CN110513120A - Self-adaptive positioning system and method for cutting head of roadheader - Google Patents
Self-adaptive positioning system and method for cutting head of roadheader Download PDFInfo
- Publication number
- CN110513120A CN110513120A CN201910761257.1A CN201910761257A CN110513120A CN 110513120 A CN110513120 A CN 110513120A CN 201910761257 A CN201910761257 A CN 201910761257A CN 110513120 A CN110513120 A CN 110513120A
- Authority
- CN
- China
- Prior art keywords
- positioning
- magnetic field
- magnetic
- model
- cutterhead
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 46
- 230000003287 optical effect Effects 0.000 claims abstract description 29
- 230000003044 adaptive effect Effects 0.000 claims abstract description 28
- 238000013135 deep learning Methods 0.000 claims abstract description 14
- 230000007613 environmental effect Effects 0.000 claims abstract description 6
- 230000005347 demagnetization Effects 0.000 claims abstract description 4
- 238000010801 machine learning Methods 0.000 claims description 5
- 238000003384 imaging method Methods 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 2
- 238000012986 modification Methods 0.000 claims description 2
- 230000004048 modification Effects 0.000 claims description 2
- 238000005457 optimization Methods 0.000 claims description 2
- 239000002893 slag Substances 0.000 claims description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims 2
- 230000009514 concussion Effects 0.000 claims 1
- 229910052742 iron Inorganic materials 0.000 claims 1
- 230000006698 induction Effects 0.000 abstract description 3
- 238000004088 simulation Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000004807 localization Effects 0.000 description 6
- 230000007423 decrease Effects 0.000 description 4
- 230000007774 longterm Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000005358 geomagnetic field Effects 0.000 description 1
- 238000003331 infrared imaging Methods 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21D—SHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
- E21D9/00—Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
- E21D9/003—Arrangement of measuring or indicating devices for use during driving of tunnels, e.g. for guiding machines
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21D—SHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
- E21D9/00—Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
- E21D9/10—Making by using boring or cutting machines
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V3/00—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
- G01V3/08—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
- G01V3/081—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices the magnetic field is produced by the objects or geological structures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/70—Determining position or orientation of objects or cameras
Landscapes
- Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Remote Sensing (AREA)
- Theoretical Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Geochemistry & Mineralogy (AREA)
- Software Systems (AREA)
- Medical Informatics (AREA)
- Artificial Intelligence (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Electromagnetism (AREA)
- Geophysics (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Control Of Position Or Direction (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
本发明公开了一种基于光学与磁场定位的掘进机截割头自适应定位系统和方法。本发明中的磁场定位部分首先通过带有固定永磁体的截割头在遍历工作空间,由光学定位模块实时记录三维空间位置,由磁场传感器记录对应位置的磁感应强度,以获取训练数据,然后通过深度学习算法构建初始磁场定位模型。在磁场定位模型工作过程中,光学辅助定位系统继续工作,在掘进机截割头未被埋没时保持对截割头位置信息的采集,并通过光学辅助定位系统采集到的高精度位置信息对磁场定位模型进行更新训练,更新训练过程中,光学辅助定位结果所提供的数据具有时间权重,距离当前时间越近的数据在模型更新训练中学习率越大。通过对磁场定位模型的不断更新训练,使其自动适应环境变化,避免磁源因震荡退磁以及掘进机远距离运动后地磁变化对磁场定位精度的影响。
The invention discloses an adaptive positioning system and method for a cutting head of a roadheader based on optical and magnetic field positioning. The magnetic field positioning part in the present invention first traverses the working space through the cutting head with a fixed permanent magnet, the optical positioning module records the three-dimensional space position in real time, and the magnetic field sensor records the magnetic induction intensity of the corresponding position to obtain training data, and then passes The deep learning algorithm constructs the initial magnetic field positioning model. During the working process of the magnetic field positioning model, the optical auxiliary positioning system continues to work, and keeps collecting the position information of the cutting head when the cutting head of the roadheader is not buried. The positioning model is updated for training. During the update training process, the data provided by the optical-assisted positioning results has a time weight. The closer the data is to the current time, the greater the learning rate in the model update training. Through the continuous updating and training of the magnetic field positioning model, it can automatically adapt to environmental changes, avoiding the impact of demagnetization of the magnetic source due to vibration and geomagnetic changes after long-distance movement of the roadheader on the magnetic field positioning accuracy.
Description
技术领域technical field
本发明涉及一种掘进机截割头定位系统及方法。具体的说,本发明涉及一种基于深度学习的磁场定位为主,以光学定位为辅助校准的,可以自动适应环境改变的掘进机截割头定位系统及方法。The invention relates to a positioning system and method for a cutting head of a roadheader. Specifically, the present invention relates to a cutting head positioning system and method of a roadheader that can automatically adapt to environmental changes based on deep learning-based magnetic field positioning, with optical positioning as an auxiliary calibration.
背景技术Background technique
在高粉尘的低可见度环境下使用磁场定位方法对掘进机截割头进行定位是一种可行的方法。但磁场定位方法也存在其局限性。It is a feasible method to use the magnetic field positioning method to locate the cutting head of the roadheader in the environment of high dust and low visibility. However, the magnetic field positioning method also has its limitations.
针对掘进机截割头磁场定位系统的精度随使用时间降低的问题,即随着掘进机长时间大范围的运动导致的地磁条件改变,以及位于掘进机截割头后部的磁源因长时间震动磁性减弱导致的磁场定位精度下降问题,我们引入了光学定位对其进行辅助校准,并对磁场定位模型进行了动态改进,实现了掘进机截割头定位系统的自动化校准调整,使其可以自动适应环境改变,在动态环境中保持定位精度,大大提高了掘进机截割头定位系统的稳定性。Aiming at the problem that the accuracy of the magnetic field positioning system of the cutting head of the roadheader decreases with time, that is, the long-term and large-scale movement of the roadheader causes changes in geomagnetic conditions, and the magnetic source located at the back of the cutting head of the roadheader due to long-term Due to the decrease in magnetic field positioning accuracy caused by the weakening of vibration and magnetism, we introduced optical positioning for auxiliary calibration, and made dynamic improvements to the magnetic field positioning model, realizing the automatic calibration adjustment of the cutting head positioning system of the roadheader, so that it can automatically Adapt to environmental changes, maintain positioning accuracy in a dynamic environment, and greatly improve the stability of the cutting head positioning system of the roadheader.
发明内容Contents of the invention
本发明公开了一种掘进机截割头自适应定位系统及方法,解决了在使用磁场定位方法对掘进机进行定位过程中,定位精度随定位系统随环境改变及磁源强度衰减而下降的问题,大大提高了掘进机截割头定位系统的稳定性。定所述自适应定位系统包括磁场定位模块、可固定于截割头后方的磁源、光学辅助定位模块、含有自适应定位模型的终端处理器。由于随着掘进机的大范围运动和时间的推移,地磁条件会随之改变,因为截割头震动的影响,位于截割头后部的磁源强度也会受到影响,建立在初始地磁环境以及磁源强度上的磁场定位模型的精度必然随之降低甚至失效。本方法中的磁场定位部分首先通过带有固定永磁体的截割头在遍历工作空间,由光学辅助定位模块实时记录三维空间位置,由磁场传感器记录对应位置的磁感应强度,以获取训练数据,然后通过机器学习算法构建磁场定位模型。而后在磁场定位模型工作过程中,光学辅助定位系统继续工作,在掘进机截割头未被埋没时保持对截割头位置信息的采集,并通过光学辅助定位系统采集到的高精度位置信息对磁场定位模型进行更新训练,更新训练过程中,光学辅助定位结果所提供的数据具有时间权重,距离当前时间越近的数据在模型更新训练中学习率越大。通过对磁场定位模型的不断更新训练,使其自动适应环境变化,避免磁源因震荡退磁以及掘进机远距离运动后地磁变化对磁场定位精度的影响。The invention discloses an adaptive positioning system and method for the cutting head of a roadheader, which solves the problem that the positioning accuracy decreases as the positioning system changes with the environment and the magnetic source intensity attenuates during the positioning process of the roadheader by using the magnetic field positioning method , greatly improving the stability of the cutting head positioning system of the roadheader. The adaptive positioning system includes a magnetic field positioning module, a magnetic source that can be fixed behind the cutting head, an optical auxiliary positioning module, and a terminal processor containing an adaptive positioning model. Due to the large-scale movement of the roadheader and the passage of time, the geomagnetic conditions will change accordingly. Due to the impact of the vibration of the cutting head, the strength of the magnetic source at the rear of the cutting head will also be affected, based on the initial geomagnetic environment and The accuracy of the magnetic field positioning model on the strength of the magnetic source will inevitably decrease or even fail. The magnetic field positioning part in this method first traverses the working space through the cutting head with a fixed permanent magnet, the three-dimensional space position is recorded in real time by the optical auxiliary positioning module, and the magnetic induction intensity of the corresponding position is recorded by the magnetic field sensor to obtain training data, and then Build a magnetic field positioning model through machine learning algorithms. Then, during the working process of the magnetic field positioning model, the optical assisted positioning system continues to work, and keeps collecting the position information of the cutting head when the cutting head of the roadheader is not buried, and the high-precision position information collected by the optical assisted positioning system The magnetic field positioning model is updated and trained. During the update training process, the data provided by the optical aided positioning results has a time weight. The closer the data is to the current time, the greater the learning rate in the model update training. Through the continuous updating and training of the magnetic field positioning model, it can automatically adapt to environmental changes, avoiding the impact of demagnetization of the magnetic source due to vibration and geomagnetic changes after long-distance movement of the roadheader on the magnetic field positioning accuracy.
本发明提供的具体技术内容是:The specific technical contents provided by the invention are:
一种掘进机截割头自适应定位系统,定位系统包括磁场定位模块、可固定于截割头后方的磁源、光学辅助定位模块、含有自适应定位模型的终端处理器。所述磁场定位模块用于对截割头进行磁场定位;所述磁源用于将截割头的位置数据传递给磁场定位模块;所述光学辅助定位模块用于提供校准调整所需的高精度数据;所述含有自适应定位模型的终端处理器用于对获得位置数据进行处理,以及根据环境变化自动调整磁场定位模型以保持其定位精度;所述位置数据包括辅助定位模块获得的高精度位置数据,以及磁场定位模块获得的磁场位置数据。An adaptive positioning system for a cutting head of a roadheader. The positioning system includes a magnetic field positioning module, a magnetic source that can be fixed behind the cutting head, an optical auxiliary positioning module, and a terminal processor including an adaptive positioning model. The magnetic field positioning module is used to perform magnetic field positioning on the cutting head; the magnetic source is used to transmit the position data of the cutting head to the magnetic field positioning module; the optical auxiliary positioning module is used to provide high precision required for calibration and adjustment data; the terminal processor containing the adaptive positioning model is used to process the obtained position data, and automatically adjust the magnetic field positioning model according to environmental changes to maintain its positioning accuracy; the position data includes high-precision position data obtained by the auxiliary positioning module , and the magnetic field position data obtained by the magnetic field positioning module.
优选地,所述磁场定位模块包括至少两个三轴磁场传感器,分别放置于掘进机机身两侧或与机身同步运动的滑轨以及支架上。Preferably, the magnetic field positioning module includes at least two three-axis magnetic field sensors, which are respectively placed on both sides of the body of the roadheader or on slide rails and supports that move synchronously with the body.
优选地,所述光学辅助定位模块包括至少两个光学摄像头以及配套的数据采集、传输装置,所述至少两个光学摄像头位于截割头后方,且与机身相对位置关系固定后,在定位过程中不再变更,所述光学摄像头不止限于可见光波段,可以根据具体环境使用远近红外等多种波段的摄像头。Preferably, the optical auxiliary positioning module includes at least two optical cameras and supporting data acquisition and transmission devices. There will be no change in the above, the optical camera is not limited to the visible light band, and cameras of various bands such as far and near infrared can be used according to the specific environment.
优选地,磁源固定于截割头后方,与截割头一起运动,通过磁源的运动影响所述磁场传感器获得的磁场强度。所述磁源为永磁体或电磁铁。Preferably, the magnetic source is fixed behind the cutting head and moves together with the cutting head, and the magnetic field intensity obtained by the magnetic field sensor is affected by the movement of the magnetic source. The magnetic source is a permanent magnet or an electromagnet.
本发明公开的定位方法为:所述磁场定位方法利用处理器中的机器学习算法对样本进行训练后构建定位模型,使用所述定位模型对截割头进行磁场定位;所述机器学习算法为深度学习算法,所述定位模型为深度学习定位模型,利用样本数据进行训练后获得深度学习定位模型,该深度学习定位模型用于对截割头进行磁场定位,通过磁场传感器获得对应不同位置处的磁源的磁场强度数据,该深度学习定位模型利用该磁场强度数据从而获得截割头的空间位置。所述光学辅助定位方法基于图像识别和几何光学方法对截割头进行定位,所述图像识别方法可以基于可见光条件下截割头的成像特征,也可以基于工作中的截割头的摩擦发热产生的红外成像特征;所述自动校准方法根据光学辅助定位结果对磁场定位所使用的模型进行更新训练,所述更新训练过程中,光学辅助定位结果所提供的数据具有时间权重,距离当前时间越近的数据在模型更新中学习率越大。在截割头的定位过程中磁场定位用于全局全时段提供截割头定位信息,光学辅助定位系统只在掘进机截割头未被机身遮挡或未被埋没于矿渣中时工作,提供高精度位置数据用以自动调整校准磁场定位模型,避免磁源因震荡退磁以及掘进机远距离运动后地磁变化对磁场定位精度的影响。The positioning method disclosed in the present invention is as follows: the magnetic field positioning method utilizes the machine learning algorithm in the processor to train the samples to build a positioning model, and uses the positioning model to perform magnetic field positioning on the cutting head; the machine learning algorithm is depth Learning algorithm, the positioning model is a deep learning positioning model, and the deep learning positioning model is obtained after training with sample data. The deep learning positioning model is used for magnetic field positioning of the cutting head, and the magnetic field corresponding to different positions is obtained by a magnetic field sensor. The magnetic field strength data of the source, the deep learning positioning model uses the magnetic field strength data to obtain the spatial position of the cutting head. The optical-assisted positioning method locates the cutting head based on image recognition and geometric optics. The image recognition method can be based on the imaging characteristics of the cutting head under visible light conditions, or can be generated based on the frictional heating of the cutting head in operation. Infrared imaging features; the automatic calibration method updates and trains the model used for magnetic field positioning according to the results of optical assisted positioning. The larger the learning rate of the data in the model update. During the positioning process of the cutting head, the magnetic field positioning is used to provide the positioning information of the cutting head globally and at all times. The optical auxiliary positioning system only works when the cutting head of the roadheader is not blocked by the fuselage or buried in the slag, providing high The precision position data is used to automatically adjust and calibrate the magnetic field positioning model to avoid the influence of magnetic source demagnetization due to vibration and geomagnetic changes after long-distance movement of the roadheader on the magnetic field positioning accuracy.
优选地,所述自动校准方法括以下步骤:Preferably, the automatic calibration method includes the following steps:
步骤一,光学辅助定位系统获取截割头位置信息;Step 1, the optical auxiliary positioning system obtains the position information of the cutting head;
步骤二,磁场传感器采集磁场数据;Step 2, the magnetic field sensor collects magnetic field data;
步骤三,判断光学定位系统是否处于正常工作状态。如果是,执行步骤四;如果否,执行步骤十;Step 3, judging whether the optical positioning system is in a normal working state. If yes, go to step 4; if not, go to step 10;
步骤四,将光学定位结果存入历史数据,数据序号i;Step 4, store the optical positioning result into the historical data, data serial number i;
步骤五,将磁场数据存入历史数据,数据序号i;Step 5, store the magnetic field data into the historical data, the data sequence number is i;
步骤六,i=i+1;Step six, i=i+1;
步骤七,更新历史数据时间权重,序号i越大则权重越大;Step 7, update the historical data time weight, the greater the serial number i, the greater the weight;
步骤八,根据时间权重调整不同时间数据在更新训练模型时的学习率;Step 8, adjust the learning rate of different time data when updating the training model according to the time weight;
步骤九,使用历史数据更新训练磁场定位模型;Step 9, using historical data to update the training magnetic field positioning model;
步骤十,将磁场传感器获取的磁场数据带入磁场定位模型;Step ten, bring the magnetic field data acquired by the magnetic field sensor into the magnetic field positioning model;
步骤十一,输出磁场定位结果。Step eleven, outputting the magnetic field positioning result.
附图说明Description of drawings
图1仿真模型示意图;Fig. 1 schematic diagram of simulation model;
图2磁场信号及对应定位坐标示意图;Fig. 2 schematic diagram of magnetic field signal and corresponding positioning coordinates;
图3引入磁场变化示意图;Fig. 3 introduces a schematic diagram of a magnetic field change;
图4 自适应定位算法流程图;Fig. 4 Flowchart of adaptive positioning algorithm;
图5 普通磁场定位模型对原始数据定位效果图;Fig. 5 Ordinary magnetic field positioning model positioning effect diagram of original data;
图6 普通磁场定位模型对引入磁场变化的数据的定位效果图;Figure 6. The effect diagram of the positioning effect of the common magnetic field positioning model on the data introduced by the magnetic field change;
图7 自适应模型对引入磁场变化的数据的定位效果图。Fig. 7 The localization effect diagram of the adaptive model for the data introduced with the change of the magnetic field.
具体实施方式Detailed ways
下面结合附图,通过实施案例对本发明进行进一步详细说明,但不以任何方式限制本发明的范围。The present invention will be described in further detail through implementation examples below in conjunction with the accompanying drawings, but the scope of the present invention is not limited in any way.
本发明中实施案例中的使用仿真数据展示自适应定位模型的定位效果。In the implementation cases of the present invention, the simulation data is used to demonstrate the positioning effect of the self-adaptive positioning model.
如图1所示,仿真模型中,磁源为内径55cm,外径60cm的500匝圆形电磁铁,工作电流为1A。位于传感器所在平面上方500cm处。磁场传感器位于传感器所在平面的中心。As shown in Figure 1, in the simulation model, the magnetic source is a 500-turn circular electromagnet with an inner diameter of 55cm and an outer diameter of 60cm, and the working current is 1A. Located 500cm above the plane where the sensor is located. The magnetic field sensor is located in the center of the plane in which the sensor is located.
本发明提供一种基于红外与磁场定位的掘进机截割头复合定位系统,定位系统包括红外定位模块、磁场定位模块、以及含有自适应定位模型的终端处理器具体实施例中使用仿真数据具体展示自适应定位模型的定位效果。The invention provides a composite positioning system for cutting head of roadheader based on infrared and magnetic field positioning. The positioning system includes an infrared positioning module, a magnetic field positioning module, and a terminal processor containing an adaptive positioning model. The simulation data used in the specific embodiment is specifically shown The localization effect of the adaptive localization model.
以上是本发明的掘进机截割头定位系统的具体组成。下面将详细介绍本发明的定位方法。The above is the specific composition of the cutting head positioning system of the roadheader of the present invention. The positioning method of the present invention will be described in detail below.
磁场定位需要预先训练定位模型,本实施例中首先通过带有固定永磁体的截割头在遍历工作空间,由红外定位模块时时记录三维空间位置,由磁场传感器记录对应位置的磁感应强度,以获取训练数据。在仿真模型中,磁源实际位置和磁场传感器对应采集到的磁场我们可以直接获取使用,仿真得到的数据如图2所示。其中仿真得到的坐标信息用于代替光学辅助定位的定位信息,仿真得到的磁场信息用于代替实际定位中磁场传感器采集到的磁场信息。我们通过引入一个随定位顺序改变的磁场改变量来模拟地磁的改变,以展示自适应定位模型和普通模型在地磁变化条件下的定位效果引入的磁场改变量如图3所示。在自适应定位模型中,除初始的训练外,我们对定位模型进行实时训练,以保证引入磁场改变后的定位精度。Magnetic field positioning requires pre-training positioning model. In this embodiment, firstly, the cutting head with fixed permanent magnet traverses the working space, the infrared positioning module records the three-dimensional space position from time to time, and the magnetic field sensor records the magnetic induction intensity of the corresponding position to obtain training data. In the simulation model, we can directly obtain and use the actual position of the magnetic source and the magnetic field collected by the magnetic field sensor. The data obtained by the simulation is shown in Figure 2. The coordinate information obtained by the simulation is used to replace the positioning information of the optical assisted positioning, and the magnetic field information obtained by the simulation is used to replace the magnetic field information collected by the magnetic field sensor in the actual positioning. We simulate the change of geomagnetic field by introducing a magnetic field change that changes with the positioning sequence to show the positioning effect of the adaptive positioning model and the common model under the condition of geomagnetic change. The magnetic field change introduced is shown in Figure 3. In the adaptive localization model, in addition to the initial training, we train the localization model in real time to ensure the localization accuracy after the magnetic field changes are introduced.
上述自适应定位算法流程图如附图4所示。所述优化算法包括以下步骤:The flow chart of the above adaptive positioning algorithm is shown in FIG. 4 . The optimization algorithm includes the following steps:
步骤一,光学辅助定位系统获取截割头位置信息;Step 1, the optical auxiliary positioning system obtains the position information of the cutting head;
步骤二,磁场传感器采集磁场数据;Step 2, the magnetic field sensor collects magnetic field data;
步骤三,判断光学定位系统是否处于正常工作状态。如果是,执行步骤四;如果否,执行步骤十;Step 3, judging whether the optical positioning system is in a normal working state. If yes, go to step 4; if not, go to step 10;
步骤四,将光学定位结果存入历史数据,数据序号i;Step 4, store the optical positioning result into the historical data, data serial number i;
步骤五,将磁场数据存入历史数据,数据序号i;Step 5, store the magnetic field data into the historical data, the data sequence number is i;
步骤六,i=i+1;Step six, i=i+1;
步骤七,更新历史数据时间权重,序号i越大则权重越大;Step 7, update the historical data time weight, the greater the serial number i, the greater the weight;
步骤八,根据时间权重调整不同时间数据在更新训练模型时的学习率;Step 8, adjust the learning rate of different time data when updating the training model according to the time weight;
步骤九,使用历史数据更新训练磁场定位模型;Step 9, using historical data to update the training magnetic field positioning model;
步骤十,将磁场传感器获取的磁场数据带入磁场定位模型;Step ten, bring the magnetic field data acquired by the magnetic field sensor into the magnetic field positioning model;
步骤十一,输出磁场定位结果。Step eleven, outputting the magnetic field positioning result.
未使用自适应定位算法的普通定位模型对原始数据进行定位的定位相对误差如图5所示,由图5可知,其相对误差小于1.6%,在未引入磁场改变量,即地磁为静态时,普通定位模型精度很高。The relative positioning error of the original positioning model without using the adaptive positioning algorithm is shown in Figure 5. It can be seen from Figure 5 that the relative error is less than 1.6%. Ordinary positioning models are highly accurate.
未使用自适应定位算法的普通定位模型对引入磁场改变量后的数据进行定位的定位相对误差如图6所示,由图6可知,引入磁场改变量后,即地磁为动态时,随着时间推移,普通定位模型的定位相对误差逐渐增大,在序号大于2000后,x轴定位相对误差已经超过100%,普通定位模型失效。The relative positioning error of the ordinary positioning model that does not use the adaptive positioning algorithm to locate the data after the magnetic field change is introduced is shown in Figure 6. It can be seen from Figure 6 that after the magnetic field change is introduced, that is, when the geomagnetism is dynamic, with time Over time, the relative positioning error of the common positioning model gradually increases. After the serial number is greater than 2000, the relative positioning error of the x-axis has exceeded 100%, and the common positioning model becomes invalid.
使用自适应定位算法的定位模型对引入磁场改变量后的数据进行定位的定位相对误差如7所示,由图7可知,引入磁场改变量后,即地磁为动态时,随着时间推移,自适应定位模型的定位相对误差始终保持在2.5%以下,并未表现出定位相对误差随时间推移而增大的现象,证明自适应定位模型可以很好的适应地磁环境逐渐改变的环境,保持较高的定位精度。Using the positioning model of the adaptive positioning algorithm to locate the data after the magnetic field change is introduced, the positioning relative error is shown in Figure 7. It can be seen from Figure 7 that after the magnetic field change is introduced, that is, when the geomagnetic The relative positioning error of the adaptive positioning model has always been kept below 2.5%, and there is no phenomenon that the relative positioning error increases with time, which proves that the adaptive positioning model can well adapt to the gradually changing geomagnetic environment and maintain a high positioning accuracy.
需要注意的是,公布实施例的目的在于帮助进一步理解本发明,但是本领域的技术人员可以理解:在不脱离本发明及所附权利要求的精神和范围内,各种替换和修改都是可能的。因此,本发明不应局限于实施例所公开的内容,本发明要求保护的范围以权利要求书界定的范围为准。It should be noted that the purpose of the disclosed embodiments is to help further understand the present invention, but those skilled in the art can understand that various replacements and modifications are possible without departing from the spirit and scope of the present invention and the appended claims of. Therefore, the present invention should not be limited to the content disclosed in the embodiments, and the protection scope of the present invention is subject to the scope defined in the claims.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910761257.1A CN110513120B (en) | 2019-08-17 | 2019-08-17 | A self-adaptive positioning system and method for cutting head of roadheader |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910761257.1A CN110513120B (en) | 2019-08-17 | 2019-08-17 | A self-adaptive positioning system and method for cutting head of roadheader |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110513120A true CN110513120A (en) | 2019-11-29 |
CN110513120B CN110513120B (en) | 2020-12-29 |
Family
ID=68626490
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910761257.1A Expired - Fee Related CN110513120B (en) | 2019-08-17 | 2019-08-17 | A self-adaptive positioning system and method for cutting head of roadheader |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110513120B (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5208538A (en) * | 1989-06-30 | 1993-05-04 | Kabushiki Kaisha Komatsu Seisakusho | Apparatus having a pair of magnetic field generating cables for measuring position of an underground excavator |
CN107503753A (en) * | 2017-06-19 | 2017-12-22 | 煤科集团沈阳研究院有限公司 | A kind of method that push pipe formula colliery small section tunnel independently tunnels |
CN109389161A (en) * | 2018-09-28 | 2019-02-26 | 广州大学 | Rubbish identification evolutionary learning method, apparatus, system and medium based on deep learning |
CN109538208A (en) * | 2018-12-21 | 2019-03-29 | 冀中能源峰峰集团有限公司 | A kind of compound positioning system of cutting head of roadheader and method |
CN109555521A (en) * | 2019-01-29 | 2019-04-02 | 冀中能源峰峰集团有限公司 | A kind of cutting head of roadheader combined positioning method |
CN109709497A (en) * | 2019-02-16 | 2019-05-03 | 冀中能源峰峰集团有限公司 | A high-precision positioning system and method |
CN109767477A (en) * | 2019-01-14 | 2019-05-17 | 冀中能源峰峰集团有限公司 | A precise positioning system and method |
-
2019
- 2019-08-17 CN CN201910761257.1A patent/CN110513120B/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5208538A (en) * | 1989-06-30 | 1993-05-04 | Kabushiki Kaisha Komatsu Seisakusho | Apparatus having a pair of magnetic field generating cables for measuring position of an underground excavator |
CN107503753A (en) * | 2017-06-19 | 2017-12-22 | 煤科集团沈阳研究院有限公司 | A kind of method that push pipe formula colliery small section tunnel independently tunnels |
CN109389161A (en) * | 2018-09-28 | 2019-02-26 | 广州大学 | Rubbish identification evolutionary learning method, apparatus, system and medium based on deep learning |
CN109538208A (en) * | 2018-12-21 | 2019-03-29 | 冀中能源峰峰集团有限公司 | A kind of compound positioning system of cutting head of roadheader and method |
CN109767477A (en) * | 2019-01-14 | 2019-05-17 | 冀中能源峰峰集团有限公司 | A precise positioning system and method |
CN109555521A (en) * | 2019-01-29 | 2019-04-02 | 冀中能源峰峰集团有限公司 | A kind of cutting head of roadheader combined positioning method |
CN109709497A (en) * | 2019-02-16 | 2019-05-03 | 冀中能源峰峰集团有限公司 | A high-precision positioning system and method |
Also Published As
Publication number | Publication date |
---|---|
CN110513120B (en) | 2020-12-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108022302B (en) | Stereo display device of Inside-Out space orientation's AR | |
JP4693246B2 (en) | Position detecting device having gravity vector direction calculation auxiliary means | |
CN106780601A (en) | A kind of locus method for tracing, device and smart machine | |
ATE417711T1 (en) | ROBOT AND METHOD FOR REGISTERING A ROBOT | |
CN101699237A (en) | Three-dimensional model attitude angle video measuring system for wind tunnel model test | |
US11471744B2 (en) | Distance information calculation method and electronic device where the method is applied | |
SE9900113D0 (en) | Reserve system for indicating course and attitude in an aircraft | |
CN106814753A (en) | A kind of target location antidote, apparatus and system | |
WO2020073540A1 (en) | Magnetic source detection device fixedly connecting external magnet and magnetic sensor array | |
CN110186442B (en) | Drilling directional measurement device and method fixed on drilling machine | |
CN111256695B (en) | Combined indoor positioning method of UWB/INS based on particle filter algorithm | |
ATE353145T1 (en) | TELESCOPE SYSTEM WITH AUTOMATIC ALTITUDE-AZIMUTH FACILITY AND METHODS FOR CALIBRATION THEREOF | |
CN104515532A (en) | Human motion simulation apparatus based on bluetooth | |
CN102126162A (en) | Numerical control machine processing online measurement method | |
CN110864692A (en) | Pose determination method of heading machine | |
CN106933223A (en) | A kind of autonomous navigation method of robot and system | |
CN102564457A (en) | On-orbit noise autonomous restraint method for APS star sensor | |
CN106225779A (en) | Development machine alignment systems based on three laser labelling dot image and localization method | |
CN107504979A (en) | Move distance computational methods and device and wearable device | |
CN109767477B (en) | Accurate positioning system and method | |
CN110513120A (en) | Self-adaptive positioning system and method for cutting head of roadheader | |
KR20210155617A (en) | Distance measuring apparatus and method for controlling the same | |
CN114964227A (en) | Coal mining machine combined navigation positioning system and method based on depth camera positioning correction | |
CN205654357U (en) | An appearance detection device is assembled to section of jurisdiction | |
CN100451537C (en) | Measuring method of large scale space coordinates based on automatic vision guiding and examining apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20201229 |