CN110516357B - Determination method of thermal parameters of gold ribbon flexible interconnection oriented to the electrical properties of microwave components - Google Patents
Determination method of thermal parameters of gold ribbon flexible interconnection oriented to the electrical properties of microwave components Download PDFInfo
- Publication number
- CN110516357B CN110516357B CN201910798371.1A CN201910798371A CN110516357B CN 110516357 B CN110516357 B CN 110516357B CN 201910798371 A CN201910798371 A CN 201910798371A CN 110516357 B CN110516357 B CN 110516357B
- Authority
- CN
- China
- Prior art keywords
- gold
- flexible interconnection
- parameters
- strip
- thermal deformation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Abstract
本发明公开了一种面向微波组件电性能的金带柔性互联热敏参数确定方法,包括确定金带柔性互联几何参数、物性参数、电磁传输参数,对金带柔性互联形态进行参数化表征;确定金带柔性互联工作条件与环境温度载荷,建立金带柔性互联结构‑热变形分析模型;确定金带柔性互联形态参数热变形量,建立金带柔性互联结构‑电磁分析模型;设计金带柔性互联形态热变形参数与电性能指标的正交试验,计算金带柔性互联形态参数热影响度;确定金带柔性互联形态热敏参数及形态参数热敏度。本方法可指导微波组件考虑应用环境的设计与优化,提升微波产品研制品质。
The invention discloses a method for determining the thermal parameters of a gold ribbon flexible interconnection oriented to the electrical performance of a microwave component, which includes determining the geometric parameters, physical property parameters and electromagnetic transmission parameters of the gold ribbon flexible interconnection, and parameterizing the shape of the gold ribbon flexible interconnection; Gold ribbon flexible interconnection working conditions and ambient temperature load, establish the gold ribbon flexible interconnection structure-thermal deformation analysis model; determine the thermal deformation of the gold ribbon flexible interconnection morphological parameters, establish the gold ribbon flexible interconnection structure-electromagnetic analysis model; design the gold ribbon flexible interconnection Orthogonal test of morphological thermal deformation parameters and electrical performance indicators to calculate the thermal influence degree of the morphological parameters of the gold ribbon flexible interconnection; determine the morphological thermal parameters and the thermal sensitivity of the morphological parameters of the gold ribbon flexible interconnection. This method can guide the design and optimization of microwave components considering the application environment, and improve the development quality of microwave products.
Description
技术领域technical field
本发明属于微波射频电路技术领域,具体是一种面向微波组件电性能的金带柔性互联热敏参数确定方法,可用于指导微波组件中模块互联设计与电磁传输性能调控。The invention belongs to the technical field of microwave radio frequency circuits, in particular to a method for determining the thermal parameters of a gold ribbon flexible interconnection oriented to the electrical performance of a microwave component, which can be used to guide the module interconnection design and the regulation of electromagnetic transmission performance in the microwave component.
背景技术Background technique
现代信息电子技术发展迅猛,作为硬件技术支撑的核心,微波组件与微波电路被广泛应用于深空探测、目标追踪、互联通信及各种空间应用等高精尖领域。微波电子装备的研制逐渐呈现高可靠、集成化、小型化与高速率的发展趋势,这使得高品质微波组件研制技术的突破成为电子装备技术发展的迫切需求。Modern information and electronic technology is developing rapidly. As the core of hardware technical support, microwave components and microwave circuits are widely used in high-precision fields such as deep space exploration, target tracking, interconnected communication and various space applications. The development of microwave electronic equipment is gradually showing the development trend of high reliability, integration, miniaturization and high speed, which makes the breakthrough in the development of high-quality microwave components an urgent need for the development of electronic equipment technology.
高频有源微波组件中常采用柔性互联结构来连接电路及模块,这种结构在实现信号精确传递的同时,还兼具缓冲自身及环境载荷的效果,使得电路可靠性得到了显著提升。然而研究发现,随着信号传输频率的升高,微波组件中互联形态变化对信号传输性能的影响急剧增大,甚至造成微波组件功能失效。当微波电子装备服役在大温变和极端温度环境中时,柔性的互联形态极易受温度载荷影响而发生形变,进而对信号传输造成影响。上述使得高频微波组件中电路柔性互联热形变问题成为影响微波组件性能,并制约微波电子装备在面向极端温度工况下研制水平提升的关键因素。Flexible interconnection structures are often used in high-frequency active microwave components to connect circuits and modules. This structure not only achieves accurate signal transmission, but also has the effect of buffering itself and environmental loads, which significantly improves circuit reliability. However, the study found that with the increase of the signal transmission frequency, the influence of the interconnection shape change in the microwave component on the signal transmission performance increased sharply, and even caused the function of the microwave component to fail. When microwave electronic equipment is used in a large temperature change and extreme temperature environment, the flexible interconnection form is easily deformed by the influence of temperature load, which in turn affects signal transmission. The above makes the thermal deformation problem of circuit flexible interconnection in high-frequency microwave components a key factor that affects the performance of microwave components and restricts the development of microwave electronic equipment under extreme temperature conditions.
目前针对微波电路及微波组件中柔性互联形态热变形对信号传输性能造成影响的方面,鲜见理论技术研究。工程中研究多停留在人工经验及大量互联热力学软件仿真上,工作成本高、效率低且效果差。因此,本文针对微波组件中典型同轴与微带互联结构,深入研究面向微波组件电性能的金带柔性互联热敏参数确定方法,对金带柔性互联形态进行参数化定量精确表征,建立基于互联形态特征的热-互联结构-电磁分析模型,突破互联形态热敏参数识别与形态参数热敏度计算。为工程设计人员在微波组件中互联优化设计与热环境传输性能调控方面提供理论指导。提升高频有源微波产品研制水平,满足极端温度环境下微波电子装备高性能服役需求。At present, there are few theoretical and technical studies on the influence of thermal deformation of flexible interconnection forms in microwave circuits and microwave components on signal transmission performance. Most of the research in engineering is based on manual experience and a large number of interconnected thermodynamic software simulations, resulting in high work costs, low efficiency and poor results. Therefore, according to the typical coaxial and microstrip interconnection structures in microwave components, this paper deeply studies the thermal parameter determination method of gold ribbon flexible interconnection oriented to the electrical performance of microwave components. The thermal-interconnected structure-electromagnetic analysis model of morphological features breaks through the identification of interconnected morphological thermal parameters and the thermal sensitivity calculation of morphological parameters. It provides theoretical guidance for engineering designers in terms of interconnect optimization design and thermal environment transmission performance regulation in microwave components. Improve the research and development level of high-frequency active microwave products to meet the high-performance service requirements of microwave electronic equipment in extreme temperature environments.
发明内容SUMMARY OF THE INVENTION
针对上述问题,本发明提供了一种面向微波组件电性能的金带柔性互联热敏参数确定方法,以便快速、准确地确定金带柔性互联形态热敏参数及形态参数热敏度,为微波组件性能提升,以及复杂环境下电性能的保障提供理论指导。In view of the above problems, the present invention provides a method for determining the thermal parameters of a gold ribbon flexible interconnection oriented to the electrical properties of a microwave component, so as to quickly and accurately determine the morphological thermal parameters and morphological parameter thermal sensitivity of a gold ribbon flexible interconnection. Provide theoretical guidance for performance improvement and guarantee of electrical performance in complex environments.
实现本发明目的的技术解决方案是,一种面向微波组件电性能的金带柔性互联热敏参数确定方法,该方法包括下述步骤:The technical solution for realizing the purpose of the present invention is a method for determining the thermal parameters of a gold ribbon flexible interconnection oriented to the electrical performance of a microwave assembly, the method comprising the following steps:
(1)根据高频微波组件互联的具体要求,确定金带柔性互联几何参数与物性参数;(1) According to the specific requirements of the high-frequency microwave component interconnection, determine the geometric parameters and physical parameters of the gold ribbon flexible interconnection;
(2)根据微波组件互联工况及性能指标,确定微波组件中金带柔性互联电磁传输参数;(2) According to the interconnection conditions and performance indicators of the microwave components, determine the electromagnetic transmission parameters of the flexible interconnection of gold ribbons in the microwave components;
(3)根据微波组件互联形态及工程实际调研,对金带柔性互联形态进行参数化表征;(3) According to the investigation of the interconnection pattern of microwave components and the actual engineering, carry out parametric characterization of the flexible interconnection pattern of the gold ribbon;
(4)根据微波组件工作需求及工况,确定微波组件金带柔性互联工作条件与环境温度载荷;(4) According to the working requirements and working conditions of the microwave components, determine the working conditions and ambient temperature load of the flexible interconnection of the gold ribbon of the microwave components;
(5)根据确定的微波组件中金带柔性互联几何参数、热物性参数、形态参数化表征及工作环境条件,建立金带柔性互联结构-热变形分析模型;(5) According to the determined geometric parameters, thermophysical parameters, morphological parameter characterization and working environment conditions of the gold ribbon flexible interconnection in the microwave component, a gold ribbon flexible interconnection structure-thermal deformation analysis model is established;
(6)根据建立的金带柔性互联结构-热变形分析模型,利用Ansys分析求解金带柔性互联形态参数热变形量;(6) According to the established gold ribbon flexible interconnection structure-thermal deformation analysis model, use Ansys to analyze and solve the thermal deformation of the morphological parameters of the gold ribbon flexible interconnection;
(7)根据互联几何与物性参数、形态参数化表征及电磁传输参数,建立以热变形参数为变量调控参数的金带柔性互联结构-电磁分析模型;(7) According to the geometric and physical parameters of the interconnection, the parametric characterization of the shape and the electromagnetic transmission parameters, a gold ribbon flexible interconnection structure-electromagnetic analysis model with thermal deformation parameters as variable control parameters is established;
(8)根据微波组件中金带柔性互联形态参数与电性能评价指标,确定因素、水平和指标,设计金带柔性互联形态热变形参数与电性能指标的正交试验;(8) According to the morphological parameters and electrical performance evaluation indexes of gold ribbon flexible interconnection in microwave components, determine the factors, levels and indexes, and design the orthogonal test of the morphological thermal deformation parameters and electrical performance indexes of gold ribbon flexible interconnection;
(9)根据正交试验结果方差分析,计算金带柔性互联形态参数热影响度;(9) Calculate the thermal influence degree of the morphological parameters of the flexible interconnection of the gold ribbon according to the variance analysis of the orthogonal test results;
(10)根据金带柔性互联形态参数热影响度,确定金带柔性互联形态热敏参数并计算形态参数热敏度。(10) According to the thermal influence degree of the morphological parameter of the flexible interconnection of the gold ribbon, determine the morphological thermal parameter of the flexible interconnection of the gold ribbon and calculate the thermal sensitivity of the morphological parameter.
进一步,步骤(1)中,确定微波组件中金带柔性互联几何参数包括:金带宽度B、金带厚度T、金带水平段长度L1、金带半跨距P、金带微带键合长度b4、金带同轴键合角θ、金带到介质基片端部距离b2、内导体长度Lc、内导体直径d1、内导体端部到金带距离b3、落差g、绝缘介质长度b1、绝缘介质直径d2、导体带长度Lm、导体带宽度Wm、导体带厚度H1、介质基片长度Ls、介质基片宽度Ws、介质基片厚度h2和模块间隙S;Further, in step (1), the geometric parameters of the gold ribbon flexible interconnection in the microwave assembly are determined including: gold ribbon width B, gold ribbon thickness T, gold ribbon horizontal segment length L 1 , gold ribbon half span P, gold ribbon microstrip bond Bonding length b 4 , coaxial bonding angle θ of the gold ribbon, distance b 2 from the end of the gold ribbon to the dielectric substrate, length L c of the inner conductor, diameter d 1 of the inner conductor, distance b 3 from the end of the inner conductor to the gold ribbon, drop g , insulating medium length b 1 , insulating medium diameter d 2 , conductor strip length L m , conductor strip width W m , conductor strip thickness H 1 , dielectric substrate length L s , dielectric substrate width W s , dielectric substrate thickness h 2 and the module gap S;
确定电磁特性参数包括:介质基片介电常数εs、介质基片损耗角正切θs、玻璃介质介电常数εg和玻璃介质损耗角正切θg。Determining electromagnetic characteristic parameters includes: dielectric constant ε s of dielectric substrate, dielectric substrate loss tangent θ s , dielectric constant of glass ε g and glass dielectric loss tangent θ g .
确定热物性参数包括:介质基片、导体带、金带、内导体和绝缘介质热物性参数,所述介质基片、导体带、金带、内导体和绝缘介质热物性参数包括弹性模量E、热膨胀系数α和泊松比μ。Determining thermophysical parameters including: dielectric substrate, conductor strip, gold strip, inner conductor and insulating medium thermophysical parameters, said dielectric substrate, conductor strip, gold strip, inner conductor and insulating medium thermophysical parameters include elastic modulus E , thermal expansion coefficient α and Poisson's ratio μ.
进一步,步骤(2)中,确定微波组件中金带柔性互联电磁传输参数包括:信号传输频率f,回波损耗S11和插入损耗S21。Further, in step (2), it is determined that the electromagnetic transmission parameters of the gold ribbon flexible interconnection in the microwave assembly include: signal transmission frequency f, return loss S 11 and insertion loss S 21 .
进一步,所述步骤(3)中,对金带柔性互联形态进行参数化表征按照以下步骤进行:Further, in the step (3), the parametric characterization of the flexible interconnection form of the gold ribbon is performed according to the following steps:
(3a)根据金带柔性互联形态特征分析,将互联形态划分为四个区,分别为:金带同轴键合区、金带微带键合区、左侧非键合区和右侧非键合区。由于金带柔性互联具有对称结构,因此选取左半边进行参数化表征;(3a) According to the analysis of the morphological characteristics of the flexible interconnection of the gold ribbon, the interconnection morphology is divided into four regions, namely: the gold ribbon coaxial bonding area, the gold ribbon microstrip bonding area, the left non-bonding area and the right non-bonding area. bond area. Since the flexible interconnection of gold ribbons has a symmetrical structure, the left half is selected for parametric characterization;
(3b)根据金带柔性互联左半边形态特征分析,建立笛卡尔直角坐标系,对金带柔性互联形态划分为5段:AB圆弧段、BC直线段、CD上抛物段、DE下抛物段和EF直线段,分别进行分段函数表征;(3b) According to the analysis of the morphological characteristics of the left half of the flexible interconnection of the gold ribbon, a Cartesian Cartesian coordinate system is established, and the flexible interconnection of the gold ribbon is divided into five segments: AB arc segment, BC straight segment, CD upper parabolic segment, and DE lower parabolic segment and EF straight line segment, respectively, perform piecewise function characterization;
(3c)根据金带柔性互联形态特征分析,对金带柔性互联形态划分为5段进行分段函数表征,其中包括金带同轴键合AB圆弧段表征函数、金带左侧非键合区上部BC直线段表征函数、金带左侧非键合区CD上抛物段表征函数、金带左侧非键合区DE下抛物段表征函数和金带微带键合区EF直线段表征函数。(3c) According to the analysis of the morphological characteristics of the flexible interconnection of the gold ribbon, the flexible interconnection of the gold ribbon is divided into 5 segments for piecewise function characterization, including the characterization function of the AB arc segment for the coaxial bonding of the gold ribbon, and the non-bonding on the left side of the gold ribbon. The characterization function of the straight line segment BC in the upper part of the gold ribbon, the characterization function of the upper parabolic segment of the non-bonding region CD on the left side of the gold ribbon, the characterization function of the parabolic segment characterization function of the left non-bonding region DE of the gold ribbon, and the characterization function of the EF straight line segment of the bonding region of the gold ribbon microstrip .
进一步,步骤(4)中,确定金带柔性互联工作条件与环境温度载荷,根据微波组件工作需求及工况,确定微波组件金带柔性互联工作条件为极端温度,大温变环境。在进行热分析载荷施加时,设定热冲击温度变化范围是Tmin~Tmax,升降温速率为Tc,高低温峰值保持时间均为tk,确定温度循环周期。Further, in step (4), the working conditions and ambient temperature load of the gold ribbon flexible interconnection are determined, and according to the working requirements and working conditions of the microwave components, the working conditions of the gold ribbon flexible interconnection of the microwave components are determined as extreme temperature and large temperature change environment. When the thermal analysis load is applied, the thermal shock temperature range is set to be T min ~ T max , the temperature rise and fall rate is T c , and the high and low temperature peak holding times are both t k , and the temperature cycle period is determined.
进行金带柔性互联结构-热变形分析时,为了遍历各温度过程,对互联结构施加2个周期的温度载荷。When conducting gold ribbon flexible interconnect structure-thermal deformation analysis, in order to traverse each temperature process, two cycles of temperature load are applied to the interconnect structure.
进一步,所述步骤(5)中,建立金带柔性互联结构-热变形分析模型按照以下步骤进行:Further, in the step (5), the establishment of the gold ribbon flexible interconnection structure-thermal deformation analysis model is carried out according to the following steps:
(5a)根据步骤(1)中确定的微波组件金带柔性互联几何参数、物性参数,以及步骤(3)中对金带柔性互联形态进行的参数化表征,在Ansys软件中建立金带柔性互联结构-热变形分析模型;(5a) According to the geometric parameters and physical property parameters of the gold ribbon flexible interconnection of the microwave components determined in step (1), and the parametric characterization of the gold ribbon flexible interconnection form in step (3), establish a gold ribbon flexible interconnection in Ansys software. Structural-thermal deformation analysis model;
(5b)所建立的模型包括绝缘介质、内导体、金带、微带导体和介质基片;根据步骤4中确定的温度载荷对金带柔性互联结构进行环境载荷施加。(5b) The established model includes an insulating medium, an inner conductor, a gold strip, a microstrip conductor and a dielectric substrate; according to the temperature load determined in
进一步,所述步骤(6)中,利用Ansys分析求解金带柔性互联形态参数热变形量按照以下步骤进行:Further, in the described step (6), use Ansys to analyze and solve the thermal deformation of the morphological parameter of the flexible interconnection of the gold ribbon according to the following steps:
(6a)依据工程实际调研,确定影响金带柔性互联形态的6个主要参数为:落差g,金带到介质基片端部距离b2,内导体端部到金带距离b3,金带微带键合长度b4,模块间隙S和金带半跨距P;(6a) According to the actual engineering investigation, it is determined that the six main parameters affecting the flexible interconnection of gold ribbon are: drop g, distance b 2 from the end of the gold ribbon to the dielectric substrate, distance b 3 from the end of the inner conductor to the gold ribbon, Tape bond length b 4 , module gap S and gold tape half span P;
(6b)根据Ansys对金带柔性互联结构-热变形分析求解结果,并规定参数尺寸热变形增加时,热变形量为正值,参数尺寸热变形减小时,热变形量为负值。由此确定(6a)中金带柔性互联形态参数热变形;(6b) According to the analysis results of Ansys for the flexible interconnection structure of gold ribbon-thermal deformation, it is specified that when the thermal deformation of the parameter size increases, the thermal deformation amount is a positive value, and when the thermal deformation of the parameter size decreases, the thermal deformation amount is a negative value. From this, the thermal deformation of the morphological parameters of the flexible interconnection of the gold ribbon in (6a) is determined;
(6c)基于热变形公式,确定热变形后金带互联形态参数尺寸。(6c) Based on the thermal deformation formula, determine the size of the morphological parameters of the gold ribbon interconnection after thermal deformation.
进一步,步骤(7)中,所建立金带柔性互联结构-电磁分析模型包括绝缘介质、内导体、金带、微带导体和介质基片。Further, in step (7), the established gold ribbon flexible interconnect structure-electromagnetic analysis model includes an insulating medium, an inner conductor, a gold ribbon, a microstrip conductor and a dielectric substrate.
进一步,所述步骤(8)中,确定因素、水平和指标,设计金带柔性互联形态热变形参数与电性能指标的正交试验按照以下步骤进行:Further, in the step (8), determine the factors, levels and indicators, and design the orthogonal test of the thermal deformation parameters of the gold ribbon flexible interconnection shape and the electrical performance indicators according to the following steps:
(8a)根据互联形态热变形参数及热变形量,对考虑热变形的金带柔性互联形态选取等间距6因素7水平数值;(8a) According to the thermal deformation parameters of the interconnection shape and the amount of thermal deformation, select the values of 6 factors and 7 levels at equal intervals for the flexible interconnection shape of the gold ribbon considering the thermal deformation;
(8b)根据步骤(2)中确定的微波组件金带柔性互联电磁传输参数,确定金带柔性互联电磁传输性能指标为回波损耗和插入损耗;(8b) According to the electromagnetic transmission parameters of the gold ribbon flexible interconnection of the microwave component determined in step (2), determine that the electromagnetic transmission performance indicators of the gold ribbon flexible interconnection are return loss and insertion loss;
(8c)设计6因素7水平正交表L49(78),并结合三维电磁全波仿真软件分析设计金带柔性互联形态热变形参数与电性能指标的正交试验。(8c) Design the orthogonal table L 49 (7 8 ) with 6 factors and 7 levels, and analyze and design the orthogonal test of thermal deformation parameters and electrical performance indicators of the flexible interconnection of gold ribbons combined with 3D electromagnetic full-wave simulation software.
进一步,所述步骤(9)中,计算金带柔性互联形态参数热影响度按照以下步骤进行:Further, in the step (9), the calculation of the thermal influence degree of the morphological parameter of the flexible interconnection of the gold ribbon is performed according to the following steps:
(9a)根据正交试验方差分析结果,计算金带柔性互联形态参数归一化热影响度;(9a) According to the results of the variance analysis of the orthogonal test, calculate the normalized thermal influence degree of the morphological parameters of the flexible interconnection of the gold ribbon;
(9b)同时面向回波损耗S11与插入损耗S21综合电性能指标,计算金带柔性互联形态参数热影响度。(9b) At the same time, considering the comprehensive electrical performance index of return loss S11 and insertion loss S21, calculate the thermal influence degree of the morphological parameters of the gold ribbon flexible interconnection.
进一步,所述步骤(10)中,确定金带柔性互联形态热敏参数并计算形态参数热敏度按照以下步骤进行:Further, in the described step (10), determine the morphological thermal parameters of the flexible interconnection of the gold ribbon and calculate the thermal sensitivity of the morphological parameters according to the following steps:
(10a)根据参数自由度fj和误差自由度fe,并结合F分布及α分位数,确定临界值Fα(fj,fe),则计算金带柔性互联形态参数归一化临界热影响度;(10a) Determine the critical value F α (f j , f e ) according to the parameter degree of freedom f j and the error degree of freedom f e , and combine the F distribution and α quantile, then calculate the normalization of the morphological parameters of the flexible interconnection of the gold ribbon critical heat impact degree;
(10b)同时面向回波损耗S11与插入损耗S21综合电性能指标,计算金带柔性互联形态参数临界热影响度;(10b) Simultaneously face the comprehensive electrical performance index of return loss S11 and insertion loss S21, calculate the critical thermal influence degree of the morphological parameters of the flexible interconnection of gold ribbon;
(10c)根据金带柔性互联形态参数归一化热影响度及归一化临界热影响度确定金带柔性互联形态热敏参数的判定准则为:(10c) Normalize the thermal influence degree according to the morphological parameters of the flexible interconnection of gold ribbons and normalized critical thermal influence degree The criterion for determining the thermal parameters of the flexible interconnection of gold ribbons is as follows:
(10d)根据金带柔性互联形态参数热影响度,并结合热敏参数判定准则,确定互联形态参数归一化热敏度。(10d) According to the thermal influence degree of the morphological parameters of the flexible interconnection of the gold ribbon, and combined with the judgment criteria of the thermal parameters, the normalized thermal sensitivity of the interconnect morphological parameters is determined.
本发明与现有技术相比,具有以下特点:Compared with the prior art, the present invention has the following characteristics:
1.本发明针对微波组件金带柔性互联结构,建立了面向电性能的金带柔性互联形态参数化表征模型。基于此表征模型研究了温度载荷与柔性互联信号传输性能之间的影响关系,确定了金带柔性互联形态热敏参数,并计算了互联形态参数热敏度。解决了热载荷下微波组件中柔性互联热变形参数与传输性能间影响关联不清,热优化设计方向不明的难题。1. Aiming at the flexible interconnection structure of gold ribbons of microwave components, the present invention establishes a morphological parametric characterization model of flexible interconnection of gold ribbons oriented to electrical performance. Based on this characterization model, the relationship between the temperature load and the signal transmission performance of the flexible interconnection was studied, the morphological thermal parameters of the gold ribbon flexible interconnection were determined, and the thermal sensitivity of the interconnected morphological parameter was calculated. It solves the problem that the influence between the thermal deformation parameters of the flexible interconnection and the transmission performance of the microwave component under thermal load is unclear, and the direction of thermal optimization design is unclear.
2.利用面向微波组件电性能的金带柔性互联热敏参数确定方法,可实现在微波组件设计、制造与工作过程中,柔性互联形态参数化定量精确表征,快速给出柔性互联形态热敏参数与形态参数热敏度,为工程设计人员在考虑热环境载荷影响下,微波组件中模块互联设计与传输性能调控方面提供理论指导,提升工作效率,降低产品研制成本,保障产品服役性能。2. Using the gold ribbon flexible interconnect thermal parameter determination method for the electrical properties of microwave components, the flexible interconnect morphological parameters can be quantitatively and accurately characterized in the process of microwave component design, manufacture and operation, and the flexible interconnect morphological thermal parameters can be quickly given. The thermal sensitivity of morphological parameters provides theoretical guidance for engineering designers in terms of module interconnection design and transmission performance regulation in microwave components under the influence of thermal environmental loads, improving work efficiency, reducing product development costs, and ensuring product service performance.
附图说明Description of drawings
图1是本发明一种面向微波组件电性能的金带柔性互联热敏参数确定方法的流程图;1 is a flow chart of a method for determining a thermal parameter of a gold ribbon flexible interconnection oriented to the electrical properties of a microwave assembly of the present invention;
图2是考虑热变形的金带柔性互联参数化模型示意图;Fig. 2 is a schematic diagram of a parametric model of the flexible interconnection of gold ribbons considering thermal deformation;
图3是金带柔性互联分区段表征示意图;Fig. 3 is a schematic diagram of the characterization of the flexible interconnection sub-sections of the gold ribbon;
图4是温变载荷曲线;Figure 4 is the temperature change load curve;
图5是金带柔性互联结构-热变形分析模型;Figure 5 is the gold ribbon flexible interconnect structure-thermal deformation analysis model;
图6是金带柔性互联结构-热变形网格划分后模型;Figure 6 is a model of the flexible interconnection structure of gold ribbon-thermal deformation meshing;
图7是金带柔性互联形态在最高温时刻的总变形量;Figure 7 is the total deformation of the gold ribbon flexible interconnection at the highest temperature;
图8是金带柔性互联形态在最低温时刻的总变形量;Figure 8 is the total deformation of the gold ribbon flexible interconnection at the lowest temperature moment;
图9是以热变形参数为变量调控参数的金带柔性互联结构-电磁分析模型;Figure 9 is a gold ribbon flexible interconnection structure-electromagnetic analysis model with thermal deformation parameters as variable control parameters;
具体实施方式Detailed ways
下面结合附图及实施例对本发明做进一步说明。The present invention will be further described below with reference to the accompanying drawings and embodiments.
参照图1,本发明为一种面向微波组件电性能的金带柔性互联热敏参数确定方法,具体步骤如下:Referring to Fig. 1, the present invention is a method for determining the thermal parameters of a gold ribbon flexible interconnection oriented to the electrical performance of a microwave assembly, and the specific steps are as follows:
步骤1,确定微波组件中金带柔性互联的几何参数与物性参数Step 1. Determine the geometric parameters and physical parameters of the flexible interconnection of gold ribbons in microwave components
参照图2所示,高频微波组件中金带柔性互联包括接地板1,在接地板1上层连接有介质基片2,在介质基片2上连接的导体带3通过金带6连接到内导体5,内导体5与绝缘介质4连接。根据高频微波组件中互联的具体要求,分别确定微波组件中金带互联的几何参数与物性参数。Referring to FIG. 2, the flexible interconnection of gold ribbons in the high-frequency microwave assembly includes a grounding plate 1, a dielectric substrate 2 is connected on the upper layer of the grounding plate 1, and the
确定几何参数包括:金带宽度B、金带厚度T、金带水平段长度L1、金带半跨距P、金带微带键合长度b4、金带同轴键合角θ、金带到介质基片端部距离b2、内导体长度Lc、内导体直径d1、内导体端部到金带距离b3、落差g、绝缘介质长度b1、绝缘介质直径d2、导体带长度Lm、导体带宽度Wm、导体带厚度H1、介质基片长度Ls、介质基片宽度Ws、介质基片厚度h2和模块间隙S;The determined geometric parameters include: gold ribbon width B, gold ribbon thickness T, gold ribbon horizontal segment length L 1 , gold ribbon half span P, gold ribbon microstrip bonding length b 4 , gold ribbon coaxial bonding angle θ, gold ribbon The distance from the end of the tape to the dielectric substrate b 2 , the length of the inner conductor L c , the diameter of the inner conductor d 1 , the distance from the end of the inner conductor to the gold tape b 3 , the drop g, the length of the insulating medium b 1 , the diameter of the insulating medium d 2 , the conductor tape length L m , conductor strip width W m , conductor strip thickness H 1 , dielectric substrate length L s , dielectric substrate width W s , dielectric substrate thickness h 2 and module gap S;
确定电磁特性参数包括:介质基片介电常数εs、介质基片损耗角正切θs、玻璃介质介电常数εg和玻璃介质损耗角正切θg;Determining electromagnetic characteristic parameters includes: dielectric constant ε s of dielectric substrate, dielectric substrate loss tangent θ s , dielectric constant of glass ε g and glass dielectric loss tangent θ g ;
确定热物性参数包括:介质基片热物性参数、导体带热物性参数、金带热物性参数、内导体热物性参数与绝缘介质热物性参数。具体介质基片、导体带、金带、内导体和绝缘介质热物性参数包括弹性模量E、热膨胀系数α和泊松比μ。The determined thermophysical parameters include: dielectric substrate thermophysical parameters, conductor strip thermophysical parameters, gold strip thermophysical parameters, inner conductor thermophysical parameters and insulating medium thermophysical parameters. Specific thermophysical parameters of dielectric substrate, conductor strip, gold strip, inner conductor and insulating medium include elastic modulus E, thermal expansion coefficient α and Poisson's ratio μ.
步骤2,确定微波组件中金带柔性互联电磁传输参数Step 2: Determine the electromagnetic transmission parameters of the gold ribbon flexible interconnection in the microwave assembly
确定微波组件中金带柔性互联电磁传输参数,具体包括:信号传输频率f,回波损耗S11和插入损耗S21。Determine the electromagnetic transmission parameters of the gold ribbon flexible interconnection in the microwave assembly, specifically including: signal transmission frequency f, return loss S 11 and insertion loss S 21 .
步骤3,对金带柔性互联结构形态进行参数化表征Step 3: Parametric characterization of the shape of the gold ribbon flexible interconnect structure
根据微波组件互联形态及工程实际调研,对金带柔性互联形态分区段进行参数化表征,参照图3,按照以下步骤进行:According to the investigation of the interconnection pattern of microwave components and the actual engineering, the segmental characterization of the flexible interconnection pattern of the gold ribbon is carried out. Referring to Figure 3, follow the steps below:
(3a)根据金带柔性互联形态特征分析,将互联形态划分为四个区,分别为:金带同轴键合区、金带微带键合区、左侧非键合区和右侧非键合区。由于金带柔性互联具有对称结构,因此选取左半边进行参数化表征。(3a) According to the analysis of the morphological characteristics of the flexible interconnection of the gold ribbon, the interconnection morphology is divided into four regions, namely: the gold ribbon coaxial bonding area, the gold ribbon microstrip bonding area, the left non-bonding area and the right non-bonding area. bond area. Due to the symmetric structure of the gold ribbon flexible interconnection, the left half is selected for parametric characterization.
(3b)根据金带柔性互联左半边形态特征分析,建立笛卡尔直角坐标系,对金带柔性互联形态划分为5段:AB圆弧段、BC直线段、CD上抛物段、DE下抛物段和EF直线段,分别进行分段函数表征;令中间变量:(3b) According to the analysis of the morphological characteristics of the left half of the flexible interconnection of the gold ribbon, a Cartesian Cartesian coordinate system is established, and the flexible interconnection of the gold ribbon is divided into five segments: AB arc segment, BC straight segment, CD upper parabolic segment, and DE lower parabolic segment and EF straight line segment, respectively perform piecewise function characterization; let the intermediate variable:
(3c)根据金带柔性互联形态特征分析,对金带柔性互联形态划分为5段进行分段函数表征,其中金带同轴键合AB圆弧段表征函数为:(3c) According to the analysis of the morphological characteristics of the flexible interconnection of the gold ribbon, the flexible interconnection of the gold ribbon is divided into 5 segments for piecewise function characterization, wherein the characterization function of the AB arc segment of the coaxial bonding of the gold ribbon is:
金带左侧非键合区上部BC直线段表征函数为:The characterization function of the upper BC straight line segment of the non-bonding region on the left side of the gold ribbon is:
金带左侧非键合区CD上抛物段表征函数为:The characterization function of the parabolic segment on the non-bonded region CD on the left side of the gold ribbon is:
金带左侧非键合区DE下抛物段表征函数为:The characterization function of the parabolic segment under the non-bonding region DE on the left side of the gold ribbon is:
金带微带键合区EF直线段表征函数为:The characterization function of the EF straight line segment of the gold ribbon microstrip bonding area is:
步骤4,确定微波组件金带柔性互联工作条件与环境温度载荷Step 4: Determine the working conditions and ambient temperature load of the gold ribbon flexible interconnection of microwave components
根据微波组件工作需求及工况,参照图4,确定微波组件金带柔性互联工作条件为极端温度,大温变环境;在进行热分析载荷施加时,设定热冲击温度变化范围是Tmin~Tmax,升降温速率为Tc,高低温峰值保持时间均为tk,则温度循环周期Cy为:According to the working requirements and working conditions of the microwave components, referring to Fig. 4, the working conditions of the flexible interconnection of the gold ribbons of the microwave components are determined to be extreme temperature and a large temperature change environment; when the thermal analysis load is applied, the thermal shock temperature change range is set to be T min ~ T max , the heating and cooling rate is T c , and the high and low temperature peak holding times are both t k , then the temperature cycle Cy is:
进行金带柔性互联结构-热变形分析时,为了遍历各温度过程,对互联结构施加2个周期的温度载荷。When conducting gold ribbon flexible interconnect structure-thermal deformation analysis, in order to traverse each temperature process, two cycles of temperature load are applied to the interconnect structure.
步骤5,建立金带柔性互联结构-热变形分析模型
根据确定的微波组件中金带柔性互联几何参数、热物性参数、形态参数化表征及工作环境条件,建立金带柔性互联结构-热变形分析模型,参照图5,图6,按照以下步骤进行:According to the determined geometric parameters, thermophysical parameters, morphological parameterization and working environment conditions of the gold ribbon flexible interconnection in the microwave component, a gold ribbon flexible interconnection structure-thermal deformation analysis model is established. Referring to Figure 5 and Figure 6, follow the steps below:
(5a)根据步骤(1)中确定的微波组件金带柔性互联几何参数、物性参数,以及步骤(3)中对金带柔性互联形态进行的参数化表征,在Ansys软件中建立金带柔性互联结构-热变形分析模型;(5a) According to the geometric parameters and physical property parameters of the gold ribbon flexible interconnection of the microwave components determined in step (1), and the parametric characterization of the gold ribbon flexible interconnection form in step (3), establish a gold ribbon flexible interconnection in Ansys software. Structural-thermal deformation analysis model;
(5b)所建立的模型包括绝缘介质、内导体、金带、微带导体及介质基片;根据步骤4中确定的温度载荷对金带柔性互联结构进行环境载荷施加。(5b) The established model includes insulating medium, inner conductor, gold strip, microstrip conductor and dielectric substrate; according to the temperature load determined in
步骤6,利用Ansys分析求解金带柔性互联形态参数热变形量
根据建立的金带柔性互联结构-热变形分析模型,利用Ansys分析求解金带柔性互联形态参数热变形量,参照图7,图8,按照以下步骤进行:According to the established gold ribbon flexible interconnection structure-thermal deformation analysis model, use Ansys to analyze and solve the thermal deformation of the morphological parameters of the gold ribbon flexible interconnection. Referring to Figure 7 and Figure 8, follow the steps below:
(6a)依据工程实际调研,确定影响金带柔性互联形态的6个主要参数为:落差g,金带到介质基片端部距离b2,内导体端部到金带距离b3,金带微带键合长度b4,模块间隙S和金带半跨距P;(6a) According to the actual engineering investigation, it is determined that the six main parameters affecting the flexible interconnection of gold ribbon are: drop g, distance b 2 from the end of the gold ribbon to the dielectric substrate, distance b 3 from the end of the inner conductor to the gold ribbon, Tape bond length b 4 , module gap S and gold tape half span P;
(6b)根据Ansys对金带柔性互联结构-热变形分析求解结果,并规定参数尺寸热变形增加时,热变形量为正值,参数尺寸热变形减小时,热变形量为负值;由此确定(6a)中金带柔性互联形态参数热变形为:(6b) According to the analysis results of the flexible interconnection structure of gold ribbon-thermal deformation by Ansys, it is specified that when the thermal deformation of the parameter size increases, the thermal deformation amount is a positive value, and when the thermal deformation of the parameter size decreases, the thermal deformation amount is a negative value; The thermal deformation of the morphological parameters of the flexible interconnection of the gold ribbon in (6a) is determined as:
Part=(gt,b2t,b3t,b4t,St,Pt),Part∈[parmin-par0,parmax-par0]Part t = (g t , b 2t , b 3t , b 4t , S t , P t ), Part t ∈ [par min -par 0 ,par max -par 0 ]
其中,Part表示参数热变形量向量;gt为落差热变形量,b2t为金带到介质基片端部距离热变形量,b3t为内导体端部到金带距离热变形量,b4t为金带微带键合长度热变形量,St为模块间隙热变形量,Pt为金带半跨距热变形量;Among them, Par t represents the parameter thermal deformation vector; g t is the thermal deformation of the drop, b 2t is the thermal deformation of the gold strip from the end of the dielectric substrate, b 3t is the thermal deformation of the distance from the end of the inner conductor to the gold strip, b 4t is the thermal deformation of the gold ribbon microstrip bonding length, S t is the thermal deformation of the module gap, and P t is the thermal deformation of the gold ribbon half-span;
Parmin=(gmin,(b2)min,(b3)min,(b4)min,Smin,Pmin)表示参数热变形后尺寸最小值向量;Par min =(g min ,(b 2 ) min ,(b 3 ) min ,(b 4 ) min ,S min ,P min ) represents the minimum size vector after parameter thermal deformation;
其中,gmin为落差热变形后最小值,(b2)min为金带到介质基片端部距离热变形后最小值,(b3)min为内导体端部到金带距离热变形后最小值,(b4)min为金带微带键合长度热变形后最小值,Smin为模块间隙热变形后最小值,Pmin为金带半跨距热变形后最小值;Among them, g min is the minimum value of the drop after thermal deformation, (b 2 ) min is the minimum value of the distance from the end of the gold strip to the dielectric substrate after thermal deformation, and (b 3 ) min is the minimum distance from the end of the inner conductor to the gold ribbon after thermal deformation (b 4 ) min is the minimum value after thermal deformation of the bonding length of the gold ribbon microstrip, S min is the minimum value after thermal deformation of the module gap, and P min is the minimum value after thermal deformation of the gold ribbon half-span;
Par0=(g0,b20,b30,b40,S0,P0)表示参数初值向量,Par 0 =(g 0 ,b 20 ,b 30 ,b 40 ,S 0 ,P 0 ) represents the parameter initial value vector,
其中,g0为落差初值,b20为金带到介质基片端部距离初值,b30为内导体端部到金带距离初值,b40为金带微带键合长度初值,S0为模块间隙初值,P0为金带半跨距初值;Among them, g 0 is the initial value of the drop, b 20 is the initial value of the distance from the end of the gold strip to the dielectric substrate, b 30 is the initial value of the distance from the end of the inner conductor to the gold strip, b 40 is the initial value of the bonding length of the gold strip and microstrip, S 0 is the initial value of the module gap, and P 0 is the initial value of the half span of the gold belt;
Parmax=(gmax,(b2)max,(b3)max,(b4)max,Smax,Pmax)表示参数热变形后尺寸最大值向量;Par max =(g max ,(b 2 ) max ,(b 3 ) max ,(b 4 ) max ,S max ,P max ) represents the vector of the maximum size of the parameter after thermal deformation;
其中,gmax为落差热变形后最大值,(b2)max为金带到介质基片端部距离热变形后最大值,(b3)max为内导体端部到金带距离热变形后最大值,(b4)max为金带微带键合长度热变形后最大值,Smax为模块间隙热变形后最大值,Pmax为金带半跨距热变形后最大值;Among them, g max is the maximum value after thermal deformation of the drop, (b 2 ) max is the maximum value of the distance from the end of the gold strip to the dielectric substrate after thermal deformation, and (b 3 ) max is the maximum distance from the end of the inner conductor to the gold strip after thermal deformation value, (b 4 ) max is the maximum value after thermal deformation of the bonding length of the gold ribbon microstrip, S max is the maximum value after thermal deformation of the module gap, and P max is the maximum value after thermal deformation of the gold ribbon half-span;
(6c)基于热变形公式,确定热变形后金带互联形态参数尺寸向量为:(6c) Based on the thermal deformation formula, the size vector of the gold ribbon interconnection shape parameters after thermal deformation is determined as:
Par=Par0+Part=(g0+gt,b20+b2t,b30+b3t,b40+b4t,S0+St,P0+Pt)。Par=Par 0 +Par t =(g 0 +g t , b 20 +b 2t , b 30 +b 3t , b 40 +b 4t , S 0 +S t , P 0 +P t ).
步骤7,建立以热变形参数为变量调控参数的柔性互联结构-电磁分析模型Step 7: Establish a flexible interconnection structure-electromagnetic analysis model with thermal deformation parameters as variable control parameters
根据互联几何与物性参数、形态参数化表征及电磁传输参数,建立以热变形参数为变量调控参数的金带柔性互联结构-电磁分析模型,参照图9,包括根据步骤(1)中确定的微波组件金带柔性互联几何参数、物性参数,和步骤(2)中确定的微波组件金带柔性互联电磁传输参数,和步骤(3)中对金带柔性互联形态进行的参数化表征,以及步骤(6)中确定的热变形后金带互联形态参数数值,在三维电磁全波仿真分析软件中建立金带柔性互联结构-电磁分析模型,所建立的模型由缘介质、内导体、金带、微带导体和介质基片等部件组成。According to the geometric and physical parameters of the interconnection, the morphological parameterization characterization and the electromagnetic transmission parameters, a gold ribbon flexible interconnection structure-electromagnetic analysis model with thermal deformation parameters as variable control parameters is established, referring to FIG. The geometric parameters and physical parameters of the flexible interconnection of the gold ribbon of the component, and the electromagnetic transmission parameters of the flexible interconnection of the gold ribbon of the microwave component determined in the step (2), and the parametric characterization of the flexible interconnection of the gold ribbon in the step (3), and the step ( The morphological parameters of the gold ribbon interconnection after thermal deformation determined in 6), the gold ribbon flexible interconnection structure-electromagnetic analysis model was established in the three-dimensional electromagnetic full-wave simulation analysis software. It is composed of components such as conductors and dielectric substrates.
步骤8,确定因素、水平和指标,设计金带柔性互联形态热变形参数与电性能指标的正交试验Step 8: Determine the factors, levels and indicators, and design the orthogonal test of the thermal deformation parameters and electrical performance indicators of the flexible interconnection of gold ribbons
根据微波组件中金带柔性互联形态参数与电性能评价指标,确定因素、水平和指标,设计金带柔性互联形态热变形参数与电性能指标的正交试验,按照以下步骤进行:According to the morphological parameters and electrical performance evaluation indexes of gold ribbon flexible interconnection in microwave components, determine the factors, levels and indexes, and design the orthogonal test of thermal deformation parameters and electrical performance indexes of gold ribbon flexible interconnection morphological parameters, and carry out according to the following steps:
(8a)根据互联形态热变形参数及热变形量,对考虑热变形的金带柔性互联形态选取等间距6因素7水平数值为:(8a) According to the thermal deformation parameters of the interconnection shape and the amount of thermal deformation, for the flexible interconnection shape of gold ribbons considering thermal deformation, the values of 6 factors and 7 levels at equal intervals are:
其中,(g0+gt)v1~(g0+gt)v7为落差取7水平数值,(b20+b2t)v1~(b20+b2t)v7为金带到介质基片端部距离取7水平数值,(b30+b3t)v1~(b30+b3t)v7为内导体端部到金带距离取7水平数值,(b40+b4t)v1~(b40+b4t)v7为金带微带键合长度取7水平数值,(S0+St)v1~(S0+St)v7为模块间隙取7水平数值,(P0+Pt)v1~(P0+Pt)v7为金带半跨距取7水平数值。Among them, (g 0 +g t ) v1 ~ (g 0 +g t ) v7 is the level value of 7 for the drop, and (b 20 +b 2t ) v1 ~ (b 20 +b 2t ) v7 is the gold band to the end of the dielectric substrate The distance from the inner conductor to the gold belt is taken as a horizontal value of 7, (b 30 +b 3t ) v1 ~ (b 30 +b 3t ) v7 is a horizontal value of 7 for the distance from the end of the inner conductor to the gold belt, (b 40 +b 4t ) v1 ~ (b 40 +b 4t ) v7 is the gold-strip microstrip bonding length and takes 7 levels, (S 0 +S t ) v1 ~ (S 0 +S t ) v7 is the module gap and takes 7 levels, (P 0 +P t ) v1 ~ (P 0 +P t ) v7 is the horizontal value of 7 for the half span of the gold belt.
表中因素水平计算公式为:The formula for calculating the factor levels in the table is:
式中,m为水平数;In the formula, m is the number of levels;
(8b)根据步骤(2)中确定的微波组件金带柔性互联电磁传输参数,确定金带柔性互联电磁传输性能指标为回波损耗和插入损耗:(8b) According to the electromagnetic transmission parameters of the gold ribbon flexible interconnection of the microwave component determined in step (2), determine the electromagnetic transmission performance indicators of the gold ribbon flexible interconnection as return loss and insertion loss:
Ind=[S11 S21];Ind = [S11 S21];
(8c)设计6因素7水平正交表L49(78),并结合三维电磁全波仿真软件分析设计金带柔性互联形态热变形参数与电性能指标的正交试验。(8c) Design the orthogonal table L 49 (7 8 ) with 6 factors and 7 levels, and analyze and design the orthogonal test of thermal deformation parameters and electrical performance indicators of the flexible interconnection of gold ribbons combined with 3D electromagnetic full-wave simulation software.
步骤9,计算金带柔性互联形态参数影响度Step 9: Calculate the influence degree of the morphological parameters of the flexible interconnection of the gold ribbon
根据正交试验结果进行方差分析,计算金带柔性互联形态参数影响度,按照以下步骤进行:Carry out variance analysis according to the orthogonal test results to calculate the influence degree of the morphological parameters of the flexible interconnection of the gold ribbon, and proceed according to the following steps:
(9a)根据正交试验方差分析结果,计算金带柔性互联形态参数归一化热影响度Effj为:(9a) According to the results of the variance analysis of the orthogonal test, the normalized thermal influence degree Eff j of the morphological parameters of the flexible interconnection of the gold ribbon is calculated as:
上式中,Fj为第j个参数对应指标平均差方和与误差平均差方和的比值;In the above formula, F j is the ratio of the average sum of variance of the index corresponding to the jth parameter to the average sum of variance of errors;
(9b)同时面向回波损耗S11与插入损耗S21综合电性能指标,计算金带柔性互联形态参数热影响度为:(9b) Simultaneously facing the comprehensive electrical performance indicators of return loss S11 and insertion loss S21, calculate the thermal influence degree of the morphological parameters of the gold ribbon flexible interconnection for:
式中,为面向回波损耗指标S11的金带柔性互联形态参数热影响度,EffS21为面向插入损耗指标S21的金带柔性互联形态参数热影响度,w1和w2分别为对应热影响度的权系数。In the formula, is the thermal influence degree of the morphological parameter of the gold ribbon flexible interconnection oriented to the return loss index S11, Eff S21 is the thermal influence degree of the morphological parameter of the gold ribbon flexible interconnection oriented to the insertion loss index S21, w 1 and w 2 are the weights corresponding to the thermal influence degree, respectively coefficient.
步骤10,确定金带柔性互联形态热敏参数并计算形态参数热敏度Step 10: Determine the shape thermal parameters of the flexible interconnection of the gold ribbon and calculate the thermal sensitivity of the shape parameters
根据金带柔性互联形态参数热影响度,确定金带柔性互联形态热敏参数并计算形态参数热敏度,按照以下步骤进行:According to the thermal influence degree of the morphological parameters of the gold ribbon flexible interconnection, determine the morphological thermal parameters of the gold ribbon flexible interconnection and calculate the thermal sensitivity of the morphological parameters. Follow the steps below:
(10a)根据参数自由度fj和误差自由度fe,并结合F分布及α分位数,确定临界值Fα(fj,fe),则计算金带柔性互联形态参数归一化临界热影响度Effjα为:(10a) Determine the critical value F α (f j , f e ) according to the parameter degree of freedom f j and the error degree of freedom f e , and combine the F distribution and α quantile, then calculate the normalization of the morphological parameters of the flexible interconnection of the gold ribbon The critical heat influence degree Eff jα is:
(10b)同时面向回波损耗S11与插入损耗S21综合电性能指标,计算金带柔性互联形态参数临界热影响度为:(10b) Simultaneously facing the comprehensive electrical performance indicators of return loss S11 and insertion loss S21, calculate the critical thermal influence degree of the morphological parameters of the gold ribbon flexible interconnection for:
式中,为面向回波损耗指标S11的金带柔性互联形态参数临界热影响度,为面向插入损耗指标S21的金带柔性互联形态参数临界热影响度;In the formula, is the critical thermal influence degree of the morphological parameters of the gold ribbon flexible interconnection oriented to the return loss index S11, is the critical thermal influence degree of the morphological parameters of the gold ribbon flexible interconnection oriented to the insertion loss index S21;
(10c)根据金带柔性互联形态参数归一化热影响度及归一化临界热影响度确定金带柔性互联形态热敏参数的判定准则为:(10c) Normalize the thermal influence degree according to the morphological parameters of the flexible interconnection of gold ribbons and normalized critical thermal influence degree The criterion for determining the thermal parameters of the flexible interconnection of gold ribbons is as follows:
(10d)根据金带柔性互联形态参数热影响度,并结合热敏参数判定准则,确定互联形态参数归一化热敏度为:(10d) According to the thermal influence degree of the morphological parameters of the flexible interconnection of the gold ribbon, and combined with the thermal parameter judgment criteria, the normalized thermal sensitivity of the interconnected morphological parameters is determined as:
本发明的优点可通过以下实例计算进一步说明:The advantages of the present invention can be further illustrated by the following example calculations:
一、确定金带柔性互联的几何参数与物性参数1. Determine the geometric parameters and physical parameters of the flexible interconnection of gold ribbons
本实验以Ku波段有源相控阵天线T/R组件为例,研究T/R组件中柔性互联结构受热环境载荷影响时,互联形态热变形对电路微波传输性能的影响,并探究面向微波电性能传输的互联形态热敏参数及形态参数热敏度的确定方法。为了简化分析,选取T/R组件中典型的同轴电路与微带电路转换结构,探究金带柔性互联受热载荷影响的形性关联机理。金带柔性互联考虑热变形的参数化模型示意图见图2,金带柔性互联的几何参数与物性参数见表1、表2,并取T/R组件的电磁工作中心频率为15GHz。In this experiment, the Ku-band active phased array antenna T/R component is taken as an example to study the influence of the thermal deformation of the interconnect shape on the microwave transmission performance of the circuit when the flexible interconnect structure in the T/R component is affected by the thermal environment load, and to explore the microwave transmission performance. Interconnected morphological thermal parameters of performance transmission and methods for determining thermal sensitivities of morphological parameters. In order to simplify the analysis, the typical coaxial circuit and microstrip circuit conversion structure in T/R components are selected to explore the shape correlation mechanism of gold ribbon flexible interconnection affected by thermal load. The schematic diagram of the parametric model of the gold ribbon flexible interconnection considering thermal deformation is shown in Figure 2. The geometric parameters and physical parameters of the gold ribbon flexible interconnection are shown in Tables 1 and 2, and the electromagnetic operating center frequency of the T/R component is taken as 15GHz.
表1金带柔性互联的几何参数与物性参数Table 1 Geometric parameters and physical parameters of gold ribbon flexible interconnection
表2金带柔性互联的热物性参数Table 2 Thermophysical parameters of gold ribbon flexible interconnection
二、计算求解金带柔性互联形态参数热变形量2. Calculate and solve the thermal deformation of the morphological parameters of the flexible interconnection of the gold ribbon
1.确定金带柔性互联工作条件与环境温度载荷1. Determine the working conditions and ambient temperature load of the gold ribbon flexible interconnection
T/R组件金带柔性互联工作条件为极端温度,大温变环境。参照图4,在进行热分析载荷施加时,设定热冲击温度变化范围是-180℃~+150℃,升降温速率为66℃/s,高低温峰值保持时间均为900s,温度循环周期为1810s,温度载荷施加2个周期。The working conditions of T/R component gold ribbon flexible interconnection are extreme temperature and large temperature change environment. Referring to Figure 4, when the thermal analysis load is applied, the thermal shock temperature change range is set to -180°C to +150°C, the temperature rise and fall rate is 66°C/s, the high and low temperature peak holding times are both 900s, and the temperature cycle period is 1810s, the temperature load is applied for 2 cycles.
2.建立金带柔性互联结构-热变形分析模型2. Establish a gold ribbon flexible interconnect structure-thermal deformation analysis model
根据T/R组件金带柔性互联几何参数、物性参数,以及互联形态参数化表征,在Ansys软件中建立金带柔性互联结构-热变形分析模型如图5,图6所示。所建立的模型由绝缘介质、内导体、金带、微带导体及介质基片部件组成。对金带柔性互联结构按照如图4所示进行环境温度载荷施加。According to the geometric parameters, physical parameters, and the parametric characterization of the interconnection shape of the gold ribbon flexible interconnection of the T/R component, the gold ribbon flexible interconnection structure-thermal deformation analysis model is established in Ansys software, as shown in Figure 5 and Figure 6. The established model consists of insulating medium, inner conductor, gold strip, microstrip conductor and dielectric substrate components. The ambient temperature load is applied to the gold ribbon flexible interconnect structure as shown in Figure 4.
3.分析计算金带柔性互联形态参数热变形量;3. Analyze and calculate the thermal deformation of the morphological parameters of the flexible interconnection of the gold ribbon;
应用Ansys软件对金带柔性互联形态参数热变形进行分析,结合参数热变形量计算公式,分别计算金带柔性互联形态各参数的热变形量。确定互联表征参数热变形范围如下表3所示。Ansys software is used to analyze the thermal deformation of the morphological parameters of the flexible interconnection of the gold ribbon, and the thermal deformation of each parameter of the flexible interconnection of the gold ribbon is calculated separately according to the calculation formula of the thermal deformation of the parameters. Determine the thermal deformation range of the interconnect characterization parameters as shown in Table 3 below.
表3温度载荷-180~150℃施加时金带互联形态关键表征参数热变形Table 3 The key characterization parameters of the gold ribbon interconnection morphology when the temperature load is applied at -180 ~ 150 ℃ thermal deformation
三、确定金带柔性互联形态热敏参数并计算形态参数热敏度3. Determine the thermal parameters of the flexible interconnection of the gold ribbon and calculate the thermal sensitivity of the morphological parameters
1.建立以热变形参数为变量调控参数的金带柔性互联结构-电磁分析模型1. Establish a gold ribbon flexible interconnection structure-electromagnetic analysis model with thermal deformation parameters as variable control parameters
根据确定的T/R组件中金带柔性互联几何参数、物性参数、形态参数化表征及电磁传输参数,在三维电磁全波仿真分析软件中建立以热变形参数为变量调控参数的金带柔性互联结构-电磁分析模型如图9所示,所建立的模型由绝缘介质、内导体、金带、微带导体及介质基片等部件组成。According to the determined geometric parameters, physical parameters, morphological parameters and electromagnetic transmission parameters of the gold ribbon flexible interconnection in the T/R component, a gold ribbon flexible interconnection with thermal deformation parameters as variable control parameters is established in the three-dimensional electromagnetic full-wave simulation analysis software. The structure-electromagnetic analysis model is shown in Figure 9. The established model is composed of insulating medium, inner conductor, gold strip, microstrip conductor and dielectric substrate.
2.设计金带柔性互联形态热变形参数与电性能指标的正交试验2. Orthogonal test of thermal deformation parameters and electrical performance indexes of gold ribbon flexible interconnection shape
(1)确定金带柔性互联设计变量、设计初值与设计空间(1) Determine the design variables, initial design value and design space of the flexible interconnection of the gold ribbon
根据微波组件互联形态及工程实际调研,并结合金带柔性互联形态参数热变形量,确定金带柔性互联形态6个调控因素对应的设计变量、设计初值和设计空间如下表4所示。According to the investigation of the interconnection form of microwave components and the actual engineering, and combined with the thermal deformation of the morphological parameters of the flexible interconnection of the gold ribbon, the design variables, initial design values and design space corresponding to the six control factors of the flexible interconnection form of the gold ribbon are determined as shown in Table 4 below.
表4金带柔性互联的设计变量与设计空间Table 4 Design variables and design space of gold ribbon flexible interconnection
(2)选取正交试验因素、水平和指标设计正交试验(2) Select orthogonal test factors, levels and indicators to design orthogonal test
对金带柔性互联形态依据设计空间选取等间距6因素7水平数值,设计6因素7水平正交表L49(78),以回波损耗和插入损耗为电磁传输性能指标,结合三维电磁全波仿真软件分析设计金带柔性互联形态参数与电磁传输性能指标的正交试验。For the flexible interconnection form of gold ribbons, according to the design space, the values of 6 factors and 7 levels of equal spacing are selected, and the orthogonal table L 49 (7 8 ) of 6 factors and 7 levels is designed, and the return loss and insertion loss are used as electromagnetic transmission performance indicators. The wave simulation software analyzes and designs the orthogonal test of the morphological parameters of the gold ribbon flexible interconnection and the electromagnetic transmission performance index.
3.计算金带柔性互联形态参数热影响度3. Calculate the thermal influence degree of the morphological parameters of the flexible interconnection of the gold ribbon
根据正交试验方差分析结果,计算面向回波损耗指标S11的金带柔性互联形态参数热影响度分析结果为:According to the results of the variance analysis of the orthogonal test, the calculation results of the thermal influence degree of the morphological parameters of the gold ribbon flexible interconnection oriented to the return loss index S11 are as follows:
计算面向插损指标S21的金带柔性互联形态参数热影响度分析结果为:The calculation results of the thermal influence degree analysis of the morphological parameters of the flexible interconnection of gold ribbons oriented to the insertion loss index S21 are:
取热影响度权系数分别为w1=w2=0.5,故同时面向回波损耗S11与插入损耗S21综合电性能指标,金带柔性互联形态参数热影响度为:The weight coefficients of the thermal influence degree are taken as w 1 =w 2 =0.5 respectively, so for the comprehensive electrical performance index of return loss S11 and insertion loss S21 at the same time, the thermal influence degree of the morphological parameters of the gold ribbon flexible interconnection is:
4.确定金带柔性互联形态热敏参数并计算形态参数热敏度4. Determine the morphological thermal parameters of the gold ribbon flexible interconnection and calculate the thermal sensitivity of the morphological parameters
根据参数自由度fj和误差自由度fe,并结合F分布及α分位数,确定临界值Fα(fj,fe),则计算面向回波损耗指标S11的金带柔性互联形态参数临界热影响度为:The critical value F α (f j , f e ) is determined according to the parameter degree of freedom f j and the error degree of freedom f e , combined with the F distribution and the α quantile, and the flexible interconnection shape of the gold ribbon oriented to the return loss index S11 is calculated. The parameter critical heat influence degree is:
计算面向插损指标S21的金带柔性互联形态参数临界热影响度为:The critical thermal influence degree of the gold ribbon flexible interconnection morphological parameters for the insertion loss index S21 is calculated as:
故同时面向回波损耗S11与插入损耗S21综合电性能指标,金带柔性互联形态参数临界热影响度为:Therefore, for the comprehensive electrical performance index of return loss S11 and insertion loss S21 at the same time, the critical thermal influence degree of the morphological parameters of the gold ribbon flexible interconnection is:
根据金带柔性互联形态热敏参数的判定准则计算:Calculated according to the criteria for determining the thermal parameters of the flexible interconnection of gold ribbons:
则,面向综合电性能的金带柔性互联形态热敏参数确定为:Then, the thermal parameters of the gold ribbon flexible interconnection form for comprehensive electrical properties are determined as:
Parc=[b2 b4 S P]Par c =[b 2 b 4 SP]
根据金带柔性互联形态参数归一化热敏度计算公式,计算热敏度为:According to the normalized thermal sensitivity calculation formula of the morphological parameters of the flexible interconnection of gold ribbons, the thermal sensitivity is calculated as:
RSenj=[0 0.2148 0 0.2455 0.2378 0.3019]。RSen j = [0 0.2148 0 0.2455 0.2378 0.3019].
本发明并不局限于上述实施例,在本发明公开的技术方案的基础上,本领域的技术人员根据所公开的技术内容,不需要创造性的劳动就可以对其中的一些技术特征作出一些替换和变形,这些替换和变形均在本发明的保护范围内。The present invention is not limited to the above-mentioned embodiments. On the basis of the technical solutions disclosed in the present invention, those skilled in the art can make some substitutions and modifications to some of the technical features according to the disclosed technical contents without creative work. Modifications, replacements and modifications are all within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910798371.1A CN110516357B (en) | 2019-08-27 | 2019-08-27 | Determination method of thermal parameters of gold ribbon flexible interconnection oriented to the electrical properties of microwave components |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910798371.1A CN110516357B (en) | 2019-08-27 | 2019-08-27 | Determination method of thermal parameters of gold ribbon flexible interconnection oriented to the electrical properties of microwave components |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110516357A CN110516357A (en) | 2019-11-29 |
CN110516357B true CN110516357B (en) | 2020-12-08 |
Family
ID=68628147
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910798371.1A Active CN110516357B (en) | 2019-08-27 | 2019-08-27 | Determination method of thermal parameters of gold ribbon flexible interconnection oriented to the electrical properties of microwave components |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110516357B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111159970B (en) * | 2019-12-09 | 2023-08-29 | 北京空间机电研究所 | Multi-physical-field analysis method and device for flexible interconnection reliability |
CN112084738B (en) * | 2020-08-31 | 2022-09-13 | 西安电子科技大学 | Microwave assembly line coupling transmission performance prediction method based on gold strip bonding configuration |
CN112069675B (en) * | 2020-08-31 | 2022-09-13 | 西安电子科技大学 | A Prediction Method for Signal Transmission Performance of Double-band Bonded Coupled Signals Considering Configuration Fluctuations |
CN112069757B (en) * | 2020-08-31 | 2022-09-13 | 西安电子科技大学 | Prediction method of coupled signal transmission performance of gold ribbon bonding circuit considering process disturbance |
CN112001137B (en) * | 2020-08-31 | 2022-09-13 | 西安电子科技大学 | Optimal key configuration determining method for microwave circuit interconnection signal transmission |
CN112084739B (en) * | 2020-08-31 | 2022-09-13 | 西安电子科技大学 | Microwave assembly line coupling transmission performance prediction method based on double gold strip bonding configurations |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1490908A (en) * | 2002-10-15 | 2004-04-21 | 中国科学院半导体研究所 | Adaptively Coupled Diode Laser Butterfly Packaging Device |
CN102412240A (en) * | 2011-10-13 | 2012-04-11 | 武汉华工正源光子技术有限公司 | APD-TIA coaxial photoelectric component with temperature control function and manufacturing method |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020000657A1 (en) * | 1999-05-06 | 2002-01-03 | Cheng P. Wen | Plated chrome solder dam for high power mmics |
US6899137B2 (en) * | 1999-06-28 | 2005-05-31 | California Institute Of Technology | Microfabricated elastomeric valve and pump systems |
US8232920B2 (en) * | 2008-08-07 | 2012-07-31 | International Business Machines Corporation | Integrated millimeter wave antenna and transceiver on a substrate |
CN108389893A (en) * | 2011-12-01 | 2018-08-10 | 伊利诺伊大学评议会 | It is designed to undergo the transient state device of programmable transformation |
US9225311B2 (en) * | 2012-02-21 | 2015-12-29 | International Business Machines Corporation | Method of manufacturing switchable filters |
CN103076585B (en) * | 2012-12-28 | 2015-11-04 | 北京无线电计量测试研究所 | An N-type coaxial thermistor type power transmission standard seat |
CN104166770B (en) * | 2014-08-22 | 2017-02-08 | 西安电子科技大学 | Transmission performance oriented method for quickly determining abutted seam width of microwave device |
CN105717955A (en) * | 2014-12-02 | 2016-06-29 | 西安天动数字科技有限公司 | Automatic temperature adjustment system for electric blankets |
CN105628092B (en) * | 2015-12-18 | 2018-05-15 | 安徽华东光电技术研究所 | Temperature and pressure sensor module and preparation method thereof |
CN108182334A (en) * | 2018-01-24 | 2018-06-19 | 桂林电子科技大学 | A kind of method for reducing BGA solder joints thermal cycling stresses and return loss |
CN110069862B (en) * | 2019-04-24 | 2020-11-24 | 西安电子科技大学 | Determination method of optimal morphological parameters for core wire-wound welding interconnection for microwave components |
-
2019
- 2019-08-27 CN CN201910798371.1A patent/CN110516357B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1490908A (en) * | 2002-10-15 | 2004-04-21 | 中国科学院半导体研究所 | Adaptively Coupled Diode Laser Butterfly Packaging Device |
CN102412240A (en) * | 2011-10-13 | 2012-04-11 | 武汉华工正源光子技术有限公司 | APD-TIA coaxial photoelectric component with temperature control function and manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
CN110516357A (en) | 2019-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110516357B (en) | Determination method of thermal parameters of gold ribbon flexible interconnection oriented to the electrical properties of microwave components | |
CN110069862B (en) | Determination method of optimal morphological parameters for core wire-wound welding interconnection for microwave components | |
CN110533319B (en) | Microwave component gold strip interconnection transmission performance prediction method based on interconnection form | |
CN110532677A (en) | Gold ribbon interconnection architecture key parameter value interval towards electromagnetic transmission determines method | |
CN110442960B (en) | Coupling prediction method of electromagnetic transmission performance and interconnection point shape of lap welding of movable lead | |
CN107577860B (en) | Microwave device road coupled transfer performance prediction method based on single gold wire bonding | |
CN102630127B (en) | Embedded snake-shaped plane electromagnetic bandgap structure and construction method thereof | |
CN111898333B (en) | Method and device for extracting frequency response frequency points and calculating response curve of integrated circuit | |
CN112084738B (en) | Microwave assembly line coupling transmission performance prediction method based on gold strip bonding configuration | |
CN110457864B (en) | A method for identification of electromechanical coupling parameters of core wire wound welding interconnection considering interaction | |
CN118228678A (en) | PCB wiring method and system for minimizing electromagnetic interference | |
CN112084739B (en) | Microwave assembly line coupling transmission performance prediction method based on double gold strip bonding configurations | |
US7062424B2 (en) | Circuit modeling using topologically equivalent models | |
CN112069757B (en) | Prediction method of coupled signal transmission performance of gold ribbon bonding circuit considering process disturbance | |
Yong et al. | Prepreg and core dielectric permittivity (ϵ r) extraction for fabricated striplines’ far-end crosstalk modeling | |
Sivapurapu et al. | Multi-physics modeling characterization of aerosol jet printed transmission lines | |
CN112001137B (en) | Optimal key configuration determining method for microwave circuit interconnection signal transmission | |
CN110083919A (en) | A kind of lead joint welding interconnection point performance prediction method based on physical property structure electromagnetic parameter | |
Chaparro-Ortiz et al. | Relative permittivity and loss tangent determination combining broadband S-parameter and single-frequency resonator measurements | |
CN114741646A (en) | Method for rapidly solving wide-angle electromagnetic scattering characteristics of conductor target | |
Ndip | Novel methodologies for efficient and accurate modeling and optimization of system-in-package modules for RF/high-speed applications | |
CN113705146B (en) | Microwave circuit active lead interconnection broadband equivalent circuit parameter extraction method | |
CN110427698A (en) | A kind of movable leadframe joint welding interconnection point regulation method towards electromagnetic transmission performance | |
CN110427699A (en) | A kind of movable leadframe joint welding interconnection point defect performance evaluation method | |
CN213275778U (en) | Millimeter wave ceramic antenna test step PCB device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |