CN110505583A - A Trajectory Matching Algorithm Based on Bayonet Data and Signaling Data - Google Patents
A Trajectory Matching Algorithm Based on Bayonet Data and Signaling Data Download PDFInfo
- Publication number
- CN110505583A CN110505583A CN201910666051.0A CN201910666051A CN110505583A CN 110505583 A CN110505583 A CN 110505583A CN 201910666051 A CN201910666051 A CN 201910666051A CN 110505583 A CN110505583 A CN 110505583A
- Authority
- CN
- China
- Prior art keywords
- trajectory
- data
- vehicle
- mobile phone
- matching
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000011664 signaling Effects 0.000 title claims abstract description 50
- 238000004422 calculation algorithm Methods 0.000 title claims abstract description 45
- 238000004364 calculation method Methods 0.000 claims abstract description 16
- 238000013145 classification model Methods 0.000 claims abstract description 6
- 238000007781 pre-processing Methods 0.000 claims abstract description 4
- 238000011160 research Methods 0.000 claims description 14
- 238000012544 monitoring process Methods 0.000 claims description 12
- 238000012216 screening Methods 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 7
- 238000007635 classification algorithm Methods 0.000 claims description 5
- 231100001263 laboratory chemical safety summary Toxicity 0.000 claims description 4
- 238000004140 cleaning Methods 0.000 claims description 3
- 230000003203 everyday effect Effects 0.000 claims description 3
- 230000002159 abnormal effect Effects 0.000 claims description 2
- 238000003066 decision tree Methods 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 2
- 230000007774 longterm Effects 0.000 abstract 1
- 238000005259 measurement Methods 0.000 abstract 1
- 239000006390 lc 2 Substances 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 238000012549 training Methods 0.000 description 2
- 241001061257 Emmelichthyidae Species 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000002354 daily effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/02—Services making use of location information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/02—Services making use of location information
- H04W4/029—Location-based management or tracking services
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/20—Services signaling; Auxiliary data signalling, i.e. transmitting data via a non-traffic channel
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/30—Services specially adapted for particular environments, situations or purposes
- H04W4/40—Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Traffic Control Systems (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本发明提供一种基于卡口数据与信令数据的轨迹匹配算法,该算法包括了数据预处理、时空轨迹匹配算法、数据增强算法以及用于判断车辆轨迹与手机轨迹是否匹配的分类模型。首先将不同数据集中的无效数据移除,通过计算信息熵筛选出活动频繁的车辆与手机设备;然后根据一种时空轨迹匹配算法得到车辆与手机的潜在匹配数据集,再根据对车辆和手机轨迹的长时间追踪以得到车辆与手机的确定匹配;接着利用数据增强算法对确定匹配轨迹进行扩样;最后利用轨迹匹配结果,选择合理的模型特征,建立轨迹分类模型。本发明应用于海量车辆轨迹与手机信令轨迹的匹配,解决了目前轨迹匹配计算效率差、衡量指标单一等问题。
The invention provides a trajectory matching algorithm based on bayonet data and signaling data. The algorithm includes data preprocessing, space-time trajectory matching algorithm, data enhancement algorithm and a classification model for judging whether the vehicle trajectory matches the mobile phone trajectory. Firstly, the invalid data in different data sets are removed, and the vehicles and mobile phones with frequent activities are screened out by calculating the information entropy; then the potential matching data sets of vehicles and mobile phones are obtained according to a spatio-temporal trajectory matching algorithm, and then according to the vehicle and mobile phone trajectories Long-term tracking to obtain the definite match between the vehicle and the mobile phone; then use the data enhancement algorithm to expand the definite matching trajectory; finally use the trajectory matching result to select reasonable model features and establish a trajectory classification model. The invention is applied to the matching of massive vehicle trajectories and mobile phone signaling trajectories, and solves the problems of poor calculation efficiency of trajectory matching, single measurement index and the like.
Description
技术领域technical field
本发明涉及轨迹匹配算法领域,更具体地,涉及一种基于卡口数据与信令数据的轨迹匹配算法。The invention relates to the field of trajectory matching algorithms, and more specifically, to a trajectory matching algorithm based on bayonet data and signaling data.
背景技术Background technique
近年来,随着定位技术的发展,大量的个体轨迹数据出现。车辆的轨迹可通过固定位置传感器进行记录,如道路监测卡口上的自动车牌识别系统。它可从彩色、黑白或红外摄像机拍摄的图像中识别车辆的车牌号。车辆轨迹可以根据卡口记录下的数据进行重构。除了固定位置传感器外,移动交通传感器能够跟随车辆一起移动,它们包括探测车、GPS设备和手机等。手机在拨打电话或上网时,会和附近的基站产生联系,基站会记录下当前的时间、位置和设备编号等数据,通过这些数据可以还原出手机设备或个人的详细移动轨迹。In recent years, with the development of positioning technology, a large amount of individual trajectory data has emerged. Vehicle trajectories can be recorded by fixed position sensors, such as automatic number plate recognition systems on road monitoring checkpoints. It recognizes a vehicle's license plate number from images captured by color, black and white, or infrared cameras. Vehicle trajectories can be reconstructed based on the data recorded by the bayonet. In addition to fixed position sensors, mobile traffic sensors can move with the vehicle, they include rovers, GPS devices and cell phones. When a mobile phone makes a call or surfs the Internet, it will contact a nearby base station, and the base station will record data such as the current time, location, and device number. Through these data, the detailed movement track of the mobile device or individual can be restored.
基于城市中数以百万计的车辆和手机轨迹数据,从两个异构的数据集中找出最相似的轨迹对,相当于是将城市中的驾驶员与车辆进行配对,这将有相当大的应用价值,可为居民出行模式识别、城市内部车辆限行政策影响分析,隐私数据发布等研究领域提供理论参考。Based on the trajectory data of millions of vehicles and mobile phones in the city, finding the most similar trajectory pair from two heterogeneous data sets is equivalent to pairing the driver with the vehicle in the city, which will have a considerable impact. The application value can provide a theoretical reference for residents' travel pattern recognition, impact analysis of urban vehicle restriction policies, privacy data release and other research fields.
目前国内外提出了许多的轨迹相似度计算方法,主要可分为空间相似度和时空相似度两大类。空间相似度主要是寻找具有相似几何形状的轨迹,而忽略了时间维度,时空相似度则同时考虑了轨迹的时间和空间特性。然而,这些算法需要每两条轨迹就计算一次相似度,这对于城市中数以百万计的轨迹来说,计算开销太大,且往往仅使用一个指标来评价轨迹的相似度,无法完整描述轨迹的相似特性。At present, many trajectory similarity calculation methods have been proposed at home and abroad, which can be mainly divided into two categories: spatial similarity and spatiotemporal similarity. Spatial similarity is mainly to find trajectories with similar geometric shapes while ignoring the temporal dimension, while spatio-temporal similarity considers both temporal and spatial characteristics of trajectories. However, these algorithms need to calculate the similarity of every two trajectories, which is too computationally expensive for millions of trajectories in the city, and often only uses one indicator to evaluate the similarity of trajectories, which cannot be fully described Trajectory similarity.
发明内容Contents of the invention
本发明提供一种基于卡口数据与信令数据的轨迹匹配算法,该算法为海量异构轨迹的匹配提供了一种计算复杂度更小、评价指标更多、更为合理的计算方法。The invention provides a track matching algorithm based on bayonet data and signaling data, which provides a more reasonable calculation method with less computational complexity and more evaluation indicators for the matching of massive heterogeneous trajectories.
为了达到上述技术效果,本发明的技术方案如下:In order to achieve the above-mentioned technical effect, the technical scheme of the present invention is as follows:
一种基于卡口数据与信令数据的轨迹匹配算法,包括以下步骤:A trajectory matching algorithm based on bayonet data and signaling data, comprising the following steps:
S1:获取研究区域与研究时间段内的道路卡口监测数据集与手机信令数据集;S1: Obtain the road checkpoint monitoring data set and mobile phone signaling data set in the research area and research time period;
S2:对卡口数据集与信令数据集进行预处理,包括无效数据清洗、时间跨度筛选以及频繁移动轨迹筛选;S2: Preprocessing the bayonet data set and signaling data set, including invalid data cleaning, time span screening, and frequent moving trajectory screening;
S3:通过时空轨迹匹配算法得到车辆与手机的潜在匹配数据集;S3: Obtain the potential matching data set between the vehicle and the mobile phone through the spatio-temporal trajectory matching algorithm;
S4:对潜在匹配数据集中的车辆和手机在不同时间段内的轨迹进行匹配,若在时间范围内,车辆与手机轨迹保持同样的匹配关系,即可说明该车辆与该手机为确定匹配;S4: Match the trajectories of vehicles and mobile phones in different time periods in the potential matching data set. If the vehicle and mobile phone trajectories maintain the same matching relationship within the time range, it means that the vehicle and the mobile phone are definitely matched;
S5:利用数据增强算法对确定匹配轨迹进行采样,以得到更多的车辆与手机匹配正例;从卡口与信令数据集中随机选取车辆与手机轨迹,以及选取错误匹配的车辆与手机轨迹作为车辆与手机匹配的反例;S5: Use the data enhancement algorithm to sample the determined matching trajectories to obtain more positive cases of vehicle and mobile phone matching; randomly select vehicle and mobile phone trajectories from the bayonet and signaling data sets, and select wrongly matched vehicle and mobile phone trajectories as A counterexample of matching a vehicle with a mobile phone;
S6:采用合理的模型特征以及准确率较高的分类算法,基于上述步骤得到的正例与反例轨迹数据建立轨迹分类模型。S6: Using reasonable model features and a classification algorithm with high accuracy, a trajectory classification model is established based on the positive and negative trajectory data obtained in the above steps.
进一步地,所述步骤S1中,手机信令数据包括:(1)用户编号isdn:手机用户的唯一标识;(2)经度lng:用户所在位置的经度;(3)纬度lat:用户所在位置的纬度;(4)时间time:信令记录产生的时间。所述的卡口监测数据包括:(1)卡口编号kdbh:监测卡口的唯一标识;(2)经度kkjd:监测卡口的经度;(3)纬度kkwd:监测卡口的纬度;(4)车辆号牌hphm:经过卡口车辆的车牌号;(5)过车时间gcsj:车辆经过卡口的时间。Further, in the step S1, the mobile phone signaling data includes: (1) user number isdn: the unique identification of the mobile phone user; (2) longitude lng: the longitude of the user's location; (3) latitude lat: the user's location Latitude; (4) time time: the time when the signaling record was generated. The bayonet monitoring data includes: (1) bayonet number kdbh: the unique identification of the monitoring bayonet; (2) longitude kkjd: the longitude of the monitoring bayonet; (3) latitude kkwd: the latitude of the monitoring bayonet; (4) )Vehicle license plate hphm: the license plate number of the vehicle passing through the checkpoint; (5) passing time gcsj: the time for the vehicle to pass through the checkpoint.
进一步地,所述步骤S2中,无效数据包括位置异常数据,即卡口或信令数据的经纬度不在研究范围内;字段缺失数据,即时间、经纬度、车辆号牌等字段有缺失的数据;以及错误识别数据,具体为卡口识别的车辆号牌不正确的数据。Further, in the step S2, the invalid data includes abnormal position data, that is, the latitude and longitude of the bayonet or signaling data is not within the research scope; field missing data, that is, data with missing fields such as time, latitude and longitude, and vehicle license plate; and Incorrect identification data, specifically the incorrect data of the vehicle number plate identified by the bayonet.
进一步地,所述步骤S2中,时间跨度筛选具体为选取每日6:00至24:00的信令与卡口数据进行计算,该时间段以外的数据予以剔除。Further, in the step S2, the time span screening is specifically to select signaling and bayonet data from 6:00 to 24:00 every day for calculation, and to exclude data outside this time period.
进一步地,所述步骤S2中,轨迹的移动频繁程度是通过计算每条轨迹的信息熵值来衡量,仅选择信息熵值大于阈值的轨迹进行轨迹匹配计算,信息熵阈值为2。轨迹信息熵值的具体计算方式为:Further, in the step S2, the moving frequency of the trajectory is measured by calculating the information entropy value of each trajectory, and only the trajectory whose information entropy value is greater than the threshold is selected for trajectory matching calculation, and the information entropy threshold is 2. The specific calculation method of the trajectory information entropy value is:
其中,D为一条车辆或手机的移动轨迹,Ent(D)为该轨迹的信息熵值,pk为该轨迹中第k个位置点出现的比例,m为该轨迹中不同位置点的数量。Among them, D is the moving track of a vehicle or mobile phone, Ent(D) is the information entropy value of the track, p k is the proportion of the kth position point in the track, and m is the number of different position points in the track.
进一步地,所述步骤S3中,时空轨迹匹配算法的具体过程为:Further, in the step S3, the specific process of the spatio-temporal trajectory matching algorithm is:
a)从卡口数据集中根据车牌号码以及过车时间提取出一辆车的移动轨迹,轨迹点按照时间顺序排列;a) Extract the moving trajectory of a vehicle from the bayonet data set according to the license plate number and passing time, and the trajectory points are arranged in chronological order;
b)按顺序取一个车辆轨迹点作为研究对象,搜索信令数据集中是否存在以该车辆轨迹点为中心,满足时间阈值τ与距离阈值ε所形成的时空约束的数据;b) Take a vehicle trajectory point as the research object in sequence, and search whether there is data centered on the vehicle trajectory point in the signaling data set that satisfies the spatiotemporal constraints formed by the time threshold τ and the distance threshold ε;
c)若存在,就将所有满足时空约束条件的手机设备给记录下来,作为该车辆的潜在手机匹配数据集;c) If it exists, record all mobile phone devices that meet the space-time constraints as the potential mobile phone matching data set of the vehicle;
d)再取下一个车辆轨迹点,搜索是否存在满足该轨迹点时空约束的手机设备,若存在,则将两个轨迹点对应的手机设备求交集,若不存在或交集为空,则该车辆匹配失败;d) Take the next vehicle track point and search whether there is a mobile phone device that satisfies the space-time constraints of the track point. If it exists, the mobile phone device corresponding to the two track points will be intersected. If it does not exist or the intersection is empty, the vehicle Matching failed;
e)若至最后一个轨迹点,潜在手机匹配数据集不为空,则该车辆匹配成功。e) If the potential mobile phone matching data set is not empty at the last track point, the vehicle matching is successful.
算法中的时间阈值τ为600秒,距离阈值ε为2000米。The time threshold τ in the algorithm is 600 seconds, and the distance threshold ε is 2000 meters.
进一步地,所述步骤S4中,时间范围为一周或一周以上,确定匹配指的是该手机为对应车辆驾驶员所携带的手机设备。Further, in the step S4, the time range is one week or more, and it is determined that the matching refers to that the mobile phone is the mobile phone device carried by the driver of the corresponding vehicle.
进一步地,所述步骤S5中,数据增强算法的具体过程为:Further, in the step S5, the specific process of the data enhancement algorithm is:
a)选取确定匹配的车辆与手机轨迹,从车辆轨迹点中随机选取若干个点,形成一条新的车辆轨迹;a) Select the trajectory of the vehicle and the mobile phone that are determined to be matched, and randomly select several points from the vehicle trajectory points to form a new vehicle trajectory;
b)对于新的车辆轨迹,从对应的手机轨迹中选取满足新车辆轨迹时空约束的信令数据点形成一条新的手机信令轨迹;b) For the new vehicle trajectory, select signaling data points that satisfy the space-time constraints of the new vehicle trajectory from the corresponding mobile phone trajectory to form a new mobile phone signaling trajectory;
c)采样得到的车辆轨迹与信令轨迹可作为新的确定匹配轨迹对。c) The sampled vehicle trajectory and signaling trajectory can be used as a new determined matching trajectory pair.
进一步地,所述步骤S6中,模型特征为最短距离(CPD)、豪斯多夫距离(HD)、动态时间规整距离(DTW)、最大公共子串(LCSS)以及编辑距离(EDR)。Further, in the step S6, the model features are shortest distance (CPD), Hausdorff distance (HD), dynamic time warping distance (DTW), maximum common substring (LCSS) and edit distance (EDR).
进一步地,所述步骤S6中,分类算法为LightGBM算法,其为一个快速的、分布式的、高性能的基于决策树算法的梯度提升算法。Further, in the step S6, the classification algorithm is the LightGBM algorithm, which is a fast, distributed, high-performance gradient boosting algorithm based on the decision tree algorithm.
与现有技术相比,本发明技术方案的有益效果是:Compared with the prior art, the beneficial effects of the technical solution of the present invention are:
1、传统的相似度计算方法为枚举任意两条轨迹计算它们的相似度,这对于城市中数百万手机用户和车辆来说,将需要大量的计算资源才能够完成匹配度计算。本发明方法提高了海量异构轨迹的匹配计算效率,首先通过轨迹信息熵值将移动不频繁的轨迹剔除,其次在时空轨迹匹配算法中也利用时空约束条件来快速排除大量的不相似轨迹,这能够减少大量的计算开销,减少计算时间。1. The traditional similarity calculation method is to enumerate any two trajectories to calculate their similarity. For millions of mobile phone users and vehicles in the city, a large amount of computing resources will be required to complete the matching calculation. The method of the present invention improves the matching calculation efficiency of massive heterogeneous trajectories. Firstly, the trajectories with infrequent movement are eliminated through the trajectory information entropy value, and secondly, the spatiotemporal constraints are also used in the spatiotemporal trajectory matching algorithm to quickly exclude a large number of dissimilar trajectories. It can reduce a lot of calculation overhead and reduce calculation time.
2、目前常用的寻找相似轨迹的算法仅考虑了单个相似度指标,本发明方法结合了多个经典的相似度指标,构建了基于LightGBM算法的分类模型,模型能够较完整地描述出轨迹的时空特性,并有效地判断给定的两条异构轨迹是否存在匹配关系。2. The currently commonly used algorithms for finding similar trajectories only consider a single similarity index. The method of the present invention combines multiple classic similarity indexes to construct a classification model based on the LightGBM algorithm. The model can describe the space-time of the trajectory more completely characteristics, and effectively judge whether there is a matching relationship between the given two heterogeneous trajectories.
附图说明Description of drawings
图1是本发明流程示意图。Fig. 1 is a schematic flow chart of the present invention.
具体实施方式Detailed ways
附图仅用于示例性说明,不能理解为对本专利的限制;The accompanying drawings are for illustrative purposes only and cannot be construed as limiting the patent;
为了更好说明本实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;In order to better illustrate this embodiment, some parts in the drawings will be omitted, enlarged or reduced, and do not represent the size of the actual product;
对于本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。For those skilled in the art, it is understandable that some well-known structures and descriptions thereof may be omitted in the drawings.
下面结合附图和实施例对本发明的技术方案做进一步的说明。The technical solutions of the present invention will be further described below in conjunction with the accompanying drawings and embodiments.
实施例1Example 1
如图1所示,一种基于卡口数据与信令数据的轨迹匹配算法,包括以下步骤:As shown in Figure 1, a trajectory matching algorithm based on bayonet data and signaling data includes the following steps:
S1:获取研究区域与研究时间段内的道路卡口监测数据集与手机信令数据集;S1: Obtain the road checkpoint monitoring data set and mobile phone signaling data set in the research area and research time period;
S2:对卡口数据集与信令数据集进行预处理,包括无效数据清洗、时间跨度筛选以及频繁移动轨迹筛选;S2: Preprocessing the bayonet data set and signaling data set, including invalid data cleaning, time span screening, and frequent moving track screening;
S3:通过时空轨迹匹配算法得到车辆与手机的潜在匹配数据集;S3: Obtain the potential matching data set between the vehicle and the mobile phone through the spatio-temporal trajectory matching algorithm;
S4:对潜在匹配数据集中的车辆和手机在不同时间段内的轨迹进行匹配,若在时间范围内,车辆与手机轨迹保持同样的匹配关系,即可说明该车辆与该手机为确定匹配;S4: Match the trajectories of vehicles and mobile phones in different time periods in the potential matching data set. If the vehicle and mobile phone trajectories maintain the same matching relationship within the time range, it means that the vehicle and the mobile phone are definitely matched;
S5:利用数据增强算法对确定匹配轨迹进行采样,以得到更多的车辆与手机匹配正例;从卡口与信令数据集中随机选取车辆与手机轨迹,以及选取错误匹配的车辆与手机轨迹作为车辆与手机匹配的反例;S5: Use the data enhancement algorithm to sample the determined matching trajectories to obtain more positive cases of vehicle and mobile phone matching; randomly select vehicle and mobile phone trajectories from the bayonet and signaling data sets, and select wrongly matched vehicle and mobile phone trajectories as A counterexample of matching a vehicle with a mobile phone;
S6:采用合理模型特征以及准确率较高的分类算法,基于上述步骤得到的正例与反例轨迹数据建立轨迹分类模型。S6: Use reasonable model features and a classification algorithm with high accuracy to establish a trajectory classification model based on the positive and negative trajectory data obtained in the above steps.
下面对上述各个步骤进行详细说明。The above steps will be described in detail below.
首先,需要获取研究区域如地级行政区或县级行政区内的所有道路卡口和手机基站的一周以上的记录数据。First of all, it is necessary to obtain more than one week's record data of all road checkpoints and mobile phone base stations in the research area, such as prefecture-level administrative regions or county-level administrative regions.
其次,对车辆卡口数据和手机信令数据进行预处理:Secondly, preprocess the vehicle bayonet data and mobile phone signaling data:
a)将经纬度坐标不在研究区域内的数据删除;将字段信息为空值或无效值的数据删除;根据《中华人民共和国机动车号牌》(GA 36-2007)对机动车号牌的规定,删去卡口数据集中错误号牌的数据。a) Delete the data whose latitude and longitude coordinates are not in the research area; delete the data whose field information is null or invalid; Delete the data of the wrong number plate in the bayonet data set.
b)将车辆卡口数据集和手机信令数据集中每日0:00-6:00的数据剔除,不参与轨迹匹配计算。b) Eliminate the data from 0:00-6:00 every day in the vehicle bayonet data set and mobile phone signaling data set, and do not participate in the trajectory matching calculation.
c)通过车牌号码、手机设备编号和记录时间筛选出每一辆车和每一台手机的每日轨迹,根据每一条轨迹中轨迹点的地理位置计算其信息熵值,计算公式如下:c) Filter out the daily trajectory of each vehicle and each mobile phone through the license plate number, mobile phone device number and recording time, and calculate its information entropy value according to the geographic location of the trajectory points in each trajectory. The calculation formula is as follows:
其中,D为一条车辆或手机的移动轨迹,Ent(D)为该轨迹的信息熵值,pk为该轨迹中第k个位置点出现的比例,m为该轨迹中不同位置点的数量。Among them, D is the moving track of a vehicle or mobile phone, Ent(D) is the information entropy value of the track, p k is the proportion of the kth position point in the track, and m is the number of different position points in the track.
若该条轨迹的信息熵值小于2,则将其从对应数据集中删去,不参与轨迹匹配计算。If the information entropy value of the trajectory is less than 2, it will be deleted from the corresponding data set and will not participate in the trajectory matching calculation.
接着,取研究范围内某一日的卡口数据集和信令数据集进行时空轨迹匹配算法运算。Next, take the bayonet data set and signaling data set of a certain day within the research range to perform the spatio-temporal trajectory matching algorithm operation.
a)从卡口数据集中根据车牌号码以及过车时间提取出一辆车的移动轨迹c,轨迹点按照时间顺序排列;a) From the bayonet data set, extract the moving track c of a car according to the license plate number and passing time, and the track points are arranged in chronological order;
b)按顺序取一个车辆轨迹点lc1作为研究对象,搜索信令数据集中是否存在以该车辆轨迹点为中心,满足时间阈值τ与距离阈值ε所形成的时空约束的数据,时空约束如下所示:b) Take a vehicle trajectory point lc 1 as the research object in order, and search whether there is data centered on the vehicle trajectory point in the signaling data set that satisfies the spatiotemporal constraints formed by the time threshold τ and the distance threshold ε. The spatiotemporal constraints are as follows Show:
(lc.x-ε,lc.y-ε,lc.t-τ)≤(ls.x,ls.y,ls.t)≤(lc.x+ε,lc.y+ε,lc.t+τ)(lc.x-ε, lc.y-ε, lc.t-τ) ≤ (ls.x, ls.y, ls.t) ≤ (lc.x+ε, lc.y+ε, lc.t +τ)
c)若存在满足时空约束的信令数据ls,就将这些轨迹对应的手机设备给记录下来,作为该车辆的潜在手机匹配数据集cs1;c) If there is signaling data ls that satisfies the space-time constraints, the mobile phone devices corresponding to these trajectories are recorded as the potential mobile phone matching data set cs1 of the vehicle;
d)再取下一个车辆轨迹点lc2,搜索是否存在满足该轨迹点时空约束的手机设备cs2,若存在,则将两个轨迹点对应的手机设备求交集,若不存在或交集为空,即或者则该车辆匹配失败;d) Take the next vehicle track point lc 2 , and search whether there is a mobile phone device cs 2 that satisfies the space-time constraints of the track point. If it exists, calculate the intersection of the mobile phone devices corresponding to the two track points. If it does not exist or the intersection is empty ,Right now or Then the vehicle matching fails;
e)若至最后一个轨迹点,潜在手机匹配数据集不为空,则该车辆匹配成功。e) If the potential mobile phone matching data set is not empty at the last track point, the vehicle matching is successful.
然后,对于某一车辆而言,若在一周七天内,某手机都出现在它的潜在手机匹配数据集中,即认为该车辆与该手机为确定匹配,即该手机为该车辆驾驶员随身携带的移动设备。Then, for a certain vehicle, if within seven days a week, a certain mobile phone appears in its potential mobile phone matching data set, it is considered that the vehicle and the mobile phone are definitely matched, that is, the mobile phone is carried by the driver of the vehicle. Mobile devices.
接着,对于确定匹配的某车辆轨迹c=(lc1,lc2,lc3,lc4,lc5,lc6)和某手机信令轨迹s=(ls1,ls2,ls3,ls4,ls5,ls6),从车辆轨迹中随机选取3个点,得到一条新的车辆轨迹再根据时空约束关系,得到相对应的新的手机信令轨迹这样即可得到新的车辆与手机匹配正例;再从卡口与信令数据集中随机选取车辆与手机轨迹,以及选取错误匹配的车辆与手机轨迹作为车辆与手机匹配的反例。Next, for a certain vehicle trajectory c=(lc 1 , lc 2 , lc 3 , lc 4 , lc 5 , lc 6 ) and a certain mobile phone signaling trajectory s=(ls 1 , ls 2 , ls 3 , ls 4 , ls 5 , ls 6 ), randomly select 3 points from the vehicle trajectory to get a new vehicle trajectory Then according to the space-time constraint relationship, the corresponding new mobile phone signaling trajectory is obtained In this way, a new positive example of vehicle-to-mobile matching can be obtained; then the trajectories of vehicles and mobile phones are randomly selected from the bayonet and signaling data sets, and the trajectories of incorrectly matched vehicles and mobile phones are selected as negative examples of vehicle-to-mobile matching.
最后,分别计算匹配正例与匹配反例的不同特征值,包括最短距离(CPD)、豪斯多夫距离(HD)、动态时间规整距离(DTW)、最大公共子串(LCSS)以及编辑距离(EDR),形成如表1所示的数据集。Finally, different eigenvalues of matching positive examples and matching negative examples are calculated respectively, including shortest distance (CPD), Hausdorff distance (HD), dynamic time warping distance (DTW), maximum common substring (LCSS) and edit distance ( EDR), forming the data set shown in Table 1.
表1数据集示意表Table 1 Schematic diagram of the data set
从数据集中随机选取70%的数据作为训练集,输入LightGBM模型进行训练,对剩下的30%数据进行预测。Randomly select 70% of the data from the data set as the training set, input the LightGBM model for training, and predict the remaining 30% of the data.
相同或相似的标号对应相同或相似的部件;The same or similar reference numerals correspond to the same or similar components;
附图中描述位置关系的用于仅用于示例性说明,不能理解为对本专利的限制;The positional relationship described in the drawings is only for illustrative purposes and cannot be construed as a limitation to this patent;
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。Apparently, the above-mentioned embodiments of the present invention are only examples for clearly illustrating the present invention, rather than limiting the implementation of the present invention. For those of ordinary skill in the art, other changes or changes in different forms can be made on the basis of the above description. It is not necessary and impossible to exhaustively list all the implementation manners here. All modifications, equivalent replacements and improvements made within the spirit and principles of the present invention shall be included within the protection scope of the claims of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910666051.0A CN110505583B (en) | 2019-07-23 | 2019-07-23 | A trajectory matching method based on bayonet data and signaling data |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910666051.0A CN110505583B (en) | 2019-07-23 | 2019-07-23 | A trajectory matching method based on bayonet data and signaling data |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110505583A true CN110505583A (en) | 2019-11-26 |
CN110505583B CN110505583B (en) | 2021-01-22 |
Family
ID=68586670
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910666051.0A Active CN110505583B (en) | 2019-07-23 | 2019-07-23 | A trajectory matching method based on bayonet data and signaling data |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110505583B (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111417088A (en) * | 2020-03-25 | 2020-07-14 | 商车云(北京)科技有限公司 | Internet of vehicles data identity attribute authentication method |
CN111523577A (en) * | 2020-04-13 | 2020-08-11 | 南京烽火星空通信发展有限公司 | Mass trajectory similarity calculation method based on improved LCSS algorithm |
CN111521191A (en) * | 2020-04-20 | 2020-08-11 | 中国农业科学院农业信息研究所 | Mobile phone user moving path map matching method based on signaling data |
CN111950937A (en) * | 2020-09-01 | 2020-11-17 | 上海海事大学 | A risk assessment method for key personnel based on fusion spatiotemporal trajectories |
CN112511971A (en) * | 2020-11-26 | 2021-03-16 | 西安建筑科技大学 | Travel mode identification method based on mobile phone signaling data |
CN112634457A (en) * | 2021-01-06 | 2021-04-09 | 广西科技大学 | Point cloud simplification method based on local entropy of Hausdorff distance and average projection distance |
CN112672288A (en) * | 2020-12-15 | 2021-04-16 | 佳都新太科技股份有限公司 | Vehicle track prediction method and device based on checkpoint recording |
CN112734219A (en) * | 2021-01-05 | 2021-04-30 | 中交智运有限公司 | Vehicle transportation driving behavior analysis method and system |
CN112785223A (en) * | 2021-01-05 | 2021-05-11 | 中交智运有限公司 | Space-time trajectory matching method and system based on Beidou positioning and mobile signaling |
CN113160551A (en) * | 2021-01-12 | 2021-07-23 | 北京品恩科技股份有限公司 | Traffic big data based accompanying model application method |
CN113487865A (en) * | 2021-07-02 | 2021-10-08 | 江西锦路科技开发有限公司 | System and method for acquiring information of vehicles running on highway |
CN113723316A (en) * | 2021-09-01 | 2021-11-30 | 杭州智诚惠通科技有限公司 | Vehicle identification method, device, equipment and storage medium |
CN113806465A (en) * | 2021-09-22 | 2021-12-17 | 公安部交通管理科学研究所 | Longitude and latitude correction method of bayonet position based on new energy vehicle trajectory data |
CN114372382A (en) * | 2022-03-22 | 2022-04-19 | 交通运输部公路科学研究所 | Method, device and storage medium for evaluating reliability of vehicle track |
CN114390459A (en) * | 2021-12-27 | 2022-04-22 | 安徽百诚慧通科技有限公司 | Method for identifying illegal and excessive person carrying of agricultural vehicle and storage medium |
CN114416710A (en) * | 2021-12-29 | 2022-04-29 | 苏州大学 | Method and system for extracting OD position of express way vehicle |
CN115877343A (en) * | 2023-02-02 | 2023-03-31 | 中电信数字城市科技有限公司 | Man-vehicle matching method and device based on radar target tracking and electronic equipment |
CN116258488A (en) * | 2023-03-17 | 2023-06-13 | 中远海运科技股份有限公司 | Data preprocessing method and system for accurately restoring actual passing track of vehicle |
CN118215008A (en) * | 2024-05-17 | 2024-06-18 | 北京九栖科技有限责任公司 | Region self-adaptive image-letter fusion calculation method |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104462193A (en) * | 2014-10-28 | 2015-03-25 | 上海市政工程设计研究总院(集团)有限公司 | Vehicle movement trajectory searching system and method based on time-space matching |
CN106303962A (en) * | 2016-08-17 | 2017-01-04 | 公安部道路交通安全研究中心 | A kind of method and system realizing people's car information association |
US20170091272A1 (en) * | 2015-09-30 | 2017-03-30 | International Business Machines Corporation | Precision Adaptive Vehicle Trajectory Query Plan Optimization |
EP3376390A1 (en) * | 2017-03-17 | 2018-09-19 | TTTech Computertechnik AG | Fault tolerant method for controlling an autonomous controlled object |
CN108629978A (en) * | 2018-06-07 | 2018-10-09 | 重庆邮电大学 | A kind of traffic trajectory predictions method based on higher-dimension road network and Recognition with Recurrent Neural Network |
CN109344725A (en) * | 2018-09-04 | 2019-02-15 | 上海交通大学 | A Multi-Pedestrian Online Tracking Method Based on Spatio-temporal Attention Mechanism |
CN109635059A (en) * | 2018-11-23 | 2019-04-16 | 武汉烽火众智数字技术有限责任公司 | People's vehicle association analysis method and system based on track similarity mode |
US20190180610A1 (en) * | 2017-06-29 | 2019-06-13 | Shandong Provincial Communications Planning And Design Institute | Vehicle type identification method and device based on mobile phone data |
-
2019
- 2019-07-23 CN CN201910666051.0A patent/CN110505583B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104462193A (en) * | 2014-10-28 | 2015-03-25 | 上海市政工程设计研究总院(集团)有限公司 | Vehicle movement trajectory searching system and method based on time-space matching |
US20170091272A1 (en) * | 2015-09-30 | 2017-03-30 | International Business Machines Corporation | Precision Adaptive Vehicle Trajectory Query Plan Optimization |
CN106303962A (en) * | 2016-08-17 | 2017-01-04 | 公安部道路交通安全研究中心 | A kind of method and system realizing people's car information association |
EP3376390A1 (en) * | 2017-03-17 | 2018-09-19 | TTTech Computertechnik AG | Fault tolerant method for controlling an autonomous controlled object |
US20190180610A1 (en) * | 2017-06-29 | 2019-06-13 | Shandong Provincial Communications Planning And Design Institute | Vehicle type identification method and device based on mobile phone data |
CN108629978A (en) * | 2018-06-07 | 2018-10-09 | 重庆邮电大学 | A kind of traffic trajectory predictions method based on higher-dimension road network and Recognition with Recurrent Neural Network |
CN109344725A (en) * | 2018-09-04 | 2019-02-15 | 上海交通大学 | A Multi-Pedestrian Online Tracking Method Based on Spatio-temporal Attention Mechanism |
CN109635059A (en) * | 2018-11-23 | 2019-04-16 | 武汉烽火众智数字技术有限责任公司 | People's vehicle association analysis method and system based on track similarity mode |
Non-Patent Citations (3)
Title |
---|
HUA XUE: "《UPS: Combatting Urban Vehicle Localization with Cellular-Aware Trajectories》", 《2016 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM)》 * |
吕遒健: "《基于无线网络流量的用户移动性分析与应用》", 《中国博士学位论文全文数据库》 * |
蔡正义: "《基于大数据的城市居民出行分析建模》", 《中国博士学位论文全文数据库》 * |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111417088B (en) * | 2020-03-25 | 2024-03-15 | 商车云(北京)科技有限公司 | Identity attribute authentication method for Internet of vehicles data |
CN111417088A (en) * | 2020-03-25 | 2020-07-14 | 商车云(北京)科技有限公司 | Internet of vehicles data identity attribute authentication method |
CN111523577A (en) * | 2020-04-13 | 2020-08-11 | 南京烽火星空通信发展有限公司 | Mass trajectory similarity calculation method based on improved LCSS algorithm |
CN111521191A (en) * | 2020-04-20 | 2020-08-11 | 中国农业科学院农业信息研究所 | Mobile phone user moving path map matching method based on signaling data |
CN111950937B (en) * | 2020-09-01 | 2023-12-01 | 上海海事大学 | A risk assessment method for key personnel based on fused spatio-temporal trajectories |
CN111950937A (en) * | 2020-09-01 | 2020-11-17 | 上海海事大学 | A risk assessment method for key personnel based on fusion spatiotemporal trajectories |
CN112511971A (en) * | 2020-11-26 | 2021-03-16 | 西安建筑科技大学 | Travel mode identification method based on mobile phone signaling data |
CN112672288A (en) * | 2020-12-15 | 2021-04-16 | 佳都新太科技股份有限公司 | Vehicle track prediction method and device based on checkpoint recording |
CN112672288B (en) * | 2020-12-15 | 2022-11-04 | 佳都科技集团股份有限公司 | Vehicle track prediction method and device based on checkpoint recording |
CN112785223A (en) * | 2021-01-05 | 2021-05-11 | 中交智运有限公司 | Space-time trajectory matching method and system based on Beidou positioning and mobile signaling |
CN112734219A (en) * | 2021-01-05 | 2021-04-30 | 中交智运有限公司 | Vehicle transportation driving behavior analysis method and system |
CN112785223B (en) * | 2021-01-05 | 2022-06-07 | 中交智运有限公司 | Space-time trajectory matching method and system based on Beidou positioning and mobile signaling |
CN112734219B (en) * | 2021-01-05 | 2023-07-21 | 中交智运有限公司 | Vehicle transportation running behavior analysis method and system |
CN112634457A (en) * | 2021-01-06 | 2021-04-09 | 广西科技大学 | Point cloud simplification method based on local entropy of Hausdorff distance and average projection distance |
CN112634457B (en) * | 2021-01-06 | 2022-07-05 | 广西科技大学 | Point cloud simplification method based on local entropy of Hausdorff distance and average projection distance |
CN113160551A (en) * | 2021-01-12 | 2021-07-23 | 北京品恩科技股份有限公司 | Traffic big data based accompanying model application method |
CN113487865A (en) * | 2021-07-02 | 2021-10-08 | 江西锦路科技开发有限公司 | System and method for acquiring information of vehicles running on highway |
CN113487865B (en) * | 2021-07-02 | 2022-07-22 | 江西锦路科技开发有限公司 | System and method for acquiring information of vehicles running on highway |
CN113723316B (en) * | 2021-09-01 | 2024-04-16 | 杭州智诚惠通科技有限公司 | Vehicle identification method, device, equipment and storage medium |
CN113723316A (en) * | 2021-09-01 | 2021-11-30 | 杭州智诚惠通科技有限公司 | Vehicle identification method, device, equipment and storage medium |
CN113806465A (en) * | 2021-09-22 | 2021-12-17 | 公安部交通管理科学研究所 | Longitude and latitude correction method of bayonet position based on new energy vehicle trajectory data |
CN114390459A (en) * | 2021-12-27 | 2022-04-22 | 安徽百诚慧通科技有限公司 | Method for identifying illegal and excessive person carrying of agricultural vehicle and storage medium |
WO2023123616A1 (en) * | 2021-12-29 | 2023-07-06 | 苏州大学 | Method and system for extracting od positions of vehicle on expressway |
CN114416710A (en) * | 2021-12-29 | 2022-04-29 | 苏州大学 | Method and system for extracting OD position of express way vehicle |
CN114372382B (en) * | 2022-03-22 | 2022-06-10 | 交通运输部公路科学研究所 | Vehicle trajectory reliability evaluation method, equipment and storage medium |
CN114372382A (en) * | 2022-03-22 | 2022-04-19 | 交通运输部公路科学研究所 | Method, device and storage medium for evaluating reliability of vehicle track |
CN115877343A (en) * | 2023-02-02 | 2023-03-31 | 中电信数字城市科技有限公司 | Man-vehicle matching method and device based on radar target tracking and electronic equipment |
CN116258488A (en) * | 2023-03-17 | 2023-06-13 | 中远海运科技股份有限公司 | Data preprocessing method and system for accurately restoring actual passing track of vehicle |
CN116258488B (en) * | 2023-03-17 | 2024-01-26 | 中远海运科技股份有限公司 | Data preprocessing method and system for accurately restoring actual passing track of vehicle |
CN118215008A (en) * | 2024-05-17 | 2024-06-18 | 北京九栖科技有限责任公司 | Region self-adaptive image-letter fusion calculation method |
Also Published As
Publication number | Publication date |
---|---|
CN110505583B (en) | 2021-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110505583A (en) | A Trajectory Matching Algorithm Based on Bayonet Data and Signaling Data | |
Huang et al. | Transport mode detection based on mobile phone network data: A systematic review | |
CN108536851B (en) | A User Identity Recognition Method Based on Similarity Comparison of Movement Trajectories | |
CN105206041B (en) | Smart-phone track chain-cluster identification method considering sequential DBSCAN | |
Lv et al. | The discovery of personally semantic places based on trajectory data mining | |
CN108415975B (en) | A taxi passenger hot spot identification method based on BDCH-DBSCAN | |
CN106339716B (en) | A kind of motion track Similarity Match Method based on weighted euclidean distance | |
CN111144452B (en) | Mobile user trip chain extraction method based on signaling data and clustering algorithm | |
CN105574506A (en) | Intelligent face tracking system and method based on depth learning and large-scale clustering | |
CN105930768A (en) | Spatial-temporal constraint-based target re-identification method | |
CN112770265B (en) | Pedestrian identity information acquisition method, system, server and storage medium | |
CN105243148A (en) | Checkin data based spatial-temporal trajectory similarity measurement method and system | |
CN103440772B (en) | Method for calculating moving speed of user by means of mobile phone location data | |
CN103699677A (en) | Criminal track map drawing system and method based on face recognition | |
CN111310728B (en) | Pedestrian re-identification system based on monitoring camera and wireless positioning | |
CN111008574A (en) | A Trajectory Analysis Method of Key Personnel Based on Body Recognition Technology | |
CN106897677A (en) | A kind of vehicle characteristics classification and retrieval system and method | |
CN104661306A (en) | Passive positioning method and system for mobile terminal | |
CN110750730A (en) | Method and system for group detection based on spatiotemporal constraints | |
CN113962326A (en) | Clustering method, device, equipment and computer storage medium | |
CN110503032B (en) | Detection method of individual important places based on surveillance camera trajectory data | |
CN107730717B (en) | A Method of Identifying Suspicious Cards in Public Transport Based on Feature Extraction | |
CN111078973A (en) | Fake-licensed vehicle identification method and equipment based on big data and storage medium | |
Ma et al. | Human trajectory completion with transformers | |
CN106840165B (en) | Method and device for constructing semantic location history |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
OL01 | Intention to license declared |