CN110517330A - A Reconstruction Method of Industrial Cone Beam CT in Offset Scanning Mode - Google Patents
A Reconstruction Method of Industrial Cone Beam CT in Offset Scanning Mode Download PDFInfo
- Publication number
- CN110517330A CN110517330A CN201910726272.2A CN201910726272A CN110517330A CN 110517330 A CN110517330 A CN 110517330A CN 201910726272 A CN201910726272 A CN 201910726272A CN 110517330 A CN110517330 A CN 110517330A
- Authority
- CN
- China
- Prior art keywords
- detector
- virtual
- real
- sample
- virtual detector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/02—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
- G01N23/04—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
- G01N23/046—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
- G06T11/003—Reconstruction from projections, e.g. tomography
- G06T11/005—Specific pre-processing for tomographic reconstruction, e.g. calibration, source positioning, rebinning, scatter correction, retrospective gating
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
- G06T11/003—Reconstruction from projections, e.g. tomography
- G06T11/006—Inverse problem, transformation from projection-space into object-space, e.g. transform methods, back-projection, algebraic methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2211/00—Image generation
- G06T2211/40—Computed tomography
- G06T2211/416—Exact reconstruction
Landscapes
- Theoretical Computer Science (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical & Material Sciences (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Optimization (AREA)
- Mathematical Analysis (AREA)
- Algebra (AREA)
- Pulmonology (AREA)
- Radiology & Medical Imaging (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mathematical Physics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
Description
技术领域technical field
本发明实施例涉及计算机断层成像技术领域,尤其涉及一种偏置扫描模式下的工业锥束CT重建方法。Embodiments of the present invention relate to the technical field of computed tomography, and in particular to an industrial cone-beam CT reconstruction method in offset scan mode.
背景技术Background technique
CT(Computed Tomography,计算机断层成像术)是利用物体在不同视角下的投影信息,结合图像重建算法,得到物体内部质量状态与结构信息的一种无损检测手段,在医疗、航空、航天、船舶领域有着广泛的应用。CT (Computed Tomography, computer tomography) is a non-destructive testing method that uses the projection information of objects under different viewing angles, combined with image reconstruction algorithms, to obtain internal quality status and structural information of objects. Has a wide range of applications.
标准锥束CT扫描示意如图1所示,当做标准锥束CT扫描时,X射线源1发出锥束射线2,被检样品3放置在样品旋转平台4上面,并且样品横截面完全被锥束射线2包络。被检样品3绕旋转中心5步进旋转360°,在这一过程中真实探测器6采集每一步进角时的投影图像7,最后根据经典的FDK重建算法计算得到被检测样品3最终的断层图像。然而被检测样品常常在材料、形状、尺寸等方面存在较大的不确定性,当被检测样品3的宽度尺寸大于真实探测器6的宽度尺寸时,就会出现由于CT成像视野无法完全覆盖被检测样品3的横截面导致的横向投影数据截断问题。标准锥束CT系统中心平面示意如图2(a)所示,可以看出由于被检测样品3尺寸较大,超出了标准锥束CT系统成像视野8,导致真实探测器6采集得到的投影数据发生双边截断。这种双边截断的投影数据会给重建结果带来严重的伪影,严重影响被检样品断层结构信息的准确判读。此时,偏置探测器CT扫描方式便成为一种实用的解决方法。The schematic diagram of standard cone beam CT scanning is shown in Figure 1. When performing standard cone beam CT scanning, the X-ray source 1 emits cone beam rays 2, and the sample 3 to be inspected is placed on the sample rotating platform 4, and the cross section of the sample is completely covered by the cone beam. Ray 2 envelope. The tested sample 3 rotates 360° stepwise around the rotation center 5. During this process, the real detector 6 collects the projection image 7 at each step angle, and finally calculates the final image of the tested sample 3 according to the classic FDK reconstruction algorithm. Tomographic image. However, the detected sample often has great uncertainty in terms of material, shape, size, etc. When the width of the detected sample 3 is greater than the width of the real detector 6, it will appear that the CT imaging field of view cannot completely cover the detected sample. The transverse projection data truncation problem caused by detecting the cross section of sample 3. The central plane of the standard cone-beam CT system is shown in Figure 2(a). It can be seen that due to the large size of the detected sample 3, which exceeds the imaging field of view 8 of the standard cone-beam CT system, the projection data collected by the real detector 6 Bilateral truncation occurs. This kind of bilateral truncated projection data will bring serious artifacts to the reconstruction results, which seriously affects the accurate interpretation of the fault structure information of the tested sample. At this time, the offset detector CT scanning method becomes a practical solution.
如图2(b)所示,当做偏置CT扫描时,真实探测器6向被检测样品3的一侧移动,此时旋转中心5仍然在X射线束FEG范围内,样品只有一侧边界超出射线束FEG范围,并且X射线源1与旋转中心5的连线垂直于真实探测器6,真实探测器6采集到的投影数据实际上是单边截断的投影数据。图2(b)扫描方式得到的单边截断的投影数据经过Wang-FDK重建算法进行图像重建便可获得被检测样品3的完整断层重建结果。偏置探测器CT扫描模式下,CT扫描成像视野最大可达普通锥束CT扫描成像视野的两倍。As shown in Figure 2(b), when performing offset CT scanning, the real detector 6 moves to one side of the sample 3 to be tested, and at this time the center of rotation 5 is still within the range of the X-ray beam FEG, and only one side of the sample exceeds The range of the ray beam FEG, and the line connecting the X-ray source 1 and the rotation center 5 is perpendicular to the real detector 6, and the projection data collected by the real detector 6 is actually unilaterally truncated projection data. The unilateral truncated projection data obtained by the scanning method in Fig. 2(b) can be reconstructed through the Wang-FDK reconstruction algorithm to obtain the complete tomographic reconstruction result of the tested sample 3. In the offset detector CT scanning mode, the imaging field of view of CT scanning can be up to twice the imaging field of view of ordinary cone-beam CT scanning.
需要注意的是Wang-FDK重建算法主要针对图2(b)所示的偏置探测器CT扫描几何布局,其中X射线源焦点与旋转中心的连线垂直于真实探测器6。现实中,图2(c)所示的偏置样品台扫描几何布局应用更加广范。图2(c)所示布局不仅简化了偏置CT扫描几何布局,并使得图2(a)所示的标准锥束CT扫描与图2(c)所示偏置样品台CT扫描模式之间的切换更加灵活,极大地方便了工程应用。然而从图2(c)可以很明显看出,该CT扫描几何布局中X射线源1与旋转中心5的连线不垂直于真实探测器6,因此Wang-FDK重建方法将不再适合于图2(c)所示偏置扫描模式的CT重建。It should be noted that the Wang-FDK reconstruction algorithm is mainly aimed at the offset detector CT scanning geometry shown in Fig. 2(b), where the line connecting the X-ray source focus and the rotation center is perpendicular to the real detector 6 . In reality, the scanning geometry layout of the offset sample stage shown in Fig. 2(c) is more widely used. The layout shown in Fig. 2(c) not only simplifies the geometric layout of offset CT scanning, but also makes the difference between the standard cone-beam CT scanning shown in Fig. 2(a) and the offset sample stage CT scanning mode shown in Fig. 2(c) The switching is more flexible, which greatly facilitates engineering applications. However, it can be clearly seen from Fig. 2(c) that the line connecting the X-ray source 1 and the rotation center 5 in the geometric layout of the CT scan is not perpendicular to the real detector 6, so the Wang-FDK reconstruction method will no longer be suitable for Fig. CT reconstruction in offset scan mode shown in 2(c).
发明内容Contents of the invention
本发明实施例提供一种偏置扫描模式下的工业锥束CT重建方法,用以解决现有偏置样品台扫描模式下被检样品的完整断层精确重建问题。An embodiment of the present invention provides an industrial cone-beam CT reconstruction method in an offset scanning mode, which is used to solve the problem of accurate complete tomographic reconstruction of the inspected sample in the existing offset sample stage scanning mode.
本发明提供了一种偏置扫描模式下的工业锥束CT重建方法,包括:The invention provides an industrial cone beam CT reconstruction method in offset scan mode, comprising:
S1,启动CT扫描装置,真实探测器采集被检测样品在偏置样品台扫描模式下的原始序列投影图像;S1, start the CT scanning device, and the real detector collects the original sequence projection image of the detected sample in the offset sample stage scanning mode;
S2,建立虚拟探测器并确定所述虚拟探测器的空间位置;S2, establishing a virtual detector and determining the spatial position of the virtual detector;
S3,根据真实探测器与虚拟探测器的空间坐标关系,将真实探测器获取的原始序列投影图像转换到虚拟探测器上,形成所述虚拟探测器上的序列投影图像;S3. According to the spatial coordinate relationship between the real detector and the virtual detector, the original sequence projection image acquired by the real detector is converted to the virtual detector to form a sequence projection image on the virtual detector;
S4,根据真实探测器CT系统与虚拟探测器CT系统的空间坐标关系,将真实探测器CT系统中的重建几何参数转换到虚拟探测器CT系统中;S4, according to the spatial coordinate relationship between the real detector CT system and the virtual detector CT system, transforming the reconstructed geometric parameters in the real detector CT system into the virtual detector CT system;
S5,调整虚拟探测器上的序列投影图像的角度以校正重建图像扭转角;S5, adjusting the angle of the sequence projection image on the virtual detector to correct the torsion angle of the reconstructed image;
S6,基于虚拟探测器上角度调整后的序列投影图像与转换后的CT重建几何参数,采用Wang-FDK重建方法计算得到被检样品的CT图像。S6, based on the angle-adjusted sequential projection images on the virtual detector and the transformed CT reconstruction geometric parameters, the CT image of the sample under inspection is calculated by using the Wang-FDK reconstruction method.
在上述技术方案的基础上,本发明还可以做如下改进。On the basis of the above technical solutions, the present invention can also be improved as follows.
进一步的,所述CT扫描装置包括X射线源、被检样品、样品旋转平台和真实探测器,所述X射线源、被检样品、样品旋转台和真实探测器均放置于X射线屏蔽铅房中,所述被检样品放置于所述样品旋转平台上,所述X射线源向被检样品发射X射线,所述真实探测器接收衰减后的X射线信号形成投影图像;Further, the CT scanning device includes an X-ray source, an inspected sample, a sample rotating platform and a real detector, and the X-ray source, the inspected sample, a sample rotating platform and a real detector are all placed in an X-ray shielding lead room wherein, the inspected sample is placed on the sample rotating platform, the X-ray source emits X-rays to the inspected sample, and the real detector receives the attenuated X-ray signal to form a projection image;
所述步骤S1具体包括:The step S1 specifically includes:
通过所述样品旋转平台以固定的角度间隔步进旋转,使得被检测样品旋转360°,真实探测器采集每一步进角度时的被检测样品的投影图像,得到原始序列投影图像。The sample rotation platform is rotated step by step at fixed angular intervals, so that the detected sample rotates 360°, and the real detector collects the projection image of the detected sample at each step angle to obtain the original sequence of projection images.
进一步的,所述步骤S2具体包括:Further, the step S2 specifically includes:
锥束CT系统的中心平面为FEG,在中心平面上,所述样品旋转平台的旋转中心在真实探测器上的投影为点S0,穿过点S0并垂直于直线FS0,建立虚拟探测器,其中,F为所述X射线源焦点,所述锥束CT系统的中心平面为穿过X射线源焦点的水平面;The central plane of the cone-beam CT system is FEG. On the central plane, the projection of the rotation center of the sample rotating platform on the real detector is point S 0 , which passes through point S 0 and is perpendicular to the straight line FS 0 to establish a virtual detection device, wherein, F is the focal point of the X-ray source, and the central plane of the cone-beam CT system is a horizontal plane passing through the focal point of the X-ray source;
计算所述虚拟探测器的4个边界点的空间坐标以确定所述虚拟探测器的空间位置。The spatial coordinates of the four boundary points of the virtual detector are calculated to determine the spatial position of the virtual detector.
进一步的,所述步骤S3具体包括:Further, the step S3 specifically includes:
S31,根据所述虚拟探测器上任一探测器单元P′在所述虚拟探测器上的水平坐标和竖直坐标以及所述虚拟探测器的空间位置,计算得到所述探测器单元P′的空间坐标;S31, according to the horizontal coordinates and vertical coordinates of any detector unit P' on the virtual detector on the virtual detector and the spatial position of the virtual detector, calculate the space of the detector unit P' coordinate;
S32,计算真实探测器上与所述虚拟探测器上的探测器单元P′对应的探测器单元P的空间坐标,进而确定所述探测器单元P在所述真实探测器上的水平坐标和竖直坐标;S32. Calculate the spatial coordinates of the detector unit P on the real detector corresponding to the detector unit P′ on the virtual detector, and then determine the horizontal and vertical coordinates of the detector unit P on the real detector. direct coordinates;
S33,根据真实探测器单元P的投影值获得虚拟探测器单元P′的投影值;S33. Obtain the projection value of the virtual detector unit P′ according to the projection value of the real detector unit P;
被检样品在其中一旋转位置时,所述虚拟探测器上每一个探测器单元的投影值组成所述虚拟探测器上的一副投影图像,所有旋转角度下的每一幅投影图像组成所述虚拟探测器上的序列投影图像。When the tested sample is at one of the rotation positions, the projection value of each detector unit on the virtual detector constitutes a projection image on the virtual detector, and each projection image under all rotation angles constitutes the Sequential projection images on a virtual detector.
进一步的,所述步骤S4具体包括:Further, the step S4 specifically includes:
S41,计算虚拟探测器CT系统相对于真实探测器CT系统的旋转角度;S41, calculating the rotation angle of the virtual detector CT system relative to the real detector CT system;
S42,根据真实探测器CT系统与虚拟探测器CT系统的空间几何关系,计算虚拟探测器CT系统的重建几何参数。S42. Calculate reconstruction geometric parameters of the virtual detector CT system according to the spatial geometric relationship between the real detector CT system and the virtual detector CT system.
进一步的,所述重建几何参数包括X射线源焦点到探测器的距离、X射线源焦点到旋转平台的旋转中心的距离以及所述旋转中心在探测器上的投影坐标。Further, the reconstruction geometric parameters include the distance from the focal point of the X-ray source to the detector, the distance from the focal point of the X-ray source to the rotation center of the rotating platform, and the projection coordinates of the rotation center on the detector.
进一步的,所述步骤S5具体包括:Further, the step S5 specifically includes:
根据所述计算的虚拟探测器CT系统相对于真实探测器CT系统的旋转角度,对所述虚拟探测器上的序列投影图像的角度进行调整。According to the calculated rotation angle of the virtual detector CT system relative to the real detector CT system, the angle of the sequence projection images on the virtual detector is adjusted.
本发明的有益效果为:为了实现偏置样品台扫描模式下的CT重建,通过建立虚拟探测器,将实际偏置样品台CT扫描方式转换为偏置探测器CT扫描,最终利用现有的Wang-FDK偏置探测器扫描模式下的重建方法,获得被检样品精确的CT图像,本发明解决了偏置样品台扫描模式下的CT重建问题,在不改变标准锥束CT扫描几何布局的前提下,极大地增加了CT系统的成像视野,具有较好的工程应用价值。The beneficial effects of the present invention are: in order to realize the CT reconstruction under the offset sample stage scanning mode, by establishing a virtual detector, the actual offset sample stage CT scanning mode is converted into offset detector CT scanning, and finally the existing Wang - The reconstruction method under the FDK offset detector scanning mode can obtain accurate CT images of the inspected sample. The invention solves the CT reconstruction problem under the offset sample stage scanning mode without changing the geometric layout of the standard cone beam CT scan Under the circumstances, the imaging field of view of the CT system is greatly increased, and it has good engineering application value.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description These are some embodiments of the present invention. Those skilled in the art can also obtain other drawings based on these drawings without creative work.
图1为现有技术的标准锥束CT扫描示意图;Fig. 1 is the schematic diagram of standard cone beam CT scan of prior art;
图2(a)为标准锥束CT扫描原理图;Figure 2(a) is a schematic diagram of standard cone-beam CT scanning;
图2(b)为偏置探测器扫描原理图;Figure 2(b) is a schematic diagram of biased detector scanning;
图2(c)为偏置样品台扫描原理图;Figure 2(c) is a schematic diagram of offset sample stage scanning;
图3为偏置样品台扫描示意图;Fig. 3 is a schematic diagram of offset sample stage scanning;
图4(a)为将CT重建几何参数转换到虚拟探测器CT系统中的示意图;Fig. 4(a) is a schematic diagram of transforming the geometric parameters of CT reconstruction into the virtual detector CT system;
图4(b)为重建图像扭转角校正示意图;Figure 4(b) is a schematic diagram of the reconstruction image torsion angle correction;
图5(a)为虚拟探测器投影数据序列;Figure 5(a) is the virtual detector projection data sequence;
图5(b)为角度调整后的虚拟探测器投影数据序列。Figure 5(b) is the angle-adjusted virtual detector projection data sequence.
附图中,各标号所代表的元件名称如下:In the accompanying drawings, the names of the components represented by each label are as follows:
1、X射线源,2、锥束射线,3、被检样品,4、样品旋转平台,5、旋转中心,6、真实探测器,7、投影图像,8、标准锥束CT扫描成像视野范围,9、虚拟探测器。1. X-ray source, 2. Cone beam ray, 3. Sample to be inspected, 4. Sample rotation platform, 5. Rotation center, 6. Real detector, 7. Projection image, 8. Standard cone beam CT scanning imaging field of view , 9. Virtual detector.
具体实施方式Detailed ways
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。The specific implementation manners of the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. The following examples are used to illustrate the present invention, but are not intended to limit the scope of the present invention.
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the drawings in the embodiments of the present invention. Obviously, the described embodiments It is a part of embodiments of the present invention, but not all embodiments. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts fall within the protection scope of the present invention.
本发明针对图2(c)所示偏置样品台扫描几何布局,采用投影数据转换的方法将图2(c)所示的偏置样品台扫描方式转换到图2(b)所示的偏置探测器扫描方式,进而采用Wang-FDK重建算法实现被检样品3的精确CT重建,最终获得被检样品3完整的断层信息。Aiming at the geometric layout of the offset sample stage scanning shown in Fig. 2(c), the present invention adopts the projection data conversion method to convert the offset sample stage scanning mode shown in Fig. 2(c) to the offset sample stage shown in Fig. 2(b). The scanning method of the detector is set, and then the Wang-FDK reconstruction algorithm is used to realize the accurate CT reconstruction of the inspected sample 3, and finally the complete tomographic information of the inspected sample 3 is obtained.
本发明实施例提供的偏置扫描模式下的工业锥束CT重建方法包括:S1,启动CT扫描装置,通过真实探测器6获取被检测样品在偏置样品台扫描模式下的原始序列投影图像;S2,建立虚拟探测器9并确定所述虚拟探测器9的空间位置;S3,根据真实探测器6与虚拟探测器9的空间坐标关系,将真实探测器6获取的原始序列投影图像转换到虚拟探测器9上,形成所述虚拟探测器9上的序列投影图像;S4,根据真实探测器CT系统与虚拟探测器CT系统的空间坐标关系,将真实探测器CT系统中的重建几何参数转换到虚拟探测器CT系统中;S5,调整虚拟探测器9上的序列投影图像的角度以校正重建图像扭转角;S6,基于虚拟探测器9上角度调整后的序列投影图像与转换后的CT重建几何参数,采用Wang-FDK重建方法计算得到被检样品3的CT图像。The industrial cone beam CT reconstruction method in the offset scanning mode provided by the embodiment of the present invention includes: S1, start the CT scanning device, and obtain the original sequence projection image of the detected sample in the offset sample stage scanning mode through the real detector 6; S2, establish the virtual detector 9 and determine the spatial position of the virtual detector 9; S3, according to the spatial coordinate relationship between the real detector 6 and the virtual detector 9, convert the original sequence projection image acquired by the real detector 6 into the virtual On the detector 9, a sequence projection image on the virtual detector 9 is formed; S4, according to the spatial coordinate relationship between the real detector CT system and the virtual detector CT system, the reconstruction geometric parameters in the real detector CT system are transformed into In the virtual detector CT system; S5, adjust the angle of the sequence projection image on the virtual detector 9 to correct the torsion angle of the reconstructed image; S6, based on the angle-adjusted sequence projection image on the virtual detector 9 and the converted CT reconstruction geometry Parameters, using the Wang-FDK reconstruction method to calculate the CT image of the inspected sample 3.
本发明为了实现偏置样品台扫描模式下的CT重建,通过建立虚拟探测器9,将实际偏置样品台CT扫描方式转换为偏置探测器CT扫描,最终利用现有的Wang-FDK偏置探测器扫描模式重建方法,获得被检样品3精确的CT图像,本发明解决了偏置样品台扫描模式下的CT重建问题,在不改变标准锥束CT扫描几何布局的前提下,极大地增加了CT系统的成像视野,具有较好的工程应用价值。In order to realize CT reconstruction under offset sample stage scanning mode, the present invention converts the actual offset sample stage CT scanning mode into offset detector CT scanning by establishing a virtual detector 9, and finally utilizes the existing Wang-FDK offset The detector scanning mode reconstruction method obtains accurate CT images of the inspected sample 3. The present invention solves the problem of CT reconstruction in the offset sample stage scanning mode, and greatly increases the scanning geometry layout of the standard cone beam CT without changing the It improves the imaging field of view of the CT system and has good engineering application value.
在本发明的一个实施例中,CT扫描装置包括X射线源1、被检样品3、样品旋转平台4和真实探测器6,其中,X射线源1、被检样品3、样品旋转平台4和真实探测器6均放置于X射线屏蔽铅房中。所述步骤S1具体包括:通过样品旋转平台4以固定的角度间隔步进旋转,使得被检测样品旋转360°,真实探测器6采集每一步进角度时的被检测样品的投影图像,得到原始序列投影图像。In one embodiment of the present invention, the CT scanning device includes an X-ray source 1, an inspected sample 3, a sample rotating platform 4 and a real detector 6, wherein the X-ray source 1, the inspected sample 3, the sample rotating platform 4 and The real detectors 6 are all placed in the X-ray shielding lead room. The step S1 specifically includes: stepping and rotating the sample rotation platform 4 at fixed angular intervals, so that the tested sample is rotated 360°, and the real detector 6 collects the projection image of the tested sample at each step angle to obtain the original Sequence projected images.
在本发明的一个实施例中,建立虚拟探测器9以及确定虚拟探测器9的空间位置的方法为:样品旋转平台4的旋转中心5在锥束CT系统的中心平面的投影为点S0,穿过点S0并垂直于直线FS0,建立虚拟探测器9,其中,F为X射线源1的焦点;计算确定所述虚拟探测器9的四个边界点的空间坐标以确定所述虚拟探测器9的空间位置。In one embodiment of the present invention, the method for establishing the virtual detector 9 and determining the spatial position of the virtual detector 9 is as follows: the projection of the rotation center 5 of the sample rotating platform 4 on the central plane of the cone beam CT system is point S 0 , Through the point S 0 and perpendicular to the straight line FS 0 , establish a virtual detector 9, wherein, F is the focus of the X-ray source 1; calculate and determine the space coordinates of the four boundary points of the virtual detector 9 to determine the virtual The spatial position of the detector 9.
具体的,偏置样品台扫描模式下锥束CT系统示意如图3所示,X射线源1的焦点与真实探测器6分别为点F与平面ABCD,真实探测器6的宽度与高度分别为W与H像素。真实探测器6的中心与X射线源1的焦点F在真实探测器6所在平面ABCD上的投影均为点O,直线FO垂直于真实探测器6所在的平面。为了实现大尺寸样品的CT检测,样品旋转平台4向被检样品3一侧移动以满足偏置扫描模式的需要。样品旋转平台4的旋转中心5在真实探测器6所在平面的投影为O′O″,锥束CT系统的中心平面为FEG,在中心平面上,旋转中心5在真实探测器6所在平面的投影为点S0,穿过点S0并垂直于直线FS0,建立一个虚拟探测器9,如图3中的A′B′C′D′所示。由于X射线源1的焦点与旋转中心5的连线FS0垂直于平面A′B′C′D′,因此在虚拟探测器CT系统中,Wang-FDK重建方法即可用于偏置扫描模式下的精确CT重建。Specifically, the schematic diagram of the cone beam CT system in the offset sample stage scanning mode is shown in Figure 3, the focus of the X-ray source 1 and the real detector 6 are point F and plane ABCD respectively, and the width and height of the real detector 6 are respectively W and H pixels. The projections of the center of the real detector 6 and the focal point F of the X-ray source 1 on the plane ABCD where the real detector 6 is located are both point O, and the straight line FO is perpendicular to the plane where the real detector 6 is located. In order to realize the CT detection of large-sized samples, the sample rotating platform 4 moves to the side of the sample 3 to meet the needs of the offset scanning mode. The projection of the rotation center 5 of the sample rotation platform 4 on the plane where the real detector 6 is located is O'O", and the central plane of the cone beam CT system is FEG. On the central plane, the projection of the rotation center 5 on the plane where the real detector 6 is located For point S 0 , through point S 0 and perpendicular to straight line FS 0 , establish a virtual detector 9, as shown in A'B'C'D' in Fig. 3. Since the focal point of X-ray source 1 and the center of rotation The line FS 0 of 5 is perpendicular to the plane A'B'C'D', so in the virtual detector CT system, the Wang-FDK reconstruction method can be used for accurate CT reconstruction in offset scan mode.
建立的CT系统坐标系如图3中XYZ所示,X射线源1的焦点F距离真实探测器6的距离为FDD。因此X射线源1的焦点空间坐标值为F:(FDD,0,0),真实探测器6所在平面的法向量为因此真实探测器6所在的平面的等式为:The established CT system coordinate system is shown as XYZ in FIG. 3 , and the distance between the focal point F of the X-ray source 1 and the real detector 6 is FDD. Therefore the focal point space coordinate value of X-ray source 1 is F:(FDD,0,0), and the normal vector of the plane where real detector 6 is located is Therefore the equation of the plane where the real detector 6 is located is:
FDD·x=0 (1)FDD x = 0 (1)
穿过点S0并垂直于直线FS0,建立一个虚拟探测器9,虚拟探测器9所在平面的法向量被定义为旋转中心5在Y轴的投影坐标被定义为COR,因此点S0的空间坐标被定义为(0,COR,0),并且虚拟探测器9所在平面的等式为:Through the point S 0 and perpendicular to the straight line FS 0 , a virtual detector 9 is established, and the normal vector of the plane where the virtual detector 9 is located is defined as The projected coordinate of the center of rotation 5 on the Y axis is defined as COR, so the spatial coordinate of point S 0 is defined as (0,COR,0), and The equation of the plane where the virtual detector 9 is located is:
FDD·x-COR·(y-COR)=0 (2)FDD x-COR (y-COR) = 0 (2)
如图3所示,虚拟探测器9的边界点为A′、B′、C′、D′,A′、B′、C′、D′的空间坐标分别由平面A′B′C′D′与X射线FA、FB、FC与FD的交点确定。假定真实探测器6上的任意一个探测器单元M的空间坐标为pM:(xM,yM,zM),穿过探测器单元M的X射线被定义为LM,LM的等式可以被表示为:As shown in Figure 3, the boundary points of the virtual detector 9 are A', B', C', D', and the spatial coordinates of A', B', C', D' are defined by the plane A'B'C'D ' and X-rays FA, FB, FC and FD intersections are determined. Assuming that the space coordinates of any detector unit M on the real detector 6 are p M : (x M , y M , z M ), the X-rays passing through the detector unit M are defined as L M , L M etc. formula can be expressed as:
X射线LM与虚拟探测器9所在平面的交点可以被表示为:The intersection of X-ray L M and the plane where the virtual detector 9 is located can be expressed as:
A、B、C、D的坐标分别为pA:(0,-W/2,H/2),pB:(0,W/2,H/2),pC:(0,W/2,-H/2)以及pD:(0,-W/2,-H/2),通过把pA、pB、pC、pD分别代入到公式(4)中,得到虚拟探测器9的边界点pA′、pB′、pC′与pD′的空间坐标为:The coordinates of A, B, C, and D are respectively p A :(0,-W/2,H/2), p B :(0,W/2,H/2), p C :(0,W/ 2,-H/2) and p D : (0,-W/2,-H/2), by substituting p A , p B , p C , and p D into formula (4), the virtual detection The spatial coordinates of the boundary points p A' , p B' , p C' and p D' of the device 9 are:
根据公式(5),虚拟探测器9的几何形状是一个等腰梯形,并且A′B′=C′D′,B′C′>A′D′,然而,现实中探测器的形状一般为矩形,因此,设置zB′=zA′并且zC′=zD′,将虚拟探测器9的几何形状调整为一个矩形,这样,虚拟探测器9的边界点坐标被调整为:According to formula (5), the geometric shape of virtual detector 9 is an isosceles trapezoid, and A'B'=C'D', B'C'>A'D', However, the shape of the detector in reality is generally a rectangle, therefore, set z B' = z A' and z C' = z D' , adjust the geometric shape of the virtual detector 9 to a rectangle, like this, the virtual detector 9 The boundary point coordinates of are adjusted to:
虚拟探测器9的宽度与高度可以由公式(7)计算得到:The width and height of virtual detector 9 can be calculated by formula (7):
公式(7)中,[·]为取整运算。In formula (7), [·] is rounding operation.
在本发明的一个实施例中,所述步骤S3具体包括:S31,根据所述虚拟探测器上任一探测器单元P′在所述虚拟探测器上的水平坐标和竖直坐标以及所述虚拟探测器的空间位置,计算得到所述探测器单元P′的空间坐标;S32,计算真实探测器上与所述虚拟探测器上的探测器单元P′对应的探测器单元P的空间坐标,进而确定所述探测器单元P在所述真实探测器上的水平坐标和竖直坐标;S33,根据真实探测器单元P的投影值获得虚拟探测器单元P′的投影值;其中,被检样品在其中一旋转位置时,所述虚拟探测器上每一个探测器单元的投影值组成所述虚拟探测器上的一副投影图像。所有旋转角度下的每一幅投影图像组成所述虚拟探测器上的序列投影图像。In an embodiment of the present invention, the step S3 specifically includes: S31, according to the horizontal and vertical coordinates of any detector unit P' on the virtual detector on the virtual detector and the virtual detector Calculate the spatial position of the detector to obtain the spatial coordinates of the detector unit P'; S32, calculate the spatial coordinates of the detector unit P on the real detector corresponding to the detector unit P' on the virtual detector, and then determine The horizontal and vertical coordinates of the detector unit P on the real detector; S33, obtaining the projection value of the virtual detector unit P' according to the projection value of the real detector unit P; When a position is rotated, the projection value of each detector unit on the virtual detector constitutes a projection image on the virtual detector. Each projection image under all rotation angles constitutes a sequence of projection images on the virtual detector.
具体的,虚拟探测器9上探测器单元的坐标可以由虚拟探测器9的空间坐标确定。如图3所示,虚拟探测器9上探测器单元P′的在虚拟探测器9上的水平与竖直坐标分别为VDi与VDj,虚拟探测器单元P′的真实空间坐标(即在CT坐标系XYZ中的空间坐标)被定义为pP′:(xP′,yP′,zP′)。根据虚拟探测器9与真实探测器6的空间位置,可以得到:Specifically, the coordinates of the detector units on the virtual detector 9 may be determined by the spatial coordinates of the virtual detector 9 . As shown in Figure 3, the horizontal and vertical coordinates of the detector unit P' on the virtual detector 9 are VD i and VD j respectively, and the real space coordinates of the virtual detector unit P' (that is, in The spatial coordinates in the CT coordinate system XYZ) are defined as p P′ : (x P′ , y P′ , z P′ ). According to the spatial positions of the virtual detector 9 and the real detector 6, it can be obtained:
通过上述公式(8)可求得虚拟探测器单元P′的真实空间坐标,穿过虚拟探测器单元P′的X射线被定义为:The real space coordinates of the virtual detector unit P' can be obtained by the above formula (8), and the X-ray passing through the virtual detector unit P' is defined as:
如图3所示,真实探测器6所在的平面与直线LP′的交点为点P,点P是与虚拟探测器9上的探测器单元P′对应的真实探测器单元。平面ABCD上所有点的x轴坐标值均为0,因此根据公式(9),点P的空间坐标为进而探测器单元P在真实探测器6上的水平与竖直坐标分别为:与最终虚拟探测器9上每一个探测器单元P′的投影值由公式(10)计算得到。As shown in FIG. 3 , the intersection of the plane where the real detector 6 is located and the straight line L P′ is point P, which is the real detector unit corresponding to the detector unit P′ on the virtual detector 9 . The x-axis coordinates of all points on the plane ABCD are 0, so according to formula (9), the spatial coordinates of point P are Then the horizontal and vertical coordinates of the detector unit P on the real detector 6 are respectively: and Finally, the projection value of each detector unit P' on the virtual detector 9 is calculated by formula (10).
公式(10)中,为被检样品3在真实探测器6上水平与竖直坐标分别为RDi与RDj的探测器单元P的投影值,为被检样品3在虚拟探测器9上水平与竖直坐标分别为VDi与VDj的探测器单元P′的投影值。由于RDi与RDj为小数,因而由插值获得,这样虚拟探测器9上每个探测器单元的投影值均可以得到精确计算。被检样品在其中一旋转角度时,虚拟探测器上每一个探测器单元的投影值组成所述虚拟探测器上的一幅投影图像,所有旋转角度下的每一幅投影图像组成所述虚拟探测器上的序列投影图像。In formula (10), is the projection value of the detector unit P whose horizontal and vertical coordinates are RD i and RD j respectively for the tested sample 3 on the real detector 6, is the projection value of the detector unit P′ whose horizontal and vertical coordinates are VD i and VD j respectively for the tested sample 3 on the virtual detector 9 . Since RD i and RD j are decimals, so It is obtained by interpolation, so that the projection value of each detector unit on the virtual detector 9 can be accurately calculated. When the tested sample is at one of the rotation angles, the projection value of each detector unit on the virtual detector constitutes a projection image on the virtual detector, and each projection image under all rotation angles constitutes the virtual detection sequence projected images on the monitor.
在本发明的一个实施例中,所述步骤S4具体包括:S41,计算虚拟探测器CT系统相对于真实探测器CT系统的旋转角度;S42,根据真实探测器CT系统与虚拟探测器CT系统的空间几何关系,计算虚拟探测器CT系统的重建几何参数。In one embodiment of the present invention, the step S4 specifically includes: S41, calculating the rotation angle of the virtual detector CT system relative to the real detector CT system; S42, according to the rotation angle of the real detector CT system and the virtual detector CT system Spatial geometric relationship, calculating the reconstruction geometric parameters of the virtual detector CT system.
具体的,虚拟探测器CT系统的重建几何参数有X射线源1的焦点到探测器的距离FDD′、X射线源1到旋转中心5的距离FOD′以及旋转中心5在探测器上的投影COR′。偏置样品台扫描模式下,中心平面的示意图如图4(a)所示。在中心平面上,真实探测器CT系统与虚拟探测器CT系统的几何布局分别为FEG与FE′G′,其中EG、E′G′分别代表真实探测器6与虚拟探测器9,点O与M′分别为EG与E′G′的中点。真实探测器CT系统上FDD与FOD的长度分别为FO与FK,虚拟探测器CT系统上FDD′与FOD′分别为FS0与FR,真实探测器6上COR为OS0的长度,虚拟探测器9上COR′为M′S0的长度,并且规定旋转中心5左侧偏移时COR为负值。Specifically, the reconstruction geometric parameters of the virtual detector CT system include the distance FDD' from the focal point of the X-ray source 1 to the detector, the distance FOD' from the X-ray source 1 to the center of rotation 5, and the projection COR of the center of rotation 5 on the detector '. The schematic diagram of the center plane in the offset sample stage scanning mode is shown in Fig. 4(a). On the central plane, the geometric layouts of the real detector CT system and the virtual detector CT system are FEG and FE′G′ respectively, where EG and E′G′ represent the real detector 6 and the virtual detector 9 respectively, points O and M' is the midpoint of EG and E'G' respectively. The lengths of FDD and FOD on the real detector CT system are FO and FK respectively, FDD′ and FOD′ on the virtual detector CT system are respectively FS 0 and FR, the COR on the real detector 6 is the length of OS 0 , and the virtual detector COR' on 9 is the length of M'S 0 , and COR is negative when the center of rotation 5 is shifted to the left.
根据图4(a)可以得到:According to Figure 4(a), we can get:
在虚拟探测器CT系统上,由于COR′为旋转中心投影点S0到点M′之间的距离,在三角形S0EE′中,可以得到:On the virtual detector CT system, since COR′ is the distance between the rotation center projection point S 0 and the point M′, in the triangle S 0 EE′, it can be obtained:
根据上述公式(11)和公式(12)可将真实探测器CT系统的重建几何参数FDD、FOD和COR转换到虚拟探测器CT系统中,转换后的重建几何参数为FDD′、FOD′和COR′,According to the above formula (11) and formula (12), the reconstruction geometric parameters FDD, FOD and COR of the real detector CT system can be converted into the virtual detector CT system, and the transformed reconstruction geometric parameters are FDD′, FOD′ and COR ',
如图4(b)所示,相比真实探测器CT系统几何布局FEG,虚拟探测器CT系统的几何布局逆时针旋转了α角度,即坐标系X′S0Y′相对于XOY逆时针旋转了α角度。此时重建图像中样品的位姿相对于被检样品3放置在坐标系XOY的位姿顺时针旋转了α角度。因此,为了更加方便地对重建图像细节进行识别,重建图像扭转角需要得到精确校正。As shown in Figure 4(b), compared with the geometric layout FEG of the real detector CT system, the geometric layout of the virtual detector CT system is rotated by an angle α counterclockwise, that is, the coordinate system X′S 0 Y′ rotates counterclockwise relative to XOY angle α. At this time, the pose of the sample in the reconstructed image is rotated by an angle α clockwise relative to the pose of the inspected sample 3 placed in the coordinate system XOY. Therefore, in order to identify the details of the reconstructed image more conveniently, the torsion angle of the reconstructed image needs to be corrected accurately.
在本发明的一个实施例中,所述步骤S5具体包括:根据计算得到的虚拟探测器CT系统几何布局的旋转角度,调整虚拟探测器9上的序列投影图像的角度,校正重建图像扭转角。In one embodiment of the present invention, the step S5 specifically includes: adjusting the angle of the sequential projection images on the virtual detector 9 according to the calculated rotation angle of the geometric layout of the virtual detector CT system, and correcting the twist angle of the reconstructed image.
具体的,在完整的360°CT扫描时,样品旋转平台4以固定的角度间隔step步进旋转,并获得被检样品3的N幅投影图像。因此投影图像的角度分别为0,step,....,(N-1)·step。如图5(a)所示,虚拟探测器上N幅投影图像分别为假定α是真实的步进角度之一,那么在步进角度为α时,被检样品3在虚拟探测器9上的投影图像为那么虚拟探测器9上的原始序列投影图像PS包含了2个子序列投影图像,即为了校正重建图像扭转角,虚拟探测器9上的序列投影图像被调整为如图5(b)所示。由于PS′中每一幅投影图像在原始序列投影图像PS中均能找到对应的投影图像,因此PS′中的每幅投影图像都是精确的,从而角度调整后的投影图像不会导致重建图像误差。当角度α不是真实步进角度之一时,即角度α与任意一个步进角度均不相等,那么序列投影图像PS′中的每个投影图像就需要在两个相邻的真实投影角度处的投影数据插值获得。在这种情况下,虽然PS′中的投影图像都是插值获得的,但只要投影角度间隔足够小,这些插值的投影数据不会对重建图像结果带来明显的影响。Specifically, during a complete 360° CT scan, the sample rotating platform 4 is rotated step by step at a fixed angle interval, and N projection images of the sample 3 to be inspected are obtained. Therefore, the angles of the projected images are 0, step,...., (N-1)·step respectively. As shown in Figure 5(a), the N projection images on the virtual detector are respectively Assuming that α is one of the real step angles, then when the step angle is α, the projected image of the tested sample 3 on the virtual detector 9 is Then the original sequence projection image PS on the virtual detector 9 contains two sub-sequence projection images, namely In order to correct the reconstructed image torsion angle, the sequential projection images on the virtual detector 9 are adjusted as As shown in Figure 5(b). Since each projection image in PS' can find the corresponding projection image in the original sequence projection image PS, each projection image in PS' is accurate, so that the angle-adjusted projection image will not lead to the reconstructed image error. When the angle α is not one of the real step angles, that is, the angle α is not equal to any step angle, then each projection image in the sequence projection image PS′ needs to be projected at two adjacent real projection angles Data interpolation obtained. In this case, although the projection images in PS' are obtained by interpolation, as long as the projection angle interval is small enough, these interpolated projection data will not have a significant impact on the reconstructed image result.
在重建几何参数FDD′、FOD′以及COR′得到精确标定并且重建图像扭转角得到校正后,基于校正的序列投影图像以及转换后的重建几何参数,Wang-FDK重建方法就可以用于断层图像的精确重建。After the reconstruction geometric parameters FDD', FOD' and COR' are accurately calibrated and the torsion angle of the reconstructed image is corrected, the Wang-FDK reconstruction method can be used for tomographic image reconstruction based on the corrected sequence projection images and the transformed reconstruction geometric parameters. Accurate reconstruction.
下面以一个具体的例子对本发明提供的偏置扫描模式下的工业锥束CT重建方法进行描述。In the following, a specific example is used to describe the industrial cone-beam CT reconstruction method in the offset scan mode provided by the present invention.
实验采用的扫描装置参数如下:The parameters of the scanning device used in the experiment are as follows:
(1)X射线源:管电压150kV,管电流0.145mA;(1) X-ray source: tube voltage 150kV, tube current 0.145mA;
(2)真实探测器:真实探测器像元数目为900(宽)×766(高),像元尺寸为0.2mm,有效成像面积200×153.2mm2。(2) Real detector: the number of pixels of the real detector is 900 (width)×766 (height), the pixel size is 0.2mm, and the effective imaging area is 200×153.2mm 2 .
(3)X射线源焦点到真实探测器的距离FDD=852mm,X射线源焦点到样品台旋转中心的距离FOD=291.8mm,旋转中心投影COR=-391.0像素。(3) The distance from the focal point of the X-ray source to the real detector is FDD=852mm, the distance from the focal point of the X-ray source to the rotation center of the sample stage is FOD=291.8mm, and the projection COR of the rotation center=-391.0 pixels.
实验步骤:Experimental steps:
(1)将一被检测有机玻璃圆柱状样品放置在样品旋转平台上,开启X射线源与真实探测器,启动样品旋转平台带动被检测样品步进旋转360°,步进角为0.5°,真实探测器共采集不同步进角度下的720幅投影图像,形成序列投影图像。(1) Place a cylindrical sample of plexiglass to be tested on the sample rotating platform, turn on the X-ray source and the real detector, start the sample rotating platform to drive the tested sample to rotate 360° step by step, the step angle is 0.5°, the real The detector collected a total of 720 projection images at different step angles to form a sequence of projection images.
(2)根据公式(1)~(6),建立虚拟探测器并定位虚拟探测器的空间位置,并根据公式(7)计算虚拟探测器的宽与高,得到虚拟探测器的宽高分别为W′=912像素,H′=765像素。(2) According to formulas (1) to (6), establish a virtual detector and locate the spatial position of the virtual detector, and calculate the width and height of the virtual detector according to formula (7), and obtain the width and height of the virtual detector as W'=912 pixels, H'=765 pixels.
(3)基于虚拟探测器与真实探测器的空间位置关系,由公式(8)~(10)确定虚拟探测器上每一个探测器单元的投影值。(3) Based on the spatial position relationship between the virtual detector and the real detector, the projection value of each detector unit on the virtual detector is determined by formulas (8)-(10).
(4)根据真实探测器CT系统与虚拟探测器CT系统的空间坐标关系,通过公式(11)~(12)将真实探测器CT系统重建几何参数FDD、FOD以及COR转换到虚拟探测器CT系统中;最终虚拟探测器CT系统的重建几何参数如表1所示。(4) According to the spatial coordinate relationship between the real detector CT system and the virtual detector CT system, the reconstruction geometric parameters FDD, FOD and COR of the real detector CT system are converted to the virtual detector CT system through formulas (11)-(12) Middle; the reconstruction geometric parameters of the final virtual detector CT system are shown in Table 1.
(5)调整虚拟探测器CT系统序列投影图像的角度以校正重建图像扭转角,得到的角度调整后的序列投影图像。(5) Adjust the angle of the sequence projection image of the virtual detector CT system to correct the twist angle of the reconstructed image, and obtain an angle-adjusted sequence projection image.
表1虚拟探测器CT系统几何参数Table 1 Geometric parameters of virtual detector CT system
(6)基于虚拟探测器上角度调整后的序列投影图像与CT重建几何参数(表1),采用Wang-FDK重建方法计算得到被检样品精确CT图像。(6) Based on the angle-adjusted sequential projection images on the virtual detector and the geometric parameters of CT reconstruction (Table 1), the Wang-FDK reconstruction method is used to calculate the accurate CT image of the sample under inspection.
本发明提供的一种偏置扫描模式下的工业锥束CT重建方法,为了实现偏置样品台扫描模式下的CT重建,通过建立虚拟探测器,将实际偏置样品台CT扫描方式转换为偏置探测器CT扫描,最终利用现有的Wang-FDK偏置探测器扫描模式重建方法,获得被检样品精确的CT图像。本发明解决了偏置样品台扫描模式下的CT重建问题,在不改变标准锥束CT扫描几何布局的前提下,极大地增加了CT系统的成像视野,具有较好的工程应用价值。The invention provides an industrial cone beam CT reconstruction method under the offset scanning mode. In order to realize the CT reconstruction under the offset sample stage scanning mode, the actual offset sample stage CT scanning mode is converted into an offset sample stage CT scanning mode by establishing a virtual detector. CT scanning with a biased detector, and finally using the existing Wang-FDK biased detector scanning mode reconstruction method to obtain accurate CT images of the sample under inspection. The invention solves the problem of CT reconstruction in the scanning mode of the offset sample stage, greatly increases the imaging field of view of the CT system without changing the geometric layout of standard cone-beam CT scanning, and has good engineering application value.
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。Finally, it should be noted that: the above embodiments are only used to illustrate the technical solutions of the present invention, rather than to limit them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: it can still be Modifications are made to the technical solutions described in the foregoing embodiments, or equivalent replacements are made to some of the technical features; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the spirit and scope of the technical solutions of the various embodiments of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910726272.2A CN110517330B (en) | 2019-08-07 | 2019-08-07 | An Industrial Cone Beam CT Reconstruction Method in Offset Scanning Mode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910726272.2A CN110517330B (en) | 2019-08-07 | 2019-08-07 | An Industrial Cone Beam CT Reconstruction Method in Offset Scanning Mode |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110517330A true CN110517330A (en) | 2019-11-29 |
CN110517330B CN110517330B (en) | 2021-05-28 |
Family
ID=68625321
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910726272.2A Active CN110517330B (en) | 2019-08-07 | 2019-08-07 | An Industrial Cone Beam CT Reconstruction Method in Offset Scanning Mode |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110517330B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113269847A (en) * | 2021-05-24 | 2021-08-17 | 深圳安科高技术股份有限公司 | CT image reconstruction method, device and equipment based on short scan and storage medium |
CN113409412A (en) * | 2021-06-02 | 2021-09-17 | 北京航空航天大学 | Large-field-of-view CL reconstruction method, device, equipment and medium in offset scanning mode |
CN119146859A (en) * | 2024-11-12 | 2024-12-17 | 浙江省特种设备科学研究院 | Device and method for detecting drift of industrial CT detected sample |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1861001A (en) * | 2006-03-31 | 2006-11-15 | 北京航空航天大学 | Method for standardizing projection coordinate origin suitable for three-D CT scanning system |
CN1865954A (en) * | 2006-06-13 | 2006-11-22 | 北京航空航天大学 | Wide view-field three-D CT imaging method |
CN101303225A (en) * | 2008-07-09 | 2008-11-12 | 北京航空航天大学 | A projection rotation center measurement method suitable for 2D-CT scanning system |
CN101398397A (en) * | 2007-09-30 | 2009-04-01 | 首都师范大学 | CT imaging method of multitime scanning mode |
CN101634638A (en) * | 2009-08-18 | 2010-01-27 | 北京航空航天大学 | Three-dimensional digital imaging method of large view field cone-beam X-ray tilting scanning of biased detector |
CN101936720A (en) * | 2010-07-30 | 2011-01-05 | 北京航空航天大学 | A Calibration Method for Detector Torsion Angle Applicable to Cone Beam XCT System |
CN103654833A (en) * | 2013-11-19 | 2014-03-26 | 中国科学院过程工程研究所 | Method and device for determining detector deflection angle of CT |
EP2586374B1 (en) * | 2009-01-21 | 2015-03-18 | Koninklijke Philips N.V. | Method and apparatus for large field of view imaging and detection and compensation of motion artifacts |
CN106994023A (en) * | 2017-05-27 | 2017-08-01 | 广州华端科技有限公司 | The geometric parameter of Conebeam computed tomography imaging system determines method |
CN107233105A (en) * | 2017-05-24 | 2017-10-10 | 深圳先进技术研究院 | A kind of modification method and update the system for CT image reconstructions |
CN107845121A (en) * | 2017-11-03 | 2018-03-27 | 中国工程物理研究院应用电子学研究所 | The bearing calibration of artifact is weighted in a kind of detector biasing scanning |
US20180144462A1 (en) * | 2016-11-21 | 2018-05-24 | The Boeing Company | Geometry correction for computed tomography |
CN108333197A (en) * | 2018-02-01 | 2018-07-27 | 北京航空航天大学 | Bias industrial CT system turntable rotation center scaling method under scan pattern |
CN109106390A (en) * | 2018-06-28 | 2019-01-01 | 北京航空航天大学 | A kind of short scanning computed tomography method for reconstructing of fan-beam and device of rotation center biasing |
CN109953768A (en) * | 2019-03-29 | 2019-07-02 | 清华大学 | CT system and method combining multiple sources and multiple detectors |
-
2019
- 2019-08-07 CN CN201910726272.2A patent/CN110517330B/en active Active
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1861001A (en) * | 2006-03-31 | 2006-11-15 | 北京航空航天大学 | Method for standardizing projection coordinate origin suitable for three-D CT scanning system |
CN1865954A (en) * | 2006-06-13 | 2006-11-22 | 北京航空航天大学 | Wide view-field three-D CT imaging method |
CN101398397A (en) * | 2007-09-30 | 2009-04-01 | 首都师范大学 | CT imaging method of multitime scanning mode |
CN101303225A (en) * | 2008-07-09 | 2008-11-12 | 北京航空航天大学 | A projection rotation center measurement method suitable for 2D-CT scanning system |
EP2586374B1 (en) * | 2009-01-21 | 2015-03-18 | Koninklijke Philips N.V. | Method and apparatus for large field of view imaging and detection and compensation of motion artifacts |
CN101634638A (en) * | 2009-08-18 | 2010-01-27 | 北京航空航天大学 | Three-dimensional digital imaging method of large view field cone-beam X-ray tilting scanning of biased detector |
CN101936720A (en) * | 2010-07-30 | 2011-01-05 | 北京航空航天大学 | A Calibration Method for Detector Torsion Angle Applicable to Cone Beam XCT System |
CN103654833A (en) * | 2013-11-19 | 2014-03-26 | 中国科学院过程工程研究所 | Method and device for determining detector deflection angle of CT |
US20180144462A1 (en) * | 2016-11-21 | 2018-05-24 | The Boeing Company | Geometry correction for computed tomography |
CN107233105A (en) * | 2017-05-24 | 2017-10-10 | 深圳先进技术研究院 | A kind of modification method and update the system for CT image reconstructions |
CN106994023A (en) * | 2017-05-27 | 2017-08-01 | 广州华端科技有限公司 | The geometric parameter of Conebeam computed tomography imaging system determines method |
CN107845121A (en) * | 2017-11-03 | 2018-03-27 | 中国工程物理研究院应用电子学研究所 | The bearing calibration of artifact is weighted in a kind of detector biasing scanning |
CN108333197A (en) * | 2018-02-01 | 2018-07-27 | 北京航空航天大学 | Bias industrial CT system turntable rotation center scaling method under scan pattern |
CN109106390A (en) * | 2018-06-28 | 2019-01-01 | 北京航空航天大学 | A kind of short scanning computed tomography method for reconstructing of fan-beam and device of rotation center biasing |
CN109953768A (en) * | 2019-03-29 | 2019-07-02 | 清华大学 | CT system and method combining multiple sources and multiple detectors |
Non-Patent Citations (7)
Title |
---|
ZHANLI HU ET AL: "Region-of-interest reconstruction for a cone-beam dental CT with a circular trajectory", 《NUCLEAR INSTRUMENTS AND METHODS IN PHYSICS RESEARCH SECTION A: ACCELERATORS, SPECTROMETERS, DETECTORS AND ASSOCIATED EQUIPMENT》 * |
李忠志 等: "扇束CT探测器偏转的重建图像伪影校正", 《CT理论与应用研究》 * |
王远: "高能工业CT数据采集系统及图象重建研究", 《中国优秀硕士学位论文全文数据库电子期刊 工程科技II辑》 * |
邹晓兵: "大视场螺旋锥束工业CT的扫描方法与重建算法研究", 《中国博士学位论文全文数据库电子期刊 信息科技辑》 * |
邹永宁: "工业CT三维图像重建与分割算法研究", 《中国博士学位论文全文数据库电子期刊 信息科技辑》 * |
陈明: "工业CT视野拓展方法及图像伪影校正研究", 《中国博士学位论文全文数据库电子期刊 信息科技辑》 * |
韩玉 等: "一种基于Radon逆变换的半覆盖螺旋锥束CT重建算法", 《物理学报》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113269847A (en) * | 2021-05-24 | 2021-08-17 | 深圳安科高技术股份有限公司 | CT image reconstruction method, device and equipment based on short scan and storage medium |
CN113409412A (en) * | 2021-06-02 | 2021-09-17 | 北京航空航天大学 | Large-field-of-view CL reconstruction method, device, equipment and medium in offset scanning mode |
CN119146859A (en) * | 2024-11-12 | 2024-12-17 | 浙江省特种设备科学研究院 | Device and method for detecting drift of industrial CT detected sample |
Also Published As
Publication number | Publication date |
---|---|
CN110517330B (en) | 2021-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104997529B (en) | Method based on symmetrically repeating template correction cone-beam CT system geometric distortion | |
CN100382763C (en) | A Calibration Method Applicable to the Origin of Projection Coordinates of 3D CT Scanning System | |
US20070122020A1 (en) | Method and device for geometry analysis and calibration of volumetric imaging systems | |
CN107764846A (en) | A kind of the CL imaging systems and analysis method of orthogonal straight lines scanning | |
US20150216498A1 (en) | Geometric Characterization and Calibration of a Cone-Beam Computer Tomography Apparatus | |
CN102652674B (en) | A method and system for removing geometric artifacts in CT images | |
US20120301004A1 (en) | Computed Tomography Imaging Process And System | |
CN110517330B (en) | An Industrial Cone Beam CT Reconstruction Method in Offset Scanning Mode | |
CN107796834B (en) | Orthogonal electronic linear scanning CL imaging system and method | |
CN107328798B (en) | Novel ICL system and implementation method | |
WO2018126335A1 (en) | Method for evaluating and correcting geometric parameters of cone-beam ct system based on glomerulus motif | |
CN101303225A (en) | A projection rotation center measurement method suitable for 2D-CT scanning system | |
JP6711410B2 (en) | Imaging magnification calibration method for radiation tomography apparatus | |
CN103479379B (en) | A kind of image rebuilding method of tilting screw scanning and device | |
WO2016195058A1 (en) | Image acquisition device, image acquisition method, and image correction program | |
CN103654833A (en) | Method and device for determining detector deflection angle of CT | |
CN113533392B (en) | Combined scanning CL imaging method | |
CN108333197B (en) | Calibration method of rotary center of turntable in industrial CT system in offset scanning mode | |
CN113409412B (en) | Large field of view CL reconstruction method and device, equipment and medium in offset scanning mode | |
CN107016655A (en) | Cone-beam CL geometry population parameter iteration correction methods | |
CN112603346B (en) | A Detector Deflection Correction Method Based on Marker Imaging | |
CN105319225B (en) | Scanning method for realizing high-resolution large-view CL imaging of plate-shaped sample | |
CN103310471A (en) | CT image generating device and method, and CT image generating system | |
CN101615293B (en) | Device and method for VCT system parameter calibration | |
CN106373164A (en) | Method and application for eliminating microscopic CT image geometric artifact |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |