[go: up one dir, main page]

CN110554020A - 一种SPR在近红外的Ag-TiS2复合SERS基底及其制备方法 - Google Patents

一种SPR在近红外的Ag-TiS2复合SERS基底及其制备方法 Download PDF

Info

Publication number
CN110554020A
CN110554020A CN201910870317.3A CN201910870317A CN110554020A CN 110554020 A CN110554020 A CN 110554020A CN 201910870317 A CN201910870317 A CN 201910870317A CN 110554020 A CN110554020 A CN 110554020A
Authority
CN
China
Prior art keywords
sputtering
spr
substrate
raman scattering
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910870317.3A
Other languages
English (en)
Inventor
张小龙
张永军
王雅新
陈雷
赵晓宇
张帆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin Normal University
Original Assignee
Jilin Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin Normal University filed Critical Jilin Normal University
Priority to CN201910870317.3A priority Critical patent/CN110554020A/zh
Publication of CN110554020A publication Critical patent/CN110554020A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • C23C14/205Metallic material, boron or silicon on organic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Physical Vapour Deposition (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明公开了一种SPR在近红外的Ag‑TiS2复合SERS基底及其制备方法,属于复合纳米功能材料技术领域。本发明目的是改善TiS2表面增强拉曼散射活性,获得在近红外区有较强拉曼活性的基底,本发明为Ag和TiS2的复合材料,该复合结构是将Ag和TiS2通过共溅射的方式沉积在200nm的聚苯乙烯小球六方密排阵列上获得。通过改变TiS2的溅射功率,调控Ag‑TiS2活性基底在近红外区的SPR。拉曼光谱证明Ag‑TiS2SERS活性基底的增强因子可以达到109,说明这种由半金属‑金属组成的基底具有卓越的SERS活性。

Description

一种SPR在近红外的Ag-TiS2复合SERS基底及其制备方法
技术领域
本发明属于复合纳米功能材料技术领域。
背景技术
当入射光与金属表面自由电子的运动发生共振时产生表面等离子体共振(surface plasmonresonance,SPR)。SPR自从被发现以来,主要研究集中在贵金属中,如银,金等。但是单一的纳米材料的性能具有局限性,所以复合纳米材料的研究得到了重视和发展。复合材料能够极大的改善材料本身的性能,提高材料的应用范围和价值。TiS2有类似金属的能带结构,较高的载流子浓度,迁移率和导电性能,以及在光照下产生表面等离子特性。但是TiS2很弱的表面增强拉曼散射活性限制了其在拉曼散射领域的应用,因此设计和研究Ag-TiS2复合SERS活性基底,可以拓展SERS技术理论和应用的范围。
发明内容
为了改善TiS2表面增强拉曼散射活性,获得在近红外区有较强拉曼活性的基底,本发明公开了一种SPR在近红外的Ag-TiS2表面增强拉曼散射活性基底,该基底为Ag和TiS2的复合材料,该复合结构是将Ag和TiS2通过共溅射的方式沉积在200nm的聚苯乙烯小球六方密排阵列上获得。
通过改变TiS2的溅射功率,调控Ag-TiS2活性基底在近红外区的SPR。拉曼光谱证明Ag-TiS2SERS活性基底的增强因子可以达到109,说明这种由半金属-金属组成的基底具有卓越的SERS活性。
该复合材料的制备步骤为:
(1)清洗硅片。将硅片放入烧杯中,在烧杯中分别加入体积比为1:2:6的氨水、过氧化氢和去离子水的混合溶液中。将烧杯放在烤焦台上加热至沸腾,并保持5~10min。冷却后将液体倒出,依次用去离子水,无水乙醇反复超声15min。
(2)制备六方密排的聚苯乙烯小球阵列。将直径200nm聚苯乙烯小球和无水乙醇的按照体积比为1:1混合,再通过超声处理使聚苯乙烯小球均匀分散。用移液枪将聚苯乙烯小球分散液滴在大块的硅片,使分散液均匀分布在硅片上,将大硅片缓慢倾斜的滑入液面平稳的器皿中,在水面上形成密排的聚苯乙烯小球阵列。最后用清洗后的硅片将浮在水面上的小球阵列缓慢的捞起来,吸水干燥后备用。
(3)制备活性基底。将步骤(2)中制备的带有聚苯乙烯小球阵列的基底放入磁控溅射腔体内。工作条件为:真空度2×10-4Pa,溅射气压0.6Pa,气流量为25sccm,溅射气体为纯度是99.99%的氩气。Ag的溅射速率为21.6W,TiS2的溅射功率为100W~200W,优选150W。共溅射时间为20min,溅射完成后获得SPR在近红外的Ag-TiS2表面增强拉曼散射活性基底。本发明的有益效果:
利用磁控溅射沉积技术在聚苯乙烯胶体球上共溅射制备Ag-TiS2复合纳米结构形成稳定的周期性结构阵列。制备方法简单,实验周期短,应用范围广。通过改变TiS2的溅射功率精确调控Ag-TiS2复合纳米基底在近红外的SPR吸收峰,同时Ag-TiS2复合纳米基底的表面增强拉曼散射活性会随之改变。
附图说明
图1TiS2的溅射功率为100W的Ag-TiS2复合纳米基底的SEM图像
图2TiS2的溅射功率为150W的Ag-TiS2复合纳米基底的SEM图像
图3TiS2的溅射功率为200W的Ag-TiS2复合纳米基底的SEM图像。
图4Ag-TiS2复合纳米基底的紫外吸收图谱。
图5Ag-TiS2复合纳米基底的拉曼光谱。
具体实施方式
下面以具体实施例的方式对本发明技术方案做进一步解释和说明。
(1)清洗硅片。将硅片并放入烧杯中,在烧杯中分别加入体积比为1:2:6的氨水、过氧化氢和去离子水的混合溶液中。将烧杯放在烤焦台上加热至沸腾,并保持5~10min,冷却后将液体倒出,依次用去离子水,无水乙醇反复超声15min。
(2)制备六方密排的聚苯乙烯小球阵列。直径200nm聚苯乙烯小球和无水乙醇的按照体积比为1:1混合,再通过超声处理使聚苯乙烯小球均匀分散,用移液枪将聚苯乙烯小球分散液滴在大块的硅片,使分散液均匀分布在硅片上,将大硅片缓慢倾斜的滑入液面平稳的器皿中,在水面上形成密排的聚苯乙烯小球阵列,最后用清洗后的硅片将浮在水面上的小球阵列缓慢的捞起来,吸水干燥后备用。
(3)制备活性基底。将步骤(2)制备带有聚苯乙烯小球阵列的硅片放入磁控溅射腔体内。工作条件为:真空度2×10-4Pa,溅射气压0.6Pa,气流量为25sccm,溅射气体为纯度是99.99%的氩气。Ag的溅射速率为21.6W,TiS2的溅射功率分别设定为100W、150W和200W。溅射时间为20min,溅射完成后获得SPR在近红外的Ag-TiS2表面增强拉曼散射活性基底。
Ag-TiS2复合纳米基底的形貌如图1~3所示,溅射功率不同,纳米结构的表面粗糙度不同,纳米缝隙尺寸不同,其中在TiS2溅射功率为150W的产品粗糙度最高。
用紫外吸收光谱测试Ag-TiS2复合纳米基底的吸收光谱。如图4所示,当TiS2溅射功率从100W变为200W时,SPR向近红外区红移。在图5中,SERS信号先增加在减小,在TiS2溅射功率为150W时,SERS信号最强。这是因为当激发光照射在复合纳米结构表面时,Ag-TiS2(150W)粗糙的表面和纳米缝隙产生的热点最丰富,且其的增强因子可达到109

Claims (5)

1.一种SPR在近红外的Ag-TiS2表面增强拉曼散射活性基底,其特征在于,该基底为Ag和TiS2的复合材料,该复合结构是将Ag和TiS2通过共溅射的方式沉积在200nm的聚苯乙烯小球六方密排阵列上获得。
2.如权利要求1所述的SPR在近红外的Ag-TiS2表面增强拉曼散射活性基底的制备方法,具体步骤如下:
1)清洗硅片;
2)制备制备六方密排的聚苯乙烯小球阵列;
3)将步骤2)中制备的带有聚苯乙烯小球阵列的基底放入磁控溅射腔体内,工作条件为:真空度2×10-4Pa,溅射气压0.6Pa,气流量为25sccm,溅射气体为纯度是99.99%的氩气。Ag的溅射速率为21.6W,TiS2的溅射功率为100W~200W,共溅射时间为20min,溅射完成后获得SPR在近红外的Ag-TiS2表面增强拉曼散射活性基底。
3.根据权利要求2所述的SPR在近红外的Ag-TiS2表面增强拉曼散射活性基底的制备方法,其特征在于,
步骤1)具体步骤为:将硅片放入烧杯中,在烧杯中分别加入体积比为1:2:6的氨水、过氧化氢和去离子水的混合溶液中。将烧杯放在烤焦台上加热至沸腾,并保持5~10min。冷却后将液体倒出,依次用去离子水,无水乙醇反复超声15min。
4.根据权利要求2所述的SPR在近红外的Ag-TiS2表面增强拉曼散射活性基底的制备方法,其特征在于,
步骤2)具体步骤为:将直径200nm聚苯乙烯小球和无水乙醇的按照体积比为1:1混合,再通过超声处理使聚苯乙烯小球均匀分散。用移液枪将聚苯乙烯小球分散液滴在大块的硅片,使分散液均匀分布在硅片上,将大硅片缓慢倾斜的滑入液面平稳的器皿中,在水面上形成密排的聚苯乙烯小球阵列。最后用清洗后的硅片将浮在水面上的小球阵列缓慢的捞起来,吸水干燥后备用。
5.根据权利要求2所述的SPR在近红外的Ag-TiS2表面增强拉曼散射活性基底的制备方法,其特征在于,TiS2的溅射功率为150W。
CN201910870317.3A 2019-09-16 2019-09-16 一种SPR在近红外的Ag-TiS2复合SERS基底及其制备方法 Pending CN110554020A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910870317.3A CN110554020A (zh) 2019-09-16 2019-09-16 一种SPR在近红外的Ag-TiS2复合SERS基底及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910870317.3A CN110554020A (zh) 2019-09-16 2019-09-16 一种SPR在近红外的Ag-TiS2复合SERS基底及其制备方法

Publications (1)

Publication Number Publication Date
CN110554020A true CN110554020A (zh) 2019-12-10

Family

ID=68740419

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910870317.3A Pending CN110554020A (zh) 2019-09-16 2019-09-16 一种SPR在近红外的Ag-TiS2复合SERS基底及其制备方法

Country Status (1)

Country Link
CN (1) CN110554020A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009031619A1 (ja) * 2007-09-04 2009-03-12 Mitsubishi Chemical Corporation リチウム遷移金属系化合物粉体、その製造方法及びその焼成前駆体となる噴霧乾燥体、並びに、それを用いたリチウム二次電池用正極及びリチウム二次電池
CN108459006A (zh) * 2018-03-28 2018-08-28 吉林师范大学 一种LSPR可调的Ag/Cu2S共溅射SERS活性基底及其制备方法
CN108519363A (zh) * 2018-03-28 2018-09-11 吉林师范大学 一种Ag/Cu2S复合SERS基底及其制备方法
CN109852945A (zh) * 2019-01-28 2019-06-07 深圳大学 一种基于二维材料的拉曼增强基底及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009031619A1 (ja) * 2007-09-04 2009-03-12 Mitsubishi Chemical Corporation リチウム遷移金属系化合物粉体、その製造方法及びその焼成前駆体となる噴霧乾燥体、並びに、それを用いたリチウム二次電池用正極及びリチウム二次電池
CN108459006A (zh) * 2018-03-28 2018-08-28 吉林师范大学 一种LSPR可调的Ag/Cu2S共溅射SERS活性基底及其制备方法
CN108519363A (zh) * 2018-03-28 2018-09-11 吉林师范大学 一种Ag/Cu2S复合SERS基底及其制备方法
CN109852945A (zh) * 2019-01-28 2019-06-07 深圳大学 一种基于二维材料的拉曼增强基底及其制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NING MA ET AL.: "Thickness-Dependent NIR LSPR of Curved Ag/TiS2 Bilayer Film", 《MOLECULES》 *
ZHENGFENG ZHU ET AL.: "Near-Infrared Plasmonic 2D Semimetals for Applications in Communication and Biology", 《ADV. FUNCT. MATER.》 *
朱正峰: "热注法制备二硫化钛纳米片及其局域表面等离子体共振(LSPRs)特性研究", 《中国优秀硕士学位论文全文数据库 工程科技I辑》 *

Similar Documents

Publication Publication Date Title
Wang et al. Broadband antireflection on the silicon surface realized by Ag nanoparticle-patterned black silicon
CN108895690B (zh) 一种硅基半导体-金属纳米复合材料及其制备方法
CN101937946B (zh) 一种太阳电池硅片的表面织构方法
CN108519363A (zh) 一种Ag/Cu2S复合SERS基底及其制备方法
CN106493381A (zh) 一种银/氧化亚铜微纳结构复合材料的制备方法及其应用
CN110592545A (zh) 一种桥联型SERS活性Ag/SiO2纳米球壳阵列结构复合材料及其制备方法
Hou et al. High-temperature stable plasmonic and cavity resonances in metal nanoparticle-decorated silicon nanopillars for strong broadband absorption in photothermal applications
CN105973867A (zh) 一种类金属与金属复合空心腔阵列结构及其制备方法
CN109786494B (zh) 一种微腔结构紫外探测器及其制备方法
CN104777151A (zh) 一种超灵敏铜sers基底及其制备方法
CN111841570B (zh) 一种近红外-可见光谱宽频吸收超材料及其制备方法
CN112147724A (zh) 基于Mxene的宽频和广角完美吸收体及其制备方法
CN104124286B (zh) 一种利用自生长贵金属等离基元纳米结构
CN108459006A (zh) 一种LSPR可调的Ag/Cu2S共溅射SERS活性基底及其制备方法
CN110554021A (zh) 一种SPR在近红外具有强SERS活性的Ag/TiS2分层复合基底及其制备方法
CN108031832B (zh) 一种具有多孔结构的铂族合金纳米颗粒及其制备方法
CN110554020A (zh) 一种SPR在近红外的Ag-TiS2复合SERS基底及其制备方法
CN110668396A (zh) 一种周期波浪状纳米孔结构阵列的制备方法
CN103567457B (zh) 纳米颗粒系统及其制备方法和应用
CN107652459A (zh) 一种紫外区吸收波长可调Ag‑Al复合材料及其制备方法
CN110634966B (zh) 一种超薄太阳光黑硅吸波器及其制备方法
CN114014258A (zh) 一种三维非对称金属-介质功能纳米阵列结构的制备方法
Long et al. Plasmonic effect enhanced photocurrent in nanostructured tio 2 films decorated with gold nanoparticles
CN103489753A (zh) 一种大面积小尺寸核壳结构硅纳米线阵列的制备方法
CN110668395A (zh) 一种高度有序并且呈轴对称的纳米周期性结构的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20191210