CN110530253A - Optimum design method for resistance-type wireless and passive strain transducer measuring circuit - Google Patents
Optimum design method for resistance-type wireless and passive strain transducer measuring circuit Download PDFInfo
- Publication number
- CN110530253A CN110530253A CN201910813693.9A CN201910813693A CN110530253A CN 110530253 A CN110530253 A CN 110530253A CN 201910813693 A CN201910813693 A CN 201910813693A CN 110530253 A CN110530253 A CN 110530253A
- Authority
- CN
- China
- Prior art keywords
- value
- inductance
- input impedance
- strain
- resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000013461 design Methods 0.000 title claims abstract description 27
- 238000000034 method Methods 0.000 title claims abstract description 22
- 238000005457 optimization Methods 0.000 claims abstract description 37
- 230000008859 change Effects 0.000 claims abstract description 16
- 238000010586 diagram Methods 0.000 claims abstract description 9
- 230000000694 effects Effects 0.000 claims abstract description 8
- 230000006872 improvement Effects 0.000 claims abstract description 5
- 238000005259 measurement Methods 0.000 claims description 27
- 238000010168 coupling process Methods 0.000 claims description 13
- 230000008878 coupling Effects 0.000 claims description 12
- 238000005859 coupling reaction Methods 0.000 claims description 12
- 239000003990 capacitor Substances 0.000 claims description 6
- 238000009826 distribution Methods 0.000 claims description 3
- 238000012544 monitoring process Methods 0.000 description 10
- 230000001939 inductive effect Effects 0.000 description 7
- 238000004088 simulation Methods 0.000 description 7
- 230000036541 health Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 238000013178 mathematical model Methods 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 230000001953 sensory effect Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 238000010206 sensitivity analysis Methods 0.000 description 2
- 238000010897 surface acoustic wave method Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000032683 aging Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B7/00—Measuring arrangements characterised by the use of electric or magnetic techniques
- G01B7/16—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
- G01B7/18—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in resistance
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
Abstract
本发明涉及用于电阻式无线无源应变传感器测量电路的优化设计方法,包括:(1)根据基尔霍夫定律分析电阻式无线无源应变传感器测量电路特性,建立应变传感器电阻值与该电路总输入阻抗的关联关系式;(2)采用多目标优化模型来优化各参量来获得更显著的系统输入阻抗相位信息;(3)采用Matlab软件中自带的多目标优化函数gamultiobj来求解步骤(2)中的优化模型,解得设计变量A;(4)根据步骤(3)求得的设计变量A和Matlab软件生成的Pareto前端图,可得优化过后的不同应变电阻值时系统输入阻抗相位随频率变化关系,并与未优化之前的系统输入阻抗相位随频率变化关系进行对比,且说明采用优化后的参量对系统输入阻抗相位随频率变化关系的改善效果。
The invention relates to an optimal design method for a resistance-type wireless passive strain sensor measuring circuit, comprising: (1) analyzing the characteristics of the resistance-type wireless passive strain sensor measuring circuit according to Kirchhoff's law, and establishing the relationship between the resistance value of the strain sensor and the circuit The relational expression of the total input impedance; (2) use the multi-objective optimization model to optimize each parameter to obtain more significant system input impedance phase information; (3) use the multi-objective optimization function gamultiobj in the Matlab software to solve the step ( 2) The optimization model in , solves the design variable A; (4) According to the design variable A obtained in step (3) and the Pareto front-end diagram generated by Matlab software, the optimized system input impedance phase can be obtained at different strain resistance values The relationship between the change of the system input impedance phase and the frequency before the optimization is compared with the relationship between the system input impedance phase and the frequency change before optimization, and the improvement effect of the optimized parameters on the relationship between the system input impedance phase and the frequency change is explained.
Description
技术领域technical field
本发明属于无线无源应变传感器领域,具体涉及用于电阻式无线无源应变传感器测量电路的优化设计方法,可用于实现电阻式无线无源应变测量电路系统中各参量的优化设计。The invention belongs to the field of wireless passive strain sensors, and in particular relates to an optimal design method for a measuring circuit of a resistive wireless passive strain sensor, which can be used to realize the optimal design of each parameter in a resistive wireless passive strain measuring circuit system.
背景技术Background technique
结构健康监测技术常用于评估系统结构健康和自身损害及老化程度,例如在基础设施健康评估、工业制造以及生物医疗等领域中有着广泛应用,能够提前对可能发生的结构损伤事故做出相应的预防措施,进而把人身和财产损失尽可能的降低。Structural health monitoring technology is often used to assess the structural health of the system and its own damage and aging. For example, it is widely used in the fields of infrastructure health assessment, industrial manufacturing, and biomedicine, and can prevent possible structural damage accidents in advance. Measures to reduce personal and property losses as much as possible.
而在所有的结构健康监测量中,应变是最常用的监测量,因为它可以直接反映结构所承担的负荷信息。常见的应变监测过程是利用应变传感器来获得关于被测系统应变特征信息,利用这些信息对结构健康程度进行评估,从而避免可能发生的结构性损害事故。然而,由于有些测量环境条件苛刻,限制了电池或有线连接的使用。例如,在环境没有外部接入点情况下,或者在封闭环境中植入测量设备的情况,必须避免使用电池和有线连接的传感器部件。因此,关于应变的无线测量方法研究很有价值。Among all the structural health monitoring quantities, strain is the most commonly used monitoring quantity, because it can directly reflect the load information borne by the structure. The common strain monitoring process is to use strain sensors to obtain information about the strain characteristics of the system under test, and use this information to evaluate the health of the structure, so as to avoid possible structural damage accidents. However, some measurement environments are harsh, limiting the use of batteries or wired connections. For example, in environments without external access points, or in the case of implanted measurement devices in closed environments, the use of batteries and wired-connected sensor components must be avoided. Therefore, research on wireless measurement methods for strain is valuable.
现有的应变测量无线化方法主要包括四种:声表面波传感器、电感耦合特性、贴片天线以及数字图像技术。The existing wireless strain measurement methods mainly include four kinds: surface acoustic wave sensor, inductive coupling characteristic, patch antenna and digital image technology.
然而,声表面波传感器、贴片天线应变测量方案的成本偏高,且对制造工艺和精度要求较高。基于数字图像技术的方案也需要专业的高频扫描和摄像设备,特别是测量过程需要在不同位置布局多个监测设备的情况下成本会极高。而基于电感耦合特性的无线化应变测量方案不仅能够实现非接触应变监测,而且理论上具有无限寿命、结构简单、性能可靠等特点,很适合应用于封闭空间以及机械动力旋转部件等测量环境。但是,由于电感耦合磁场随距离增加呈指数衰减,导致利用电感耦合特性设计的无线无源应变传感器将面临监测距离有限,进而应变特征信息实测效果不显著的问题。However, the cost of surface acoustic wave sensor and patch antenna strain measurement scheme is relatively high, and the requirements for manufacturing process and precision are relatively high. Solutions based on digital image technology also require professional high-frequency scanning and camera equipment, especially when the measurement process requires the layout of multiple monitoring equipment at different locations, the cost will be extremely high. The wireless strain measurement solution based on inductive coupling characteristics can not only realize non-contact strain monitoring, but also theoretically has the characteristics of infinite life, simple structure, and reliable performance. It is very suitable for measurement environments such as closed spaces and mechanical power rotating parts. However, due to the exponential decay of the inductive coupling magnetic field with the increase of distance, the wireless passive strain sensor designed by using the inductive coupling characteristic will face the problem of limited monitoring distance, and the actual measurement effect of strain characteristic information is not significant.
现有的改善监测距离有限的方法主要包括以下几种:利用左手材料或中继线圈方案、优化传感器线圈的品质因数以及使用压电聚合物材料放大应变特征信息。Existing methods to improve the limited monitoring distance mainly include the following: utilizing left-handed materials or relay coil schemes, optimizing the quality factor of sensor coils, and using piezoelectric polymer materials to amplify strain characteristic information.
(1)利用中继线圈提高传感器读出性能。如论文Diego A.Sanz,CostantinoMitrosbaras,Edgar A.Unigarro,Fredy Segura-Quijano.Passive resonators forwireless passive sensor readout enhancement.Applied Physics Letters,2013,103(13):133502.中提出了利用中继线圈来提高无线无源传感器的读出性能。(1) Use relay coils to improve sensor readout performance. For example, in the paper Diego A.Sanz, CostantinoMitrosbaras, Edgar A.Unigarro, Fredy Segura-Quijano. Passive resonators for wireless passive sensor readout enhancement. Applied Physics Letters, 2013, 103(13): 133502. Proposed the use of relay coils to improve wireless passive sensor readout enhancement. The readout performance of the source sensor.
(2)利用左手材料提高传感器读出性能。如论文Bingnan Wang,Koon Hoo Teo,Tamotsu Nishino,William Yerazunis.Experiments on wireless power transfer withmetamaterials.Applied Physics Letters,2011,98(25):254101.中提出了具有负磁导率的双层线圈结构的左手材料,该材料自身具有更大的电感值和电容值,从而改善了传感器的读出性能。(2) Using left-handed materials to improve sensor readout performance. For example, in the paper Bingnan Wang, Koon Hoo Teo, Tamotsu Nishino, William Yerazunis. Experiments on wireless power transfer with metamaterials. Applied Physics Letters, 2011, 98(25): 254101. A left-handed double-layer coil structure with negative magnetic permeability is proposed. material, which itself has larger inductance and capacitance values, thereby improving the readout performance of the sensor.
(3)优化传感器线圈的品质因数。如论文Hao Jiang,Di Lan,Hamid Shahnasser,Shuvo Roy.Sensitivity analysis of an implantable LC based passivesensor.International Conference on Biomedical Engineering andInformatics.2010,4:1586-1590.中建立了基于LC谐振器的植入式传感器的灵敏度分析模型,并优化得到最大的电感器品质因数和传感器灵敏度,实现增强传感器读出性能的目的。(3) Optimize the quality factor of the sensor coil. Such as the paper Hao Jiang, Di Lan, Hamid Shahnasser, Shuvo Roy. Sensitivity analysis of an implantable LC based passive sensor. International Conference on Biomedical Engineering and Informatics. 2010, 4:1586-1590. Established an implantable sensor based on LC resonator The sensitivity analysis model is optimized to obtain the maximum inductor quality factor and sensor sensitivity, so as to achieve the purpose of enhancing the readout performance of the sensor.
(4)使用压电聚合物材料放大传感器的读出效果。如论文Sun Ke.Design andcharacterization of a passive wireless strain sensor.Universityof Puerto Ricoat Mayagüez.2006.中提出了在叉指电容的顶部附着一层压电聚合物作为介电层,来放大应变特征,从而提高传感器灵敏度,实现了传感器读出性能的增强。(4) Use piezoelectric polymer materials to amplify the readout effect of the sensor. For example, in the paper Sun Ke.Design and characterization of a passive wireless strain sensor.University of Puerto Ricoat Mayagüez.2006. It is proposed to attach a layer of piezoelectric polymer as a dielectric layer on the top of the interdigital capacitor to amplify the strain characteristics, thereby improving the sensor Sensitivity, enabling enhanced sensor readout performance.
但是,在上述研究中,改进方案都是以传感器部分为研究对象,然而目前还没有包括读出线圈、负载电阻以及谐振频率等在内的整个测量系统的优化设计方法。由于无线无源应变的测量是依赖于两个电感器之间的感应耦合,来构成无线无源应变测量系统,以实现应变特征信息的传输,为此本文提出了一种用于电阻式无线无源应变传感器测量电路的优化设计方法。However, in the above studies, the improvement schemes are all based on the sensor part, but there is no optimal design method for the entire measurement system including the readout coil, load resistance and resonance frequency. Since the measurement of wireless passive strain depends on the inductive coupling between two inductors to form a wireless passive strain measurement system to realize the transmission of strain characteristic information, this paper proposes a resistive wireless Optimal design method of source strain sensor measurement circuit.
发明内容Contents of the invention
发明目的:本发明公开了一种用于电阻式无线无源应变传感器测量电路的优化设计方法,以解决利用电感耦合特性设计的无线无源应变传感器监测距离有限和应变特征信息实测效果不显著的问题。本设计方法的核心是,首先基于电路原理,建立应变传感器电阻值与该电路总输入阻抗的关联关系式;然后在应变变化量固定即应变电阻值变化量固定的情况下,以谐振频率处阻抗相位变化ΔPhaseZin和感知电感品质因数Q取最大值为目标函数,建立关于电阻式无线无源应变传感器测量电路各参量的优化设计模型;再者,合理设置约束条件并利用多目标优化求解方法得出优化后的各参量取值。Purpose of the invention: The present invention discloses an optimal design method for the measurement circuit of a resistive wireless passive strain sensor, in order to solve the problem that the wireless passive strain sensor designed using inductive coupling characteristics has a limited monitoring distance and the actual measurement effect of strain characteristic information is not significant question. The core of this design method is, firstly, based on the circuit principle, establish the relationship between the resistance value of the strain sensor and the total input impedance of the circuit; Taking the maximum value of the phase change ΔPhase Zin and the sensory inductance quality factor Q as the objective function, an optimal design model for the parameters of the resistive wireless passive strain sensor measurement circuit is established; moreover, the constraint conditions are set reasonably and the multi-objective optimization solution method is used to obtain The values of each parameter after optimization are obtained.
技术方案:用于电阻式无线无源应变传感器测量电路的优化设计方法,包括:Technical solution: an optimal design method for resistive wireless passive strain sensor measurement circuits, including:
(1)根据基尔霍夫定律分析电阻式无线无源应变传感器测量电路特性,建立应变传感器电阻值与该电路总输入阻抗的关联关系式,其中:(1) According to Kirchhoff's law, the characteristics of the measurement circuit of the resistive wireless passive strain sensor are analyzed, and the relationship between the resistance value of the strain sensor and the total input impedance of the circuit is established, where:
由基尔霍夫电压定律并利用等效输入阻抗法分析可得系统等效输入阻抗Zin:According to Kirchhoff's voltage law and the equivalent input impedance method analysis, the equivalent input impedance Z in of the system can be obtained:
其中:in:
j为虚数单位;j is the imaginary unit;
f为扫描频率;f is the scanning frequency;
M为读出电感L1和感知电感L2之间的互感;M is the mutual inductance between the sensing inductance L 1 and the sensing inductance L 2 ;
为输入端电压源电压值; is the voltage value of the input terminal voltage source;
为流经读出线圈串联电阻R1的电流值; is the current value flowing through the series resistor R1 of the readout coil;
R1为读出线圈串联电阻值;R 1 is the series resistance value of the readout coil;
R2为感知线圈串联电阻值;R 2 is the series resistance value of the sensing coil;
Rx为应变片电阻值;R x is the resistance value of the strain gauge;
L1为读出线圈电感值;L 1 is the inductance value of the read coil;
L2为感知线圈电感值;L 2 is the sensing coil inductance value;
Cp=C2+Cx,即谐振频率调节电容值Cx和感知电感分布电容值C2之和;C p = C 2 +C x , that is, the sum of the resonant frequency adjustment capacitance C x and the sensing inductance distribution capacitance C 2 ;
同时,相位频率最小点fmin可以通过以下的关系式子来表示:At the same time, the minimum point of phase frequency f min can be expressed by the following relational formula:
其中:in:
fres为传感器谐振频率;f res is the resonant frequency of the sensor;
而感知电感的品质因数Q可以表示为:The quality factor Q of the sensing inductance can be expressed as:
将式(2)中左边的式子代入式(1)后,则可以得到fres处的阻抗相位表达式:After substituting the formula on the left side of formula (2) into formula (1), the impedance phase expression at f res can be obtained:
其中:in:
B为中间参数,是与耦合系数相关的一个参数,保持不变,其表达式如下:B is an intermediate parameter, which is a parameter related to the coupling coefficient and remains unchanged. Its expression is as follows:
其中:in:
tan(ωres)为谐振频率点处相位的正切值;tan(ω res ) is the tangent value of the phase at the resonant frequency point;
Rx,0为电阻应变传感器初始状态(即无应变状态)下的电阻值;R x,0 is the resistance value of the resistance strain sensor in the initial state (that is, no strain state);
(2)采用如下多目标优化模型来优化各参量来获得更显著的系统输入阻抗相位信息:(2) Use the following multi-objective optimization model to optimize each parameter to obtain more significant system input impedance phase information:
Find A=(L1,L2,Cx,R2,fres)Find A=(L 1 ,L 2 ,C x ,R 2 , fres )
Max Y(A)=Q(A)Max Y(A)=Q(A)
s.t. C2=C0 (6)st C 2 =C 0 (6)
Rx=Ra (7)R x =R a (7)
Lb≤L1≤Lc (8)L b ≤ L 1 ≤ L c (8)
Ld≤L2≤Le (9)L d ≤ L 2 ≤ L e (9)
Cf≤Cx≤Cg (10)C f ≤ C x ≤ C g (10)
Rh≤R2≤Ri (11)R h ≤ R 2 ≤ R i (11)
fi≤fres≤fj (12)f i ≤ f res ≤ f j (12)
式中:In the formula:
设计变量A=(L1,L2,Cx,R2,fres)是多参量约束优化函数的描述参数;The design variable A=(L 1 , L 2 , C x , R 2 , f res ) is the description parameter of the multi-parameter constrained optimization function;
目标函数Y(A)是品质因数,L(A)是系统输入阻抗相位随应变阻值变化率,目的是将优化问题转换为标准的优化模型;The objective function Y(A) is the quality factor, and L(A) is the change rate of the system input impedance phase with the strain resistance value, the purpose is to convert the optimization problem into a standard optimization model;
约束条件(6)是为了设定感知线圈电感分布电容值;Constraint condition (6) is to set the sensing coil inductance distributed capacitance value;
约束条件(7)是为了设定应变片初始阻值大小;The constraint condition (7) is to set the initial resistance value of the strain gauge;
约束条件(8)是为了限定感知线圈电感自身电感值最小取值和最大取值;Constraint condition (8) is in order to limit the minimum value and the maximum value of the inductance value of sensing coil inductance itself;
约束条件(9)是为了限定读出线圈电感自身电感值最小取值和最大取值;Constraint condition (9) is to limit the minimum value and the maximum value of the inductance value of the read coil inductance itself;
约束条件(10)是为了限定频率调节电容最小取值和最大取值;The constraint condition (10) is to limit the minimum value and the maximum value of the frequency adjustment capacitor;
约束条件(11)是为了限定感知线圈串联电阻最小取值和最大取值;Constraint condition (11) is in order to limit the minimum value and the maximum value of the sensing coil series resistance;
约束条件(12)是为了限定谐振频率最小取值和最大取值;The constraint condition (12) is to limit the minimum value and the maximum value of the resonant frequency;
(3)采用Matlab软件中自带的多目标优化函数gamultiobj来求解步骤(2)中的优化模型,解得设计变量A;(3) The multi-objective optimization function gamultiobj carried in the Matlab software is used to solve the optimization model in the step (2), and the design variable A is solved;
(4)根据步骤(3)求得的设计变量A和Matlab软件生成的Pareto前端图,可得优化过后的不同应变电阻值时系统输入阻抗相位随频率变化关系,并与未优化之前的系统输入阻抗相位随频率变化关系进行对比,且说明采用优化后的参量对系统输入阻抗相位随频率变化关系的改善效果。(4) According to the design variable A obtained in step (3) and the Pareto front-end diagram generated by Matlab software, the relationship between the system input impedance phase and the frequency variation at different strain resistance values after optimization can be obtained, and it is compared with the system input before optimization The relationship between impedance phase and frequency variation is compared, and the improvement effect of using optimized parameters on the relationship between system input impedance phase and frequency variation is illustrated.
有益效果:本发明公布了一种用于电阻式无线无源应变传感器测量电路的优化设计方法,具有以下有益效果:Beneficial effects: the present invention discloses an optimal design method for measuring circuits of resistive wireless passive strain sensors, which has the following beneficial effects:
通过本发明所设计的应变传感器测量系统,在保证应变测量电路应变电阻值变化量和感知电感分布电容不变的情况下,在一定频率范围内实现了更显著的系统输入阻抗相位变化,也可以理解为在保证读出线圈灵敏度不变的情况下,增加了无线无源应变传感器的读出距离,以此将改善了利用电磁感应的无线无源应变测量技术作用距离很有限的问题。Through the strain sensor measurement system designed in the present invention, under the condition that the strain resistance value variation of the strain measurement circuit and the distributed capacitance of the sensed inductance are kept unchanged, a more significant system input impedance phase change is realized within a certain frequency range, and it can also be It is understood that the readout distance of the wireless passive strain sensor is increased under the condition that the sensitivity of the readout coil is kept unchanged, so as to improve the problem that the working distance of the wireless passive strain measurement technology using electromagnetic induction is very limited.
附图说明Description of drawings
图1为电阻式无线无源应变传感器测量电路的等效示意图;Fig. 1 is the equivalent schematic diagram of the measurement circuit of the resistive wireless passive strain sensor;
图2是本发明中系统输入阻抗幅值和相位随扫描频率变化趋势定性图;Fig. 2 is a qualitative diagram of the trend of system input impedance amplitude and phase with scanning frequency in the present invention;
图3是本发明中解优化模型得到的Pareto前端图;Fig. 3 is the Pareto front-end figure that solution optimization model obtains in the present invention;
图4是本发明得到的0.4MHz-3.0MHz频率范围内初始值和优化参数在不同应变电阻值与系统阻抗相位角变化关系对比图;Fig. 4 is the comparison diagram of the relationship between the initial value and the optimized parameter in different strain resistance values and the system impedance phase angle in the 0.4MHz-3.0MHz frequency range obtained by the present invention;
图5是本发明得到的0.4MHz-3.0MHz频率范围内初始值和优化参数在不同应变电阻值与系统S1,1参数变化关系对比图。Fig. 5 is a comparison diagram of the relationship between the initial value and the optimized parameter in the frequency range of 0.4MHz-3.0MHz obtained by the present invention at different strain resistance values and the change of the system S 1,1 parameter.
其中:in:
1-读出线圈1- sense coil
2-感知线圈2- Sensing coil
具体实施方式:Detailed ways:
下面对本发明的具体实施方式详细说明。Specific embodiments of the present invention will be described in detail below.
本发明公开了一种用于电阻式无线无源应变传感器测量电路的优化设计方法,以解决利用电感耦合特性设计的无线无源应变传感器监测距离有限和应变特征信息实测效果不显著的问题。The invention discloses an optimal design method for a resistance wireless passive strain sensor measuring circuit to solve the problems that the wireless passive strain sensor designed using inductive coupling characteristics has a limited monitoring distance and the actual measurement effect of strain characteristic information is not significant.
本发明首先根据基尔霍夫定律和等效输入阻抗法,分析利用互感耦合原理设计的电阻式无线无源应变传感器测量电路特性,推导出应变传感器电阻值与该电路总输入阻抗的关联关系式(该关系式的定性仿真如图2所示)。利用该关系式,分析得到在一定频率范围内应变传感器电阻值变化与电路总输入阻抗的相位变化都具有映射关系;然后,在应变变化量固定即应变电阻值变化量固定的情况下,以谐振频率处阻抗相位变化ΔPhaseZin和感知电感品质因数Q最大化为目标函数,建立关于电阻式无线无源应变传感器测量电路各参量的优化设计模型;再者,设置约束条件并利用多目标优化求解方法得出优化后的各参量取值;最后,利用上述给出的感知电感自感、电阻和电容等参数值在数学模型中对比采用初始参数和优化过后的参数各自对应变特征信息。According to Kirchhoff's law and the equivalent input impedance method, the present invention firstly analyzes the characteristics of the measuring circuit of the resistive wireless passive strain sensor designed with the principle of mutual inductance coupling, and deduces the relational expression between the resistance value of the strain sensor and the total input impedance of the circuit (The qualitative simulation of this relationship is shown in Figure 2). Using this relational expression, it is analyzed that there is a mapping relationship between the change of the resistance value of the strain sensor and the phase change of the total input impedance of the circuit within a certain frequency range; The impedance phase change ΔPhase Zin at the frequency and the sensory inductance quality factor Q are maximized as the objective function, and the optimal design model for the parameters of the resistive wireless passive strain sensor measurement circuit is established; moreover, the constraint conditions are set and the multi-objective optimization solution method is used The values of each parameter after optimization are obtained; finally, the parameter values of sensory inductance self-inductance, resistance and capacitance given above are used to compare the corresponding strain characteristic information of the initial parameters and optimized parameters in the mathematical model.
用于电阻式无线无源应变传感器测量电路的优化设计方法,包括以下步骤:An optimal design method for a resistive wireless passive strain sensor measurement circuit, comprising the following steps:
(1)根据基尔霍夫定律分析电阻式无线无源应变传感器测量电路的电路特性,推导出应变传感器电阻值与该电路总输入阻抗的关联关系式,其中:(1) Analyze the circuit characteristics of the resistive wireless passive strain sensor measurement circuit according to Kirchhoff's law, and derive the relationship between the resistance value of the strain sensor and the total input impedance of the circuit, where:
如图1所示,其为电阻式无线无源应变传感器测量电路的等效示意图。从左往右看图1,读出线圈1可由读出电感L1、电感串联电阻R1与分布电容C1组成的等效电路来表示。同理,右边也可以用感知电感L2、电感串联电阻R2与分布电容C2组成的等效电路来表示感知线圈2,并联的频率调谐电容器Cx和应变片电阻Rx与感知线圈来构成一个电阻式应变测量传感器谐振回路,同时Rx电阻值跟随检测到的应变而变化。As shown in Figure 1, it is an equivalent schematic diagram of a resistive wireless passive strain sensor measurement circuit. Looking at FIG. 1 from left to right, the readout coil 1 can be represented by an equivalent circuit composed of a readout inductance L 1 , an inductor series resistance R 1 and a distributed capacitance C 1 . In the same way, the sensing coil 2 can also be represented by an equivalent circuit composed of sensing inductance L 2 , inductor series resistance R 2 and distributed capacitance C 2 on the right side, and the frequency tuning capacitor C x and strain gauge resistance R x connected in parallel with the sensing coil A resistive strain measurement sensor resonant circuit is formed, and the R x resistance value changes with the detected strain.
由基尔霍夫电压定律并利用等效输入阻抗法分析可得系统等效输入阻抗Zin:According to Kirchhoff's voltage law and the equivalent input impedance method analysis, the equivalent input impedance Z in of the system can be obtained:
其中:in:
j为虚数单位;j is the imaginary unit;
f为扫描频率;f is the scanning frequency;
为输入端电压源电压值; is the voltage value of the input terminal voltage source;
为流经读出线圈串联电阻R1的电流值; is the current value flowing through the series resistor R1 of the readout coil;
R1为读出线圈串联电阻值;R 1 is the series resistance value of the readout coil;
R2为感知线圈串联电阻值;R 2 is the series resistance value of the sensing coil;
Rx为应变片电阻值;R x is the resistance value of the strain gauge;
L1为读出线圈电感值;L 1 is the inductance value of the read coil;
L2为感知线圈电感值;L 2 is the sensing coil inductance value;
Cp=C2+Cx,即谐振频率调节电容值Cx和感知电感分布电容值C2之和;C p = C 2 +C x , that is, the sum of the resonant frequency adjustment capacitance C x and the sensing inductance distribution capacitance C 2 ;
同时,相位频率最小点fmin可以通过以下的关系式子来表示:At the same time, the minimum point of phase frequency f min can be expressed by the following relational formula:
其中:in:
fres为传感器谐振频率;f res is the resonant frequency of the sensor;
而感知电感的品质因数Q可以表示为:The quality factor Q of the sensing inductance can be expressed as:
将式(2)中左边的式子代入式(1)后,则可以得到fres处的阻抗相位表达式:After substituting the formula on the left side of formula (2) into formula (1), the impedance phase expression at f res can be obtained:
其中:in:
B为中间参数,是与耦合系数相关的一个参数,保持不变;B is an intermediate parameter, which is a parameter related to the coupling coefficient and remains unchanged;
式(4)将应变片电阻Rx和谐振频率fres处测量的阻抗相位联系建立联系,以上推导的公式也存在局限性,公式并不能十分完整地描述整个电阻应变传感器无线化系统阻抗信息,公式表达的更多是在感知传感器谐振频率fres附近频率范围处的阻抗信息,所以在谐振频率fres附近的频率范围内公式才适用。Equation (4) establishes the relationship between the strain gauge resistance R x and the impedance phase measured at the resonant frequency f res . The above derivation formula also has limitations. The formula cannot fully describe the impedance information of the entire resistance strain sensor wireless system. The formula expresses more impedance information in the frequency range near the resonant frequency f res of the sensing sensor, so the formula is only applicable in the frequency range near the resonant frequency f res .
从公式(4)来看,除了参数B的值不确定外,所有的变量都是早先有定义的。因此,找到了一个间接获得B的途径:From formula (4), except for the uncertain value of parameter B, all variables are defined earlier. Therefore, an indirect way to obtain B was found:
其中:in:
tan(ωres)为谐振频率点处相位的正切值;tan(ω res ) is the tangent value of the phase at the resonant frequency point;
Rx,0为电阻应变传感器初始状态(即无应变状态)下的电阻值;R x,0 is the resistance value of the resistance strain sensor in the initial state (that is, no strain state);
由公式(4)可知,在一定的频率范围内系统输入阻抗相位与感知电感串联电阻R2、调谐电容Cp、应变电阻值Rx、感知电感值L2、读出电感值L1以及谐振频率fres的非线性函数。因此,想要更显著的应变特征信息,需要对上述各个参量进行约束优化。It can be known from formula (4) that within a certain frequency range, the system input impedance phase and sensed inductance series resistance R 2 , tuning capacitor C p , strain resistance value R x , sensed inductance value L 2 , sensed inductance value L 1 and resonance Nonlinear function of frequency f res . Therefore, in order to obtain more significant strain characteristic information, constrained optimization of the above parameters is required.
(2)采用如下多目标优化模型来优化各参量来获得更显著的系统输入阻抗相位信息。(2) Use the following multi-objective optimization model to optimize each parameter to obtain more significant system input impedance phase information.
Find A=(L1,L2,Cx,R2,fres)Find A=(L 1 ,L 2 ,C x ,R 2 , fres )
Max Y(A)=Q(A)Max Y(A)=Q(A)
s.t. C2=C0 (6)st C 2 =C 0 (6)
Rx=Ra (7)R x =R a (7)
Lb≤L1≤Lc (8)L b ≤ L 1 ≤ L c (8)
Ld≤L2≤Le (9)L d ≤ L 2 ≤ L e (9)
Cf≤Cx≤Cg (10)C f ≤ C x ≤ C g (10)
Rh≤R2≤Ri (11)R h ≤ R 2 ≤ R i (11)
fi≤fres≤fj (12)f i ≤ f res ≤ f j (12)
式中:In the formula:
设计变量A=(L1,L2,Cx,R2,fres)是多参量约束优化函数的描述参数;The design variable A=(L 1 , L 2 , C x , R 2 , f res ) is the description parameter of the multi-parameter constrained optimization function;
目标函数Y(A)是品质因数,L(A)是系统输入阻抗相位随应变阻值变化率,目的是将优化问题转换为标准的优化模型;The objective function Y(A) is the quality factor, and L(A) is the change rate of the system input impedance phase with the strain resistance value, the purpose is to convert the optimization problem into a standard optimization model;
约束条件(6)是为了设定感知线圈电感分布电容值;The constraint condition (6) is to set the sensing coil inductance distributed capacitance value;
约束条件(7)是为了设定应变片初始阻值大小;The constraint condition (7) is to set the initial resistance value of the strain gauge;
约束条件(8)是为了限定感知线圈电感自身电感值最小取值和最大取值;Constraint condition (8) is in order to limit the minimum value and the maximum value of the inductance value of sensing coil inductance itself;
约束条件(9)是为了限定读出线圈电感自身电感值最小取值和最大取值;Constraint condition (9) is to limit the minimum value and the maximum value of the inductance value of the read coil inductance itself;
约束条件(10)是为了限定频率调节电容最小取值和最大取值;The constraint condition (10) is to limit the minimum value and the maximum value of the frequency adjustment capacitor;
约束条件(11)是为了限定感知线圈串联电阻最小取值和最大取值;Constraint condition (11) is in order to limit the minimum value and the maximum value of the sensing coil series resistance;
约束条件(12)是为了限定谐振频率最小取值和最大取值;The constraint condition (12) is to limit the minimum value and the maximum value of the resonant frequency;
(3)采用Matlab软件中自带的多目标优化函数gamultiobj来求解步骤(2)中的优化模型,解得设计变量A;(3) The multi-objective optimization function gamultiobj carried in the Matlab software is used to solve the optimization model in the step (2), and the design variable A is solved;
(4)根据步骤(3)求得的设计变量A和Matlab软件生成的Pareto前端图(如图3所示),可得优化过后的不同应变电阻值时系统输入阻抗相位随频率变化关系,并与未优化之前的系统输入阻抗相位随频率变化关系进行对比,且说明采用优化后的参量对系统输入阻抗相位随频率变化关系的改善效果。(4) According to the design variable A obtained in step (3) and the Pareto front-end diagram generated by Matlab software (as shown in Figure 3), the relationship between the phase of the system input impedance and the frequency variation with different strain resistance values after optimization can be obtained, and It is compared with the relationship between the system input impedance phase and the frequency variation before the optimization, and the improvement effect of the optimized parameters on the system input impedance phase variation with the frequency is illustrated.
本发明的优点可通过以下数学模型仿真进一步说明:Advantage of the present invention can further illustrate by following mathematical model simulation:
1.仿真参数1. Simulation parameters
如图1所示,读出电感和感知电感均为平面螺旋电感线圈,假设互感耦合系数k=0.13985,应变片电阻初值为Rx=1000Ω,最大应变电阻变化为20Ω,每次施加的应变电阻值为5Ω,感知电感线圈等效分布电容C2为1.1pF。As shown in Figure 1, both the read inductance and the sensing inductance are planar spiral inductance coils, assuming that the mutual inductance coupling coefficient k = 0.13985, the initial value of the strain gauge resistance is R x = 1000Ω, and the maximum strain resistance change is 20Ω, the strain applied each time The resistance value is 5Ω, and the equivalent distributed capacitance C 2 of the sensing inductance coil is 1.1pF.
2.仿真内容与结果2. Simulation content and results
在本发明中,提供目标函数式中不同应变电阻值系统输入阻抗相位随频率变化仿真结果。首先,利用多目标优化模型得到的优化的最优解,其次,将最优解带入数学模型中得到系统输入阻抗相位随频率变化的仿真结果,并把原有参量和经过优化后参量得到的仿真结果进行对比。In the present invention, the simulation results of input impedance phase variation with frequency of systems with different strain resistance values in the objective function formula are provided. Firstly, the optimized optimal solution obtained by the multi-objective optimization model is used. Secondly, the optimal solution is brought into the mathematical model to obtain the simulation results of the system input impedance phase changing with frequency, and the original parameters and the optimized parameters are obtained. The simulation results are compared.
从表1可以看出,在一定频率范围内利用优化的方法得到的局部最优参数可以得到更显著的应变电阻值阻抗角变化的特征,如图4所示,从图中可以看出采用优化过后的参量得到的应变片初始值对应的系统输入阻抗相位更低,同时在总的应变电阻变化固定的情况下相位变化量也明显变大。此外,从图5中可以看出在互感耦合过程中应变特征信息显著变化的同时能量传递效率也在增大。It can be seen from Table 1 that in a certain frequency range, the local optimal parameters obtained by the optimization method can obtain more significant characteristics of the change of the resistance angle of the strain resistance value, as shown in Figure 4. It can be seen from the figure that the optimized The input impedance phase of the system corresponding to the initial value of the strain gauge obtained by the subsequent parameters is lower, and at the same time, the phase change is obviously larger when the total strain resistance change is fixed. In addition, it can be seen from Figure 5 that the energy transfer efficiency is also increasing while the strain characteristic information changes significantly during the mutual inductance coupling process.
表1初始参数与优化参数及结果对比Table 1 Comparison of initial parameters, optimized parameters and results
上面对本发明的实施方式做了详细说明。但是本发明并不限于上述实施方式,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下做出各种变化。The embodiments of the present invention have been described in detail above. However, the present invention is not limited to the above-mentioned embodiments, and various changes can be made within the scope of knowledge of those skilled in the art without departing from the gist of the present invention.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910813693.9A CN110530253A (en) | 2019-08-30 | 2019-08-30 | Optimum design method for resistance-type wireless and passive strain transducer measuring circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910813693.9A CN110530253A (en) | 2019-08-30 | 2019-08-30 | Optimum design method for resistance-type wireless and passive strain transducer measuring circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110530253A true CN110530253A (en) | 2019-12-03 |
Family
ID=68665417
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910813693.9A Pending CN110530253A (en) | 2019-08-30 | 2019-08-30 | Optimum design method for resistance-type wireless and passive strain transducer measuring circuit |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110530253A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111638382A (en) * | 2020-05-14 | 2020-09-08 | 东南大学 | LC formula rotational speed sensor based on synchronous detection |
CN111829559A (en) * | 2020-06-24 | 2020-10-27 | 东南大学 | A method for realizing multi-parameter measurement in a PT symmetrical LC passive wireless sensor system |
CN112525061A (en) * | 2020-11-09 | 2021-03-19 | 西南科技大学 | Wireless strain testing device and method adopting nano composite material |
CN113779911A (en) * | 2020-06-10 | 2021-12-10 | 英业达科技有限公司 | Format conversion method and device |
CN114781303A (en) * | 2022-03-15 | 2022-07-22 | 西北大学 | A universal chipless sensor and design method thereof |
CN114781303B (en) * | 2022-03-15 | 2025-04-11 | 西北大学 | A universal chipless sensor and design method thereof |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1084005A (en) * | 1992-05-20 | 1994-03-16 | 戴布罗研究公司 | Electrodeless discharge lamp with impedance matching and filter network |
CN101107532A (en) * | 2005-01-23 | 2008-01-16 | 塞尔科尼特有限公司 | Device, method and system for estimating the termination to a wired transmission-line based on determination of characteristic impedance |
CN101237146A (en) * | 2008-02-29 | 2008-08-06 | 重庆大学 | On-line monitoring and control method of single-phase grounding compensation status of arc suppression coil system |
CN201429406Y (en) * | 2008-12-22 | 2010-03-24 | 陈志向 | Two-wire current mode displacement sensor |
CN201654110U (en) * | 2010-04-30 | 2010-11-24 | 浙江天煌科技实业有限公司 | Device for measuring relative voltage |
WO2011072144A1 (en) * | 2009-12-09 | 2011-06-16 | Georgia Tech Research Corporation | Pulse harmonic modulation systems and methods |
CN102751875A (en) * | 2012-07-06 | 2012-10-24 | 重庆大学 | Design method for induction power transmission system having characteristics of constant current, constant voltage and constant frequency |
CN103616039A (en) * | 2013-11-27 | 2014-03-05 | 联合汽车电子有限公司 | Parameter matching method for magnetoelectric signal detection system |
RO201600024U1 (en) * | 2015-06-29 | 2017-09-29 | Zoltan Lázár | Complex device for electric experiments |
CN107947592A (en) * | 2017-12-19 | 2018-04-20 | 西安电子科技大学 | A kind of full-bridge type Switching Power Supply ripple factor Forecasting Methodology based on road coupling |
CN108880325A (en) * | 2017-05-16 | 2018-11-23 | 天津大学(青岛)海洋工程研究院有限公司 | A kind of equivalent-circuit model of beam type electric oscillation collection of energy device |
CN108920808A (en) * | 2018-06-27 | 2018-11-30 | 天津大学 | The LC of piezoelectric ultrasonic transducer matches modeling method |
CN109383315A (en) * | 2018-11-14 | 2019-02-26 | 常熟理工学院 | To multi-emitting end/mono- receiving end wireless charging system mutual inductance estimation method |
CN109698561A (en) * | 2019-01-11 | 2019-04-30 | 无锡职业技术学院 | A kind of MCR-WPT system overcoupling area transmissions efficient circuit analysis method |
CN109831035A (en) * | 2019-03-20 | 2019-05-31 | 哈尔滨工业大学 | A kind of mutual inductance discrimination method of the wireless charging system based on orthogonal double channels algorithm |
CN209267181U (en) * | 2018-12-27 | 2019-08-16 | 新宜能电气科技有限公司 | A power quality optimization device |
-
2019
- 2019-08-30 CN CN201910813693.9A patent/CN110530253A/en active Pending
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1084005A (en) * | 1992-05-20 | 1994-03-16 | 戴布罗研究公司 | Electrodeless discharge lamp with impedance matching and filter network |
CN101107532A (en) * | 2005-01-23 | 2008-01-16 | 塞尔科尼特有限公司 | Device, method and system for estimating the termination to a wired transmission-line based on determination of characteristic impedance |
CN101237146A (en) * | 2008-02-29 | 2008-08-06 | 重庆大学 | On-line monitoring and control method of single-phase grounding compensation status of arc suppression coil system |
CN201429406Y (en) * | 2008-12-22 | 2010-03-24 | 陈志向 | Two-wire current mode displacement sensor |
WO2011072144A1 (en) * | 2009-12-09 | 2011-06-16 | Georgia Tech Research Corporation | Pulse harmonic modulation systems and methods |
CN201654110U (en) * | 2010-04-30 | 2010-11-24 | 浙江天煌科技实业有限公司 | Device for measuring relative voltage |
CN102751875A (en) * | 2012-07-06 | 2012-10-24 | 重庆大学 | Design method for induction power transmission system having characteristics of constant current, constant voltage and constant frequency |
CN103616039A (en) * | 2013-11-27 | 2014-03-05 | 联合汽车电子有限公司 | Parameter matching method for magnetoelectric signal detection system |
RO201600024U1 (en) * | 2015-06-29 | 2017-09-29 | Zoltan Lázár | Complex device for electric experiments |
CN108880325A (en) * | 2017-05-16 | 2018-11-23 | 天津大学(青岛)海洋工程研究院有限公司 | A kind of equivalent-circuit model of beam type electric oscillation collection of energy device |
CN107947592A (en) * | 2017-12-19 | 2018-04-20 | 西安电子科技大学 | A kind of full-bridge type Switching Power Supply ripple factor Forecasting Methodology based on road coupling |
CN108920808A (en) * | 2018-06-27 | 2018-11-30 | 天津大学 | The LC of piezoelectric ultrasonic transducer matches modeling method |
CN109383315A (en) * | 2018-11-14 | 2019-02-26 | 常熟理工学院 | To multi-emitting end/mono- receiving end wireless charging system mutual inductance estimation method |
CN209267181U (en) * | 2018-12-27 | 2019-08-16 | 新宜能电气科技有限公司 | A power quality optimization device |
CN109698561A (en) * | 2019-01-11 | 2019-04-30 | 无锡职业技术学院 | A kind of MCR-WPT system overcoupling area transmissions efficient circuit analysis method |
CN109831035A (en) * | 2019-03-20 | 2019-05-31 | 哈尔滨工业大学 | A kind of mutual inductance discrimination method of the wireless charging system based on orthogonal double channels algorithm |
Non-Patent Citations (3)
Title |
---|
JIANG, HAO; LAN, DI; SHAHNASSER, HAMID: "Sensitivity analysis of an implantable LC based passive sensor", 《2010 3RD INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS (BMEI 2010) 》 * |
SANZ, DIEGO A.; MITROSBARAS, COSTANTINO; UNIGARRO, EDGAR A.: "Passive resonators for wireless passive sensor readout enhancement", 《APPLIED PHYSICS LETTERS》 * |
李巨韬: "电容式微力测量系统性能分析及关键技术研究", 《中国博士学位论文全文数据库工程科技Ⅱ辑》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111638382A (en) * | 2020-05-14 | 2020-09-08 | 东南大学 | LC formula rotational speed sensor based on synchronous detection |
CN113779911A (en) * | 2020-06-10 | 2021-12-10 | 英业达科技有限公司 | Format conversion method and device |
CN111829559A (en) * | 2020-06-24 | 2020-10-27 | 东南大学 | A method for realizing multi-parameter measurement in a PT symmetrical LC passive wireless sensor system |
CN112525061A (en) * | 2020-11-09 | 2021-03-19 | 西南科技大学 | Wireless strain testing device and method adopting nano composite material |
CN114781303A (en) * | 2022-03-15 | 2022-07-22 | 西北大学 | A universal chipless sensor and design method thereof |
CN114781303B (en) * | 2022-03-15 | 2025-04-11 | 西北大学 | A universal chipless sensor and design method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110530253A (en) | Optimum design method for resistance-type wireless and passive strain transducer measuring circuit | |
CN108879986B (en) | Parameter design method for single-relay wireless power transmission system | |
TWI555295B (en) | Resonant non-contact power supply and power receiver | |
CN111829559B (en) | A method for realizing multi-parameter measurement in a PT symmetrical LC passive wireless sensor system | |
CN109687602B (en) | Wireless electric energy multi-stage transmission system | |
CN110853318A (en) | A long-distance LC passive wireless sensor system | |
CN103562736A (en) | Simple and minimally invasive methods and systems for sensing and computing load impedance | |
CN1309168C (en) | High frequency oscillation type proimity sensor | |
Lin et al. | Integrated passive wireless pressure and temperature dual-parameter sensor based on LTCC technology | |
CN110426064B (en) | Wireless passive sensor and wireless passive sensing method | |
CN109361271B (en) | An enhanced wireless charging device for electronic products and design method thereof | |
CN110912283A (en) | A kind of parameter adjustment method and device of wireless power transmission system | |
CN114812371A (en) | Metal film thickness detection system based on PT symmetrical circuit | |
CN106026966B (en) | A kind of notch filter method and circuit for GMI Magnetic Sensors | |
CN111415809A (en) | A Planar Coil Layout Optimization Method with Variable Line Width and Line Spacing | |
CN108682544A (en) | Wireless charging system transmitting coil optimum design method | |
Yoon et al. | High Q-factor WPT system with negative impedance converter | |
CN116432568A (en) | Non-hermitian topology circuit, construction method thereof and sensing method | |
CN110071580B (en) | Resonant frequency optimization design method of high-robustness wireless power transmission system | |
CN117457123B (en) | A method for extracting equivalent magnetic permeability of cross-frequency metamaterials based on averaging method | |
CN107919739B (en) | Transmission power frequency selection method of wireless electric energy transmission system | |
Zhaksylyk et al. | Impedance matching using interspiraled coils for wireless power transfer | |
CN105676002A (en) | A Method for Extracting Quality Factor of Microstrip Antenna | |
Dong et al. | Enhancing the readout of passive wireless sensors by using left-handed metamaterials | |
CN215646740U (en) | Filtering device and filtering system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
AD01 | Patent right deemed abandoned |
Effective date of abandoning: 20211001 |
|
AD01 | Patent right deemed abandoned |