载体,获得含melo、BvDODA1和BvCYP76AD1三基因表达盒的多基因植物转化载体;2) connecting the three gene expression cassettes in step 1) into a plant expression vector to obtain a multigene plant transformation vector containing the three gene expression cassettes of melo, BvDODA1 and BvCYP76AD1; 3)将步骤2)所述多基因植物转化载体转入农杆菌,再转化至水稻,获得富含甜菜红素的转基因水稻。3) The multi-gene plant transformation vector described in step 2) is transformed into Agrobacterium, and then transformed into rice to obtain transgenic rice rich in betalain. 7.根据权利要求6所述含甜菜红素的转基因水稻的获得方法,其特征在于,步骤1)中,所述melo基因优化为meloS基因,其核苷酸序列如SEQ ID NO.1所示;所述BvDODA1基因优化为BvDODA1S基因,其核苷酸序列如SEQ ID NO.2所示;所述BvCYP76AD1基因优化为BvCYP76AD1S基因,其核苷酸序列如SEQ ID NO.3所示。7. the method for obtaining the transgenic rice containing betalain according to claim 6, is characterized in that, in step 1), described melo gene is optimized as meloS gene, and its nucleotide sequence is as shown in SEQ ID NO.1 The BvDODA1 gene is optimized as a BvDODA1S gene, and its nucleotide sequence is shown in SEQ ID NO.2; the BvCYP76AD1 gene is optimized as a BvCYP76AD1S gene, and its nucleotide sequence is shown in SEQ ID NO.3. 8.根据权利要求6或7所述含甜菜红素的转基因水稻的获得方法,其特征在于,步骤1)中,所述花椰菜花叶病毒的35S启动子的核苷酸序列分别如SEQ ID NO.4所示;所述根农杆菌的NOS终止子序列如SEQ ID NO.5所示。8. the method for obtaining the transgenic rice containing betalain according to claim 6 or 7, it is characterized in that, in step 1), the nucleotide sequence of the 35S promoter of described cauliflower mosaic virus is respectively as SEQ ID NO .4; the NOS terminator sequence of the Agrobacterium rhizogenes is shown in SEQ ID NO.5. 9.根据权利要求6所述含甜菜红素的转基因水稻的获得方法,其特征在于,步骤2)中,所述植物表达载体为pCAMBIA1301。9. The method for obtaining betalain-containing transgenic rice according to claim 6, wherein in step 2), the plant expression vector is pCAMBIA1301. 10.根据权利要求6所述含甜菜红素的转基因水稻的获得方法,其特征在于,步骤3)中,所述水稻的品种为中花11。10 . The method for obtaining betalain-containing transgenic rice according to claim 6 , wherein in step 3), the variety of the rice is Zhonghua 11. 11 .
CN201911003738.2A 2019-10-22 2019-10-22 A gene combination expressing betalain in rice and its application Pending CN110592124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911003738.2A CN110592124A (en) 2019-10-22 2019-10-22 A gene combination expressing betalain in rice and its application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911003738.2A CN110592124A (en) 2019-10-22 2019-10-22 A gene combination expressing betalain in rice and its application

Publications (1)

Publication Number Publication Date
CN110592124A true CN110592124A (en) 2019-12-20

Family

ID=68851447

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911003738.2A Pending CN110592124A (en) 2019-10-22 2019-10-22 A gene combination expressing betalain in rice and its application

Country Status (1)

Country Link
CN (1) CN110592124A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114410821A (en) * 2022-01-24 2022-04-29 北京市农林科学院 InDel molecular marker for identifying amaranth leaf color character and application thereof
CN114592000A (en) * 2020-12-03 2022-06-07 上海市农业科学院 Application and method of a six-gene combination for improving VB2 content in rice seeds
CN114591999A (en) * 2020-12-03 2022-06-07 上海市农业科学院 Application and method of increasing VB2 content in rice with RibAS, RibBS, RibGS and RibHS genes
CN115896162A (en) * 2022-12-09 2023-04-04 上海市农业科学院 Method for synthesizing betanin through callus culture
CN116083451A (en) * 2022-12-09 2023-05-09 上海市农业科学院 Method for synthesizing betanin from carrots

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180251801A1 (en) * 2015-09-10 2018-09-06 Yeda Research And Development Co. Ltd. Compositions comprising cyp76ad1-beta clade polypeptides and uses thereof
CN109504705A (en) * 2018-12-21 2019-03-22 上海市农业科学院 A method of improving content beta-carotene in rice paddy seed endosperm

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180251801A1 (en) * 2015-09-10 2018-09-06 Yeda Research And Development Co. Ltd. Compositions comprising cyp76ad1-beta clade polypeptides and uses thereof
CN109504705A (en) * 2018-12-21 2019-03-22 上海市农业科学院 A method of improving content beta-carotene in rice paddy seed endosperm

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NING CHEN等: "Cytosolic and Nuclear Co-localization of Betalain Biosynthetic Enzymes in Tobacco Suggests that Betalains Are Synthesized in the Cytoplasm and/or Nucleus of Betalainic Plant Cells", 《FRONTIERS IN PLANT SCIENCE》 *
于思礼等: "甜菜素的生物合成及其代谢调控进展", 《中国生物工程杂志》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114592000A (en) * 2020-12-03 2022-06-07 上海市农业科学院 Application and method of a six-gene combination for improving VB2 content in rice seeds
CN114591999A (en) * 2020-12-03 2022-06-07 上海市农业科学院 Application and method of increasing VB2 content in rice with RibAS, RibBS, RibGS and RibHS genes
CN114410821A (en) * 2022-01-24 2022-04-29 北京市农林科学院 InDel molecular marker for identifying amaranth leaf color character and application thereof
CN114410821B (en) * 2022-01-24 2023-05-16 北京市农林科学院 InDel molecular marker for identifying amaranth leaf color traits and application thereof
CN115896162A (en) * 2022-12-09 2023-04-04 上海市农业科学院 Method for synthesizing betanin through callus culture
CN116083451A (en) * 2022-12-09 2023-05-09 上海市农业科学院 Method for synthesizing betanin from carrots

Similar Documents

Publication Publication Date Title
CN110592124A (en) A gene combination expressing betalain in rice and its application
CN110684786A (en) A gene combination expressing betaside in rice seed endosperm and its application
CN109504705B (en) Method for increasing content of beta-carotene in endosperm of rice seeds
CN117904143B (en) Upland cotton GhDIR1 gene, its encoded protein, expression vector and application thereof
US20130072702A1 (en) Polynucleotide encoding nf-yb derived from jatropha and use thereof
CN102094021B (en) Corn callus specific promoter and cloning method and application thereof
CN114592000B (en) Application and method of a six-gene combination for increasing VB2 content in rice seeds
CN113881685B (en) Gene PpHSP20-like1 for promoting plant organ to produce red color and application thereof
CN112430684B (en) Nucleic acid sequence for detecting rice plant H23 and detection method thereof
CN102732553B (en) Improve the gene engineering method and material of plant products
GB2601849A (en) A pear proton pump gene PbrVHA-c4 and its application in regulating and controlling the citric acid content in pulp
CN110204603A (en) FHY3 albumen is inhibiting leaf senile and is improving the application in crop yield
CN105316297B (en) A kind of blackberry, blueberry CAD genoids and its improved application to prickle
CN103923922B (en) Heavy metal evoked promoter is cultivating the application in heavy metal pollution of soil early warning transgenic plant
CN114591999B (en) Application and method of multi-gene combination of RibAS, RibBS, RibGS and RibHS to increase VB2 content in rice
CN102533762B (en) Method for obtaining novel desensitization transgenic soybean material
CN103374062A (en) Metal transporter protein and encoding gene and application thereof
CN115927408B (en) Method for constructing synthetic bacterial cellulose plant by polygene tandem method and application
CN102533849A (en) Application of poplar glycosyl transferase gene PtGT1 in improving plant lignin content and promoting blossom
CN115820689B (en) Method for improving NMN content in vegetables by polygene tandem method and application thereof
WO2004092372A1 (en) Gene capable of imparting salt stress resistance
CN108165555A (en) Cultivate eggplant SmHQT gene cores segment and its RNAi expression vector and application
CN103923923B (en) Derive from heavy metal evoked promoter and the application thereof of Arabidopis thaliana
CN118127069B (en) Use of GhBC gene in regulating and controlling plant seed grain weight, width and breeding
CN114480487B (en) Rice transcription factor OsMADS61 and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20191220