[go: up one dir, main page]

CN110564637B - A compound inoculant for promoting wheat growth and its application - Google Patents

A compound inoculant for promoting wheat growth and its application Download PDF

Info

Publication number
CN110564637B
CN110564637B CN201910620587.9A CN201910620587A CN110564637B CN 110564637 B CN110564637 B CN 110564637B CN 201910620587 A CN201910620587 A CN 201910620587A CN 110564637 B CN110564637 B CN 110564637B
Authority
CN
China
Prior art keywords
bacterial
nitrogen
potassium
phosphorus
soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910620587.9A
Other languages
Chinese (zh)
Other versions
CN110564637A (en
Inventor
李哲斐
王娟娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwest A&F University
Original Assignee
Northwest A&F University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwest A&F University filed Critical Northwest A&F University
Priority to CN201910620587.9A priority Critical patent/CN110564637B/en
Publication of CN110564637A publication Critical patent/CN110564637A/en
Application granted granted Critical
Publication of CN110564637B publication Critical patent/CN110564637B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/065Azotobacter
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/22Klebsiella
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/41Rhizobium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Virology (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • Environmental Sciences (AREA)
  • Plant Pathology (AREA)
  • Pest Control & Pesticides (AREA)
  • Agronomy & Crop Science (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一种促进小麦生长的复合菌剂及应用。所述复合菌剂是由固氮菌(Azotobacter chroococcum)N24菌液、根瘤菌(Rhizobium radiobacter)J16菌液、克雷伯氏菌(Klebsiella quasivariicola)P5菌液混合发酵后制得。本发明从小麦根际土壤中分离得到固氮菌N24、解钾菌J16、溶磷菌P5,由三种菌液混合发酵制得的复合菌剂同时具备固氮、溶磷和解钾的作用,可大幅度增加土壤中有效氮、有效磷和有效钾的含量,显著提高植物的株高、鲜重、干重、氮含量、磷含量和钾含量,促进植物生长,减少化肥的使用量,提高作物产量,在农业生产上具有重要意义。

Figure 201910620587

The invention discloses a compound bacterial agent for promoting the growth of wheat and its application. The compound bacterial agent is prepared by mixing and fermenting Azotobacter chroococcum N24 bacterial liquid, Rhizobium radiobacter J16 bacterial liquid and Klebsiella quasivariicola P5 bacterial liquid. The present invention separates nitrogen-fixing bacteria N24, potassium-solubilizing bacteria J16 and phosphorus-dissolving bacteria P5 from the wheat rhizosphere soil. Significantly increase the content of available nitrogen, available phosphorus and available potassium in the soil, significantly increase the plant height, fresh weight, dry weight, nitrogen content, phosphorus content and potassium content, promote plant growth, reduce the use of chemical fertilizers, and increase crop yields , is of great significance in agricultural production.

Figure 201910620587

Description

一种促进小麦生长的复合菌剂及应用A compound inoculant for promoting wheat growth and its application

技术领域technical field

本发明涉及植物根际促生菌技术领域,具体地,涉及一种促进小麦生长的复合菌剂及应用。The invention relates to the technical field of plant rhizosphere growth-promoting bacteria, in particular, to a composite inoculant for promoting wheat growth and its application.

背景技术Background technique

氮、磷、钾是植物进行生长和代谢活动所必需的营养元素,对农作物高产起到了关键作用。相关文献表明,土壤中95%的磷和钙、铝、铁等离子结合形成难于溶解的化合物;而钾和钠、钙等碱金属也以铝硅酸盐形式存在,降低了钾的溶解性。因此,土壤中植物能够吸收利用的活化态磷和钾元素较少。此外,尽管每年向农田中投入大量的化肥,但植物对这些化肥的利用率只有35%左右,多余的氮肥进入地下水系统,对环境造成了一定破坏。所以减少化肥使用,提高土壤中氮、磷、钾的高效利用,对作物高产和土壤生态维护等方面都具有非常重要的意义。Nitrogen, phosphorus and potassium are essential nutrients for plant growth and metabolic activities, and play a key role in the high yield of crops. Relevant literature shows that 95% of phosphorus in soil combines with calcium, aluminum, iron and other ions to form compounds that are difficult to dissolve; and potassium, sodium, calcium and other alkali metals also exist in the form of aluminosilicates, reducing the solubility of potassium. Therefore, there are less active phosphorus and potassium elements that plants can absorb and utilize in the soil. In addition, although a large amount of chemical fertilizers are put into farmland every year, the utilization rate of these fertilizers by plants is only about 35%, and the excess nitrogen fertilizer enters the groundwater system, causing certain damage to the environment. Therefore, reducing the use of chemical fertilizers and improving the efficient utilization of nitrogen, phosphorus, and potassium in the soil are of great significance for high crop yield and soil ecological maintenance.

微生物能够在土壤营养元素转化方面发挥重要作用,例如溶磷细菌可以将不溶性的磷转化为植物可利用的形态,硅酸盐细菌则可以将钾离子从钾长石中释放出来,固氮菌能将空气中的氮气转化为铵。这些植物益生菌不仅通过活化土壤中的营养元素,增强植物对氮、磷、钾的吸收,并且部分微生物还能合成和分泌对植物生长有促进作用的物质,如吲哚-3-乙酸(IAA)、铁载体及1-氨基环丙烷-羧酸(ACC)脱氨酶等,从而促进植物的生长和发育。Microorganisms can play an important role in the transformation of soil nutrients. For example, phosphorus-solubilizing bacteria can convert insoluble phosphorus into a form that can be used by plants, silicate bacteria can release potassium ions from potassium feldspar, and nitrogen-fixing bacteria can convert The nitrogen in the air is converted to ammonium. These plant probiotics not only enhance the absorption of nitrogen, phosphorus and potassium by plants by activating nutrients in the soil, but also some microorganisms can also synthesize and secrete substances that promote plant growth, such as indole-3-acetic acid (IAA ), siderophore and 1-aminocyclopropane-carboxylic acid (ACC) deaminase, etc., thereby promoting the growth and development of plants.

如韩晓阳等(2018)从茶园采集土壤,分离得到了一株枯草芽孢杆菌,该菌株对土壤钾素的转化和释放能力较强。将分离到的该解钾菌接种到土壤后发现茶园土壤中的速效钾含量增加了约28%。通过对茶树的芽重进行测定发现,使用解钾菌后百芽重显著增加;同时,茶叶的茶多酚含量降低,而氨基酸的浓度明显提高,说明解钾菌不仅能提高茶叶产量,还能改善茶叶的品质。尽管该技术在一定程度上能够促进植物的生长,由于只添加了一种解钾菌,虽然土壤中的可利用钾含量提高了,但磷元素依然成为限制植物生长的因素,所以单一的菌株对土壤养分转化和植物生长的提升能力有限。For example, Han Xiaoyang et al. (2018) collected soil from tea gardens and isolated a strain of Bacillus subtilis, which has a strong ability to transform and release soil potassium. After the isolated potassium-solubilizing bacteria were inoculated into the soil, it was found that the content of available potassium in the tea garden soil increased by about 28%. By measuring the bud weight of tea trees, it was found that the weight of 100 buds increased significantly after the use of potassium-solubilizing bacteria; at the same time, the content of tea polyphenols in tea was reduced, and the concentration of amino acids was significantly increased, indicating that potassium-solubilizing bacteria can not only increase the yield of tea, but also Improve the quality of tea. Although this technology can promote the growth of plants to a certain extent, due to the addition of only one type of potassium-solubilizing bacteria, although the available potassium content in the soil is increased, the phosphorus element still becomes a limiting factor for plant growth. Soil nutrient transformation and plant growth enhancement capacity is limited.

又如申请号为CN201610155718.7的中国专利公开了一种能促进白三叶地上组织生长的高效解磷菌及其应用,具体是采集白三叶根际土壤,利用PKO选择培养基从样本中分离纯化出一种溶磷细菌,经鉴定为阴沟肠杆菌(Enteuobactor cloacae),该菌株在PKO培养基上能形成较大的溶磷圈。将该菌接种到白三叶上之后,宿主植物的生物量有大幅度的增加。该技术仅包含一种解磷菌,功能较为单一,只能提高土壤中磷含量。植物生长需要大量的氮、磷和钾,单一的解磷菌不能满足植物生长的需求,在推广使用中有一定的局限性。Another example is the Chinese patent with the application number CN201610155718.7, which discloses a kind of high-efficiency phosphate-solubilizing bacteria that can promote the growth of above-ground tissues of white clover and its application, specifically collecting the rhizosphere soil of white clover, using PKO to select medium from the sample. A phosphate-dissolving bacterium was isolated and purified, which was identified as Enterobacter cloacae, which could form a larger phosphate-dissolving circle on PKO medium. After inoculation of the bacteria on white clover, the biomass of the host plant was greatly increased. This technology contains only one type of phosphorus-solubilizing bacteria, which has a single function and can only increase the phosphorus content in the soil. Plant growth requires a large amount of nitrogen, phosphorus and potassium, and a single phosphorus-solubilizing bacteria cannot meet the needs of plant growth, and there are certain limitations in its promotion and use.

又如Reinhold等(1993)从巴基斯坦盐碱地先锋植物禾草卡拉草(Leptochlotusca)中分离到固氮弧菌(Azoarus spp.),证明了生长在常年不施任何氮肥的盐碱土中的卡拉草,每年的生物学产量可达到20~40t/hm2,与其中固氮弧菌的作用密切相关。在一些禾本科植物中存在着的内生固氮细菌与宿主植物在长期的共同进化过程中形成一个高效固氮体系—内生固氮体系。研究证明,内生固氮菌避免了化合态氮的抑制及土著微生物的竞争,更有利于充分发挥固氮效能,分泌固氮产物直接供给植物吸收,表现出更高的固氮效率。同时还具有分泌生长素、溶磷,增强植株抗病性、抗逆境等多方面的促进植物生长的作用。该技术由于仅包含一种固氮菌,功能较为单一,虽然能够起到固氮作用和一定的溶磷作用,但仍然不能满足植物生长需要大量氮、磷、钾的需求。For another example, Reinhold et al. (1993) isolated Azoarus spp. from the pioneer plant Leptochlotusca in Pakistan's saline-alkali land, proving that carrageenan growing in saline-alkali soil without any nitrogen The biological yield can reach 20~40t/hm 2 , which is closely related to the role of nitrogen-fixing Vibrio. Endophytic nitrogen-fixing bacteria that exist in some grasses and host plants form an efficient nitrogen-fixing system-endophytic nitrogen-fixing system in the long-term co-evolution process. Studies have shown that endophytic nitrogen-fixing bacteria avoid the inhibition of compound nitrogen and the competition of indigenous microorganisms, and are more conducive to fully exerting nitrogen-fixing efficiency, secreting nitrogen-fixing products and directly supplying plants for absorption, showing higher nitrogen-fixing efficiency. At the same time, it also has the functions of secreting auxin, dissolving phosphorus, enhancing plant disease resistance, stress resistance and other aspects of promoting plant growth. Since this technology contains only one nitrogen-fixing bacteria, the function is relatively single. Although it can play a role in nitrogen-fixing and certain phosphorus-dissolving role, it still cannot meet the needs of a large amount of nitrogen, phosphorus and potassium for plant growth.

因此,筛选相关的功能微生物并研究它们对植物的促生作用,对减少钾肥使用、提高作物产量等方面具有重要的意义。Therefore, it is of great significance to screen related functional microorganisms and study their growth-promoting effects on plants to reduce the use of potassium fertilizers and improve crop yields.

发明内容SUMMARY OF THE INVENTION

本发明的目的是为了克服现有技术的上述不足,提供一种促进小麦生长的复合菌剂。本发明从小麦根际土壤中分离得到固氮菌N24、解钾菌J16、溶磷菌P5,三种菌对小麦的适应性较好,能在小麦根际定殖并促进小麦生长,将三种菌液混合发酵制得的混合菌液能显著提高植物生长性能。The object of the present invention is to provide a composite bacterial agent for promoting the growth of wheat in order to overcome the above-mentioned deficiencies of the prior art. The present invention separates nitrogen-fixing bacteria N24, potassium-solubilizing bacteria J16 and phosphorus-dissolving bacteria P5 from the wheat rhizosphere soil. The mixed bacterial liquid obtained by the mixed fermentation of bacterial liquid can significantly improve the growth performance of plants.

本发明的另一目的在于提供上述复合菌剂在提高植物生长性能中的应用。Another object of the present invention is to provide the application of the above-mentioned composite inoculant in improving plant growth performance.

为了实现上述目的,本发明是通过以下方案予以实现的:In order to achieve the above object, the present invention is achieved through the following schemes:

本发明从小麦根际土壤中分离得到一株固氮菌N24,并对其进行了形态学、生理生化特性和遗传学方面的鉴定,16S rDNA鉴定结果验证其为固氮菌(Azotobactersp.CCNWSX1904)。将该固氮菌N24于2019年4月22日保藏于中国典型培养物保藏中心(CCTCC),保藏编号为CCTCC NO:M 2019281。保藏地址为中国.武汉.武汉大学。通过对其固氮酶活性进行测定,结果表明该菌株的固氮酶活性较高,为152.56nmol/gh,能有效固定大气中的氮气,可大幅度的增加土壤中速效氮的含量,提高植物对氮元素的利用率,进而促进植物生长,减少化肥的使用量,提高作物产量。In the present invention, a nitrogen-fixing bacteria N24 is isolated from the wheat rhizosphere soil, and its morphology, physiological and biochemical characteristics and genetics are identified, and the 16S rDNA identification results verify that it is a nitrogen-fixing bacteria (Azotobactersp.CCNWSX1904). The nitrogen-fixing bacteria N24 was deposited in the China Center for Type Culture Collection (CCTCC) on April 22, 2019, and the deposit number is CCTCC NO: M 2019281. The deposit address is China. Wuhan. Wuhan University. By measuring its nitrogenase activity, the results show that the nitrogenase activity of this strain is relatively high, which is 152.56nmol/gh, which can effectively fix nitrogen in the atmosphere, greatly increase the content of available nitrogen in the soil, and improve the nitrogen content of plants. The utilization rate of elements, thereby promoting plant growth, reducing the use of chemical fertilizers, and increasing crop yields.

本发明还从小麦根际土壤中分离得到一株解钾菌J16,并对其进行了形态学、生理生化特性和遗传学方面的鉴定,16S rDNA鉴定结果验证其为根瘤菌(Rhizobiumsp.CCNWSX1901)。将该解钾菌J16于2019年4月22日保藏于中国典型培养物保藏中心(CCTCC),保藏编号为CCTCC NO:M 2019279。保藏地址为中国.武汉.武汉大学。通过对钾含量进行测定,结果表明该菌株能有效溶解植物根际土壤中的难溶钾,可大幅度的增加土壤中速效钾的含量,提高植物对土壤中钾的利用率,进而促进植物生长,减少化肥的使用量,提高作物产量。In the present invention, a potassium-solubilizing bacteria J16 is also isolated from the wheat rhizosphere soil, and its morphology, physiological and biochemical characteristics and genetics are identified, and the 16S rDNA identification results verify that it is a rhizobium (Rhizobium sp.CCNWSX1901) . The potassium-solubilizing bacteria J16 was deposited in the China Center for Type Culture Collection (CCTCC) on April 22, 2019, and the deposit number is CCTCC NO: M 2019279. The deposit address is China. Wuhan. Wuhan University. By measuring the potassium content, the results show that the strain can effectively dissolve the insoluble potassium in the rhizosphere soil of plants, and can greatly increase the content of available potassium in the soil, improve the utilization rate of potassium in the soil by plants, and then promote plant growth. , reduce the use of chemical fertilizers and increase crop yields.

本发明还从小麦根际土壤中分离得到一株溶磷菌P5,并对其进行了形态学、生理生化特性和遗传学方面的鉴定,16S rDNA鉴定结果验证其为克雷伯氏菌(Klebsiellasp.CCNWSX1902)。将该溶磷菌P5于2019年4月22日保藏于中国典型培养物保藏中心(CCTCC),保藏编号为CCTCC NO:M 2019280。保藏地址为中国.武汉.武汉大学。通过对磷含量进行测定,结果表明该菌株能有效溶解植物根际土壤中的难溶磷,可大幅度的增加土壤中速效磷的含量,提高植物对土壤中磷的利用率,进而促进植物生长,减少化肥的使用量,提高作物产量。In the present invention, a phosphorus-dissolving bacteria P5 is also isolated from the wheat rhizosphere soil, and its morphology, physiological and biochemical characteristics and genetics are identified, and the 16S rDNA identification results verify that it is Klebsiella sp. .CCNWSX1902). The phosphorus-dissolving bacteria P5 was deposited in the China Center for Type Culture Collection (CCTCC) on April 22, 2019, and the deposit number is CCTCC NO: M 2019280. The deposit address is China. Wuhan. Wuhan University. By measuring the phosphorus content, the results show that the strain can effectively dissolve the insoluble phosphorus in the rhizosphere soil of plants, and can greatly increase the content of available phosphorus in the soil, improve the utilization rate of phosphorus in the soil by plants, and then promote plant growth. , reduce the use of chemical fertilizers and increase crop yields.

将上述三种菌的菌液按一定比例接种到LB液体培养基中,经过发酵后所得的混合菌液同时具备固氮、溶磷和解钾的作用,可大幅度增加土壤中有效氮、有效磷和有效钾的含量,显著提高植物的株高、鲜重、干重、氮含量、磷含量和钾含量,具有促进植物生长的作用。The bacterial liquid of the above three bacteria is inoculated into the LB liquid medium according to a certain proportion, and the mixed bacterial liquid obtained after fermentation has the functions of nitrogen fixation, phosphorus dissolution and potassium dissolution at the same time, which can greatly increase the available nitrogen, available phosphorus and potassium in the soil. The content of available potassium can significantly increase the plant height, fresh weight, dry weight, nitrogen content, phosphorus content and potassium content, and has the effect of promoting plant growth.

因此,本发明请求一种促进小麦生长的复合菌剂,是由固氮菌(Azotobactersp.CCNWSX1904)N24菌液、根瘤菌(Rhizobium sp.CCNWSX1901)J16菌液、克雷伯氏菌(Klebsiella sp.CCNWSX1902)P5菌液混合发酵后制得。Therefore, the present invention requires a composite bacterial agent for promoting the growth of wheat, which is composed of nitrogen-fixing bacteria (Azotobactersp.CCNWSX1904) N24 bacteria liquid, Rhizobium sp.CCNWSX1901) J16 bacteria liquid, Klebsiella sp.CCNWSX1902 ) P5 bacterial liquid mixed and fermented.

优选地,所述固氮菌(Azotobacter sp.CCNWSX1904)N24菌液、根瘤菌(Rhizobiumsp.CCNWSX1901)J16菌液、克雷伯氏菌(Klebsiella sp.CCNWSX1902)P5菌液的体积比为(1~2):(1~2):(1~2)。Preferably, the volume ratio of the nitrogen-fixing bacteria (Azotobacter sp. CCNWSX1904) N24 bacterial liquid, the Rhizobium (Rhizobium sp. CCNWSX1901) J16 bacterial liquid, and the Klebsiella (Klebsiella sp. CCNWSX1902) P5 bacterial liquid is (1~2 ): (1 to 2): (1 to 2).

更优选地,所述固氮菌(Azotobacter sp.CCNWSX1904)N24菌液、根瘤菌(Rhizobium sp.CCNWSX1901)J16菌液、克雷伯氏菌(Klebsiella sp.CCNWSX1902)P5菌液的体积比为2:1:1。More preferably, the volume ratio of described nitrogen-fixing bacteria (Azotobacter sp.CCNWSX1904) N24 bacterial liquid, Rhizobium (Rhizobium sp.CCNWSX1901) J16 bacterial liquid, Klebsiella (Klebsiella sp.CCNWSX1902) P5 bacterial liquid is 2: 1:1.

优选地,所述复合菌剂中三种细菌的总有效活菌数为2×108~9×108个/mL。Preferably, the total effective viable count of the three bacteria in the compound bacterial preparation is 2×10 8 to 9×10 8 cells/mL.

优选地,所述固氮菌(Azotobacter sp.CCNWSX1904)N24于2019年4月22日保藏于中国典型培养物保藏中心(CCTCC),保藏编号为CCTCC NO:M 2019281。Preferably, the nitrogen-fixing bacteria (Azotobacter sp. CCNWSX1904) N24 was deposited in the China Center for Type Culture Collection (CCTCC) on April 22, 2019, and the deposit number is CCTCC NO: M 2019281.

优选地,所述根瘤菌(Rhizobium sp.CCNWSX1901)J16于2019年4月22日保藏于中国典型培养物保藏中心(CCTCC),保藏编号为CCTCC NO:M 2019279。Preferably, the Rhizobium sp. CCNWSX1901 J16 was deposited in the China Center for Type Culture Collection (CCTCC) on April 22, 2019, and the deposit number is CCTCC NO: M 2019279.

优选地,所述克雷伯氏菌(Klebsiella sp.CCNWSX1902)P5于2019年4月22日保藏于中国典型培养物保藏中心(CCTCC),保藏编号为CCTCC NO:M 2019280。Preferably, the Klebsiella sp. CCNWSX1902 P5 was deposited in the China Center for Type Culture Collection (CCTCC) on April 22, 2019, and the deposit number is CCTCC NO: M 2019280.

优选地,所述发酵的培养基为LB液体培养基,由以下组分组成:终浓度为3~7g/L的酵母提取物,终浓度为8~12g/L的胰蛋白胨,终浓度为5~15g/L的NaCl,余量水。Preferably, the fermentation medium is LB liquid medium, which is composed of the following components: yeast extract with a final concentration of 3-7 g/L, tryptone with a final concentration of 8-12 g/L, and a final concentration of 5 ~15g/L NaCl, balance water.

更优选地,所述LB液体培养基由以下组分组成:终浓度为5g/L的酵母提取物,终浓度为10g/L的胰蛋白胨,终浓度为10g/L的NaCl,余量水。More preferably, the LB liquid medium consists of the following components: yeast extract with a final concentration of 5 g/L, tryptone with a final concentration of 10 g/L, NaCl with a final concentration of 10 g/L, and the balance of water.

优选地,所述发酵的培养条件为25~30℃、150~180rpm培养24~48h。Preferably, the culturing conditions of the fermentation are 25-30° C. and 150-180 rpm for 24-48 hours.

更优选地,所述发酵的培养条件为18℃、180rpm培养24~48h。More preferably, the culture conditions of the fermentation are cultured at 18° C. and 180 rpm for 24-48 hours.

本发明还请求保护上述复合菌剂在提高植物生长性能中的应用。The present invention also claims to protect the application of the above-mentioned compound inoculants in improving plant growth performance.

优选地,所述提高植物生长性能包括促进植物生长,提高植物株高,提高植物干重,提高植物氮含量、钾含量、磷含量。Preferably, the improving plant growth performance includes promoting plant growth, increasing plant height, increasing plant dry weight, and increasing plant nitrogen content, potassium content, and phosphorus content.

更优选地,所述植物为小麦。More preferably, the plant is wheat.

本发明还请求保护上述复合菌剂在溶解植物根际土壤难溶钾、难溶磷中的应用。The present invention also claims to protect the application of the above-mentioned compound bacterial agent in dissolving insoluble potassium and insoluble phosphorus in plant rhizosphere soil.

其中,所述难溶钾为含钾硅酸盐矿物,所述难溶磷为无机磷和/或有机磷。Wherein, the insoluble potassium is a potassium-containing silicate mineral, and the insoluble phosphorus is inorganic phosphorus and/or organic phosphorus.

本发明还请求保护上述复合菌剂在提高植物根际土壤速效氮、速效钾、速效磷含量中的应用。The present invention also claims to protect the application of the above-mentioned compound inoculant in increasing the content of available nitrogen, available potassium and available phosphorus in plant rhizosphere soil.

与现有技术相比,本发明具有以下有益效果:Compared with the prior art, the present invention has the following beneficial effects:

(1)本发明从小麦根际土壤中分离得到固氮菌N24、解钾菌J16、溶磷菌P5,三种菌株对小麦的能适应性较好,能在小麦根际定殖并促进小麦生长。(1) The present invention separates nitrogen-fixing bacteria N24, potassium-solubilizing bacteria J16 and phosphorus-dissolving bacteria P5 from the wheat rhizosphere soil, and the three strains have good adaptability to wheat, can colonize the wheat rhizosphere and promote the growth of wheat .

(2)由三种菌液混合发酵制得的复合菌剂同时具备固氮、溶磷和解钾的作用,可大幅度增加土壤中有效氮、有效磷和有效钾的含量,显著提高植物的株高、鲜重、干重、氮含量、磷含量和钾含量,促进植物生长,减少化肥的使用量,提高作物产量,在农业生产上具有重要意义。(2) The compound inoculum prepared by the mixed fermentation of the three bacterial liquids has the functions of nitrogen fixation, phosphorus dissolution and potassium dissolution at the same time, which can greatly increase the content of available nitrogen, available phosphorus and available potassium in the soil, and significantly increase the plant height of the plant. , fresh weight, dry weight, nitrogen content, phosphorus content and potassium content, promote plant growth, reduce the use of chemical fertilizers, and improve crop yield, which is of great significance in agricultural production.

附图说明Description of drawings

图1为不同固氮菌酶活测定结果。Figure 1 shows the results of the enzyme activity assay of different nitrogen-fixing bacteria.

图2为菌株N24的系统发育树。Figure 2 is a phylogenetic tree of strain N24.

图3为小麦接种菌株N24后株高、干重、氮含量的变化情况。Figure 3 shows the changes in plant height, dry weight and nitrogen content of wheat after inoculation with strain N24.

图4为菌株J16形成的解钾圈。Figure 4 shows the potassium depletion circle formed by strain J16.

图5为菌株J16产IAA比色检测结果。Figure 5 shows the results of colorimetric detection of IAA produced by strain J16.

图6为菌株J16的系统发育树。Figure 6 is a phylogenetic tree of strain J16.

图7为小麦接种菌株J16后株高、干重、钾含量和磷含量的变化情况。Figure 7 shows the changes in plant height, dry weight, potassium content and phosphorus content of wheat after inoculation with strain J16.

图8为菌株P5形成的溶磷圈。Figure 8 shows the phosphate solubilization circle formed by strain P5.

图9为菌株P5的系统发育树。Figure 9 is a phylogenetic tree of strain P5.

图10为小麦接种菌株P5后株高、干重、氮含量和磷含量的变化情况。Figure 10 shows the changes in plant height, dry weight, nitrogen content and phosphorus content of wheat after inoculation with strain P5.

图11为施加复合菌剂后小麦的生长情况。Figure 11 shows the growth of wheat after applying the compound inoculant.

具体实施方式Detailed ways

下面结合说明书附图及具体实施例对本发明作出进一步地详细阐述,所述实施例只用于解释本发明,并非用于限定本发明的范围。下述实施例中所使用的试验方法如无特殊说明,均为常规方法;所使用的材料、试剂等,如无特殊说明,为可从商业途径得到的试剂和材料。The present invention will be further elaborated below in conjunction with the accompanying drawings and specific embodiments of the description, and the embodiments are only used to explain the present invention, but not to limit the scope of the present invention. The test methods used in the following examples are conventional methods unless otherwise specified; the materials, reagents, etc. used are commercially available reagents and materials unless otherwise specified.

Ashby培养基:葡萄糖10g,K2HPO4 0.2g,NaCl 0.2g,MgSO4·7H2O 0.2g,K2SO40.2g,CaCO3 5g,琼脂15g,蒸馏水1000mL。Ashby medium: 10 g of glucose, 0.2 g of K 2 HPO 4 , 0.2 g of NaCl, 0.2 g of MgSO 4 ·7H 2 O 0.2 g, 0.2 g of K 2 SO 4 , 5 g of CaCO 3 , 15 g of agar, and 1000 mL of distilled water.

解钾培养基:蔗糖5g,Na2HPO4 2g,MgSO4·7H2O 0.5g,FeCl3 0.005g,CaCO3 0.1g,钾长石粉1g(过100目筛后无菌水浸泡3d,除去水溶性钾),琼脂15g,蒸馏水1000mL,pH7.0~7.5。Potassium solubilizing medium: sucrose 5g, Na 2 HPO 4 2g, MgSO 4 7H 2 O 0.5g, FeCl 3 0.005g, CaCO 3 0.1g, potassium feldspar powder 1g (soak in sterile water for 3d after passing through a 100-mesh sieve, remove Water-soluble potassium), agar 15g, distilled water 1000mL, pH7.0~7.5.

PKO无机磷培养基:葡萄糖10g,Ca3(PO4)2 5g,(NH4)SO4 0.5g,NaCl 0.2g,KCl0.2g,MgSO4·7H2O 0.3g,MnSO4 0.03g,FeSO4·7H2O 0.03g,酵母膏0.5g,琼脂15g,蒸馏水1000ml,pH值6.8~7.0。PKO inorganic phosphorus medium: glucose 10g, Ca 3 (PO 4 ) 2 5g, (NH 4 )SO 4 0.5g, NaCl 0.2g, KCl 0.2g, MgSO 4 ·7H 2 O 0.3g, MnSO 4 0.03g, FeSO 4 ·7H 2 O 0.03g, yeast extract 0.5g, agar 15g, distilled water 1000ml, pH value 6.8~7.0.

LB固体培养基:酵母提取物5g,胰蛋白胨10g,NaCl 10g,琼脂15g,水1000mL。LB solid medium: 5 g of yeast extract, 10 g of tryptone, 10 g of NaCl, 15 g of agar, and 1000 mL of water.

LB液体培养基:酵母提取物5g,胰蛋白胨10g,NaCl 10g,水1000mL。LB liquid medium: 5 g of yeast extract, 10 g of tryptone, 10 g of NaCl, and 1000 mL of water.

Salkowski显色液:0.5M FeCl3 1mL,H2SO4 30mL,蒸馏水50mL。Salkowski color developing solution: 0.5M FeCl 3 1mL, H 2 SO 4 30mL, distilled water 50mL.

蒙金娜有机磷培养基:葡萄糖10g,(NH4)2SO4 0.5g,NaCl 0.3g,KCl 0.3g,FeSO4·7H2O 0.03g,MnSO4·4H2O 0.03g,卵磷脂0.2g,CaCO3 5g,酵母膏0.4g,琼脂15g,蒸馏水l000mL,pH值7.0~7.2。Montkina organophosphorus medium: glucose 10g, (NH 4 ) 2 SO 4 0.5g, NaCl 0.3g, KCl 0.3g, FeSO 4 ·7H 2 O 0.03g, MnSO 4 ·4H 2 O 0.03g, lecithin 0.2 g, CaCO 3 5g, yeast extract 0.4g, agar 15g, distilled water 1000mL, pH 7.0-7.2.

实施例1固氮菌的筛选及鉴定Example 1 Screening and identification of nitrogen-fixing bacteria

一、固氮菌的筛选1. Screening of nitrogen-fixing bacteria

1、固氮菌初筛1. Preliminary screening of nitrogen-fixing bacteria

2017年9月从陕西省杨凌区的农田中采集生长7个月左右的小麦植株,用力抖落小麦根部松散结合的土壤。将植株根剪下放入10mL灭菌的离心管中,注入5mL无菌水后进行超声波处理,使与植株根部紧密结合的根际土溶于水中。所采集的土样为黄壤土,样品速效磷24.03mg/kg、速效钾126.17mg/kg、碱解氮56.28mg/kg、有机质21.06g/kg、pH=8.27。In September 2017, wheat plants that were about 7 months old were collected from the farmland in Yangling District, Shaanxi Province, and the loosely bound soil of the wheat roots was shaken off. Cut off the plant roots and put them into a 10 mL sterilized centrifuge tube, inject 5 mL of sterile water, and then perform ultrasonic treatment to dissolve the rhizosphere soil tightly bound to the plant roots in the water. The collected soil samples were yellow loam soil, with available phosphorus 24.03 mg/kg, available potassium 126.17 mg/kg, alkaline hydrolyzable nitrogen 56.28 mg/kg, organic matter 21.06 g/kg, pH=8.27.

将水溶液作一系列10倍稀释,分别取5μL稀释度为10-5、10-6和10-7的土壤悬液涂布于Ashby培养基上,于28℃培养5天。将生长出的菌株转接到LB固体培养基上保存备用。A series of 10-fold dilutions of the aqueous solution were made, and 5 μL of soil suspensions with dilutions of 10 -5 , 10 -6 and 10 -7 were spread on Ashby medium and cultured at 28° C. for 5 days. The grown strains were transferred to LB solid medium for future use.

2、固氮酶活测定2. Determination of nitrogenase activity

向10mL具有橡胶塞的瓶子中注入Ashby培养基并制成斜面,将上述在Ashby培养基上生长的11株菌分别接种到斜面上,于28℃下培养24h。用注射器从瓶中抽出1mL的空气,再用注射器注入1mL的C2H2,28℃下反应12h。然后从瓶子中抽出1mL的气体,利用Shimadzu GC-14C气相色谱仪测定C2H4和C2H2的峰面积,同时测定已知浓度C2H4和C2H2的峰面积并制作标准曲线,由标准曲线换算得出所生成的乙烯的量,根据公式:固氮酶活性=C2H4摩尔数(nmol)/[菌体重量(g)*反应时间(h)]计算固氮酶活性。The Ashby medium was injected into a 10 mL bottle with a rubber stopper to form a slant, and the 11 strains of bacteria grown on the Ashby medium were inoculated onto the slant, and cultured at 28° C. for 24 hours. 1 mL of air was drawn from the bottle with a syringe, and 1 mL of C 2 H 2 was injected with a syringe, and the reaction was carried out at 28° C. for 12 h. Then 1 mL of gas was extracted from the bottle, and the peak areas of C 2 H 4 and C 2 H 2 were measured using a Shimadzu GC - 14C gas chromatograph . Standard curve, the amount of ethylene generated is calculated from the standard curve, and the nitrogenase activity is calculated according to the formula: nitrogenase activity=C 2 H 4 moles (nmol)/[cell weight (g)*reaction time (h)] .

试验结果表明,菌株N24(即CCNWSX1904)的固氮酶活性较高,为152.56nmol/gh(如图1所示)。The test results showed that the nitrogenase activity of strain N24 (ie CCNWSX1904) was higher, which was 152.56 nmol/gh (as shown in Figure 1).

3、IAA标准曲线制作3. IAA standard curve production

准确称取IAA 10mg,先用少量乙醇溶解,后用去离子水定容至10mL,则得到浓度为1mg/mL的IAA标准储备液。准确吸取一定量的标准储备液至10mL容量瓶中,去离子水定容至刻度,使得到标准浓度为0、40、80、120、160、200μg/mL的IAA系列标准溶液,配置好后避光保存。取1mL各浓度标准溶液,加入等体积Salkowski比色液,避光反应30min,用紫外可见分光光度计在530nm检测吸光值,以吸光值为纵坐标,IAA浓度为横坐标,绘制标准曲线。Accurately weigh 10 mg of IAA, dissolve it with a small amount of ethanol, and then dilute to 10 mL with deionized water to obtain a standard stock solution of IAA with a concentration of 1 mg/mL. Accurately draw a certain amount of standard stock solution into a 10mL volumetric flask, and dilute the volume to the mark with deionized water, so that the standard concentration of IAA series standard solution is 0, 40, 80, 120, 160, 200 μg/mL. Light save. Take 1 mL of each concentration standard solution, add an equal volume of Salkowski colorimetric solution, react in the dark for 30 min, and detect the absorbance value at 530 nm with a UV-Vis spectrophotometer, draw the standard curve with the absorbance value as the ordinate and the IAA concentration as the abscissa.

4、N24产IAA能力测定4. Determination of the ability of N24 to produce IAA

将固氮菌株N24接种到装有20mL的TY液体培养基锥形瓶中,在28℃条件下,150r/min振荡培养48h。培养液于10000rpm离心10min,吸取1mL上清液,加入等体积的Salkowski显色液,室温下避光反应30min,利用紫外分光光度计测定OD530The nitrogen-fixing strain N24 was inoculated into a 20 mL conical flask of TY liquid medium, and cultured with shaking at 150 r/min for 48 h at 28 °C. The culture solution was centrifuged at 10,000 rpm for 10 min, 1 mL of supernatant was aspirated, an equal volume of Salkowski chromogenic solution was added, and the reaction was performed in the dark for 30 min at room temperature, and the OD 530 was measured by a UV spectrophotometer.

结果表明菌株N24能够产生IAA,其培养液中的浓度为149.23mg/L。The results showed that strain N24 could produce IAA, and the concentration in its culture medium was 149.23 mg/L.

二、菌株N24的鉴定2. Identification of strain N24

1、形态特征1. Morphological characteristics

将N24菌株制备成菌悬液并稀释后涂布于Ashby培养基上,于28℃培养24h后观察菌落和菌体形态。The N24 strain was prepared into a bacterial suspension, diluted and spread on Ashby medium, and the colony and cell morphology were observed after culturing at 28°C for 24 hours.

结果显示该菌革兰氏染色呈阴性,细胞卵圆状,产荚膜,不产生芽孢;在Ashby培养基上培养24h后,菌落呈圆形,边缘整齐,半透明,生长到后期菌落略显棕褐色。The results showed that the bacterium was negative for Gram staining, the cells were oval, produced capsules, but did not produce spores; after 24 hours of culture on Ashby medium, the colonies were round, with neat edges and translucent, and the colonies grew slightly in the later stage. Brown.

2、生理生化特征2. Physiological and biochemical characteristics

参照细菌鉴定手册对菌株N24的VP反应、碳源利用、吲哚试验等生理生化特性进行测定,其结果显示该菌株能够利用葡萄糖、枸橼酸和乳糖作为碳源生长,吲哚实验、过氧化氢酶和接触酶反应呈阳性,VP反应和甲基红实验呈阴性。The physiological and biochemical characteristics of strain N24, such as VP reaction, carbon source utilization, and indole test, were determined with reference to the bacterial identification manual. The results showed that the strain could use glucose, citric acid and lactose as carbon sources for growth. The hydrogenase and contact enzyme reactions were positive, and the VP reaction and methyl red test were negative.

3、16S rDNA测序3. 16S rDNA sequencing

采用细菌基因组提取试剂盒提取菌株N24的基因组DNA,用细菌通用引物27F(5’-AGAGTTTGATCCTGGCTCAG)和1492R(5’-TACCTTGTTACGACTT)扩增16S rDNA,经电泳检测后送公司测序,序列在NCBI数据库中进行比对。菌株的16S rDNA序列如SEQ ID NO:1所示。The genomic DNA of strain N24 was extracted with a bacterial genome extraction kit, and the 16S rDNA was amplified with bacterial universal primers 27F (5'-AGAGTTTGATCCTGGCTCAG) and 1492R (5'-TACCTTGTTACGACTT). Compare. The 16S rDNA sequence of the strain is shown in SEQ ID NO:1.

菌株N24 16S rDNA序列(SEQ ID NO:1):Strain N24 16S rDNA sequence (SEQ ID NO: 1):

GTGAGTAATGCCTAGGAATCTGCCCGATAGTGGGGGACAACGTTTCGAAAGGAACGCTAATACCGCATACGTCCTACGGGAGAAAGTGGGGGCTCTTCGGACCTCACGCTATCGGATGAGCCTAGGTCGGATTAGCTAGTTGGTGGGGTAAAGGCTCACCAAGGCGACGATCCGTAACTGGTCTGAGAGGATGATCAGTCACACTGGAACTGAGACACGGTCCAGACTCCTACGGGAGGCAGCAGTGGGAATATTGGACAATGGGCGAAAGCCTGATCCAGCCATGCCGCGTGTGTGAAGAAGGTCTTCGGATTGTAAAGCACTTTAAGTTGGGAGGAAGGGCTGTAAGCGAATACCTTGCAGTTTTGACGTTACCGACAGAATAAGCACCGGCTAACTTCGTGCCAGCAGCCGCGGTAATACGAAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCGCGTAGGTGGTTTGGTAAGTTGGATGTGAAAGCCCCGGGCTCAACCTGGGAACTGCATCCAAAACTGCCTGACTAGAGTACGGTAGAGGGTGGTGGAATTTCCTGTGTAGCGGTGAAATGCGTAGATATAGGAAGGAACACCAGTGGCGAAGGCGACCACCTGGACTGATACTGACACTGAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGTCGACTAGCCGTTGGGCTCCTTGAGAGCTTAGTGGCGCAGCTAACGCATTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAACTCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCTGGCCTTGACATGCTGAGAACTTTCCAGAGATGGATTGGTGCCTTCGGGAACTCAGACACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGTAACGAGCGCAACCCTTGTCCTTAGTTACCAGCACCTCGGGTGGGCACTCTAAGGAGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCCCTTACGGCCAGGGCTACACACGTGCTACAATGGTCGGTACAGAGGGTTGCCAAGTCGCGAGGCGGAGCTAATCCCAGAAAACCGATCGTAGTCCGGATCGCAGTCTGCAACTCGACTGCGTGAAGTCGGAATCGCTAGTAATCGCGAATCAGAATGTCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCGTGAGTAATGCCTAGGAATCTGCCCGATAGTGGGGGACAACGTTTCGAAAGGAACGCTAATACCGCATACGTCCTACGGGAGAAAGTGGGGGCTCTTCGGACCTCACGCTATCGGATGAGCCTAGGTCGGATTAGCTAGTTGGTGGGGTAAAGGCTCACCAAGGCGACGATCCGTAACTGGTCTGAGAGGATGATCAGTCACACTGGAACTGAGACACGGTCCAGACTCCTACGGGAGGCAGCAGTGGGAATATTGGACAATGGGCGAAAGCCTGATCCAGCCATGCCGCGTGTGTGAAGAAGGTCTTCGGATTGTAAAGCACTTTAAGTTGGGAGGAAGGGCTGTAAGCGAATACCTTGCAGTTTTGACGTTACCGACAGAATAAGCACCGGCTAACTTCGTGCCAGCAGCCGCGGTAATACGAAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCGCGTAGGTGGTTTGGTAAGTTGGATGTGAAAGCCCCGGGCTCAACCTGGGAACTGCATCCAAAACTGCCTGACTAGAGTACGGTAGAGGGTGGTGGAATTTCCTGTGTAGCGGTGAAATGCGTAGATATAGGAAGGAACACCAGTGGCGAAGGCGACCACCTGGACTGATACTGACACTGAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGTCGACTAGCCGTTGGGCTCCTTGAGAGCTTAGTGGCGCAGCTAACGCATTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAACTCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCTGGCCTTGACATGCTGAGAACTTTCCAGAGATGGATTGGTGCCTTCGGGAACTCAGACACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGTAACGAGCGCAACC CTTGTCCTTAGTTACCAGCACCTCGGGTGGGCACTCTAAGGAGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCCCTTACGGCCAGGGCTACACACGTGCTACAATGGTCGGTACAGAGGGTTGCCAAGTCGCGAGGCGGAGCTAATCCCAGAAAACCGATCGTAGTCCGGATCGCAGTCTGCAACTCGACTGCGTGAAGTCGGAATCGCTAGTATCAGTCGATCAGACCTTGTTCGCCCGCCCGACCGATCGATCGATCGACCGCGA

鉴定结果:菌株N24在分类上归属于固氮菌,与Azotobacter chroococcum相似度为99.92%,菌株N24的系统发育树如图2所示。Identification results: Strain N24 belongs to nitrogen-fixing bacteria in classification, and the similarity with Azotobacter chroococcum is 99.92%. The phylogenetic tree of strain N24 is shown in Figure 2.

将固氮菌(Azotobacter sp.CCNWSX1904)N24于2019年4月22日保藏于中国典型培养物保藏中心(CCTCC),保藏编号为CCTCC NO:M 2019281。保藏地址为中国.武汉.武汉大学。Azotobacter sp. CCNWSX1904 N24 was deposited in the China Center for Type Culture Collection (CCTCC) on April 22, 2019, and the deposit number is CCTCC NO: M 2019281. The deposit address is China. Wuhan. Wuhan University.

三、小麦促生试验3. Wheat growth promotion test

挑选颗粒饱满的小麦种子,用70%的乙醇进行表面消毒,以无菌水冲洗至少6次,最后一次冲洗的无菌水涂布于牛肉膏蛋白胨固体培养基上,检查小麦表面消毒是否彻底。将消毒的小麦种子播种于花盆土壤中,每盆种6颗,表面覆盖约1cm土壤。试验设2个处理,处理1每个植株接1mL无菌培养基,处理2每个植株接种N24菌液(约108个/mL)1mL,每个处理3个重复。花盆放置于温室,设置培养条件为光照16h/8h、温度25℃/18℃。待小麦出苗后,每隔5天浇一次水,60天后测定植物株高、干重和氮含量。Pick full-grained wheat seeds, disinfect the surface with 70% ethanol, rinse with sterile water for at least 6 times, and apply the sterile water from the last rinse on beef extract peptone solid medium to check whether the surface disinfection of wheat is thorough. The sterilized wheat seeds were sown in pot soil, 6 seeds per pot, and the surface was covered with about 1 cm of soil. Two treatments were set up in the experiment. In treatment 1, each plant was inoculated with 1 mL of sterile medium, and in treatment 2, each plant was inoculated with 1 mL of N24 bacterial solution (about 10 8 cells/mL), and each treatment was replicated 3 times. The flowerpots were placed in the greenhouse, and the culture conditions were set as light 16h/8h and temperature 25°C/18°C. After the wheat seedlings emerged, water was watered every 5 days, and the plant height, dry weight and nitrogen content were measured after 60 days.

结果如表1和图3所示,由表1可以看出,接种固氮菌的小麦的长势要明显好于未接菌对照组,接菌植物株高、干重和氮含量分别比空白对照组提高了33.7%、41.8%和57.7%。The results are shown in Table 1 and Figure 3. It can be seen from Table 1 that the growth of the wheat inoculated with nitrogen-fixing bacteria is significantly better than that of the uninoculated control group, and the plant height, dry weight and nitrogen content of the inoculated plants are respectively higher than those of the blank control group. improved by 33.7%, 41.8% and 57.7%.

表1小麦接种N24菌液前后植物株高、干重和氮含量的变化Table 1 Changes in plant height, dry weight and nitrogen content of wheat before and after inoculation with N24 bacterial solution

株高(cm)Plant height (cm) 植物干重(g)Plant dry weight (g) 植物氮含量(g/kg)Plant nitrogen content (g/kg) 对照control 20.120.1 0.9660.966 7.97.9 接菌处理Inoculation treatment 26.8726.87 1.371.37 12.4612.46

实施例2解钾菌的筛选及鉴定Example 2 Screening and identification of potassium solubilizing bacteria

一、解钾菌的筛选1. Screening of potassium-solubilizing bacteria

1、解钾菌初筛1. Primary screening of potassium-solubilizing bacteria

2017年9月从陕西省杨凌区的农田中采集生长7个月左右的小麦植株,用力抖落小麦根部松散结合的土壤。将植株根剪下放入10mL灭菌的离心管中,注入5mL无菌水后进行超声波处理,使与植株根部紧密结合的根际土溶于水中。所采集的土样为黄壤土,样品速效磷24.03mg/kg、速效钾126.17mg/kg、碱解氮56.28mg/kg、有机质21.06g/kg、pH=8.27。In September 2017, wheat plants that were about 7 months old were collected from the farmland in Yangling District, Shaanxi Province, and the loosely bound soil of the wheat roots was shaken off. Cut off the plant roots and put them into a 10 mL sterilized centrifuge tube, inject 5 mL of sterile water, and then perform ultrasonic treatment to dissolve the rhizosphere soil tightly bound to the plant roots in the water. The collected soil samples were yellow loam soil, with available phosphorus 24.03 mg/kg, available potassium 126.17 mg/kg, alkaline hydrolyzable nitrogen 56.28 mg/kg, organic matter 21.06 g/kg, pH=8.27.

将水溶液作一系列10倍稀释,分别取5μL稀释度为10-5、10-6和10-7的土壤悬液涂布于解钾培养基上,于28℃培养5天。将能产生透明解钾圈的菌株转接到LB固体培养基上保存备用。A series of 10-fold dilutions of the aqueous solution were made, and 5 μL of soil suspensions with dilutions of 10 -5 , 10 -6 and 10 -7 were spread on potassium solubilizing medium, and cultured at 28° C. for 5 days. The strains capable of producing transparent potassium-solubilizing circles were transferred to LB solid medium for future use.

2、解钾能力测定2. Determination of potassium solubilizing ability

将上述有解钾圈的菌株纯化后重新接种于解钾培养基上,测定解钾圈直径D和菌落直径d。挑取D/d大于2的菌落于LB液体培养基中,于28℃下培养24h。吸取1mL上述菌悬液到50mL钾长石液体培养基中,以1mL LB培养基代替菌悬液作为对照,各处理设3个重复。在28℃、200rpm条件下培养3天后,利用火焰光度计法测定解钾细菌培养液上清中的有效钾的含量。The above-mentioned strains with potassium-solubilizing circle were purified and re-inoculated on the potassium-solubilizing medium, and the potassium-solubilizing circle diameter D and colony diameter d were determined. Pick colonies with a D/d greater than 2 in LB liquid medium and culture at 28°C for 24h. Pipette 1 mL of the above bacterial suspension into 50 mL of potassium feldspar liquid medium, and use 1 mL of LB medium to replace the bacterial suspension as a control, and each treatment has three replicates. After culturing at 28° C. and 200 rpm for 3 days, the content of available potassium in the supernatant of the potassium-solubilizing bacteria culture solution was measured by flame photometry.

试验结果表明编号为J16(即CCNWSX1901)的菌株解钾圈和培养液中可溶性有效钾的含量较大,分别为3.85和224.7mg/L。菌株J16形成的解钾圈如图4所示。The test results showed that the strain numbered J16 (ie CCNWSX1901) had a relatively large content of soluble and available potassium in the solution of potassium circle and the culture solution, which were 3.85 and 224.7 mg/L, respectively. The potassium solution circle formed by strain J16 is shown in Figure 4.

3、溶解无机磷能力3. Ability to dissolve inorganic phosphorus

将上述有解钾圈的J16菌株按1%接种于LB液体培养基中,于28℃下培养24h。吸取1mL上述菌悬液到50mL解磷液体培养基中,以1mL LB培养基代替菌悬液作为对照,各处理设3个重复。在28℃、200rpm条件下培养5天后,将5mL的培养液于10000rpm条件下离心,取1mL的上述上清液并加入5mL钼锑抗试剂,用超纯水定容到50mL后反应20min,测定OD650并计算磷含量。The above-mentioned J16 strain with potassium-dissolving circle was inoculated into LB liquid medium at 1%, and cultured at 28°C for 24h. Pipette 1 mL of the above bacterial suspension into 50 mL of phosphate-dissolving liquid medium, and use 1 mL of LB medium to replace the bacterial suspension as a control, and each treatment has three replicates. After culturing for 5 days at 28 °C and 200 rpm, 5 mL of the culture solution was centrifuged at 10,000 rpm, 1 mL of the above supernatant was taken and 5 mL of molybdenum-antimony anti-reagent was added, and the volume was adjusted to 50 mL with ultrapure water. OD 650 and calculate phosphorus content.

试验结果表明菌株J16兼具溶磷能力,发酵液中可溶性磷的含量达到156.89mg/L。The test results showed that the strain J16 had the ability to dissolve phosphorus, and the content of soluble phosphorus in the fermentation broth reached 156.89 mg/L.

4、J16产IAA能力测定4. Determination of the ability of J16 to produce IAA

将具有解钾能力的J16菌株接种到装有20mL的TY液体培养基锥形瓶中,在28℃条件下,150r/min振荡培养48h。用移液器吸取50μL培养液到白色陶瓷板上,再加入50μL的Salkowski显色液,以50μL 50mg/L的IAA标准溶液作阳性对照,室温下避光反应30min后观察颜色。The J16 strain with potassium-solubilizing ability was inoculated into a 20 mL conical flask of TY liquid medium, and cultured with shaking at 150 r/min for 48 h at 28 °C. Pipette 50 μL of culture solution onto a white ceramic plate, then add 50 μL of Salkowski chromogenic solution, use 50 μL of 50 mg/L IAA standard solution as a positive control, and observe the color after 30 min of reaction in the dark at room temperature.

结果如图5所示,表明菌株J16菌悬液与显色液反应变红,说明该菌株能产生IAA。The results are shown in Figure 5, indicating that the bacterial suspension of the strain J16 reacts with the chromogenic solution to turn red, indicating that the strain can produce IAA.

二、菌株J16的鉴定2. Identification of strain J16

1、形态特征1. Morphological characteristics

将J16菌株制备成菌悬液并稀释后涂布于LB固体培养基上,于28℃培养24h后观察菌落和菌体形态。The J16 strain was prepared into a bacterial suspension, diluted and spread on LB solid medium, and the colony and bacterial morphology were observed after culturing at 28 °C for 24 h.

结果显示该菌革兰氏染色呈阴性,细胞呈短杆状,不产生芽孢;在LB培养基上培养24h后,菌落呈圆形,边缘整齐,菌落乳白色。The results showed that the bacterium was Gram-negative, the cells were short rod-shaped and did not produce spores; after culturing on LB medium for 24 hours, the colonies were round, with neat edges and milky white colonies.

2、生理生化特征2. Physiological and biochemical characteristics

参照细菌鉴定手册对菌株J16的VP反应、碳源利用、吲哚试验等生理生化特性进行测定,其结果显示该菌株能够以葡萄糖、枸橼酸为碳源生长,不能利用乳糖和丙二酸盐,VP反应、吲哚实验、甲基红实验和淀粉水解实验呈阴性,能产生脲酶。The physiological and biochemical characteristics of strain J16, such as VP reaction, carbon source utilization, and indole test, were determined with reference to the bacterial identification manual. The results showed that the strain could grow with glucose and citric acid as carbon sources, but could not use lactose and malonate. , VP reaction, indole test, methyl red test and starch hydrolysis test were negative, can produce urease.

3、16S rDNA测序3. 16S rDNA sequencing

采用细菌基因组提取试剂盒提取菌株J16的基因组DNA,用细菌通用引物27F(5’-AGAGTTTGATCCTGGCTCAG)和1492R(5’-TACCTTGTTACGACTT)扩增16S rDNA,经电泳检测后送公司测序,序列在NCBI数据库中进行比对。菌株J16的16S rDNA序列如SEQ ID NO:2所示。The genomic DNA of strain J16 was extracted with a bacterial genome extraction kit, and the 16S rDNA was amplified with bacterial universal primers 27F (5'-AGAGTTTGATCCTGGCTCAG) and 1492R (5'-TACCTTGTTACGACTT). Compare. The 16S rDNA sequence of strain J16 is shown in SEQ ID NO:2.

菌株J16 16S rDNA序列(SEQ ID NO:2):Strain J16 16S rDNA sequence (SEQ ID NO: 2):

GGTGTGACGGGCGGTGTGTACAAGGCCCGGGAACGTATTCACCGCAGCATGCTGATCTGCGATTACTAGCGATTCCAACTTCATGCACTCGAGTTGCAGAGTGCAATCCGAACTGAGATGGCTTTTGGAGATTAGCTCGACATCGCTGTCTCGCTGCCCACTGTCACCACCATTGTAGCACGTGTGTAGCCCAGCCCGTAAGGGCCATGAGGACTTGACGTCATCCCCACCTTCCTCTCGGCTTATCACCGGCAGTCCCCTTAGAGTGCCCAACTAAATGCTGGCAACTAAGGGCGAGGGTTGCGCTCGTTGCGGGACTTAACCCAACATCTCACGACACGAGCTGACGACAGCCATGCAGCACCTGTTCTGGGGCCAGCCTAACTGAAGGACATCGTCTCCAATGCCCATACCCCGAATGTCAAGAGCTGGTAAGGTTCTGCGCGTTGCTTCGAATTAAACCACATGCTCCACCGCTTGTGCGGGCCCCCGTCAATTCCTTTGAGTTTTAATCTTGCGACCGTACTCCCCAGGCGGAATGTTTAATGCGTTAGCTGCGCCACCGAACAGTATACTGCCCGACGGCTAACATTCATCGTTTACGGCGTGGACTACCAGGGTATCTAATCCTGTTTGCTCCCCACGCTTTCGCACCTCAGCGTCAGTAATGGACCAGTAAGCCGCCTTCGCCACTGGTGTTCCTCCGAATATCTACGAATTTCACCTCTACACTCGGAATTCCACTTACCTCTTCCATACTCAAGATACCCAGTATCAAAGGCAGTTCCAGAGTTGAGCTCTGGGATTTCACCCCTGACTTAAATATCCGCCTACGTGCGCTTTACGCCCAGTAATTCCGAACAACGCTAGCCCCCTTCGTATTACCGCGGCTGCTGGCACGAAGTTAGCCGGGGCTTCTTCTCCGGATACCGTCATTATCTTCTCCGGTGAAAGAGCTTTACAACCCTAAGGCCTTCATCACTCACGCGGCATGGCTGGATCAGGCTTGCGCCCATTGTCCAATATTCCCCACTGCTGCCTCCCGTAGGAGTTTGGGCCGTGTCTCAGTCCCAATGTGGCTGATCATCCTCTCAGACCAGCTATGGATCGTCGCCTTGGTAGGCCTTTACCCCACCAACTAGCTAATCCAACGCGGGCCAATCCTTCCCCGATAAATCTTTCCCCCGTAGGGCGTATGCGGTATTAATTCCAGTTTCCCGGAGCTATTCCGCAGGAAAGGGTATGTTCCCGGTGTGACGGGCGGTGTGTACAAGGCCCGGGAACGTATTCACCGCAGCATGCTGATCTGCGATTACTAGCGATTCCAACTTCATGCACTCGAGTTGCAGAGTGCAATCCGAACTGAGATGGCTTTTGGAGATTAGCTCGACATCGCTGTCTCGCTGCCCACTGTCACCACCATTGTAGCACGTGTGTAGCCCAGCCCGTAAGGGCCATGAGGACTTGACGTCATCCCCACCTTCCTCTCGGCTTATCACCGGCAGTCCCCTTAGAGTGCCCAACTAAATGCTGGCAACTAAGGGCGAGGGTTGCGCTCGTTGCGGGACTTAACCCAACATCTCACGACACGAGCTGACGACAGCCATGCAGCACCTGTTCTGGGGCCAGCCTAACTGAAGGACATCGTCTCCAATGCCCATACCCCGAATGTCAAGAGCTGGTAAGGTTCTGCGCGTTGCTTCGAATTAAACCACATGCTCCACCGCTTGTGCGGGCCCCCGTCAATTCCTTTGAGTTTTAATCTTGCGACCGTACTCCCCAGGCGGAATGTTTAATGCGTTAGCTGCGCCACCGAACAGTATACTGCCCGACGGCTAACATTCATCGTTTACGGCGTGGACTACCAGGGTATCTAATCCTGTTTGCTCCCCACGCTTTCGCACCTCAGCGTCAGTAATGGACCAGTAAGCCGCCTTCGCCACTGGTGTTCCTCCGAATATCTACGAATTTCACCTCTACACTCGGAATTCCACTTACCTCTTCCATACTCAAGATACCCAGTATCAAAGGCAGTTCCAGAGTTGAGCTCTGGGATTTCACCCCTGACTTAAATATCCGCCTACGTGCGCTTTACGCCCAGTAATTCCGAACAACGCTAGCCCCCTTCGTATTACCGCGGCTGCTGGCACGAAGTTAGCCGGGGCTTCTTCTCCGGATACCGTCATTATCTTCTCCGGTGAAAGAGCTTTACAACCCTAAGGCCTTCATCACTCACGCGGCATGGCTGGA TCAGGCTTGCGCCCATTGTCCAATATTCCCCACTGCTGCCTCCCGTAGGAGTTTGGGCCGTGTCTCAGTCCCAATGTGGCTGATCATCCTCTCAGACCAGCTATGGATCGTCGCCTTGGTAGGCCTTTACCCCACCAACTAGCTAATCCAACGCGGGCCAATCCTTCCCCGATAAATCTTTCCCCGTAGGGCGTATGCGGTATTAATTCCAGTTTCCCGGAGCTATTCCGCAGGAAAGGGT

鉴定结果:菌株J16在分类上归属于根瘤菌,与Rhizobium radiobacter相似度为99.68%,菌株J16的系统发育树如图6所示。Identification results: Strain J16 belongs to Rhizobium in classification, and the similarity with Rhizobium radiobacter is 99.68%. The phylogenetic tree of strain J16 is shown in Figure 6.

将根瘤菌(Rhizobium sp.CCNWSX1901)J16于2019年4月22日保藏于中国典型培养物保藏中心(CCTCC),保藏编号为CCTCC NO:M 2019279。保藏地址为中国.武汉.武汉大学。Rhizobium sp. CCNWSX1901 J16 was deposited in the China Center for Type Culture Collection (CCTCC) on April 22, 2019, and the deposit number is CCTCC NO: M 2019279. The deposit address is China. Wuhan. Wuhan University.

三、小麦促生试验3. Wheat growth promotion test

挑选颗粒饱满的小麦种子,用70%的乙醇进行表面消毒,以无菌水冲洗至少6次,最后一次冲洗的无菌水涂布于牛肉膏蛋白胨固体培养基上,检查小麦表面消毒是否彻底。将消毒的小麦种子播种于花盆土壤中,每盆种6颗,表面覆盖约1cm土壤。试验设2个处理,处理1每个植株接1mL无菌培养基,处理2每个植株接种J16菌液(约108个/mL)1mL,每个处理3个重复。花盆放置于温室,设置培养条件为光照16h/8h、温度25℃/18℃。待小麦出苗后,每隔5天浇一次水,60天后测定植物株高、鲜重、干重、氮磷钾含量。Pick full-grained wheat seeds, disinfect the surface with 70% ethanol, rinse with sterile water for at least 6 times, and apply the sterile water from the last rinse on beef extract peptone solid medium to check whether the surface disinfection of wheat is thorough. The sterilized wheat seeds were sown in pot soil, 6 seeds per pot, and the surface was covered with about 1 cm of soil. Two treatments were set up in the experiment. In treatment 1, each plant was inoculated with 1 mL of sterile medium, and in treatment 2, each plant was inoculated with 1 mL of J16 bacterial solution (about 10 8 cells/mL), and each treatment was replicated 3 times. The flowerpots were placed in the greenhouse, and the culture conditions were set as light 16h/8h and temperature 25°C/18°C. After the wheat seedlings emerged, water was watered every 5 days, and the plant height, fresh weight, dry weight and NPK content were measured after 60 days.

结果如表2和图7所示,由表2可以看出,接种解钾菌的小麦对磷、钾的吸收要明显高于未接菌对照组,植物的长势更好。接菌植物株高、干重、钾含量和磷含量分别比空白对照组提高了30.2%、51.1%、24.8%和42.9%。The results are shown in Table 2 and Figure 7. It can be seen from Table 2 that the absorption of phosphorus and potassium by the wheat inoculated with potassium-solubilizing bacteria is significantly higher than that of the non-inoculated control group, and the growth of the plants is better. Compared with the blank control group, the plant height, dry weight, potassium content and phosphorus content of the inoculated plants were increased by 30.2%, 51.1%, 24.8% and 42.9%, respectively.

表2小麦接种J16菌液前后植物株高、干重、钾含量和磷含量的变化Table 2 Changes of plant height, dry weight, potassium content and phosphorus content before and after inoculation with J16 bacterial solution

株高(cm)Plant height (cm) 植物钾含量(g/kg)Plant potassium content (g/kg) 植物干重(g)Plant dry weight (g) 植物磷含量(g/kg)Plant phosphorus content (g/kg) 对照control 21.0321.03 24.8224.82 0.950.95 2.422.42 接菌处理Inoculation treatment 27.3827.38 30.9830.98 1.4351.435 3.463.46

实施例3溶磷菌的筛选及鉴定Example 3 Screening and identification of phosphorus-dissolving bacteria

一、溶磷菌的筛选1. Screening of Phosphorus Dissolving Bacteria

1、溶磷菌初筛1. Primary screening of phosphorus-dissolving bacteria

2017年9月从陕西省杨凌区的农田中采集生长7个月左右的小麦植株,用力抖落小麦根部松散结合的土壤。将植株根剪下放入10mL灭菌的离心管中,注入5mL无菌水后进行超声波处理,使与植株根部紧密结合的根际土溶于水中。所采集的土样为黄壤土,样品速效磷24.03mg/kg、速效钾126.17mg/kg、碱解氮56.28mg/kg、有机质21.06g/kg、pH=8.27。In September 2017, wheat plants that were about 7 months old were collected from the farmland in Yangling District, Shaanxi Province, and the loosely bound soil of the wheat roots was shaken off. Cut off the plant roots and put them into a 10 mL sterilized centrifuge tube, inject 5 mL of sterile water, and then perform ultrasonic treatment to dissolve the rhizosphere soil tightly bound to the plant roots in the water. The collected soil samples were yellow loam soil, with available phosphorus 24.03 mg/kg, available potassium 126.17 mg/kg, alkaline hydrolyzable nitrogen 56.28 mg/kg, organic matter 21.06 g/kg, pH=8.27.

将水溶液作一系列10倍稀释,分别取5μL稀释度为10-5、10-6和10-7的土壤悬液涂布于PKO无机磷培养基上,于28℃培养5天。将能产生透明溶磷圈的菌株转接到LB固体培养基上保存备用。A series of 10-fold dilutions of the aqueous solution were made, and 5 μL of soil suspensions with dilutions of 10 -5 , 10 -6 and 10 -7 were spread on PKO inorganic phosphorus medium and cultured at 28°C for 5 days. The strains that can produce transparent phosphate-solubilizing circles were transferred to LB solid medium for future use.

2、溶解无机磷能力测定2. Determination of ability to dissolve inorganic phosphorus

将上述有溶磷圈的菌株纯化后重新接种于PKO无机磷培养基上,测定溶磷圈直径D和菌落直径d。挑取D/d大于2的菌落于LB液体培养基中,于28℃下培养24h。吸取1mL上述菌悬液到50mL解磷培养基(NBRIP培养基)中,以1mL LB培养基代替菌悬液作为对照,各处理设3个重复。在28℃、200rpm条件下培养5天后,将5mL的培养液于10000rpm条件下离心,取1mL的上述上清液并加入5mL钼锑抗试剂,用超纯水定容到50mL后反应20min,测定OD650并计算磷含量。The above-mentioned strains with phosphate-solubilizing circle were purified and re-inoculated on PKO inorganic phosphorus medium, and the phosphate-solubilizing circle diameter D and colony diameter d were determined. Pick colonies with a D/d greater than 2 in LB liquid medium and culture at 28°C for 24h. Pipette 1 mL of the above bacterial suspension into 50 mL of phosphate solubilization medium (NBRIP medium), and use 1 mL of LB medium to replace the bacterial suspension as a control, and each treatment has three replicates. After culturing for 5 days at 28 °C and 200 rpm, 5 mL of the culture solution was centrifuged at 10,000 rpm, 1 mL of the above supernatant was taken and 5 mL of molybdenum-antimony anti-reagent was added, and the volume was adjusted to 50 mL with ultrapure water. OD 650 and calculate phosphorus content.

试验结果表明编号为P5(即CCNWSX1902)的菌株溶磷圈和发酵液中可溶性磷的含量较大,分别为2.56和231.68mg/L。菌株P5形成的溶磷圈如图8所示。The test results showed that the strain numbered P5 (ie CCNWSX1902) had a larger content of soluble phosphorus in the phosphorus-dissolving circle and fermentation broth, which were 2.56 and 231.68 mg/L, respectively. The phosphorus-dissolving circle formed by strain P5 is shown in Figure 8.

3、P5产IAA能力测定3. Determination of the ability of P5 to produce IAA

将具有溶磷能力的P5菌株接种到装有20mL的LB液体培养基锥形瓶中,在28℃条件下,150r/min振荡培养48h。用移液器吸取50μL培养液到白色陶瓷板上,再加入50μL的Salkowski显色液,以50μL 50mg/L的IAA标准溶液作阳性对照,室温下避光反应30min后观察颜色。The P5 strain with phosphate-dissolving ability was inoculated into a 20 mL LB liquid medium conical flask, and cultured with shaking at 150 r/min for 48 h at 28°C. Pipette 50 μL of culture solution onto a white ceramic plate, then add 50 μL of Salkowski chromogenic solution, use 50 μL of 50 mg/L IAA standard solution as a positive control, and observe the color after 30 min of reaction in the dark at room temperature.

结果表明菌株P5菌悬液与显色液反应变红,说明该菌株能产生IAA。The results showed that the bacterial suspension of strain P5 reacted with the chromogenic solution to turn red, indicating that the strain could produce IAA.

4、溶解有机磷4. Dissolved organic phosphorus

将P5菌株按1%接种于LB液体培养基振荡培养24h,取5μL菌悬液滴加到蒙金娜有机磷培养基上,于28℃培养5天。The P5 strain was inoculated into LB liquid medium at 1% for shaking culture for 24 hours, and 5 μL of the bacterial suspension was added dropwise to Montkina organophosphorus medium, and cultured at 28° C. for 5 days.

结果显示在菌落周围出现了透明的溶磷圈,说明菌株P5也能溶解有机磷。The results showed that a transparent phosphorus-dissolving circle appeared around the colony, indicating that the strain P5 could also dissolve organic phosphorus.

5、固氮能力检测5. Test of nitrogen fixation ability

将菌株P5接种于LB培养基上培养24h,挑去菌落溶于无菌水制备P5菌悬液,用移液器取5μL菌悬液滴加到Ashby培养基上,于28℃培养3天。The strain P5 was inoculated on LB medium for 24 hours, and the colonies were picked and dissolved in sterile water to prepare a P5 bacterial suspension. 5 μL of the bacterial suspension was added dropwise to Ashby medium with a pipette, and cultured at 28°C for 3 days.

结果表明菌株能够在Ashby无氮培养基上正常生长,表明该菌株具备一定的固氮能力。The results showed that the strain could grow normally on Ashby nitrogen-free medium, indicating that the strain had certain nitrogen fixation ability.

二、菌株P5的鉴定2. Identification of strain P5

1、形态特征1. Morphological characteristics

将P5菌株制备成菌悬液并稀释后涂布于LB固体培养基上,于28℃培养24h后观察菌落和菌体形态。The P5 strain was prepared into a bacterial suspension, diluted and spread on LB solid medium, and the colony and bacterial morphology were observed after culturing at 28°C for 24 hours.

结果显示该菌革兰氏染色呈阴性,细胞呈短杆状,不产生芽孢;在LB培养基上培养24h后,菌落呈圆形,边缘整齐,直径2~3mm,菌落乳白色且中心略带淡黄色。The results showed that the bacterium's Gram staining was negative, the cells were short rod-shaped and did not produce spores; after culturing on LB medium for 24 hours, the colonies were round, with neat edges, 2-3 mm in diameter, milky white and slightly pale in the center. yellow.

2、生理生化特征2. Physiological and biochemical characteristics

参照细菌鉴定手册对菌株P5的VP反应、碳源利用、吲哚试验等生理生化特性进行测定,其结果显示该菌株能以葡萄糖、枸橼酸、丙二酸盐和乳糖作为碳源生长,吲哚试验和甲基红试验呈阴性,VP反应呈阳性,能产生淀粉酶和脲酶。The physiological and biochemical characteristics of strain P5, such as VP reaction, carbon source utilization, and indole test, were determined with reference to the bacterial identification manual. Indol test and methyl red test were negative, VP reaction was positive, can produce amylase and urease.

3、16S rDNA测序3. 16S rDNA sequencing

采用细菌基因组提取试剂盒提取菌株P5的基因组DNA,用细菌通用引物27F(5’-AGAGTTTGATCCTGGCTCAG)和1492R(5’-TACCTTGTTACGACTT)扩增16S rDNA,经电泳检测后送公司测序,序列在NCBI数据库中进行比对。菌株P5的16S rDNA序列如SEQ ID NO:3所示。The genomic DNA of strain P5 was extracted with a bacterial genome extraction kit, and the 16S rDNA was amplified with bacterial universal primers 27F (5'-AGAGTTTGATCCTGGCTCAG) and 1492R (5'-TACCTTGTTACGACTT). Compare. The 16S rDNA sequence of strain P5 is shown in SEQ ID NO:3.

菌株P5 16S rDNA序列(SEQ ID NO:3):Strain P5 16S rDNA sequence (SEQ ID NO: 3):

ACGGGTGAGTAATGTCTGGGAAACTGCCTGATGGAGGGGGATAACTACTGGAAACGGTAGCTAATACCGCATAACGTCGCAAGACCAAAGTGGGGGACCTTCGGGCCTCATGCCATCAGATGTGCCCAGATGGGATTAGCTGGTAGGTGGGGTAACGGCTCACCTAGGCGACGATCCCTAGCTGGTCTGAGAGGATGACCAGCCACACTGGAACTGAGACACGGTCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGCAAGCCTGATGCAGCCATGCCGCGTGTGTGAAGAAGGCCTTCGGGTTGTAAAGCACTTTCAGCGGGGAGGAAGGCGGTGAGGTTAATAACCTCATCGATTGACGTTACCCGCAGAAGAAGCACCGGCTAACTCCGTGCCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTCTGTCAAGTCGGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATTCGAAACTGGCAGGCTAGAGTCTTGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACAAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCTGTAAACGATGTCGATTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGAGCTAACGCGTTAAATCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAACTCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGATGCAACGCGAAGAACCTTACCTGGTCTTGACATCCACAGAACTTTCCAGAGATGGATTGGTGCCTTCGGGAACTGTGAGACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTATCCTTTGTTGCCAGCGGTTAGGCCGGGAACTCAAAGGAGACTGCCAGTGATAAACTGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCCCTTACGACCAGGGCTACACACGTGCTACAATGGCATATACAAAGAGAAGCGACCTCGCGAGAGCAAGCGGACCTCATAAAGTATGTCGTAGTCCGGATTGGAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATCAGAATGCTACGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCATGGGAGTGACGGGTGAGTAATGTCTGGGAAACTGCCTGATGGAGGGGGATAACTACTGGAAACGGTAGCTAATACCGCATAACGTCGCAAGACCAAAGTGGGGGACCTTCGGGCCTCATGCCATCAGATGTGCCCAGATGGGATTAGCTGGTAGGTGGGGTAACGGCTCACCTAGGCGACGATCCCTAGCTGGTCTGAGAGGATGACCAGCCACACTGGAACTGAGACACGGTCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGCAAGCCTGATGCAGCCATGCCGCGTGTGTGAAGAAGGCCTTCGGGTTGTAAAGCACTTTCAGCGGGGAGGAAGGCGGTGAGGTTAATAACCTCATCGATTGACGTTACCCGCAGAAGAAGCACCGGCTAACTCCGTGCCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTCTGTCAAGTCGGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATTCGAAACTGGCAGGCTAGAGTCTTGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACAAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCTGTAAACGATGTCGATTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGAGCTAACGCGTTAAATCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAACTCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGATGCAACGCGAAGAACCTTACCTGGTCTTGACATCCACAGAACTTTCCAGAGATGGATTGGTGCCTTCGGGAACTGTGAGACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCG CAACCCTTATCCTTTGTTGCCAGCGGTTAGGCCGGGAACTCAAAGGAGACTGCCAGTGATAAACTGGAGGAAGGTGGGGATGACGTCAAGTCATGGCCCTTACGACCAGGGCTACACACGTGCTACAATGGCATATACAAAGAGAAGCGACCTCGCGAGAGAGCAAGCGGACCTCATAAAGTATGTCGTAGTCCGGATTGGAGTCTGCAACTCGACTCCATGAAGTCGGAAAGGCTAGATCGTTCGTTAGCCACCGTCGACGTTCGTCGCCCGCCCG

鉴定结果:菌株P5在分类上归属于克雷伯氏菌,与Klebsiella quasivariicola相似度为99.85%,菌株P5的系统发育树如图9所示。Identification results: Strain P5 belongs to Klebsiella in classification, and the similarity with Klebsiella quasivariicola is 99.85%. The phylogenetic tree of strain P5 is shown in Figure 9.

将克雷伯氏菌(Klebsiella sp.CCNWSX1902)P5于2019年4月22日保藏于中国典型培养物保藏中心(CCTCC),保藏编号为CCTCC NO:M 2019280。保藏地址为中国.武汉.武汉大学。Klebsiella sp. CCNWSX1902 P5 was deposited in the China Center for Type Culture Collection (CCTCC) on April 22, 2019, and the deposit number is CCTCC NO: M 2019280. The deposit address is China. Wuhan. Wuhan University.

三、小麦促生试验3. Wheat growth promotion test

挑选颗粒饱满的小麦种子,用70%的乙醇进行表面消毒,以无菌水冲洗至少6次,最后一次冲洗的无菌水涂布于牛肉膏蛋白胨固体培养基上,检查小麦表面消毒是否彻底。将消毒的小麦种子播种于花盆土壤中,每盆种6颗,表面覆盖约1cm土壤。试验设2个处理,处理1每个植株接1mL无菌培养基,处理2每个植株接种P5菌液(约108个/mL)1mL,每个处理3个重复。花盆放置于温室,设置培养条件为光照16h/8h、温度25℃/18℃。待小麦出苗后,每隔5天浇一次水,60天后测定植物株高、鲜重、干重、氮磷钾含量。Pick full-grained wheat seeds, disinfect the surface with 70% ethanol, rinse with sterile water for at least 6 times, and apply the sterile water from the last rinse on beef extract peptone solid medium to check whether the surface disinfection of wheat is thorough. The sterilized wheat seeds were sown in pot soil, 6 seeds per pot, and the surface was covered with about 1 cm of soil. Two treatments were set up in the experiment. In treatment 1, each plant was inoculated with 1 mL of sterile medium, and in treatment 2, each plant was inoculated with 1 mL of P5 bacterial solution (about 10 8 cells/mL), and each treatment was replicated 3 times. The flowerpots were placed in the greenhouse, and the cultivation conditions were set as light 16h/8h and temperature 25°C/18°C. After the wheat seedlings emerged, water was watered every 5 days, and the plant height, fresh weight, dry weight and NPK content were measured after 60 days.

结果如表3和图10所示,由表3可以看出,接种溶磷菌的小麦对氮磷的吸收要明显高于未接菌对照组,植物的长势更好。接菌植物株高、干重、氮含量和磷含量分别比空白对照组提高了20.2%、55.3%、31.8%和51.2%。The results are shown in Table 3 and Figure 10. It can be seen from Table 3 that the absorption of nitrogen and phosphorus by the wheat inoculated with phosphorus-dissolving bacteria was significantly higher than that of the uninoculated control group, and the plant growth was better. Compared with the blank control group, the plant height, dry weight, nitrogen content and phosphorus content of the inoculated plants were increased by 20.2%, 55.3%, 31.8% and 51.2%, respectively.

表3小麦接种P5菌液前后植物株高、干重、氮含量和磷含量的变化Table 3 Changes of plant height, dry weight, nitrogen content and phosphorus content before and after wheat inoculation with P5 bacterial solution

株高(cm)Plant height (cm) 植物氮含量(g/kg)Plant nitrogen content (g/kg) 植物干重(g)Plant dry weight (g) 植物磷含量(g/kg)Plant phosphorus content (g/kg) 对照control 21.1221.12 8.578.57 0.940.94 2.442.44 接菌处理Inoculation treatment 25.3925.39 11.311.3 1.461.46 3.693.69

实施例4复合菌剂的筛选The screening of embodiment 4 compound bacterial agent

1、复合菌剂的制备及配比筛选1. Preparation and ratio screening of compound bacterial agents

将固氮能力较强的N24、溶磷能力较强的J16和解钾能力较强的P5,三种菌株接种到LB液体培养基中,于28℃、180rpm条件下培养24~48小时。按N24:J16:P5体积比为1:1:1、2:1:1、1:2:1、1:1:2进行组合,通过溶磷、解钾和固氮能力的测定,发现N24:J16:P5=2:1:1组合的效果最好(表4)。The three strains of N24 with strong nitrogen fixation ability, J16 with strong phosphorus dissolution ability and P5 with strong potassium solubilization ability were inoculated into LB liquid medium and cultured at 28°C and 180rpm for 24-48 hours. According to the N24:J16:P5 volume ratio of 1:1:1, 2:1:1, 1:2:1, 1:1:2 to combine, through the determination of phosphorus dissolution, potassium dissolution and nitrogen fixation ability, it is found that N24: J16: P5=2:1:1 combination had the best effect (Table 4).

表4复合菌剂不同配比对土壤氮和有效磷、钾的影响Table 4 Effects of different ratios of compound inoculants on soil nitrogen, available phosphorus and potassium

N24:J16:P5N24: J16: P5 土壤碱解氮(mg/kg)Soil alkaline hydrolyzable nitrogen (mg/kg) 土壤有效钾(mg/kg)Soil available potassium (mg/kg) 土壤有效磷(mg/kg)Soil available phosphorus (mg/kg) 1:1:11:1:1 19.2819.28 98.2498.24 13.0913.09 1:2:11:2:1 19.5419.54 100.51100.51 14.1914.19 2:1:12:1:1 21.9821.98 104.42104.42 14.9214.92 1:1:21:1:2 18.7118.71 90.3890.38 11.4911.49

液体N24菌剂的制备:Preparation of liquid N24 inoculum:

将菌株N24按照1%的比例接种到牛肉膏蛋白胨液体培养基中,于28℃、180rpm条件下培养36小时即为N24菌剂。The strain N24 was inoculated into the beef extract peptone liquid medium at a proportion of 1%, and cultured at 28° C. and 180 rpm for 36 hours to obtain the N24 inoculum.

液体P5菌剂的制备:Preparation of liquid P5 inoculum:

将P5按照1%的比例接种到牛肉膏蛋白胨液体培养基中,于28℃、180rpm条件下培养36小时即为P5菌剂。P5 was inoculated into beef extract peptone liquid medium at a ratio of 1%, and cultured at 28° C. and 180 rpm for 36 hours to obtain P5 inoculum.

液体J16菌剂的制备:Preparation of liquid J16 inoculum:

将J16按照1%的比例接种到牛肉膏蛋白胨液体培养基中,于28℃、180rpm条件下培养36小时即为J16菌剂。J16 was inoculated into beef extract peptone liquid medium at a ratio of 1%, and cultured at 28° C. and 180 rpm for 36 hours to obtain J16 inoculum.

复合菌剂的制备:Preparation of compound bacterial agent:

将P5、N24和J16在牛肉膏蛋白胨液体培养基中培养36小时后,按2:1:1的比例进行混合,并使混合液中三种细菌的总有效活菌数为2×108~9×108个/mL,此混合菌液即为复合菌剂。After culturing P5, N24 and J16 in beef extract peptone liquid medium for 36 hours, they were mixed in a ratio of 2:1:1, and the total effective viable count of the three bacteria in the mixture was 2×10 8 ~ 9×10 8 /mL, this mixed bacterial solution is the compound bacterial agent.

2、小麦盆栽试验2. Wheat pot experiment

挑选颗粒饱满的小麦种子,用70%的乙醇进行表面消毒,以无菌水冲洗至少6次,最后一次冲洗的无菌水涂布于牛肉膏蛋白胨固体培养基上,检查小麦表面消毒是否彻底。将消毒的小麦种子播种于花盆土壤中,表面覆盖约1cm土壤。试验设2个处理,处理1每盆接5mL无菌培养基,处理2每盆接种复合菌剂5mL,每个处理3个重复。花盆放置于温室,设置培养条件为光照16h/8h、温度25/18℃。待小麦出苗后,每隔5天浇一次水,60天后测定土壤有效氮、磷、钾,植物株高、鲜重、干重、氮磷钾含量。结果如表5、表6所示。Pick full-grained wheat seeds, disinfect the surface with 70% ethanol, rinse with sterile water for at least 6 times, and apply the sterile water from the last rinse on beef extract peptone solid medium to check whether the surface disinfection of wheat is thorough. The sterilized wheat seeds were sown in the pot soil, and the surface was covered with about 1 cm of soil. Two treatments were set up in the experiment, treatment 1 was inoculated with 5 mL of sterile medium per pot, and treatment 2 was inoculated with 5 mL of compound bacterial agent per pot, and each treatment was replicated 3 times. The flowerpots were placed in the greenhouse, and the culture conditions were set as light 16h/8h and temperature 25/18°C. After the emergence of wheat, water was watered every 5 days, and soil available nitrogen, phosphorus, potassium, plant height, fresh weight, dry weight, and nitrogen, phosphorus, and potassium content were measured after 60 days. The results are shown in Table 5 and Table 6.

由表5可以看出,复合菌剂对于土壤中营养元素的转化效果要明显高于未接菌对照组。接种复合菌剂的土壤中全氮、碱解氮、速效磷、速效钾和有机质分别比空白对照组提高了18.4%、81.2%、99.5%、19.4%和55.7%(表5)。It can be seen from Table 5 that the transformation effect of the compound bacterial agent on the nutrient elements in the soil is significantly higher than that of the uninoculated control group. The total nitrogen, alkali-hydrolyzed nitrogen, available phosphorus, available potassium and organic matter in the soil inoculated with the compound bacterial agent increased by 18.4%, 81.2%, 99.5%, 19.4% and 55.7% respectively compared with the blank control group (Table 5).

表5接菌处理对土壤养分的影响Table 5 Effects of inoculation treatment on soil nutrients

Figure GDA0002205617940000151
Figure GDA0002205617940000151

由表6可以看出,接种复合菌剂的小麦对氮磷钾的吸收要明显高于未接菌对照组,植物的长势更好。接种复合菌剂的植物株高、干重、氮含量、钾含量和磷含量分别比空白对照组提高了59.8%、105%、65.6%、50.3%和75.1%(表6)。It can be seen from Table 6 that the absorption of nitrogen, phosphorus and potassium by the wheat inoculated with the compound bacterial agent was significantly higher than that of the non-inoculated control group, and the growth of the plants was better. Compared with the blank control group, the plant height, dry weight, nitrogen content, potassium content and phosphorus content of the plants inoculated with the compound bacterial agent were increased by 59.8%, 105%, 65.6%, 50.3% and 75.1% respectively (Table 6).

表6接菌处理对小麦生长的影响Table 6 Effects of inoculation treatment on wheat growth

Figure GDA0002205617940000152
Figure GDA0002205617940000152

Figure GDA0002205617940000161
Figure GDA0002205617940000161

3、利用复合微生物菌剂减少化肥使用量3. Use compound microbial inoculants to reduce the use of chemical fertilizers

向种植小麦的土壤中施加当地常规复合肥或复合菌剂,验证施加复合菌剂是否能代替复合肥,减少化肥使用量。Apply local conventional compound fertilizers or compound inoculants to the soil where wheat is grown to verify whether the application of compound inoculants can replace compound fertilizers and reduce the amount of chemical fertilizers used.

向土壤中施加75%复合肥作为空白对照组,施加100%复合肥作为对照组。另外向土壤中施加75%复合肥+复合菌剂作为试验组。75% compound fertilizer was applied to the soil as a blank control group, and 100% compound fertilizer was applied as a control group. In addition, 75% compound fertilizer + compound bacterial agent was applied to the soil as the test group.

结果如图11所示,由图11可以看出,减少化肥的使用,小麦生长较差、叶片颜色发黄。但向减少25%化肥的土壤中加入复合微生物菌剂后,小麦的生长状况显著改善,和完全使用化肥的对照组相比,减少施肥并添加菌剂的试验组小麦长势甚至优于对照组,说明该复合微生物菌剂在不影响小麦生长的情况下能降低化肥的使用量。The results are shown in Figure 11. From Figure 11, it can be seen that reducing the use of chemical fertilizers resulted in poor wheat growth and yellow leaves. However, after adding compound microbial inoculants to the soil reduced by 25% of chemical fertilizers, the growth of wheat was significantly improved. Compared with the control group that completely used chemical fertilizers, the growth of wheat in the experimental group that reduced fertilization and added inoculants was even better than that of the control group. It shows that the compound microbial inoculant can reduce the usage of chemical fertilizer without affecting the growth of wheat.

最后所应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,对于本领域的普通技术人员来说,在上述说明及思路的基础上还可以做出其它不同形式的变化或变动,这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention and not to limit the protection scope of the present invention. Variations or changes in other different forms are not required and cannot be exhaustive of all implementations here. Any modifications, equivalent replacements and improvements made within the spirit and principle of the present invention shall be included within the protection scope of the claims of the present invention.

序列表sequence listing

<110> 西北农林科技大学<110> Northwest A&F University

<120> 一种促进小麦生长的复合菌剂及应用<120> A compound bacterial agent for promoting wheat growth and its application

<140> 2019106205879<140> 2019106205879

<160> 3<160> 3

<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0

<210> 1<210> 1

<211> 1299<211> 1299

<212> DNA<212> DNA

<213> 固氮菌(Azotobacter chroococcum)<213> Azotobacter chroococcum

<400> 1<400> 1

gtgagtaatg cctaggaatc tgcccgatag tgggggacaa cgtttcgaaa ggaacgctaa 60gtgagtaatg cctaggaatc tgcccgatag tgggggacaa cgtttcgaaa ggaacgctaa 60

taccgcatac gtcctacggg agaaagtggg ggctcttcgg acctcacgct atcggatgag 120taccgcatac gtcctacggg agaaagtggg ggctcttcgg acctcacgct atcggatgag 120

cctaggtcgg attagctagt tggtggggta aaggctcacc aaggcgacga tccgtaactg 180cctaggtcgg attagctagt tggtggggta aaggctcacc aaggcgacga tccgtaactg 180

gtctgagagg atgatcagtc acactggaac tgagacacgg tccagactcc tacgggaggc 240gtctgagagg atgatcagtc acactggaac tgagacacgg tccagactcc tacgggaggc 240

agcagtggga atattggaca atgggcgaaa gcctgatcca gccatgccgc gtgtgtgaag 300agcagtggga atattggaca atgggcgaaa gcctgatcca gccatgccgc gtgtgtgaag 300

aaggtcttcg gattgtaaag cactttaagt tgggaggaag ggctgtaagc gaataccttg 360aaggtcttcg gattgtaaag cactttaagt tgggaggaag ggctgtaagc gaataccttg 360

cagttttgac gttaccgaca gaataagcac cggctaactt cgtgccagca gccgcggtaa 420cagttttgac gttaccgaca gaataagcac cggctaactt cgtgccagca gccgcggtaa 420

tacgaagggt gcaagcgtta atcggaatta ctgggcgtaa agcgcgcgta ggtggtttgg 480tacgaagggt gcaagcgtta atcggaatta ctgggcgtaa agcgcgcgta ggtggtttgg 480

taagttggat gtgaaagccc cgggctcaac ctgggaactg catccaaaac tgcctgacta 540taagttggat gtgaaagccc cgggctcaac ctgggaactg catccaaaac tgcctgacta 540

gagtacggta gagggtggtg gaatttcctg tgtagcggtg aaatgcgtag atataggaag 600gagtacggta gagggtggtg gaatttcctg tgtagcggtg aaatgcgtag atataggaag 600

gaacaccagt ggcgaaggcg accacctgga ctgatactga cactgaggtg cgaaagcgtg 660gaacaccagt ggcgaaggcg accacctgga ctgatactga cactgaggtg cgaaagcgtg 660

gggagcaaac aggattagat accctggtag tccacgccgt aaacgatgtc gactagccgt 720gggagcaaac aggattagat accctggtag tccacgccgt aaacgatgtc gactagccgt 720

tgggctcctt gagagcttag tggcgcagct aacgcattaa gtcgaccgcc tggggagtac 780tgggctcctt gagagcttag tggcgcagct aacgcattaa gtcgaccgcc tggggagtac 780

ggccgcaagg ttaaaactca aatgaattga cgggggcccg cacaagcggt ggagcatgtg 840ggccgcaagg ttaaaactca aatgaattga cgggggcccg cacaagcggt ggagcatgtg 840

gtttaattcg aagcaacgcg aagaacctta cctggccttg acatgctgag aactttccag 900gtttaattcg aagcaacgcg aagaacctta cctggccttg acatgctgag aactttccag 900

agatggattg gtgccttcgg gaactcagac acaggtgctg catggctgtc gtcagctcgt 960agatggattg gtgccttcgg gaactcagac acaggtgctg catggctgtc gtcagctcgt 960

gtcgtgagat gttgggttaa gtcccgtaac gagcgcaacc cttgtcctta gttaccagca 1020gtcgtgagat gttgggttaa gtcccgtaac gagcgcaacc cttgtcctta gttaccagca 1020

cctcgggtgg gcactctaag gagactgccg gtgacaaacc ggaggaaggt ggggatgacg 1080cctcgggtgg gcactctaag gagactgccg gtgacaaacc ggaggaaggt ggggatgacg 1080

tcaagtcatc atggccctta cggccagggc tacacacgtg ctacaatggt cggtacagag 1140tcaagtcatc atggccctta cggccagggc tacacacgtg ctacaatggt cggtacagag 1140

ggttgccaag tcgcgaggcg gagctaatcc cagaaaaccg atcgtagtcc ggatcgcagt 1200ggttgccaag tcgcgaggcg gagctaatcc cagaaaaccg atcgtagtcc ggatcgcagt 1200

ctgcaactcg actgcgtgaa gtcggaatcg ctagtaatcg cgaatcagaa tgtcgcggtg 1260ctgcaactcg actgcgtgaa gtcggaatcg ctagtaatcg cgaatcagaa tgtcgcggtg 1260

aatacgttcc cgggccttgt acacaccgcc cgtcacacc 1299aatacgttcc cgggccttgt acacaccgcc cgtcacacc 1299

<210> 2<210> 2

<211> 1250<211> 1250

<212> DNA<212> DNA

<213> 根瘤菌(Rhizobium radiobacter)<213> Rhizobium radiobacter

<400> 2<400> 2

ggtgtgacgg gcggtgtgta caaggcccgg gaacgtattc accgcagcat gctgatctgc 60ggtgtgacgg gcggtgtgta caaggcccgg gaacgtattc accgcagcat gctgatctgc 60

gattactagc gattccaact tcatgcactc gagttgcaga gtgcaatccg aactgagatg 120gattactagc gattccaact tcatgcactc gagttgcaga gtgcaatccg aactgagatg 120

gcttttggag attagctcga catcgctgtc tcgctgccca ctgtcaccac cattgtagca 180gcttttggag attagctcga catcgctgtc tcgctgccca ctgtcaccac cattgtagca 180

cgtgtgtagc ccagcccgta agggccatga ggacttgacg tcatccccac cttcctctcg 240cgtgtgtagc ccagcccgta agggccatga ggacttgacg tcatccccac cttcctctcg 240

gcttatcacc ggcagtcccc ttagagtgcc caactaaatg ctggcaacta agggcgaggg 300gcttatcacc ggcagtcccc ttagagtgcc caactaaatg ctggcaacta agggcgaggg 300

ttgcgctcgt tgcgggactt aacccaacat ctcacgacac gagctgacga cagccatgca 360ttgcgctcgt tgcgggactt aacccaacat ctcacgacac gagctgacga cagccatgca 360

gcacctgttc tggggccagc ctaactgaag gacatcgtct ccaatgccca taccccgaat 420gcacctgttc tggggccagc ctaactgaag gacatcgtct ccaatgccca taccccgaat 420

gtcaagagct ggtaaggttc tgcgcgttgc ttcgaattaa accacatgct ccaccgcttg 480gtcaagagct ggtaaggttc tgcgcgttgc ttcgaattaa accacatgct ccaccgcttg 480

tgcgggcccc cgtcaattcc tttgagtttt aatcttgcga ccgtactccc caggcggaat 540tgcgggcccc cgtcaattcc tttgagtttt aatcttgcga ccgtactccc caggcggaat 540

gtttaatgcg ttagctgcgc caccgaacag tatactgccc gacggctaac attcatcgtt 600gtttaatgcg ttagctgcgc caccgaacag tatactgccc gacggctaac attcatcgtt 600

tacggcgtgg actaccaggg tatctaatcc tgtttgctcc ccacgctttc gcacctcagc 660tacggcgtgg actaccaggg tatctaatcc tgtttgctcc ccacgctttc gcacctcagc 660

gtcagtaatg gaccagtaag ccgccttcgc cactggtgtt cctccgaata tctacgaatt 720gtcagtaatg gaccagtaag ccgccttcgc cactggtgtt cctccgaata tctacgaatt 720

tcacctctac actcggaatt ccacttacct cttccatact caagataccc agtatcaaag 780tcacctctac actcggaatt ccacttacct cttccatact caagataccc agtatcaaag 780

gcagttccag agttgagctc tgggatttca cccctgactt aaatatccgc ctacgtgcgc 840gcagttccag agttgagctc tgggatttca cccctgactt aaatatccgc ctacgtgcgc 840

tttacgccca gtaattccga acaacgctag cccccttcgt attaccgcgg ctgctggcac 900tttacgccca gtaattccga acaacgctag cccccttcgt attaccgcgg ctgctggcac 900

gaagttagcc ggggcttctt ctccggatac cgtcattatc ttctccggtg aaagagcttt 960gaagttagcc ggggcttctt ctccggatac cgtcattatc ttctccggtg aaagagcttt 960

acaaccctaa ggccttcatc actcacgcgg catggctgga tcaggcttgc gcccattgtc 1020acaaccctaa ggccttcatc actcacgcgg catggctgga tcaggcttgc gcccattgtc 1020

caatattccc cactgctgcc tcccgtagga gtttgggccg tgtctcagtc ccaatgtggc 1080caatattccc cactgctgcc tcccgtagga gtttgggccg tgtctcagtc ccaatgtggc 1080

tgatcatcct ctcagaccag ctatggatcg tcgccttggt aggcctttac cccaccaact 1140tgatcatcct ctcagaccag ctatggatcg tcgccttggt aggcctttac cccaccaact 1140

agctaatcca acgcgggcca atccttcccc gataaatctt tcccccgtag ggcgtatgcg 1200agctaatcca acgcgggcca atccttcccc gataaatctt tccccccgtag ggcgtatgcg 1200

gtattaattc cagtttcccg gagctattcc gcaggaaagg gtatgttccc 1250gtattaattc cagtttcccg gagctattcc gcaggaaagg gtatgttccc 1250

<210> 3<210> 3

<211> 1313<211> 1313

<212> DNA<212> DNA

<213> 克雷伯氏菌(Klebsiella quasivariicola)<213> Klebsiella quasivariicola

<400> 3<400> 3

acgggtgagt aatgtctggg aaactgcctg atggaggggg ataactactg gaaacggtag 60acgggtgagt aatgtctggg aaactgcctg atggaggggg ataactactg gaaacggtag 60

ctaataccgc ataacgtcgc aagaccaaag tgggggacct tcgggcctca tgccatcaga 120ctaataccgc ataacgtcgc aagaccaaag tgggggacct tcgggcctca tgccatcaga 120

tgtgcccaga tgggattagc tggtaggtgg ggtaacggct cacctaggcg acgatcccta 180tgtgcccaga tgggattagc tggtaggtgg ggtaacggct cacctaggcg acgatcccta 180

gctggtctga gaggatgacc agccacactg gaactgagac acggtccaga ctcctacggg 240gctggtctga gaggatgacc agccacactg gaactgagac acggtccaga ctcctacggg 240

aggcagcagt ggggaatatt gcacaatggg cgcaagcctg atgcagccat gccgcgtgtg 300aggcagcagt ggggaatatt gcacaatggg cgcaagcctg atgcagccat gccgcgtgtg 300

tgaagaaggc cttcgggttg taaagcactt tcagcgggga ggaaggcggt gaggttaata 360tgaagaaggc cttcgggttg taaagcactt tcagcgggga ggaaggcggt gaggttaata 360

acctcatcga ttgacgttac ccgcagaaga agcaccggct aactccgtgc cagcagccgc 420acctcatcga ttgacgttac ccgcagaaga agcaccggct aactccgtgc cagcagccgc 420

ggtaatacgg agggtgcaag cgttaatcgg aattactggg cgtaaagcgc acgcaggcgg 480ggtaatacgg agggtgcaag cgttaatcgg aattactggg cgtaaagcgc acgcaggcgg 480

tctgtcaagt cggatgtgaa atccccgggc tcaacctggg aactgcattc gaaactggca 540tctgtcaagt cggatgtgaa atccccgggc tcaacctggg aactgcattc gaaactggca 540

ggctagagtc ttgtagaggg gggtagaatt ccaggtgtag cggtgaaatg cgtagagatc 600ggctagagtc ttgtagaggg gggtagaatt ccaggtgtag cggtgaaatg cgtagagatc 600

tggaggaata ccggtggcga aggcggcccc ctggacaaag actgacgctc aggtgcgaaa 660tggaggaata ccggtggcga aggcggcccc ctggacaaag actgacgctc aggtgcgaaa 660

gcgtggggag caaacaggat tagataccct ggtagtccac gctgtaaacg atgtcgattt 720gcgtggggag caaacaggat tagataccct ggtagtccac gctgtaaacg atgtcgattt 720

ggaggttgtg cccttgaggc gtggcttccg gagctaacgc gttaaatcga ccgcctgggg 780ggaggttgtg cccttgaggc gtggcttccg gagctaacgc gttaaatcga ccgcctgggg 780

agtacggccg caaggttaaa actcaaatga attgacgggg gcccgcacaa gcggtggagc 840agtacggccg caaggttaaa actcaaatga attgacgggg gcccgcacaa gcggtggagc 840

atgtggttta attcgatgca acgcgaagaa ccttacctgg tcttgacatc cacagaactt 900atgtggttta attcgatgca acgcgaagaa ccttacctgg tcttgacatc cacagaactt 900

tccagagatg gattggtgcc ttcgggaact gtgagacagg tgctgcatgg ctgtcgtcag 960tccagagatg gattggtgcc ttcgggaact gtgagacagg tgctgcatgg ctgtcgtcag 960

ctcgtgttgt gaaatgttgg gttaagtccc gcaacgagcg caacccttat cctttgttgc 1020ctcgtgttgt gaaatgttgg gttaagtccc gcaacgagcg caacccttat cctttgttgc 1020

cagcggttag gccgggaact caaaggagac tgccagtgat aaactggagg aaggtgggga 1080cagcggttag gccgggaact caaaggagac tgccagtgat aaactggagg aaggtgggga 1080

tgacgtcaag tcatcatggc ccttacgacc agggctacac acgtgctaca atggcatata 1140tgacgtcaag tcatcatggc ccttacgacc agggctacac acgtgctaca atggcatata 1140

caaagagaag cgacctcgcg agagcaagcg gacctcataa agtatgtcgt agtccggatt 1200caaagagaag cgacctcgcg agagcaagcg gacctcataa agtatgtcgt agtccggatt 1200

ggagtctgca actcgactcc atgaagtcgg aatcgctagt aatcgtagat cagaatgcta 1260ggagtctgca actcgactcc atgaagtcgg aatcgctagt aatcgtagat cagaatgcta 1260

cggtgaatac gttcccgggc cttgtacaca ccgcccgtca caccatggga gtg 1313cggtgaatac gttcccgggc cttgtacaca ccgcccgtca caccatggga gtg 1313

Claims (7)

1.一种促进小麦生长的复合菌剂,其特征在于,所述复合菌剂是由固氮菌(Azotobacter sp.)N24菌液、根瘤菌(Rhizobium sp.)J16菌液和克雷伯氏菌(Klebsiellasp.)P5菌液混合发酵后制得;所述固氮菌(Azotobacter sp.)N24于2019年4月22日保藏于中国典型培养物保藏中心(CCTCC),保藏编号为CCTCC NO:M 2019281;所述根瘤菌(Rhizobium sp.)J16于2019年4月22日保藏于中国典型培养物保藏中心(CCTCC),保藏编号为CCTCC NO:M 2019279;所述克雷伯氏菌(Klebsiella sp.)P5于2019年4月22日保藏于中国典型培养物保藏中心(CCTCC),保藏编号为CCTCC NO:M 2019280。1. a compound microbial inoculum promoting wheat growth, is characterized in that, described compound microbial inoculum is by nitrogen-fixing bacteria ( Azotobacter sp.) N24 bacterial liquid, Rhizobium ( Rhizobium sp.) J16 bacterial liquid and Klebsiella ( Klebsiella sp.) P5 bacterial liquid mixed and fermented; the nitrogen-fixing bacteria ( Azotobacter sp.) N24 was deposited in the China Center for Type Culture Collection (CCTCC) on April 22, 2019, and the deposit number is CCTCC NO: M 2019281; the Rhizobium sp. J16 was deposited in the China Center for Type Culture Collection (CCTCC) on April 22, 2019, and the deposit number is CCTCC NO: M 2019279; the Klebsiella sp. .) P5 was deposited in the China Center for Type Culture Collection (CCTCC) on April 22, 2019, and the deposit number is CCTCC NO: M 2019280. 2.根据权利要求1所述复合菌剂,其特征在于,所述固氮菌(Azotobacter sp.)N24菌液、根瘤菌(Rhizobium sp.)J16菌液、克雷伯氏菌(Klebsiella sp.)P5菌液的体积比为1~2:1~2:1~2。2. according to the described compound bacterial agent of claim 1, it is characterized in that, described nitrogen-fixing bacteria ( Azotobacter sp.) N24 bacterial liquid, Rhizobium ( Rhizobium sp.) J16 bacterial liquid, Klebsiella ( Klebsiella sp.) The volume ratio of P5 bacterial liquid is 1~2:1~2:1~2. 3.根据权利要求2所述复合菌剂,其特征在于,所述固氮菌(Azotobacter sp.)N24菌液、根瘤菌(Rhizobium sp.)J16菌液、克雷伯氏菌(Klebsiella sp.)P5菌液的体积比为2:1:1。3. according to the described compound bacterial agent of claim 2, it is characterized in that, described nitrogen-fixing bacteria ( Azotobacter sp.) N24 bacterial liquid, Rhizobium ( Rhizobium sp.) J16 bacterial liquid, Klebsiella ( Klebsiella sp.) The volume ratio of P5 bacterial solution was 2:1:1. 4.根据权利要求1所述复合菌剂,其特征在于,所述复合菌剂中三种细菌的总有效活菌数为2×108~9×108个/mL。4 . The composite bacterial preparation according to claim 1 , wherein the total effective viable count of the three bacteria in the composite bacterial preparation is 2×10 8 to 9×10 8 cells/mL. 5 . 5.根据权利要求1所述复合菌剂,其特征在于,所述发酵的培养基为LB液体培养基,由以下组分组成:终浓度为3~7g/L的酵母提取物,终浓度为8~12g/L的胰蛋白胨,终浓度为5~15g/L的NaCl,余量水。5. The compound bacterial preparation according to claim 1 is characterized in that, the fermented medium is LB liquid medium, and is made up of the following components: the final concentration is the yeast extract of 3~7g/L, and the final concentration is 8~12g/L tryptone, the final concentration is 5~15g/L NaCl, the balance is water. 6.根据权利要求1所述复合菌剂,其特征在于,所述发酵的培养条件为25~30℃、150~180rpm培养24~48h。6 . The compound bacterial agent according to claim 1 , characterized in that, the culture conditions of the fermentation are 25-30° C., 150-180 rpm for 24-48 hours. 7 . 7.权利要求1至6任一项所述复合菌剂在提高植物生长性能中的应用。7. The application of the composite inoculum of any one of claims 1 to 6 in improving plant growth performance.
CN201910620587.9A 2019-07-10 2019-07-10 A compound inoculant for promoting wheat growth and its application Active CN110564637B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910620587.9A CN110564637B (en) 2019-07-10 2019-07-10 A compound inoculant for promoting wheat growth and its application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910620587.9A CN110564637B (en) 2019-07-10 2019-07-10 A compound inoculant for promoting wheat growth and its application

Publications (2)

Publication Number Publication Date
CN110564637A CN110564637A (en) 2019-12-13
CN110564637B true CN110564637B (en) 2022-07-12

Family

ID=68773755

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910620587.9A Active CN110564637B (en) 2019-07-10 2019-07-10 A compound inoculant for promoting wheat growth and its application

Country Status (1)

Country Link
CN (1) CN110564637B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110272848B (en) * 2019-07-10 2023-01-03 西北农林科技大学 Rhizobium J16 with potassium-dissolving effect and application thereof
CN110438036B (en) * 2019-07-10 2022-05-17 西北农林科技大学 Nitrogen-fixing bacterium N24 with nitrogen-fixing effect and application thereof
CN113548921A (en) * 2020-04-08 2021-10-26 长江大学 Native composite growth-promoting bacterial fertilizer for promoting growth of ginger seedlings and preparation method thereof
CN111560334B (en) * 2020-05-22 2021-10-29 浙江农林大学 Phosphorus-dissolving nitrogen-fixing compound bacterial agent and its preparation method and application
CN113278553B (en) * 2021-05-21 2022-02-01 中国农业科学院农业资源与农业区划研究所 Enhanced efficient nitrogen fixation composite bacterial system added with non-nitrogen fixation bacteria and application thereof
CN113558066A (en) * 2021-06-28 2021-10-29 广东丽豪生物农业有限公司 Bacterial liquid for wheat breeding and wheat flowering phase breeding method
CN116376706B (en) * 2022-09-16 2025-03-11 河北省科学院生物研究所 Application of Eurotium pseudonudus SDF-LT
CN116445351A (en) * 2023-04-21 2023-07-18 西北农林科技大学 Method for rapidly culturing indigenous microorganisms

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101003442A (en) * 2006-12-31 2007-07-25 新疆惠森生物技术有限公司 Microbial manure of chelates of composite amino acid in use for spray irrigation, drop irrigation, and production method
CN102690767A (en) * 2012-05-31 2012-09-26 黑龙江省科学院微生物研究所 Klebsiella oxytoca efficient in phosphorus solubilizing and nitrogen fixation and capable of inhibiting growth of pathogenic fungi
CN102827792A (en) * 2012-08-10 2012-12-19 哈尔滨师范大学 Plant growth-promoting rhizobacterium SXH-3 and application thereof
CN106811433A (en) * 2017-02-22 2017-06-09 广州聚禅现代农业研究院有限公司 A kind of liquid microbe fertilizer and preparation method with fixing nitrogen, dissolving phosphor and dissolving potassium effect
CN109097305A (en) * 2018-08-28 2018-12-28 西安文理学院 A kind of rhizobium and its application

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2431926B (en) * 2005-11-08 2010-07-28 Univ Surrey Bioremediation materials

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101003442A (en) * 2006-12-31 2007-07-25 新疆惠森生物技术有限公司 Microbial manure of chelates of composite amino acid in use for spray irrigation, drop irrigation, and production method
CN102690767A (en) * 2012-05-31 2012-09-26 黑龙江省科学院微生物研究所 Klebsiella oxytoca efficient in phosphorus solubilizing and nitrogen fixation and capable of inhibiting growth of pathogenic fungi
CN102827792A (en) * 2012-08-10 2012-12-19 哈尔滨师范大学 Plant growth-promoting rhizobacterium SXH-3 and application thereof
CN106811433A (en) * 2017-02-22 2017-06-09 广州聚禅现代农业研究院有限公司 A kind of liquid microbe fertilizer and preparation method with fixing nitrogen, dissolving phosphor and dissolving potassium effect
CN109097305A (en) * 2018-08-28 2018-12-28 西安文理学院 A kind of rhizobium and its application

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Dual Inoculation with Azotobacter chroococcum MF135558 and Klebsiella oxytoca MF135559 Enhance the Growth and Yield of Wheat Plant and Reduce N-Fertilizers Usage";El-Sawah,A.M et al.;《J. Food and Dairy Sci.》;20181031;第67-76页 *
"Silicate Solubilization and Plant Growth Promoting Potential of Rhizobium Sp. Isolated from Rice Rhizosphere";C. Chandrakala et al.;《Silicon》;20190201;第11卷;第2895-2906页 *
"一株抗铜根瘤菌的分离鉴定及其16S rDNA序列分析";樊连梅 等;《华北农学报》;20111231;第26卷(第2期);第7-12页 *
"联合固氮菌与根瘤菌协同作用对小麦幼苗的影响";徐兴良 等;《中国生态农业学报》;20030730;第11卷(第3期);第66-68页 *

Also Published As

Publication number Publication date
CN110564637A (en) 2019-12-13

Similar Documents

Publication Publication Date Title
CN110564637B (en) A compound inoculant for promoting wheat growth and its application
CN110438037B (en) Klebsiella sp 5 with phosphorus dissolving effect and application thereof
CN110577911B (en) A strain of Bacillus pumilus and its application
CN103146622B (en) Paenibacillus terrae strain
CN103627662B (en) A kind of Bradyrhizobium sp Arachis and uses thereof
CN106434496B (en) One plant of brevibacterium halotolerans and its application in soil ecology reparation
CN108893421B (en) Bacillus fusiformis and application thereof in reclamation ecological reconstruction of mining area
CN104630090B (en) A kind of Rhizosphere of Crops Promoting bacteria YM3 and its application
CN110616179A (en) Pseudomonas aeruginosa DGNK-JL2 and application thereof
CN106520604B (en) One plant of nitrogen-fixing bacteria for producing acc deaminase and its application in soil ecology reparation
CN103146610A (en) Plant growth-promoting rhizobacteria and application thereof
CN104630087B (en) A kind of Rhizosphere of Crops Promoting bacteria YM4 and its application
CN111117924B (en) Compound microbial inoculum and preparation method thereof, fertilizer and method for preventing and treating root rot
CN109280628B (en) Enterobacter strain and application thereof in promoting growth of moso bamboos
CN110438036B (en) Nitrogen-fixing bacterium N24 with nitrogen-fixing effect and application thereof
AU2018314720A1 (en) Marine microbial inoculant and preparation method thereof
CN114908014A (en) Camellia oleifera endophytic actinomycetes that promote dissolution of iron phosphate and its application
CN114921362A (en) Camellia oleifera endophytic actinomycetes with insoluble phosphorus dissolving and growth promoting functions and application thereof
WO2024197354A1 (en) Combination of microbes for use in agriculture
CN115868506B (en) Application of bacillus thuringiensis in dissolving phosphorus in soil, promoting plant growth and regulating metabolism of soil enzyme system
CN117660243A (en) Stress-resistant azotobacter strain NBL-B11002 and application thereof
CN110272848B (en) Rhizobium J16 with potassium-dissolving effect and application thereof
CN118546810A (en) A strain of Bacillus M6P41 with phosphate-solubilizing function and its application
CN117165475A (en) Bacillus cereus and application thereof
CN104560815A (en) Bacillus licheniformis with azo compound degradation activity and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant