[go: up one dir, main page]

CN110544701A - Semiconductor structures and methods of forming them - Google Patents

Semiconductor structures and methods of forming them Download PDF

Info

Publication number
CN110544701A
CN110544701A CN201910818057.5A CN201910818057A CN110544701A CN 110544701 A CN110544701 A CN 110544701A CN 201910818057 A CN201910818057 A CN 201910818057A CN 110544701 A CN110544701 A CN 110544701A
Authority
CN
China
Prior art keywords
region
layer
gate
sub
gate dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910818057.5A
Other languages
Chinese (zh)
Inventor
郭振
内藤达也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaian Imaging Device Manufacturer Corp
Original Assignee
Huaian Imaging Device Manufacturer Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaian Imaging Device Manufacturer Corp filed Critical Huaian Imaging Device Manufacturer Corp
Priority to CN201910818057.5A priority Critical patent/CN110544701A/en
Publication of CN110544701A publication Critical patent/CN110544701A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/20Electrodes characterised by their shapes, relative sizes or dispositions 
    • H10D64/27Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
    • H10D64/311Gate electrodes for field-effect devices
    • H10D64/411Gate electrodes for field-effect devices for FETs
    • H10D64/511Gate electrodes for field-effect devices for FETs for IGFETs
    • H10D64/514Gate electrodes for field-effect devices for FETs for IGFETs characterised by the insulating layers
    • H10D64/516Gate electrodes for field-effect devices for FETs for IGFETs characterised by the insulating layers the thicknesses being non-uniform
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F39/00Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
    • H10F39/011Manufacture or treatment of image sensors covered by group H10F39/12
    • H10F39/014Manufacture or treatment of image sensors covered by group H10F39/12 of CMOS image sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F39/00Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
    • H10F39/80Constructional details of image sensors
    • H10F39/802Geometry or disposition of elements in pixels, e.g. address-lines or gate electrodes
    • H10F39/8023Disposition of the elements in pixels, e.g. smaller elements in the centre of the imager compared to larger elements at the periphery
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F39/00Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
    • H10F39/80Constructional details of image sensors
    • H10F39/803Pixels having integrated switching, control, storage or amplification elements
    • H10F39/8037Pixels having integrated switching, control, storage or amplification elements the integrated elements comprising a transistor
    • H10F39/80373Pixels having integrated switching, control, storage or amplification elements the integrated elements comprising a transistor characterised by the gate of the transistor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

A semiconductor structure and method of forming the same, the semiconductor structure comprising: the substrate comprises a first region, a second region and a third region, wherein the second region and the third region are positioned on two sides of the first region, the first region comprises a first sub-region and a second sub-region which are adjacent, the first sub-region is adjacent to the second region, the second sub-region is adjacent to the third region, the second region is provided with a photoelectric doped region in the substrate, and the third region is provided with a floating diffusion region in the substrate; a gate structure at a surface of the first region, a channel in the first sub-region having a first threshold voltage, a channel in the second sub-region having a second threshold voltage, and the first threshold voltage being greater than the second threshold voltage. The semiconductor structure can improve the performance of the image sensor.

Description

半导体结构及其形成方法Semiconductor structures and methods of forming them

技术领域technical field

本发明涉及半导体制造领域,特别涉及一种半导体结构及其形成方法。The invention relates to the field of semiconductor manufacturing, in particular to a semiconductor structure and a forming method thereof.

背景技术Background technique

图像传感器是把图像信号转化成电信号的半导体装置,图像传感器被分为电荷耦合传感器(CCD)和CMOS图像传感器。An image sensor is a semiconductor device that converts an image signal into an electrical signal, and the image sensor is divided into a charge-coupled sensor (CCD) and a CMOS image sensor.

电荷耦合传感器(CCD)虽然成像质量好,但是由于制造工艺复杂,只有少数的厂商能够掌握,所以导致制造成本居高不下,特别是大型CCD,价格非常高昂,而且其复杂的驱动模式、高能耗以及多级光刻工艺,使其制造工艺中存在很大困难,不能满足产品的需求。Although the charge-coupled sensor (CCD) has good imaging quality, due to the complex manufacturing process, only a few manufacturers can master it, so the manufacturing cost remains high, especially for large CCDs, the price is very high, and its complex drive mode, high energy consumption As well as the multi-level photolithography process, there are great difficulties in the manufacturing process, which cannot meet the needs of the product.

CMOS图像传感器的低能耗,以及相对少的光刻工艺步骤使其制造工艺相对简单,而且CMOS图像传感器允许控制电路、信号处理电路和模数转化器被集成在芯片上,使其可以适用于各种尺寸的产品中,且广泛适用于各种领域。The low energy consumption of the CMOS image sensor and relatively few photolithography process steps make its manufacturing process relatively simple, and the CMOS image sensor allows the control circuit, signal processing circuit and analog-to-digital converter to be integrated on the chip, making it applicable to various Various sizes of products, and widely applicable to various fields.

然而,图像传感器的性能有待进一步改进。However, the performance of image sensors needs to be further improved.

发明内容Contents of the invention

本发明解决的技术问题是提供一种半导体结构及其形成方法,以提高图像传感器的性能。The technical problem solved by the present invention is to provide a semiconductor structure and its forming method to improve the performance of the image sensor.

为解决上述技术问题,本发明的技术方案提供一种半导体结构,包括:基底,所述基底包括第一区以及位于所述第一区两侧的第二区和第三区,所述第一区包括相邻的第一子区和第二子区,所述第一子区与所述第二区邻接,所述第二子区与所述第三区邻接,所述第二区的基底内具有光电掺杂区,所述第三区的基底内具有浮置扩散区;位于所述第一区表面的栅极结构,所述第一子区内的沟道具有第一阈值电压,所述第二子区内的沟道具有第二阈值电压,且所述第一阈值电压大于所述第二阈值电压。In order to solve the above technical problems, the technical solution of the present invention provides a semiconductor structure, including: a substrate, the substrate includes a first region and a second region and a third region located on both sides of the first region, the first The area includes adjacent first sub-areas and second sub-areas, the first sub-area is adjacent to the second area, the second sub-area is adjacent to the third area, the base of the second area There is a photoelectric doped region inside, the base of the third region has a floating diffusion region; the gate structure located on the surface of the first subregion, the channel in the first subregion has a first threshold voltage, so The channel in the second sub-region has a second threshold voltage, and the first threshold voltage is greater than the second threshold voltage.

可选的,所述栅极结构包括:位于所述第一区表面的栅极介质层,在垂直于所述基底表面的方向上,所述第一子区的栅极介质层的厚度大于所述第二子区的栅极介质层的厚度;位于所述栅极介质层表面的栅极层。Optionally, the gate structure includes: a gate dielectric layer located on the surface of the first region, and in a direction perpendicular to the surface of the substrate, the thickness of the gate dielectric layer in the first subregion is greater than the The thickness of the gate dielectric layer in the second sub-region; the gate layer located on the surface of the gate dielectric layer.

可选的,所述第一子区的栅极介质层的厚度与所述第二子区的栅极介质层的厚度的差值范围是5纳米至7纳米。Optionally, the difference between the thickness of the gate dielectric layer in the first subregion and the thickness of the gate dielectric layer in the second subregion is in a range of 5 nanometers to 7 nanometers.

可选的,所述栅极结构包括:位于所述第一区表面的栅极介质层;位于所述栅极介质层表面的栅极层,所述第一子区的栅极层的厚度大于所述第二子区的栅极层的厚度。Optionally, the gate structure includes: a gate dielectric layer located on the surface of the first region; a gate layer located on the surface of the gate dielectric layer, and the thickness of the gate layer in the first sub-region is greater than The thickness of the gate layer of the second sub-region.

可选的,所述栅极介质层的材料包括氧化硅或高介电常数材料,所述高介电常数材料的介电常数大于3.9。Optionally, the material of the gate dielectric layer includes silicon oxide or a high dielectric constant material, and the dielectric constant of the high dielectric constant material is greater than 3.9.

相应的,本发明的技术方案提供一种上述任一半导体结构的形成方法,包括:提供基底,所述基底包括第一区以及位于所述第一区两侧的第二区和第三区,所述第一区包括相邻的第一子区和第二子区,所述第一子区与所述第二区邻接,所述第二子区与所述第三区邻接;在所述第二区内形成光电掺杂区;在所述第三区内形成浮置扩散区;在所述第一区表面形成栅极结构,所述第一子区内的沟道具有第一阈值电压,所述第二子区内的沟道具有第二阈值电压,且所述第一阈值电压大于所述第二阈值电压。Correspondingly, the technical solution of the present invention provides a method for forming any one of the above semiconductor structures, including: providing a substrate, the substrate including a first region and a second region and a third region located on both sides of the first region, The first area includes adjacent first sub-areas and second sub-areas, the first sub-area is adjacent to the second area, and the second sub-area is adjacent to the third area; in the A photoelectric doped region is formed in the second region; a floating diffusion region is formed in the third region; a gate structure is formed on the surface of the first region, and the channel in the first subregion has a first threshold voltage , the channel in the second sub-region has a second threshold voltage, and the first threshold voltage is greater than the second threshold voltage.

可选的,形成所述栅极结构的方法包括:在所述第一子区的部分基底表面形成第一栅极介质层;在所述第一栅极介质层表面及所述基底表面形成第二栅极介质材料层;在所述第二栅极介质材料层表面形成栅极材料层;在所述第一区的栅极材料层表面形成第一图形化层;以所述第一图形化层为掩膜刻蚀所述栅极材料层与第二栅极介质材料层,直至暴露出所述基底表面。Optionally, the method for forming the gate structure includes: forming a first gate dielectric layer on a part of the substrate surface of the first sub-region; forming a first gate dielectric layer on the surface of the first gate dielectric layer and the substrate surface. Two gate dielectric material layers; form a gate material layer on the surface of the second gate dielectric material layer; form a first patterned layer on the surface of the gate material layer in the first region; The layer is a mask to etch the gate material layer and the second gate dielectric material layer until the surface of the substrate is exposed.

可选的,形成所述第一栅极介质层的方法包括:在所述基底表面形成第一栅极介质材料层;在所述第一子区的部分第一栅极介质材料层表面形成第二图形化层;以所述第二图形化层为掩膜刻蚀所述第一栅极介质材料层,直至暴露出所述基底表面。Optionally, the method for forming the first gate dielectric layer includes: forming a first gate dielectric material layer on the surface of the substrate; forming a first gate dielectric material layer on a part of the first sub-region surface A second patterned layer: using the second patterned layer as a mask to etch the first gate dielectric material layer until the surface of the substrate is exposed.

可选的,形成所述栅极结构的方法包括:在所述基底表面形成栅极介质材料层;在所述栅极介质材料层表面形成栅极材料层;去除所述第一区以外的栅极介质材料层和栅极材料层以形成栅极介质层与初始栅极层;在所述第一子区的初始栅极层表面形成第三图形化层;以所述第三图形化层为掩膜刻蚀所述初始栅极层以形成栅极层。Optionally, the method for forming the gate structure includes: forming a gate dielectric material layer on the surface of the substrate; forming a gate material layer on the surface of the gate dielectric material layer; A dielectric material layer and a gate material layer to form a gate dielectric layer and an initial gate layer; a third patterned layer is formed on the surface of the initial gate layer in the first sub-region; the third patterned layer is used as The initial gate layer is etched with a mask to form a gate layer.

可选的,去除所述第一区以外的栅极介质材料层和栅极材料层的方法包括:在所述第一区的栅极材料层表面形成第四图形化层;以所述第四图形化层为掩膜,刻蚀所述栅极介质材料层和所述栅极材料层,直至暴露出所述基底表面。Optionally, the method for removing the gate dielectric material layer and the gate material layer outside the first region includes: forming a fourth patterned layer on the surface of the gate material layer in the first region; The patterned layer is a mask, and the gate dielectric material layer and the gate material layer are etched until the surface of the substrate is exposed.

与现有技术相比,本发明的技术方案具有以下有益效果:Compared with the prior art, the technical solution of the present invention has the following beneficial effects:

本发明技术方案提供的半导体结构,一方面由于所述第一子区与所述第二区邻接,且所述第二区的基底内具有光电掺杂区,所述第二子区与所述第三区邻接,且所述第三区的基底内具有浮置扩散区,即所述第一子区靠近所述光电掺杂区而所述第二子区靠近所述浮置扩散区,另一方面由于在所述第一区的基底表面形成栅极结构,所述第一子区内的沟道具有第一阈值电压,所述第二子区内的沟道具有第二阈值电压,且所述第一阈值电压大于所述第二阈值电压,当对所述栅极结构上施加偏压时,所述第一子区的沟道内的电子数量更少,即所述第一子区与所述第二子区之间存在势垒差,从而所述第二子区的沟道中的电子较难回流至所述第一子区的沟道中,减少了沟道内回流的电子,降低了图像传感器的噪音并减少图像延迟。In the semiconductor structure provided by the technical solution of the present invention, on the one hand, since the first sub-region is adjacent to the second region, and there is a photoelectric doped region in the base of the second region, the second sub-region and the The third region is adjacent, and the base of the third region has a floating diffusion region, that is, the first subregion is close to the photoelectric doped region and the second subregion is close to the floating diffusion region, and the second subregion is close to the floating diffusion region. On the one hand, since the gate structure is formed on the substrate surface of the first region, the channel in the first subregion has a first threshold voltage, the channel in the second subregion has a second threshold voltage, and The first threshold voltage is greater than the second threshold voltage, and when a bias voltage is applied to the gate structure, the number of electrons in the channel of the first sub-region is less, that is, the first sub-region and There is a potential barrier difference between the second sub-regions, so it is difficult for electrons in the channel of the second sub-region to flow back into the channel of the first sub-region, which reduces the electrons flowing back in the channel and reduces the image quality. sensor noise and reduce image lag.

进一步,由于第一子区的栅极介质层的厚度大于所述第二子区的栅极介质层的厚度,因此实现了使所述第一子区的沟道的阈值电压大于所述第二子区沟道的阈值电压,从而所述第二子区的沟道中的电子较难回流至所述第一子区的沟道中,减少了沟道内回流的电子。Further, since the thickness of the gate dielectric layer in the first subregion is greater than the thickness of the gate dielectric layer in the second subregion, it is realized that the threshold voltage of the channel in the first subregion is greater than that in the second subregion. The threshold voltage of the channel of the sub-region, so that it is difficult for the electrons in the channel of the second sub-region to flow back into the channel of the first sub-region, which reduces the electrons flowing back in the channel.

进一步,由于所述第一子区的栅极介质层的厚度与所述第二子区的栅极介质层的厚度的差值范围是5纳米至7纳米,因此能够使所述第一子区沟道的阈值电压与所述第二子区沟道的阈值电压的差值足够大,从而使所述第一子区与所述第二子区之间的势垒差足够大,以进一步减少第二子区沟道内的电子回流至第一子区的沟道内的几率。Further, since the difference between the thickness of the gate dielectric layer in the first subregion and the thickness of the gate dielectric layer in the second subregion is in the range of 5 nanometers to 7 nanometers, the first subregion can be made The difference between the threshold voltage of the channel and the threshold voltage of the channel of the second sub-region is large enough, so that the potential barrier difference between the first sub-region and the second sub-region is large enough to further reduce The probability that electrons in the channel of the second subregion flow back into the channel of the first subregion.

进一步,由于第一子区的栅极层的厚度大于所述第二子区的栅极层的厚度,因此实现了使所述第一子区的沟道的阈值电压小于所述第二子区沟道的阈值电压,从而所述第二子区的沟道中的电子较难回流至所述第一子区的沟道中,减少了沟道内回流的电子。Further, since the thickness of the gate layer of the first sub-region is greater than the thickness of the gate layer of the second sub-region, it is realized that the threshold voltage of the channel of the first sub-region is lower than that of the second sub-region The threshold voltage of the channel, so that the electrons in the channel of the second sub-region are more difficult to flow back into the channel of the first sub-region, which reduces the electrons flowing back in the channel.

附图说明Description of drawings

图1是一种图像传感器的结构示意图;Fig. 1 is a structural schematic diagram of an image sensor;

图2是图1的图像传感器工作时的势垒状态示意图;FIG. 2 is a schematic diagram of a potential barrier state when the image sensor of FIG. 1 is working;

图3至图7是本发明实施例的半导体结构的形成方法中各步骤的剖面结构示意图;3 to 7 are schematic cross-sectional structure diagrams of each step in the method for forming a semiconductor structure according to an embodiment of the present invention;

图8是图7的半导体结构工作时的势垒状态示意图;FIG. 8 is a schematic diagram of a potential barrier state when the semiconductor structure of FIG. 7 is in operation;

图9至图13是本发明另一实施例的半导体结构的形成方法中各步骤的剖面结构示意图;9 to 13 are schematic cross-sectional structural views of various steps in a method for forming a semiconductor structure according to another embodiment of the present invention;

图14是图13的半导体结构工作时的势垒状态示意图。FIG. 14 is a schematic diagram of a potential barrier state when the semiconductor structure of FIG. 13 is in operation.

具体实施方式Detailed ways

如背景技术所述,图像传感器的性能有待进一步改进。As mentioned in the background, the performance of the image sensor needs to be further improved.

图1是一种图像传感器的结构示意图。FIG. 1 is a schematic structural diagram of an image sensor.

请参考图1,所述图像传感器包括:基底100,所述基底100内具有阱区(未图示);位于部分阱区表面的栅极结构103;位于所述栅极结构103两侧阱区内的光电掺杂区101和浮置扩散区102。Please refer to FIG. 1 , the image sensor includes: a substrate 100 with a well region (not shown); a gate structure 103 located on the surface of a part of the well region; well regions located on both sides of the gate structure 103 The photoelectric doped region 101 and the floating diffusion region 102 inside.

所述阱区内具有第一掺杂离子,所述光电掺杂区101内具有第二掺杂离子,所述第二掺杂离子与第一掺杂离子的导电类型相反,因此,所述光电掺杂区101和阱区之间形成光电二极管,所述光电二极管用于接收光线并产生电子,通过在所述栅极结构103上施加偏压,将由所述光电二极管产生的电子传递到所述浮置扩散区102。There are first dopant ions in the well region, and second dopant ions in the photoelectric doped region 101, and the conductivity type of the second dopant ions is opposite to that of the first dopant ions. Therefore, the photoelectric A photodiode is formed between the doped region 101 and the well region, and the photodiode is used to receive light and generate electrons. By applying a bias voltage on the gate structure 103, the electrons generated by the photodiode are transferred to the floating diffusion area 102 .

请参考图,图2是图1的图像传感器工作时的势垒状态示意图,对所述栅极结构103施加偏压,使所述栅极结构103底部的沟道开启,从而将光电二极管内的电子传输至浮置扩散区102内。Please refer to the figure. FIG. 2 is a schematic diagram of the potential barrier state of the image sensor in FIG. The electrons are transported into the floating diffusion region 102 .

在上述图像传感器中,由于栅极结构103底部的沟道内没有势垒差,因此沟道内的电子容易回流,导致图像传感器产生图像延迟的问题。In the above image sensor, since there is no potential barrier difference in the channel at the bottom of the gate structure 103 , electrons in the channel are easy to flow back, which causes image delay in the image sensor.

为了解决上述问题,本发明技术方案提供了一种半导体结构及其形成方法,方法包括:提供基底,所述基底包括第一区以及位于所述第一区两侧的第二区和第三区,所述第一区包括相邻的第一子区和第二子区,所述第一子区与所述第二区邻接,所述第二子区与所述第三区邻接,所述第二区的基底内具有光电掺杂区,所述第三区的基底内具有浮置扩散区;在所述第一区的基底表面形成栅极结构,当对所述栅极结构施加偏压时,所述第一子区的沟道内与所述第二子区的沟道内存在势垒差,通过上述方法形成的半导体结构能够提高图像传感器的性能。In order to solve the above problems, the technical solution of the present invention provides a semiconductor structure and a method for forming the same. The method includes: providing a substrate, the substrate including a first region and a second region and a third region located on both sides of the first region , the first area includes adjacent first sub-areas and second sub-areas, the first sub-area is adjacent to the second area, the second sub-area is adjacent to the third area, the The substrate of the second region has a photoelectric doped region, and the substrate of the third region has a floating diffusion region; a gate structure is formed on the substrate surface of the first region, and when a bias voltage is applied to the gate structure , there is a potential barrier difference between the channel of the first sub-region and the channel of the second sub-region, and the semiconductor structure formed by the above method can improve the performance of the image sensor.

为使本发明的上述目的、特征和有益效果能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。In order to make the above objects, features and beneficial effects of the present invention more comprehensible, specific embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings.

图3至图7是本发明实施例的半导体结构的形成方法中各步骤的剖面结构示意图。3 to 7 are schematic cross-sectional structure diagrams of various steps in the method for forming a semiconductor structure according to an embodiment of the present invention.

请参考图3,提供基底200,所述基底200包括第一区I和位于所述第一区I两侧的第二区II和第三区III,所述第一区I包括相邻的第一子区A和第二子区B,所述第一子区A与所述第二区II邻接,所述第二子区B与所述第三区III邻接;在所述第二区II内形成光电掺杂区201;在所述第三区III内形成浮置扩散区202。Please refer to FIG. 3 , a substrate 200 is provided, the substrate 200 includes a first region I and a second region II and a third region III located on both sides of the first region I, and the first region I includes adjacent A sub-area A and a second sub-area B, the first sub-area A is adjacent to the second area II, and the second sub-area B is adjacent to the third area III; in the second area II A photoelectric doped region 201 is formed in the third region III; a floating diffusion region 202 is formed in the third region III.

所述基底200内具有阱区(未图示),所述阱区内具有第一掺杂离子。The substrate 200 has a well region (not shown), and the well region has first dopant ions.

所述光电掺杂区201内具有第二掺杂离子,所述第二掺杂离子的导电类型与第一掺杂离子的导电类型相反,因此,构成光电二极管,从而能够将入射光中的光子转化为电子。There are second doping ions in the photoelectric doping region 201, the conductivity type of the second doping ions is opposite to that of the first doping ions, therefore, a photodiode is formed, so that the photons in the incident light can be converted into electrons.

所述浮置扩散区202内具有第三掺杂离子,所述第三掺杂离子的导电类型与第一掺杂离子的导电类型相反,所述浮置扩散区202用于存储光电二极管产生的电子。There are third dopant ions in the floating diffusion region 202, the conductivity type of the third dopant ions is opposite to that of the first dopant ions, and the floating diffusion region 202 is used to store the electronic.

所述第一子区A与所述第二区II邻接,所述第二子区B与所述第三区III邻接,有利于后续在所述第一子区A表面与第二子区B表面形成的栅极结构将所述光电二极管内的电子传输至浮置扩散区202内。The first sub-area A is adjacent to the second area II, and the second sub-area B is adjacent to the third area III, which is conducive to subsequent contact with the second sub-area B on the surface of the first sub-area A The gate structure formed on the surface transmits the electrons in the photodiode to the floating diffusion region 202 .

在本实施例中,所述基底200为硅衬底。In this embodiment, the base 200 is a silicon substrate.

在另一实施例中,所述基底为半导体衬底;所述半导体衬底的材料包括碳化硅、硅锗、Ⅲ-Ⅴ族元素构成的多元半导体材料、绝缘体上硅(SOI)或者绝缘体上锗。其中,Ⅲ-Ⅴ族元素构成的多元半导体材料包括InP、GaAs、GaP、InAs、InSb、InGaAs或者InGaAsP。In another embodiment, the base is a semiconductor substrate; the material of the semiconductor substrate includes silicon carbide, silicon germanium, multiple semiconductor materials composed of III-V group elements, silicon-on-insulator (SOI) or germanium-on-insulator . Wherein, the multiple semiconductor materials composed of III-V group elements include InP, GaAs, GaP, InAs, InSb, InGaAs or InGaAsP.

在本实施例中,所述第一掺杂离子为P型离子,所述第二掺杂离子为N型离子,所述第三掺杂离子为N型离子。In this embodiment, the first dopant ions are P-type ions, the second dopant ions are N-type ions, and the third dopant ions are N-type ions.

所述P型离子包括硼离子或者BF2+离子,所述N型离子包括磷离子或者砷离子。The P-type ions include boron ions or BF 2+ ions, and the N-type ions include phosphorus ions or arsenic ions.

在本实施例中,形成所述光电掺杂区201的方法包括:在所述基底200表面形成第五图形化层(未图示),所述第五图形化层暴露出部分所述第二区II表面;以所述第五图形化层为掩膜进行离子注入,在所述第二区II内形成光电掺杂区201。In this embodiment, the method for forming the photoelectric doped region 201 includes: forming a fifth patterned layer (not shown) on the surface of the substrate 200, the fifth patterned layer exposing part of the second The surface of region II: performing ion implantation using the fifth patterned layer as a mask to form a photoelectric doped region 201 in the second region II.

在本实施例中,所述光电掺杂区201的形成工艺包括:第一离子注入工艺。In this embodiment, the formation process of the photoelectric doped region 201 includes: a first ion implantation process.

在本实施例中,所述第五图形化层的材料包括光刻胶。In this embodiment, the material of the fifth patterned layer includes photoresist.

在另一实施例中,所述第五图形化层的材料包括氮化硅。In another embodiment, the material of the fifth patterned layer includes silicon nitride.

在本实施例中,在形成所述光电掺杂区201后,去除所述第五图形化层,所述去除第五图形化层的方法为灰化工艺。In this embodiment, after the photoelectric doped region 201 is formed, the fifth patterned layer is removed, and the method for removing the fifth patterned layer is an ashing process.

在本实施例中,形成所述浮置扩散区202的方法包括:在所述基底200表面形成第六图形化层(未图示),所述第六图形化层暴露出部分所述第三区III表面;以所述第六图形化层为掩膜进行离子注入,在所述第三区III内形成浮置扩散区202。In this embodiment, the method for forming the floating diffusion region 202 includes: forming a sixth patterned layer (not shown) on the surface of the substrate 200, and the sixth patterned layer exposes part of the third The surface of region III: performing ion implantation using the sixth patterned layer as a mask to form a floating diffusion region 202 in the third region III.

在本实施例中,所述浮置扩散区202的形成工艺包括:第二离子注入工艺。In this embodiment, the formation process of the floating diffusion region 202 includes: a second ion implantation process.

在本实施例中,所述第六图形化层的材料包括光刻胶。In this embodiment, the material of the sixth patterned layer includes photoresist.

在另一实施例中,所述第六图形化层的材料包括氮化硅。In another embodiment, the material of the sixth patterned layer includes silicon nitride.

在本实施例中,在形成所述浮置扩散区202后,去除所述第六图形化层,所述去除第六图形化层的方法为灰化工艺。In this embodiment, after the floating diffusion region 202 is formed, the sixth patterned layer is removed, and the method for removing the sixth patterned layer is an ashing process.

在本实施例中,所述浮置扩散区202的掺杂浓度大于所述光电掺杂区201的掺杂浓度。In this embodiment, the doping concentration of the floating diffusion region 202 is greater than the doping concentration of the photoelectric doped region 201 .

请参考图4,在所述第一子区A的部分表面形成第一栅极介质层203。Referring to FIG. 4 , a first gate dielectric layer 203 is formed on a part of the surface of the first sub-region A. Referring to FIG.

在本实施例中,形成所述第一栅极介质层203的方法包括:在所述基底200表面形成第一栅极介质材料层(未图示);在所述第一子区A的部分第一栅极介质材料层表面形成第二图形化层(未图示);以所述第二图形化层为掩膜刻蚀所述第一栅极介质材料层,直至暴露出所述基底200表面。In this embodiment, the method for forming the first gate dielectric layer 203 includes: forming a first gate dielectric material layer (not shown) on the surface of the substrate 200; Form a second patterned layer (not shown) on the surface of the first gate dielectric material layer; use the second patterned layer as a mask to etch the first gate dielectric material layer until the substrate 200 is exposed surface.

在本实施例中,刻蚀所述第一栅极介质材料层的工艺包括湿法刻蚀工艺或干法刻蚀工艺。In this embodiment, the process of etching the first gate dielectric material layer includes a wet etching process or a dry etching process.

在本实施例中,所述第二图形化层的材料包括光刻胶。In this embodiment, the material of the second patterned layer includes photoresist.

在另一实施例中,所述第二图形化层的材料包括氮化硅。In another embodiment, the material of the second patterned layer includes silicon nitride.

在本实施例中,在形成所述第一栅极介质层203后,去除所述第二图形化层,所述去除第二图形化层的方法为灰化工艺。In this embodiment, after the first gate dielectric layer 203 is formed, the second patterned layer is removed, and the method for removing the second patterned layer is an ashing process.

在本实施例中,所述第一栅极介质层203的材料为氧化硅。In this embodiment, the material of the first gate dielectric layer 203 is silicon oxide.

在另一实施例中,所述第一栅极介质层的材料为高介电常数材料,所述高介电常数材料的介电常数大于3.9,所述高介电常数材料包括氧化铪、氧化锆、氧化铪硅、氧化镧、氧化锆硅、氧化钛、氧化钽、氧化钡锶钛、氧化钡钛、氧化锶钛和氧化铝中的一种或多种的组合。In another embodiment, the material of the first gate dielectric layer is a high dielectric constant material, the dielectric constant of the high dielectric constant material is greater than 3.9, and the high dielectric constant material includes hafnium oxide, oxide A combination of one or more of zirconium, hafnium silicon oxide, lanthanum oxide, zirconium silicon oxide, titanium oxide, tantalum oxide, barium strontium titanium oxide, barium titanium oxide, strontium titanium oxide and aluminum oxide.

请参考图5,在所述第一栅极介质层203表面及所述基底200表面形成第二栅极介质材料层204。Referring to FIG. 5 , a second gate dielectric material layer 204 is formed on the surface of the first gate dielectric layer 203 and the surface of the substrate 200 .

所述第二栅极介质材料层204为后续形成第二栅极介质层提供材料。The second gate dielectric material layer 204 provides materials for subsequent formation of the second gate dielectric layer.

在本实施例中,形成所述第二栅极介质材料层204的工艺为原子层沉积工艺。In this embodiment, the process of forming the second gate dielectric material layer 204 is an atomic layer deposition process.

在另一实施例中,形成所述第二栅极介质材料层的工艺包括化学气相沉积工艺或旋涂工艺。In another embodiment, the process of forming the second gate dielectric material layer includes a chemical vapor deposition process or a spin coating process.

在本实施例中,所述第二栅极介质材料层204的材料为氧化硅。In this embodiment, the material of the second gate dielectric material layer 204 is silicon oxide.

在另一实施例中,所述第二栅极介质材料层的材料为高介电常数材料,所述高介电常数材料的介电常数大于3.9,所述高介电常数材料包括氧化铪、氧化锆、氧化铪硅、氧化镧、氧化锆硅、氧化钛、氧化钽、氧化钡锶钛、氧化钡钛、氧化锶钛和氧化铝中的一种或多种的组合。In another embodiment, the material of the second gate dielectric material layer is a high dielectric constant material, the dielectric constant of the high dielectric constant material is greater than 3.9, and the high dielectric constant material includes hafnium oxide, A combination of one or more of zirconia, hafnium silicon oxide, lanthanum oxide, zirconia silicon oxide, titanium oxide, tantalum oxide, barium strontium titanium oxide, barium titanium oxide, strontium titanium oxide and aluminum oxide.

请参考图6,在所述第二栅极介质材料层204表面形成栅极材料层205;在所述第一区I的栅极材料层205表面形成第一图形化层206。Referring to FIG. 6 , a gate material layer 205 is formed on the surface of the second gate dielectric material layer 204 ; and a first patterned layer 206 is formed on the surface of the gate material layer 205 in the first region I.

所述栅极材料层205为后续形成栅极层提供材料。The gate material layer 205 provides materials for subsequent formation of gate layers.

在本实施例中,形成所述栅极材料层205的方法包括:在所述第二栅极介质材料层204表面形成初始栅极材料层(未图示);对所述初始栅极材料层进行第三离子注入工艺。In this embodiment, the method for forming the gate material layer 205 includes: forming an initial gate material layer (not shown) on the surface of the second gate dielectric material layer 204; A third ion implantation process is performed.

在本实施例中,形成所述初始栅极材料层的工艺为化学气相沉积工艺。In this embodiment, the process of forming the initial gate material layer is a chemical vapor deposition process.

在另一实施例中,直接形成栅极材料层,形成所述栅极材料层的工艺包括化学气相淀积工艺、物理气相淀积工艺、旋涂工艺或电镀工艺。In another embodiment, the gate material layer is directly formed, and the process for forming the gate material layer includes a chemical vapor deposition process, a physical vapor deposition process, a spin coating process or an electroplating process.

在本实施例中,所述栅极材料层205的材料为掺杂的多晶硅。In this embodiment, the material of the gate material layer 205 is doped polysilicon.

在另一实施例中,所述栅极材料层的材料包括铜、钨或铝中的一种或多种的组合。In another embodiment, the material of the gate material layer includes one or a combination of copper, tungsten or aluminum.

在本实施例中,所述第一图形化层206的材料包括光刻胶。In this embodiment, the material of the first patterned layer 206 includes photoresist.

在另一实施例中,所述第一图形化层的材料包括氮化硅。In another embodiment, the material of the first patterned layer includes silicon nitride.

请在图6的基础上参考图7,以所述第一图形化层206为掩膜刻蚀所述栅极材料层205与第二栅极介质材料层204,直至暴露出所述基底200表面,以形成栅极层208和第二栅极介质层207。Please refer to FIG. 7 on the basis of FIG. 6, using the first patterned layer 206 as a mask to etch the gate material layer 205 and the second gate dielectric material layer 204 until the surface of the substrate 200 is exposed. , to form the gate layer 208 and the second gate dielectric layer 207 .

所述第一栅极介质层203、所述第二栅极介质层207和所述栅极层208构成位于所述第一区I表面的栅极结构,其中,所述第一栅极介质层203和所述第二栅极介质层207共同构成所述栅极结构的栅极介质层。The first gate dielectric layer 203, the second gate dielectric layer 207 and the gate layer 208 form a gate structure located on the surface of the first region I, wherein the first gate dielectric layer 203 and the second gate dielectric layer 207 together constitute the gate dielectric layer of the gate structure.

在垂直于所述基底200表面的方向上,所述第一子区A的第二栅极介质层207的表面与所述基底200表面之间的距离为距离M,所述第二子区B的第二栅极介质层207的表面与所述基底200表面之间的距离为距离N,且距离M大于距离N,即所述第一子区A的栅极介质层的厚度大于所述第二子区B的栅极介质层的厚度,从而实现所述第一子区A内的沟道具有第一阈值电压,所述第二子区B内的沟道具有第二阈值电压,且所述第一阈值电压大于所述第二阈值电压。In a direction perpendicular to the surface of the substrate 200, the distance between the surface of the second gate dielectric layer 207 of the first subregion A and the surface of the substrate 200 is the distance M, and the second subregion B The distance between the surface of the second gate dielectric layer 207 and the surface of the substrate 200 is a distance N, and the distance M is greater than the distance N, that is, the thickness of the gate dielectric layer of the first sub-region A is greater than that of the first sub-region A. The thickness of the gate dielectric layer of the second sub-region B, so that the channel in the first sub-region A has a first threshold voltage, the channel in the second sub-region B has a second threshold voltage, and the The first threshold voltage is greater than the second threshold voltage.

在本实施例中,刻蚀所述栅极材料层205与第二栅极介质材料层204的工艺包括干法刻蚀工艺或湿法刻蚀工艺。In this embodiment, the process of etching the gate material layer 205 and the second gate dielectric material layer 204 includes a dry etching process or a wet etching process.

在本实施例中,在形成所述栅极层208和第二栅极介质层207后,去除所述第一图形化层206,所述去除第一图形化层206的方法为灰化工艺。In this embodiment, after the gate layer 208 and the second gate dielectric layer 207 are formed, the first patterned layer 206 is removed, and the method for removing the first patterned layer 206 is an ashing process.

相应的,本发明实施例还提供一种上述形成方法所形成的半导体结构,请参考图7,所述半导体结构包括:基底200,所述基底200包括第一区I以及位于所述第一区I两侧的第二区II和第三区III,所述第一区I包括相邻的第一子区A和第二子区B,所述第一子区A与所述第二区II邻接,所述第二子区B与所述第三区III邻接,所述第二区II的基底200内具有光电掺杂区201,所述第三区III的基底200内具有浮置扩散区202;位于所述第一区I表面的栅极结构,所述第一子区A内的沟道具有第一阈值电压,所述第二子区B内的沟道具有第二阈值电压,且所述第一阈值电压大于所述第二阈值电压。Correspondingly, an embodiment of the present invention also provides a semiconductor structure formed by the above forming method, please refer to FIG. 7, the semiconductor structure includes: a substrate 200, the substrate 200 includes a first region I and a The second area II and the third area III on both sides of I, the first area I includes the adjacent first sub-area A and the second sub-area B, the first sub-area A and the second area II Adjacent, the second sub-region B is adjacent to the third region III, the substrate 200 of the second region II has a photoelectric doped region 201, and the substrate 200 of the third region III has a floating diffusion region 202. The gate structure located on the surface of the first region I, the channel in the first subregion A has a first threshold voltage, the channel in the second subregion B has a second threshold voltage, and The first threshold voltage is greater than the second threshold voltage.

所述栅极结构包括:位于所述第一区I表面的栅极介质层,所述栅极介质层包括第一栅极介质层203和第二栅极介质层207;位于所述第二栅极介质层207表面的栅极层208。The gate structure includes: a gate dielectric layer located on the surface of the first region I, and the gate dielectric layer includes a first gate dielectric layer 203 and a second gate dielectric layer 207; The gate layer 208 on the surface of the dielectric layer 207 .

在垂直于所述基底200表面的方向上,所述第一子区A的第二栅极介质层207的表面与所述基底200表面之间的距离为距离M,所述第二子区B的第二栅极介质层207的表面与所述基底200表面之间的距离为距离N,且距离M大于距离N,即所述第一子区A的栅极介质层的厚度大于所述第二子区B的栅极介质层的厚度,从而实现所述第一子区A内的沟道具有第一阈值电压,所述第二子区B内的沟道具有第二阈值电压,且所述第一阈值电压大于所述第二阈值电压。In a direction perpendicular to the surface of the substrate 200, the distance between the surface of the second gate dielectric layer 207 of the first subregion A and the surface of the substrate 200 is the distance M, and the second subregion B The distance between the surface of the second gate dielectric layer 207 and the surface of the substrate 200 is a distance N, and the distance M is greater than the distance N, that is, the thickness of the gate dielectric layer of the first sub-region A is greater than that of the first sub-region A. The thickness of the gate dielectric layer of the second sub-region B, so that the channel in the first sub-region A has a first threshold voltage, the channel in the second sub-region B has a second threshold voltage, and the The first threshold voltage is greater than the second threshold voltage.

图8是图7的半导体结构工作时的势垒状态示意图。FIG. 8 is a schematic diagram of a potential barrier state when the semiconductor structure of FIG. 7 is in operation.

请在图7的基础上参考图8,开启所述栅极结构底部的沟道,使得所述光电掺杂区201中的电子通过所述沟道传输至所述浮置扩散区202内。Referring to FIG. 8 on the basis of FIG. 7 , the channel at the bottom of the gate structure is opened, so that the electrons in the photoelectric doped region 201 are transported into the floating diffusion region 202 through the channel.

开启所述栅极结构底部的沟道的步骤包括:在所述栅极结构上施加正偏压。The step of opening the channel at the bottom of the gate structure includes: applying a positive bias voltage on the gate structure.

当在所述栅极结构上施加正偏压时,由于所述第一阈值电压大于所述第二阈值电压,使得所述第一子区A的沟道内的电子数量更少,即所述第一子区A与所述第二子区B之间存在势垒差,从而所述第二子区B的沟道中的电子较难回流至所述第一子区A的沟道中,减少了沟道内回流的电子,进而能够降低噪音并减少图像延迟。When a positive bias is applied to the gate structure, since the first threshold voltage is greater than the second threshold voltage, the number of electrons in the channel of the first sub-region A is less, that is, the first There is a potential barrier difference between a sub-region A and the second sub-region B, so that electrons in the channel of the second sub-region B are difficult to flow back into the channel of the first sub-region A, reducing the channel Electrons reflow in the channel, which can reduce noise and reduce image delay.

在本实施例中,所述距离M与所述距离N的差值范围是5纳米至7纳米。In this embodiment, the range of the difference between the distance M and the distance N is 5 nanometers to 7 nanometers.

所述距离M与所述距离N的差值范围太小,可能导致所述第一子区A的沟道与所述第二子区B的沟道间的势垒差不够大,从而增加所述第二子区B的沟道中的电子回流至所述第一子区A的沟道中的几率;所述距离M与所述距离N的差值范围太大,造成在形成所述栅极介质层时材料的浪费。因此所述距离M与所述距离N的差值范围是5纳米至7纳米时,一方面能够使所述第一子区A沟道的阈值电压与所述第二子区B沟道的阈值电压的差值足够大,从而使所述第一子区A的沟道与所述第二子区B的沟道间的势垒差足够大,以进一步减少第二子区B沟道内的电子回流至第一子区A的沟道内的几率,同时能够节省形成所述栅极介质层时所使用的栅极介质层材料。If the range of the difference between the distance M and the distance N is too small, the potential barrier difference between the channel of the first sub-region A and the channel of the second sub-region B may not be large enough, thereby increasing the The probability of the electrons in the channel of the second sub-region B flowing back into the channel of the first sub-region A; the range of the difference between the distance M and the distance N is too large, resulting in the formation of the gate dielectric Material waste during layering. Therefore, when the difference between the distance M and the distance N is in the range of 5 nanometers to 7 nanometers, on the one hand, the threshold voltage of the channel of the first sub-region A can be compared with the threshold voltage of the channel of the second sub-region B. The voltage difference is large enough, so that the potential barrier difference between the channel of the first subregion A and the channel of the second subregion B is large enough to further reduce the electrons in the channel of the second subregion B The possibility of reflowing into the channel of the first sub-region A can save the material of the gate dielectric layer used when forming the gate dielectric layer.

在另一实施例中,所述距离M与所述距离N的差值范围大于7纳米。In another embodiment, the range of the difference between the distance M and the distance N is greater than 7 nanometers.

由于所述距离M与所述距离N的差值范围大于7纳米,因此能够进一步减少第二子区B沟道内的电子回流至第一子区A的沟道内的几率。Since the difference range between the distance M and the distance N is greater than 7 nanometers, the probability of electrons in the channel of the second sub-region B flowing back into the channel of the first sub-region A can be further reduced.

需要说明的是,图8中的虚线部分表示光电掺杂区201的势垒大小的范围,其中,所述光电掺杂区201的最大势垒为所述光电掺杂区201的电荷数到达所述光电掺杂区201的满阱容量(Full Well Capacity,FWC)的电荷数时的势垒。It should be noted that the dotted line in FIG. 8 represents the range of the potential barrier size of the photoelectric doped region 201, wherein the maximum potential barrier of the photoelectric doped region 201 is when the number of charges in the photoelectric doped region 201 reaches the required value. The potential barrier when the number of charges of the full well capacity (Full Well Capacity, FWC) of the optoelectronic doped region 201 is described above.

图9至图13是本发明另一实施例的半导体结构的形成方法中各步骤的剖面结构示意图。9 to 13 are schematic cross-sectional structure diagrams of various steps in a method for forming a semiconductor structure according to another embodiment of the present invention.

请参考图9,提供基底300,所述基底300包括第一区I和位于所述第一区I两侧的第二区II和第三区III,所述第一区I包括相邻的第一子区A和第二子区B,所述第一子区A与所述第二区II邻接,所述第二子区B与所述第三区III邻接;在所述第二区II内形成光电掺杂区301;在所述第三区III内形成浮置扩散区302。Please refer to FIG. 9 , a substrate 300 is provided, the substrate 300 includes a first region I and a second region II and a third region III located on both sides of the first region I, and the first region I includes adjacent A sub-area A and a second sub-area B, the first sub-area A is adjacent to the second area II, and the second sub-area B is adjacent to the third area III; in the second area II A photoelectric doped region 301 is formed in the third region III; a floating diffusion region 302 is formed in the third region III.

所述基底300内具有阱区(未图示),所述阱区内具有第一掺杂离子。The substrate 300 has a well region (not shown), and the well region has first dopant ions.

所述光电掺杂区301内具有第二掺杂离子,所述第二掺杂离子的导电类型与第一掺杂离子的导电类型相反,因此,构成光电二极管,从而能够将入射光中的光子转化为电子。There are second doping ions in the photoelectric doping region 301, the conductivity type of the second doping ions is opposite to that of the first doping ions, therefore, a photodiode is formed, so that the photons in the incident light can be converted into electrons.

所述浮置扩散区302内具有第三掺杂离子,所述第三掺杂离子的导电类型与第一掺杂离子的导电类型相反,所述浮置扩散区302用于存储光电二极管产生的电子。There are third dopant ions in the floating diffusion region 302, the conductivity type of the third dopant ions is opposite to that of the first dopant ions, and the floating diffusion region 302 is used to store the electronic.

所述第一子区A与所述第二区II邻接,所述第二子区B与所述第三区III邻接,有利于后续在所述第一子区A表面与第二子区B表面形成的栅极结构将所述光电二极管内的电子传输至浮置扩散区302内。The first sub-area A is adjacent to the second area II, and the second sub-area B is adjacent to the third area III, which is conducive to subsequent contact with the second sub-area B on the surface of the first sub-area A The gate structure formed on the surface transmits the electrons in the photodiode to the floating diffusion region 302 .

在本实施例中,所述基底300为硅衬底。In this embodiment, the base 300 is a silicon substrate.

在另一实施例中,所述基底为半导体衬底;所述半导体衬底的材料包括碳化硅、硅锗、Ⅲ-Ⅴ族元素构成的多元半导体材料、绝缘体上硅(SOI)或者绝缘体上锗。其中,Ⅲ-Ⅴ族元素构成的多元半导体材料包括InP、GaAs、GaP、InAs、InSb、InGaAs或者InGaAsP。In another embodiment, the base is a semiconductor substrate; the material of the semiconductor substrate includes silicon carbide, silicon germanium, multiple semiconductor materials composed of III-V group elements, silicon-on-insulator (SOI) or germanium-on-insulator . Wherein, the multiple semiconductor materials composed of III-V group elements include InP, GaAs, GaP, InAs, InSb, InGaAs or InGaAsP.

在本实施例中,所述第一掺杂离子为P型离子,所述第二掺杂离子为N型离子,所述第三掺杂离子为N型离子。In this embodiment, the first dopant ions are P-type ions, the second dopant ions are N-type ions, and the third dopant ions are N-type ions.

所述P型离子包括硼离子或者BF2+离子,所述N型离子包括磷离子或者砷离子。The P-type ions include boron ions or BF 2+ ions, and the N-type ions include phosphorus ions or arsenic ions.

在本实施例中,所述光电掺杂区301的形成工艺包括:第一离子注入工艺。In this embodiment, the formation process of the photoelectric doped region 301 includes: a first ion implantation process.

在本实施例中,所述浮置扩散区302的形成工艺包括:第二离子注入工艺。In this embodiment, the formation process of the floating diffusion region 302 includes: a second ion implantation process.

在本实施例中,所述浮置扩散区302的掺杂浓度大于所述光电掺杂区301的掺杂浓度。In this embodiment, the doping concentration of the floating diffusion region 302 is greater than the doping concentration of the photoelectric doped region 301 .

请参考图10,在所述基底300表面形成栅极介质材料层303,在所述栅极介质材料层303表面形成栅极材料层305。Referring to FIG. 10 , a gate dielectric material layer 303 is formed on the surface of the substrate 300 , and a gate material layer 305 is formed on the surface of the gate dielectric material layer 303 .

所述栅极介质材料层303为后续形成栅极介质材料层提供材料。The gate dielectric material layer 303 provides materials for subsequent formation of a gate dielectric material layer.

所述栅极材料层305为后续形成栅极层提供材料。The gate material layer 305 provides material for subsequent formation of gate layers.

在本实施例中,形成所述栅极介质材料层303的工艺为原子层沉积工艺。In this embodiment, the process of forming the gate dielectric material layer 303 is an atomic layer deposition process.

在另一实施例中,形成所述栅极介质材料层的工艺包括化学气相沉积工艺或旋涂工艺。In another embodiment, the process of forming the gate dielectric material layer includes a chemical vapor deposition process or a spin coating process.

在本实施例中,所述栅极介质材料层303的材料为氧化硅。In this embodiment, the material of the gate dielectric material layer 303 is silicon oxide.

在另一实施例中,所述栅极介质材料层的材料为高介电常数材料,所述高介电常数材料的介电常数大于3.9,所述高介电常数材料包括氧化铪、氧化锆、氧化铪硅、氧化镧、氧化锆硅、氧化钛、氧化钽、氧化钡锶钛、氧化钡钛、氧化锶钛和氧化铝中的一种或多种的组合。In another embodiment, the material of the gate dielectric material layer is a high dielectric constant material, the dielectric constant of the high dielectric constant material is greater than 3.9, and the high dielectric constant material includes hafnium oxide, zirconium oxide , hafnium silicon oxide, lanthanum oxide, zirconium silicon oxide, titanium oxide, tantalum oxide, barium strontium titanium oxide, barium titanium oxide, strontium titanium oxide and aluminum oxide.

在本实施例中,形成所述栅极材料层305的方法包括:在所述栅极介质材料层303表面形成初始栅极材料层(未图示);对所述初始栅极材料层进行第三离子注入工艺。In this embodiment, the method for forming the gate material layer 305 includes: forming an initial gate material layer (not shown) on the surface of the gate dielectric material layer 303; Three ion implantation process.

在本实施例中,形成所述初始栅极材料层的工艺为化学气相沉积工艺。In this embodiment, the process of forming the initial gate material layer is a chemical vapor deposition process.

在另一实施例中,直接形成栅极材料层,形成所述栅极材料层的工艺包括化学气相淀积工艺、物理气相淀积工艺、旋涂工艺或电镀工艺。In another embodiment, the gate material layer is directly formed, and the process for forming the gate material layer includes a chemical vapor deposition process, a physical vapor deposition process, a spin coating process or an electroplating process.

在本实施例中,所述栅极材料层305的材料为掺杂的多晶硅。In this embodiment, the material of the gate material layer 305 is doped polysilicon.

在另一实施例中,所述栅极材料层的材料包括铜、钨或铝中的一种或多种的组合。In another embodiment, the material of the gate material layer includes one or a combination of copper, tungsten or aluminum.

请参考图11,在所述第一区I的栅极材料层305表面形成第四图形化层306;以所述第四图形化层306为掩膜,刻蚀所述栅极介质材料层303和所述栅极材料层305,直至暴露出所述基底300表面,以形成栅极介质层313和初始栅极层315。Please refer to FIG. 11 , a fourth patterned layer 306 is formed on the surface of the gate material layer 305 in the first region I; the gate dielectric material layer 303 is etched using the fourth patterned layer 306 as a mask. and the gate material layer 305 until the surface of the substrate 300 is exposed to form a gate dielectric layer 313 and an initial gate layer 315 .

在本实施例中,刻蚀所述栅极介质材料层303和所述栅极材料层305的工艺包括干法刻蚀工艺或湿法刻蚀工艺。In this embodiment, the process of etching the gate dielectric material layer 303 and the gate material layer 305 includes a dry etching process or a wet etching process.

在本实施例中,所述第四图形化层306的材料包括光刻胶。In this embodiment, the material of the fourth patterned layer 306 includes photoresist.

在另一实施例中,所述第四图形化层的材料包括氮化硅。In another embodiment, the material of the fourth patterned layer includes silicon nitride.

在本实施例中,在形成所述栅极介质层313和初始栅极层315后,去除所述第四图形化层306,所述去除第四图形化层306的工艺为灰化工艺。In this embodiment, after the gate dielectric layer 313 and initial gate layer 315 are formed, the fourth patterned layer 306 is removed, and the process of removing the fourth patterned layer 306 is an ashing process.

请参考图12,在所述第一子区A的初始栅极层315表面形成第三图形化层307。Referring to FIG. 12 , a third patterned layer 307 is formed on the surface of the initial gate layer 315 in the first sub-region A. Referring to FIG.

在本实施例中,所述第三图形化层307的材料包括光刻胶。In this embodiment, the material of the third patterned layer 307 includes photoresist.

在另一实施例中,所述第三图形化层的材料包括氮化硅。In another embodiment, the material of the third patterned layer includes silicon nitride.

请在图12的基础上参考图13,以所述第三图形化层307为掩膜刻蚀所述初始栅极层315以形成栅极层325。Referring to FIG. 13 on the basis of FIG. 12 , the initial gate layer 315 is etched using the third patterned layer 307 as a mask to form a gate layer 325 .

所述栅极层325与所述栅极介质层313构成栅极结构。The gate layer 325 and the gate dielectric layer 313 form a gate structure.

在本实施例中,在垂直于所述基底300表面的方向上,所述第一子区A的栅极层325具有厚度Q,所述第二子区B的栅极层325具有厚度P,且所述厚度Q大于所述厚度P,从而实现所述第一子区A内的沟道具有第一阈值电压,所述第二子区B内的沟道具有第二阈值电压,且所述第一阈值电压大于所述第二阈值电压。In this embodiment, in a direction perpendicular to the surface of the substrate 300, the gate layer 325 of the first sub-region A has a thickness Q, and the gate layer 325 of the second sub-region B has a thickness P, And the thickness Q is greater than the thickness P, so that the channel in the first sub-region A has a first threshold voltage, the channel in the second sub-region B has a second threshold voltage, and the The first threshold voltage is greater than the second threshold voltage.

在本实施例中,刻蚀所述初始栅极层315的工艺为干法刻蚀工艺。In this embodiment, the process of etching the initial gate layer 315 is a dry etching process.

在另一实施例中,刻蚀所述初始栅极层的工艺为湿法刻蚀工艺。In another embodiment, the process of etching the initial gate layer is a wet etching process.

在本实施例中,在形成所述栅极层325后,去除所述第三图形化层307,所述去除第三图形化层307的工艺为灰化工艺。In this embodiment, after the gate layer 325 is formed, the third patterned layer 307 is removed, and the process of removing the third patterned layer 307 is an ashing process.

相应的,本发明实施例还提供一种上述形成方法所形成的半导体结构,请参考图13,所述半导体结构包括:基底300,所述基底300包括第一区I以及位于所述第一区I两侧的第二区II和第三区III,所述第一区I包括相邻的第一子区A和第二子区B,所述第一子区A与所述第二区II邻接,所述第二子区B与所述第三区III邻接,所述第二区II的基底300内具有光电掺杂区301,所述第三区III的基底300内具有浮置扩散区302;位于所述第一区I表面的栅极结构,所述第一子区A内的沟道具有第一阈值电压,所述第二子区B内的沟道具有第二阈值电压,且所述第一阈值电压大于所述第二阈值电压。Correspondingly, an embodiment of the present invention also provides a semiconductor structure formed by the above forming method, please refer to FIG. 13, the semiconductor structure includes: a substrate 300, the substrate 300 includes a first region I and a The second area II and the third area III on both sides of I, the first area I includes the adjacent first sub-area A and the second sub-area B, the first sub-area A and the second area II Adjacent, the second sub-region B is adjacent to the third region III, the substrate 300 of the second region II has a photoelectric doped region 301, and the substrate 300 of the third region III has a floating diffusion region 302. The gate structure located on the surface of the first region I, the channel in the first subregion A has a first threshold voltage, the channel in the second subregion B has a second threshold voltage, and The first threshold voltage is greater than the second threshold voltage.

所述栅极结构包括:位于所述第一区I表面的栅极介质层313;位于所述栅极介质层313表面的栅极层325。The gate structure includes: a gate dielectric layer 313 located on the surface of the first region I; and a gate layer 325 located on the surface of the gate dielectric layer 313 .

在垂直于所述基底300表面的方向上,所述第一子区A的栅极层325具有厚度Q,所述第二子区B的栅极层325具有厚度P,且所述厚度Q大于所述厚度P,从而实现所述第一子区A内的沟道具有第一阈值电压,所述第二子区B内的沟道具有第二阈值电压,且所述第一阈值电压大于所述第二阈值电压。In the direction perpendicular to the surface of the substrate 300, the gate layer 325 of the first sub-region A has a thickness Q, the gate layer 325 of the second sub-region B has a thickness P, and the thickness Q is greater than The thickness P is such that the channel in the first sub-region A has a first threshold voltage, the channel in the second sub-region B has a second threshold voltage, and the first threshold voltage is greater than the the second threshold voltage.

在本实施例中,所述厚度Q与所述厚度P的之间的差值根据所述栅极层325的电学特性调整,从而在确保所述第一阈值电压与所述第二阈值电压之间的差值达到预设差值的同时,能够节省所述栅极层的材料。In this embodiment, the difference between the thickness Q and the thickness P is adjusted according to the electrical characteristics of the gate layer 325, so as to ensure the difference between the first threshold voltage and the second threshold voltage When the difference between them reaches the preset difference, the material of the gate layer can be saved.

图14是图13的半导体结构工作时的势垒状态示意图。FIG. 14 is a schematic diagram of a potential barrier state when the semiconductor structure of FIG. 13 is in operation.

请在图13的基础上参考图14,开启所述栅极结构底部的沟道,使得所述光电掺杂区301中的电子通过所述沟道传输至所述浮置扩散区302内。Referring to FIG. 14 on the basis of FIG. 13 , the channel at the bottom of the gate structure is opened, so that the electrons in the photoelectric doped region 301 are transported into the floating diffusion region 302 through the channel.

开启所述栅极结构底部的沟道的步骤包括:在所述栅极结构上施加正偏压。The step of opening the channel at the bottom of the gate structure includes: applying a positive bias voltage on the gate structure.

当在所述栅极结构上施加正偏压时,由于所述第一阈值电压大于所述第二阈值电压,使得所述第一子区A的沟道内的电子数量更少,即所述第一子区A与所述第二子区B之间存在势垒差,从而所述第二子区B的沟道中的电子较难回流至所述第一子区A的沟道中,减少了沟道内回流的电子,进而能够降低噪音并减少图像延迟。When a positive bias is applied to the gate structure, since the first threshold voltage is greater than the second threshold voltage, the number of electrons in the channel of the first sub-region A is less, that is, the first There is a potential barrier difference between a sub-region A and the second sub-region B, so that electrons in the channel of the second sub-region B are difficult to flow back into the channel of the first sub-region A, reducing the channel Electrons reflow in the channel, which can reduce noise and reduce image delay.

需要说明的是,图14中的虚线部分表示光电掺杂区301的势垒大小的范围,其中,所述光电掺杂区301的最大势垒为所述光电掺杂区301的电荷数到达所述光电掺杂区301的满阱容量的电荷数时的势垒。It should be noted that the dotted line in FIG. 14 represents the range of the potential barrier size of the photoelectric doped region 301, wherein the maximum potential barrier of the photoelectric doped region 301 is when the number of charges in the photoelectric doped region 301 reaches the required value. The potential barrier when the charge number of the full well capacity of the photoelectric doped region 301 is mentioned above.

虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。Although the present invention is disclosed above, the present invention is not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention, so the protection scope of the present invention should be based on the scope defined in the claims.

Claims (10)

1.一种半导体结构,其特征在于,包括:1. A semiconductor structure, characterized in that, comprising: 基底,所述基底包括第一区以及位于所述第一区两侧的第二区和第三区,所述第一区包括相邻的第一子区和第二子区,所述第一子区与所述第二区邻接,所述第二子区与所述第三区邻接,所述第二区的基底内具有光电掺杂区,所述第三区的基底内具有浮置扩散区;A substrate, the substrate includes a first region and a second region and a third region located on both sides of the first region, the first region includes adjacent first subregions and second subregions, the first The sub-region is adjacent to the second region, the second sub-region is adjacent to the third region, the substrate of the second region has a photoelectric doped region, and the substrate of the third region has a floating diffusion Area; 位于所述第一区表面的栅极结构,所述第一子区内的沟道具有第一阈值电压,所述第二子区内的沟道具有第二阈值电压,且所述第一阈值电压大于所述第二阈值电压。A gate structure located on the surface of the first region, the channel in the first subregion has a first threshold voltage, the channel in the second subregion has a second threshold voltage, and the first threshold voltage greater than the second threshold voltage. 2.如权利要求1所述的半导体结构,其特征在于,所述栅极结构包括:位于所述第一区表面的栅极介质层,在垂直于所述基底表面的方向上,所述第一子区的栅极介质层的厚度大于所述第二子区的栅极介质层的厚度;位于所述栅极介质层表面的栅极层。2. The semiconductor structure according to claim 1, wherein the gate structure comprises: a gate dielectric layer located on the surface of the first region, and in a direction perpendicular to the surface of the substrate, the first The thickness of the gate dielectric layer in a sub-region is greater than the thickness of the gate dielectric layer in the second sub-region; the gate layer located on the surface of the gate dielectric layer. 3.如权利要求2所述的半导体结构,其特征在于,所述第一子区的栅极介质层的厚度与所述第二子区的栅极介质层的厚度的差值范围是5纳米至7纳米。3. The semiconductor structure according to claim 2, wherein the difference range between the thickness of the gate dielectric layer in the first subregion and the thickness of the gate dielectric layer in the second subregion is 5 nanometers to 7 nm. 4.如权利要求1所述的半导体结构,其特征在于,所述栅极结构包括:位于所述第一区表面的栅极介质层;位于所述栅极介质层表面的栅极层,所述第一子区的栅极层的厚度大于所述第二子区的栅极层的厚度。4. The semiconductor structure according to claim 1, wherein the gate structure comprises: a gate dielectric layer located on the surface of the first region; a gate layer located on the surface of the gate dielectric layer, the The thickness of the gate layer of the first sub-region is greater than the thickness of the gate layer of the second sub-region. 5.如权利要求2或4所述的半导体结构,其特征在于,所述栅极介质层的材料包括氧化硅或高介电常数材料,所述高介电常数材料的介电常数大于3.9。5. The semiconductor structure according to claim 2 or 4, wherein the material of the gate dielectric layer comprises silicon oxide or a high dielectric constant material, and the dielectric constant of the high dielectric constant material is greater than 3.9. 6.一种形成如权利要求1至5中任一半导体结构的形成方法,其特征在于,包括:6. A method for forming a semiconductor structure as claimed in any one of claims 1 to 5, comprising: 提供基底,所述基底包括第一区以及位于所述第一区两侧的第二区和第三区,所述第一区包括相邻的第一子区和第二子区,所述第一子区与所述第二区邻接,所述第二子区与所述第三区邻接;A substrate is provided, the substrate includes a first region and a second region and a third region located on both sides of the first region, the first region includes adjacent first subregions and second subregions, the first region a sub-area adjoins the second area, the second sub-area adjoins the third area; 在所述第二区内形成光电掺杂区;forming a photoelectrically doped region in the second region; 在所述第三区内形成浮置扩散区;forming a floating diffusion region within the third region; 在所述第一区表面形成栅极结构,所述第一子区内的沟道具有第一阈值电压,所述第二子区内的沟道具有第二阈值电压,且所述第一阈值电压大于所述第二阈值电压。A gate structure is formed on the surface of the first region, the channel in the first subregion has a first threshold voltage, the channel in the second subregion has a second threshold voltage, and the first threshold voltage greater than the second threshold voltage. 7.如权利要求6所述的半导体结构的形成方法,其特征在于,形成所述栅极结构的方法包括:在所述第一子区的部分基底表面形成第一栅极介质层;在所述第一栅极介质层表面及所述基底表面形成第二栅极介质材料层;在所述第二栅极介质材料层表面形成栅极材料层;在所述第一区的栅极材料层表面形成第一图形化层;以所述第一图形化层为掩膜刻蚀所述栅极材料层与第二栅极介质材料层,直至暴露出所述基底表面。7. The method for forming a semiconductor structure according to claim 6, wherein the method for forming the gate structure comprises: forming a first gate dielectric layer on a part of the substrate surface of the first sub-region; A second gate dielectric material layer is formed on the surface of the first gate dielectric layer and the surface of the substrate; a gate material layer is formed on the surface of the second gate dielectric material layer; the gate material layer in the first region forming a first patterned layer on the surface; using the first patterned layer as a mask to etch the gate material layer and the second gate dielectric material layer until the surface of the substrate is exposed. 8.如权利要求7所述的半导体结构的形成方法,其特征在于,形成所述第一栅极介质层的方法包括:在所述基底表面形成第一栅极介质材料层;在所述第一子区的部分第一栅极介质材料层表面形成第二图形化层;以所述第二图形化层为掩膜刻蚀所述第一栅极介质材料层,直至暴露出所述基底表面。8. The method for forming a semiconductor structure according to claim 7, wherein the method for forming the first gate dielectric layer comprises: forming a first gate dielectric material layer on the surface of the substrate; Forming a second patterned layer on the surface of a part of the first gate dielectric material layer in a sub-region; using the second patterned layer as a mask to etch the first gate dielectric material layer until the surface of the substrate is exposed . 9.如权利要求6所述的半导体结构的形成方法,其特征在于,形成所述栅极结构的方法包括:在所述基底表面形成栅极介质材料层;在所述栅极介质材料层表面形成栅极材料层;去除所述第一区以外的栅极介质材料层和栅极材料层以形成栅极介质层与初始栅极层;在所述第一子区的初始栅极层表面形成第三图形化层;以所述第三图形化层为掩膜刻蚀所述初始栅极层以形成栅极层。9. The method for forming a semiconductor structure according to claim 6, wherein the method for forming the gate structure comprises: forming a gate dielectric material layer on the surface of the substrate; forming a gate dielectric material layer on the surface of the gate dielectric material layer Forming a gate material layer; removing the gate dielectric material layer and the gate material layer outside the first region to form a gate dielectric layer and an initial gate layer; forming a gate dielectric layer on the surface of the initial gate layer in the first sub-region a third patterned layer; using the third patterned layer as a mask to etch the initial gate layer to form a gate layer. 10.如权利要求9所述的半导体结构的形成方法,其特征在于,去除所述第一区以外的栅极介质材料层和栅极材料层的方法包括:在所述第一区的栅极材料层表面形成第四图形化层;以所述第四图形化层为掩膜,刻蚀所述栅极介质材料层和所述栅极材料层,直至暴露出所述基底表面。10. The method for forming a semiconductor structure according to claim 9, wherein the method for removing the gate dielectric material layer and the gate material layer outside the first region comprises: A fourth patterned layer is formed on the surface of the material layer; using the fourth patterned layer as a mask, the gate dielectric material layer and the gate material layer are etched until the surface of the substrate is exposed.
CN201910818057.5A 2019-08-30 2019-08-30 Semiconductor structures and methods of forming them Pending CN110544701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910818057.5A CN110544701A (en) 2019-08-30 2019-08-30 Semiconductor structures and methods of forming them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910818057.5A CN110544701A (en) 2019-08-30 2019-08-30 Semiconductor structures and methods of forming them

Publications (1)

Publication Number Publication Date
CN110544701A true CN110544701A (en) 2019-12-06

Family

ID=68711250

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910818057.5A Pending CN110544701A (en) 2019-08-30 2019-08-30 Semiconductor structures and methods of forming them

Country Status (1)

Country Link
CN (1) CN110544701A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1905201A (en) * 2005-07-29 2007-01-31 富士通株式会社 Semiconductor imaging device and fabrication process thereof
CN102859668A (en) * 2010-03-30 2013-01-02 沃特拉半导体公司 Two step poly etch LDMOS gate formation
CN103489916A (en) * 2013-09-24 2014-01-01 无锡市晶源微电子有限公司 N type LDMOS of ladder gate oxide layer and active drift region structure and manufacturing method of N type LDMOS
CN105161462A (en) * 2015-07-22 2015-12-16 格科微电子(上海)有限公司 Method for improving carrier transmission efficiency of backside illumination image sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1905201A (en) * 2005-07-29 2007-01-31 富士通株式会社 Semiconductor imaging device and fabrication process thereof
CN102859668A (en) * 2010-03-30 2013-01-02 沃特拉半导体公司 Two step poly etch LDMOS gate formation
CN103489916A (en) * 2013-09-24 2014-01-01 无锡市晶源微电子有限公司 N type LDMOS of ladder gate oxide layer and active drift region structure and manufacturing method of N type LDMOS
CN105161462A (en) * 2015-07-22 2015-12-16 格科微电子(上海)有限公司 Method for improving carrier transmission efficiency of backside illumination image sensor

Similar Documents

Publication Publication Date Title
US10510789B2 (en) Extra doped region for back-side deep trench isolation
KR102050016B1 (en) Method of forming absorption enhancement structure for image sensor
US7459360B2 (en) Method of forming pixel sensor cell having reduced pinning layer barrier potential
US7572701B2 (en) Recessed gate for a CMOS image sensor
CN111106135B (en) Integrated chip and method for forming integrated chip
US20240379724A1 (en) Capping structure to reduce dark current in image sensors
US20210111201A1 (en) Image Sensor Structure and Method of Forming the Same
CN110783356B (en) Time delay integral image sensor and forming method thereof
CN108364965A (en) Imaging sensor and forming method thereof
CN100438060C (en) Semiconductor device and method of forming the same
CN109216392A (en) Imaging sensor and forming method thereof
US8580601B2 (en) Pixel sensor cell with a dual work function gate electrode
CN110544701A (en) Semiconductor structures and methods of forming them
KR100263474B1 (en) Solid stage image sensor and method of fabricating the same
WO2015067101A1 (en) Vertically configured photosensitive semiconductor device and method for fabrication thereof
US8883524B2 (en) Methods and apparatus for CMOS sensors
CN110137193A (en) Image sensor, forming method and working method thereof
CN114300496B (en) Image sensor and preparation process thereof
CN108281450A (en) Imaging sensor and forming method thereof
CN108231815A (en) Imaging sensor and forming method thereof
CN108565272A (en) Imaging sensor, forming method and its working method
US20210328083A1 (en) Optoelectronic devices having an electrode with apertures
CN113327951A (en) Pixel and associated transfer gate fabrication method
CN110164889A (en) Imaging sensor and forming method thereof
CN117316962A (en) Image sensor and method of forming the same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20191206