CN110504302A - A high-K metal gate structure and its manufacturing method - Google Patents
A high-K metal gate structure and its manufacturing method Download PDFInfo
- Publication number
- CN110504302A CN110504302A CN201910809005.1A CN201910809005A CN110504302A CN 110504302 A CN110504302 A CN 110504302A CN 201910809005 A CN201910809005 A CN 201910809005A CN 110504302 A CN110504302 A CN 110504302A
- Authority
- CN
- China
- Prior art keywords
- layer
- gate structure
- metal gate
- metal
- tan
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002184 metal Substances 0.000 title claims abstract description 184
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 184
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 19
- 230000004888 barrier function Effects 0.000 claims abstract description 70
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims abstract description 63
- 238000000034 method Methods 0.000 claims abstract description 30
- 229910010038 TiAl Inorganic materials 0.000 claims abstract description 21
- 230000008569 process Effects 0.000 claims abstract description 13
- 150000001875 compounds Chemical class 0.000 claims abstract description 12
- 238000005530 etching Methods 0.000 claims abstract description 10
- 238000000206 photolithography Methods 0.000 claims abstract description 8
- 238000005406 washing Methods 0.000 claims abstract description 8
- 239000010410 layer Substances 0.000 claims description 276
- 239000004065 semiconductor Substances 0.000 claims description 36
- 150000002736 metal compounds Chemical class 0.000 claims description 30
- 238000000151 deposition Methods 0.000 claims description 25
- 239000012790 adhesive layer Substances 0.000 claims description 15
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 14
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 12
- 238000004140 cleaning Methods 0.000 claims description 12
- 229910052710 silicon Inorganic materials 0.000 claims description 12
- 239000010703 silicon Substances 0.000 claims description 12
- 239000000758 substrate Substances 0.000 claims description 12
- 239000011229 interlayer Substances 0.000 claims description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 10
- 238000001039 wet etching Methods 0.000 claims description 8
- 239000008367 deionised water Substances 0.000 claims description 7
- 229910021641 deionized water Inorganic materials 0.000 claims description 7
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- 239000007789 gas Substances 0.000 claims description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 5
- 238000003682 fluorination reaction Methods 0.000 claims description 5
- 238000000227 grinding Methods 0.000 claims description 5
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(IV) oxide Inorganic materials O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 claims description 4
- 229910004014 SiF4 Inorganic materials 0.000 claims description 3
- ABTOQLMXBSRXSM-UHFFFAOYSA-N silicon tetrafluoride Chemical compound F[Si](F)(F)F ABTOQLMXBSRXSM-UHFFFAOYSA-N 0.000 claims description 3
- 230000008021 deposition Effects 0.000 abstract description 7
- 238000010586 diagram Methods 0.000 description 19
- 238000005554 pickling Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 4
- 229920005591 polysilicon Polymers 0.000 description 4
- 239000002253 acid Substances 0.000 description 3
- 230000006872 improvement Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910010037 TiAlN Inorganic materials 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000004334 fluoridation Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/27—Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
- H10D64/311—Gate electrodes for field-effect devices
- H10D64/411—Gate electrodes for field-effect devices for FETs
- H10D64/511—Gate electrodes for field-effect devices for FETs for IGFETs
- H10D64/512—Disposition of the gate electrodes, e.g. buried gates
- H10D64/513—Disposition of the gate electrodes, e.g. buried gates within recesses in the substrate, e.g. trench gates, groove gates or buried gates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/60—Electrodes characterised by their materials
- H10D64/66—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
- H10D64/667—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes the conductor comprising a layer of alloy material, compound material or organic material contacting the insulator, e.g. TiN workfunction layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/0123—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
- H10D84/0126—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
- H10D84/0165—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including complementary IGFETs, e.g. CMOS devices
- H10D84/0172—Manufacturing their gate conductors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/02—Manufacture or treatment characterised by using material-based technologies
- H10D84/03—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology
- H10D84/038—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology using silicon technology, e.g. SiGe
Landscapes
- Electrodes Of Semiconductors (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
本发明提供一种高K金属栅极结构及其制作方法,在TiN和TiAl之间,新增一层TaN阻挡层,使TiN内外均由TaN阻挡层保护,内部沉积填充金属层无法扩散进入PMOS功函数金属TiN层,提高PMOS器件的稳定性。在新增TaN阻挡层沉积完成后,通过光刻和蚀刻的工艺,使NMOS结构暴露出来,PMOS结构整体为牺牲层保护,之后对于新增TaN层做氟化处理,置换TaN层中的N元素,使此TaN层完全形成TaFx化合物,水洗移除,从而在不影响其他层的情况下,完全移除新增TaN层,进而实现上述改进的PMOS栅极结构,并且不影响NMOS结构。
The invention provides a high-K metal gate structure and a manufacturing method thereof. A TaN barrier layer is added between TiN and TiAl, so that the inside and outside of the TiN are protected by the TaN barrier layer, and the internally deposited filling metal layer cannot diffuse into the PMOS. The work function metal TiN layer improves the stability of the PMOS device. After the deposition of the newly added TaN barrier layer is completed, the NMOS structure is exposed through photolithography and etching processes, and the PMOS structure as a whole is protected by the sacrificial layer, and then the newly added TaN layer is fluorinated to replace the N element in the TaN layer , so that the TaN layer is completely formed into a TaFx compound, and removed by washing, so that the newly added TaN layer is completely removed without affecting other layers, thereby realizing the above-mentioned improved PMOS gate structure without affecting the NMOS structure.
Description
技术领域technical field
本发明涉及半导体制作领域,特别是涉及一种高K金属栅极结构及其制作方法。The invention relates to the field of semiconductor manufacturing, in particular to a high-K metal gate structure and a manufacturing method thereof.
背景技术Background technique
随着晶体管尺寸的不断缩小和器件性能要求的不断提高,HKMG(高介电常数介质/金属栅极)技术几乎已经成为28nm高性能器件的必备技术。为了减少栅极漏电,降低栅极电容,提升晶体管性能,在28nm技术节点,普遍采用HKMG架构和技术方案。With the continuous reduction of transistor size and the continuous improvement of device performance requirements, HKMG (high dielectric constant dielectric/metal gate) technology has almost become a necessary technology for 28nm high-performance devices. In order to reduce gate leakage, reduce gate capacitance, and improve transistor performance, HKMG architecture and technical solutions are generally adopted at the 28nm technology node.
高介电常数材料代替传统二氧化硅,其拥有高的介电常数,同时拥有二氧化硅的优越性能,良好的绝缘,耐高温等。高介电常数材料与多晶硅兼容性差,两者界面缺陷引起的费米能级钉扎效应导致阈值电压升高,高K值(High-K)材料本身的表面声子散射效应会导致载流子迁移率降低。引入金属代替多晶硅栅极可以解决上述问题。The high dielectric constant material replaces the traditional silicon dioxide, which has a high dielectric constant, and at the same time has the superior performance of silicon dioxide, good insulation, high temperature resistance, etc. High dielectric constant materials are poorly compatible with polysilicon. The Fermi level pinning effect caused by the interface defects between the two leads to an increase in the threshold voltage. The surface phonon scattering effect of the high-K value (High-K) material itself will cause the carrier Reduced mobility. Introducing metal instead of polysilicon gates can solve the above problems.
在金属栅极(metal gate)工艺中,优化金属电极的功函数是调节器件性能的重要手段。在后栅极(Gate-last)技术中,采用了双金属电极技术,分别对PMOS和NMOS沉积不同金属功函数的金属膜层,来获得最佳的功函数控制。PMOS管的功函数金属采用TiN,功函数接近价带,NMOS管的功函数金属采用TiAl,功函数接近导带。为保护功函数金属,外部必须额外覆盖阻挡层,如TiN、TaN、Ta等。In the metal gate (metal gate) process, optimizing the work function of the metal electrode is an important means to adjust the performance of the device. In the gate-last technology, a dual-metal electrode technology is used to deposit metal films with different metal work functions for PMOS and NMOS respectively to obtain the best work function control. The work function metal of the PMOS tube is TiN, and the work function is close to the valence band. The work function metal of the NMOS tube is TiAl, and the work function is close to the conduction band. In order to protect the work function metal, the outside must be additionally covered with a barrier layer, such as TiN, TaN, Ta, etc.
如图1至图6所示,目前代工厂(Foundry)主流技术是先沉积P型功函数金属TaN/TiN,光刻曝出NMOS区域,并湿法刻蚀掉P型金属,高选择比地停在TaN上,然后沉积N型功函数金属TiAl,最后填充金属Al或W。这里所使用的金属均为业界熟知材料,只能通过沉积工艺来调节金属功函数,以达到价带和导带的不同功函数要求,其中,PMOS功函数金属膜层为TiN/TaN/TiN,而NMOS功函数金属为TiAl和TiN相互扩散形成的TiAlN。As shown in Figures 1 to 6, the current mainstream foundry technology is to deposit P-type work function metal TaN/TiN first, expose the NMOS area by photolithography, and wet-etch away the P-type metal. Stop on TaN, then deposit N-type work function metal TiAl, and finally fill metal Al or W. The metals used here are all well-known materials in the industry, and the metal work function can only be adjusted through the deposition process to meet the different work function requirements of the valence band and the conduction band. Among them, the PMOS work function metal film layer is TiN/TaN/TiN, The NMOS work function metal is TiAlN formed by mutual diffusion of TiAl and TiN.
目前现有的HKMG制作流程为:提供硅衬底,依次进行浅沟槽,多晶硅栅极,源漏区成型等工艺,在层间介质层(ILD0)进行化学机械研磨(CMP)之后,进行伪栅去除;沉积PMOS金属功函数TiN;依次通过光刻蚀刻等工艺去除NMOS区域沉积的TiN;在NMOS和PMOS区域沉积NMOS金属功函数TiN/Ti,并进行Al的填充,最后进行金属栅极(Metal gate)CMP工艺。The existing HKMG manufacturing process is as follows: provide a silicon substrate, perform shallow trenches, polysilicon gates, and source-drain region forming processes in sequence, and perform chemical mechanical polishing (CMP) on the interlayer dielectric layer (ILD0). Gate removal; deposition of PMOS metal work function TiN; sequentially remove the TiN deposited in the NMOS area by photolithography and etching; deposit NMOS metal work function TiN/Ti in the NMOS and PMOS areas, and fill with Al, and finally perform the metal gate ( Metal gate) CMP process.
在HKMG结构方案中,PMOS栅极结构中功函数金属为TiN,其外部有一层TaN阻挡层,内部为沉积填充TiAl层和金属层,而该TiAl层很容易扩散至功函数金属层TiN,进而影响PMOS的稳定性。In the HKMG structure scheme, the work function metal in the PMOS gate structure is TiN, there is a layer of TaN barrier layer outside, and the inside is deposited and filled with TiAl layer and metal layer, and the TiAl layer is easy to diffuse into the work function metal layer TiN, and then Affect the stability of PMOS.
因此,需要提出一种新的高K金属栅极结构及其制作方法来解决上述问题。Therefore, it is necessary to propose a new high-K metal gate structure and a fabrication method thereof to solve the above problems.
发明内容Contents of the invention
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种高K金属栅极结构及其制作方法,用于解决现有技术中PMOS栅极结构中功函数金属为TiN,其外部有一层TaN阻挡层,内部为沉积填充TiAl层和金属层,而该TiAl层很容易扩散至功函数金属层TiN,进而影响PMOS的稳定性的问题。In view of the above-mentioned shortcomings of the prior art, the purpose of the present invention is to provide a high-K metal gate structure and its manufacturing method, which is used to solve the problem that the work function metal in the PMOS gate structure in the prior art is TiN, and there is a The TaN barrier layer is deposited and filled with a TiAl layer and a metal layer inside, and the TiAl layer is easy to diffuse into the work function metal layer TiN, thereby affecting the stability of the PMOS.
为实现上述目的及其他相关目的,本发明提供一种高K金属栅极结构,至少包括:凹槽及沉积于该凹槽内的外部阻挡层;沉积于该外部阻挡层上的金属功函数层;沉积于所述金属功函数层上的内部阻挡层;沉积于所述内部阻挡层上的金属化合物层;沉积于所述金属化合物层上的粘合层,填充于所述凹槽内、所述粘合层表面的金属。In order to achieve the above object and other related objects, the present invention provides a high-K metal gate structure, at least comprising: a groove and an external barrier layer deposited in the groove; a metal work function layer deposited on the external barrier layer ; an internal barrier layer deposited on the metal work function layer; a metal compound layer deposited on the internal barrier layer; an adhesive layer deposited on the metal compound layer, filled in the groove, the The metal on the surface of the bonding layer.
优选地,所述高K金属栅极结构为PMOS的高K金属栅极。Preferably, the high-K metal gate structure is a PMOS high-K metal gate.
优选地,所述外部阻挡层为第一TaN层。Preferably, the outer barrier layer is a first TaN layer.
优选地,所述金属功函数层为TiN层。Preferably, the metal work function layer is a TiN layer.
优选地,所述内部阻挡层为第二TaN层。Preferably, the inner barrier layer is a second TaN layer.
优选地,所述金属化合物层为TiAl层。Preferably, the metal compound layer is a TiAl layer.
优选地,所述金属化合物层为与所述PMOS同一制程中的NMOS的金属功函数层。Preferably, the metal compound layer is a metal work function layer of the NMOS in the same manufacturing process as the PMOS.
优选地,所述粘合层为由TiN和Ti构成的叠层。Preferably, the adhesive layer is a stack of TiN and Ti.
优选地,所述金属为铝。Preferably, the metal is aluminium.
优选地,所述高K金属栅极结构还包括位于所述凹槽型的外部阻挡层与硅衬底之间叠层;所述叠层自下而上依次为层间介质层、HfO2层、TiN层。Preferably, the high-K metal gate structure further includes stacked layers located between the groove-shaped external barrier layer and the silicon substrate; the stacked layers are an interlayer dielectric layer, an HfO2 layer, and TiN layer.
优选地,所述叠层中所述层间介质层的厚度为8~10埃;所述HfO2层的厚度为20埃;所述TiN层的厚度为20埃。Preferably, the thickness of the interlayer dielectric layer in the stack is 8-10 angstroms; the thickness of the HfO2 layer is 20 angstroms; and the thickness of the TiN layer is 20 angstroms.
本发明还提供该高K金属栅极结构的制作方法,该方法包括以下步骤:步骤一、提供分别用于制作PMOS、NMOS高K金属栅极结构的凹槽,所述凹槽位于同一半导体结构上;步骤二、在所述半导体结构上沉积第一TaN层,沉积在所述凹槽内的所述第一TaN层形成凹槽型的外部阻挡层;步骤三、在所述第一TaN层上沉积一层TiN层,沉积在所述用于制作PMOS高K金属栅极结构的凹槽内的所述TiN层形成金属功函数层;步骤四、在所述TiN层上沉积第二TaN层,沉积在所述用于制作PMOS高K金属栅极结构的凹槽内的该第二TaN层形成内部阻挡层;步骤五、利用光刻和刻蚀工艺将所述用于制作NMOS高K金属栅极结构的凹槽上表面区域暴露出来;步骤六、对所述用于制作NMOS高K金属栅极结构的凹槽内的第二TaN层进行氟化处理,使其形成TaFx化合物;步骤七、水洗去除所述TaFx化合物;步骤八、湿法刻蚀去除所述用于制作NMOS高K金属栅极结构的凹槽内的TiN层;步骤九、依次在所述半导体结构上表面及所述凹槽内沉积金属化合物层、依附于该金属化合物层上的粘合层以及金属;步骤十、对所述半导体结构上表面进行平坦化研磨,至暴露出凹槽间的层间介质层为止。The present invention also provides a method for fabricating the high-K metal gate structure. The method includes the following steps: Step 1: Provide grooves for fabricating PMOS and NMOS high-K metal gate structures respectively, and the grooves are located in the same semiconductor structure On; Step 2, depositing a first TaN layer on the semiconductor structure, the first TaN layer deposited in the groove forms a groove-shaped outer barrier layer; Step 3, depositing the first TaN layer on the first TaN layer A TiN layer is deposited on the top, and the TiN layer deposited in the groove for making the PMOS high-K metal gate structure forms a metal work function layer; step 4, depositing a second TaN layer on the TiN layer , the second TaN layer deposited in the groove for making the PMOS high-K metal gate structure forms an internal barrier layer; Step 5, using the photolithography and etching process to make the NMOS high-K metal gate structure The upper surface area of the groove of the gate structure is exposed; step 6, fluorinating the second TaN layer in the groove for making the NMOS high-K metal gate structure, so that it forms a TaFx compound; step 7 1. Washing to remove the TaFx compound; step 8, wet etching to remove the TiN layer in the groove for making the NMOS high-K metal gate structure; step 9, successively on the upper surface of the semiconductor structure and the Depositing a metal compound layer, an adhesive layer attached to the metal compound layer, and metal in the groove; Step 10, planarizing and grinding the upper surface of the semiconductor structure until the interlayer dielectric layer between the grooves is exposed.
优选地,所述半导体结构至少包括:硅衬底及位于该硅衬底上的PWell区、NWell区;所述PWell区和NWell区之间由STI隔离;所述NMOS高K金属栅极结构位于所述PWell区上方;所述PMOS高K金属栅极结构位于所述NWell区上方;所述PWell区、NWell区的两侧各形成有源、漏区。Preferably, the semiconductor structure at least includes: a silicon substrate and a PWell region and an NWell region located on the silicon substrate; the PWell region and the NWell region are isolated by STI; the NMOS high-K metal gate structure is located Above the PWell region; the PMOS high-K metal gate structure is located above the NWell region; source and drain regions are formed on both sides of the PWell region and NWell region.
优选地,步骤六中所述氟化处理过程中所用的气体由含有CxFy、NF3、BF3、SiF4、Ar、H2、N2的等离子气体组合产生。Preferably, the gas used in the fluoridation process in step six is produced by a combination of plasma gases containing CxFy, NF3, BF3, SiF4, Ar, H2, and N2.
优选地,步骤八中采用热SC1清洗液进行所述湿法刻蚀。Preferably, in step 8, hot SC1 cleaning solution is used to perform the wet etching.
优选地,所述热SC1清洗液中包含去离子水、双氧水、NH4OH。Preferably, the hot SC1 cleaning solution includes deionized water, hydrogen peroxide, and NH 4 OH.
优选地,所述热SC1清洗液中去离子水、双氧水、NH4OH的配比为:5:1.1:1。Preferably, the ratio of deionized water, hydrogen peroxide and NH 4 OH in the hot SC1 cleaning solution is 5:1.1:1.
优选地,步骤八中采用热SC1清洗液进行所述湿法刻蚀的温度为60摄氏度。Preferably, the temperature for performing the wet etching with hot SC1 cleaning solution in step 8 is 60 degrees Celsius.
优选地,步骤九中的金属化合物层为TiAl层。Preferably, the metal compound layer in step 9 is a TiAl layer.
如上所述,本发明的高K金属栅极结构及其制作方法,具有以下有益效果:本发明在TiN和TiAl之间,新增一层TaN阻挡层,使TiN内外均由TaN阻挡层保护,内部沉积填充金属层无法扩散进入PMOS功函数金属TiN层,提高PMOS器件的稳定性。在PMOS沉积功函数TiN之后,沉积此新增TaN阻挡层,PMOS内部TaN阻挡层的沉积同时,NMOS也会沉积上这一层TaN,需要将NMOS侧的TaN和TiN一并移除,并且不损伤到外层的阻挡层TaN层。如果使用传统的酸洗去除方法,在去除新增TaN层的时候,由于酸洗对于TiN的蚀刻速率远大于TaN的蚀刻速率,下层TiN层极易被一并去除掉,使外层阻挡层TaN暴露出来,被酸损伤。本发明针对实现上述PMOS栅极结构,避免NMOS结构损伤做了一并揭示。在新增TaN阻挡层沉积完成后,通过光刻和蚀刻的工艺,使NMOS结构暴露出来,PMOS结构整体为牺牲层保护,之后使用等离子体(Plasma)设备,对于新增TaN层做氟化处理,置换TaN层中的N元素,使此TaN层完全形成TaFx化合物,且水洗移除,从而在不影响其他层的情况下,完全移除新增TaN层。进而实现上述改进的PMOS栅极结构,并且不影响NMOS结构。As mentioned above, the high-K metal gate structure and its manufacturing method of the present invention have the following beneficial effects: the present invention adds a layer of TaN barrier layer between TiN and TiAl, so that the inside and outside of TiN are protected by the TaN barrier layer, The internally deposited filling metal layer cannot diffuse into the PMOS work function metal TiN layer, which improves the stability of the PMOS device. After the work function TiN is deposited on the PMOS, this new TaN barrier layer is deposited. At the same time as the deposition of the TaN barrier layer inside the PMOS, this layer of TaN will also be deposited on the NMOS. It is necessary to remove the TaN and TiN on the NMOS side together, and do not damage to the outer barrier TaN layer. If the traditional pickling removal method is used, when removing the newly added TaN layer, since the etching rate of pickling for TiN is much greater than that of TaN, the lower TiN layer is easily removed together, making the outer barrier layer TaN Exposed and damaged by acid. The present invention also discloses the realization of the above-mentioned PMOS gate structure and the avoidance of damage to the NMOS structure. After the deposition of the new TaN barrier layer is completed, the NMOS structure is exposed through photolithography and etching processes, and the PMOS structure as a whole is protected by a sacrificial layer, and then the new TaN layer is fluorinated using plasma (Plasma) equipment , replacing the N element in the TaN layer, so that the TaN layer completely forms a TaFx compound, and is removed by washing, so that the newly added TaN layer is completely removed without affecting other layers. Furthermore, the above-mentioned improved PMOS gate structure is realized without affecting the NMOS structure.
附图说明Description of drawings
图1显示为本发明用于制作PMOS高K金属栅极结构的半导体结构示意图;Fig. 1 shows that the present invention is used to make the semiconductor structure schematic diagram of PMOS high-K metal gate structure;
图2显示的是本发明的半导体结构中去除伪栅极形成凹槽01的结构示意图;FIG. 2 shows a schematic structural view of removing the dummy gate to form a groove 01 in the semiconductor structure of the present invention;
图3显示为本发明的半导体结构上沉积外部阻挡层和金属功函数层后的结构示意图;FIG. 3 is a schematic structural diagram after depositing an external barrier layer and a metal work function layer on the semiconductor structure of the present invention;
图4显示为本发明中在金属功函数层上沉积内部阻挡层后的半导体结构示意图;Figure 4 shows a schematic diagram of the semiconductor structure after depositing an internal barrier layer on the metal work function layer in the present invention;
图5显示为本发明中将用于制作NMOS高K金属栅极结构的凹槽上表面区域暴露出来后的半导体结构示意图;FIG. 5 is a schematic diagram of the semiconductor structure after the upper surface area of the groove used to make the NMOS high-K metal gate structure is exposed in the present invention;
图6显示为将用于制作NMOS高K金属栅极结构的凹槽内的第二TaN层和金属功函数层移除后的结构示意图;FIG. 6 is a schematic diagram of the structure after removing the second TaN layer and the metal work function layer in the groove for making the NMOS high-K metal gate structure;
图7显示为本发明中在半导体结构上沉积金属化合物层、粘合层以及金属后的结构示意图;FIG. 7 is a schematic diagram of the structure after depositing a metal compound layer, an adhesive layer and a metal on the semiconductor structure in the present invention;
图8显示为本发明中的半导体结构表面研磨后的结构示意图;FIG. 8 is a schematic view of the surface of the semiconductor structure in the present invention after grinding;
图9为现有技术中的PMOS高K金属栅极结构示意图;9 is a schematic diagram of a PMOS high-K metal gate structure in the prior art;
图10为本发明的PMOS高K金属栅极结构示意图;10 is a schematic diagram of the PMOS high-K metal gate structure of the present invention;
图11显示为本发明的高K金属栅极结构的制作方法流程图。FIG. 11 is a flow chart of the manufacturing method of the high-K metal gate structure of the present invention.
具体实施方式Detailed ways
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。Embodiments of the present invention are described below through specific examples, and those skilled in the art can easily understand other advantages and effects of the present invention from the content disclosed in this specification. The present invention can also be implemented or applied through other different specific implementation modes, and various modifications or changes can be made to the details in this specification based on different viewpoints and applications without departing from the spirit of the present invention.
请参阅图1至图11。需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。See Figures 1 through 11. It should be noted that the diagrams provided in this embodiment are only schematically illustrating the basic idea of the present invention, and only the components related to the present invention are shown in the diagrams rather than the number, shape and shape of the components in actual implementation. Dimensional drawing, the type, quantity and proportion of each component can be changed arbitrarily during actual implementation, and the component layout type may also be more complicated.
本发明提供一种高K金属栅极结构,如图8所示,该高K金属栅极结构至少包括:凹槽及沉积于该凹槽内的外部阻挡层02;沉积于该外部阻挡层02上的金属功函数层03;沉积于所述金属功函数层03上的内部阻挡层04;沉积于所述内部阻挡层04上的金属化合物层06;沉积于所述金属化合物层06上的粘合层07,填充于所述凹槽内、所述粘合层表面的金属08。如图8所示,所述高K金属栅极结构为PMOS的高K金属栅极。图8中,所述PMOS的高K金属栅极和所述NMOS的高K金属栅极结构形成于同一硅衬底上。所述NMOS的高K金属栅极结构利用图8左侧的凹槽形成。本发明中的所述凹槽为经过伪栅极去除多晶硅后形成。The present invention provides a high-K metal gate structure. As shown in FIG. 8, the high-K metal gate structure at least includes: a groove and an external barrier layer 02 deposited in the groove; The metal work function layer 03 on the metal work function layer; the internal barrier layer 04 deposited on the metal work function layer 03; the metal compound layer 06 deposited on the internal barrier layer 04; the adhesive deposited on the metal compound layer 06 The composite layer 07 is filled in the groove and the metal 08 on the surface of the adhesive layer. As shown in FIG. 8 , the high-K metal gate structure is a PMOS high-K metal gate. In FIG. 8, the high-K metal gate of the PMOS and the high-K metal gate structure of the NMOS are formed on the same silicon substrate. The high-K metal gate structure of the NMOS is formed using the groove on the left side of FIG. 8 . The groove in the present invention is formed after removing the polysilicon through the dummy gate.
在所述PMOS的高K金属栅极结构中,沉积在所述凹槽内的所述外部阻挡层02为第一TaN层,即所述外部阻挡层的材料为TaN,所述第一TaN层是在所述凹槽的内侧壁和底部形成一层TaN,作为阻挡层。因此所述外部阻挡层02的结构形状亦为凹槽型。在所述外部阻挡层内沉积了一层金属功函数层03,所述金属功函数层03在本发明中优选为TiN层,亦即在所述凹槽型的外部阻挡层02的内侧壁和底部都沉积了一层TiN,形成本发明的所述金属功函数层03,所述金属功函数层03亦为凹槽型。In the high-K metal gate structure of the PMOS, the outer barrier layer 02 deposited in the groove is a first TaN layer, that is, the material of the outer barrier layer is TaN, and the first TaN layer A layer of TaN is formed on the inner wall and bottom of the groove as a barrier layer. Therefore, the structural shape of the outer barrier layer 02 is also groove-shaped. A layer of metal work function layer 03 is deposited in the outer barrier layer, and the metal work function layer 03 is preferably a TiN layer in the present invention, that is, on the inner sidewall of the groove-shaped outer barrier layer 02 and A layer of TiN is deposited on the bottom to form the metal work function layer 03 of the present invention, and the metal work function layer 03 is also grooved.
如图8,沉积于所述金属功函数层03上的内部阻挡层04,所述内部阻挡层04作为所述PMOS高K金属栅极结构的第二TaN层,亦即所述内部阻挡层04在本发明中优选为TaN层。所述第二TaN层沉积在所述内部阻挡层04的内侧壁和底部,因此所述第二TaN层亦为凹槽型。所述PMOS高K金属栅极结构还包括沉积于所述内部阻挡层04上的金属化合物层06,本发明优选地,所述金属化合物层为TiAl层。亦即在所述内部阻挡层04的内侧壁和底部沉积一层TiAl,所述TiAl层亦为凹槽型。如图8所示,由于所述NMOS高K金属栅极结构与所述PMOS高K金属栅极结构形成于同一硅衬底上,二者在同一制程中,而沉积所述金属化合物层TiAl的作用是将其作为与所述PMOS同一制程中的NMOS的金属功函数层。As shown in Figure 8, the internal barrier layer 04 deposited on the metal work function layer 03, the internal barrier layer 04 is used as the second TaN layer of the PMOS high-K metal gate structure, that is, the internal barrier layer 04 In the present invention, a TaN layer is preferred. The second TaN layer is deposited on the inner sidewall and bottom of the inner barrier layer 04 , so the second TaN layer is also groove-shaped. The PMOS high-K metal gate structure further includes a metal compound layer 06 deposited on the internal barrier layer 04 , preferably in the present invention, the metal compound layer is a TiAl layer. That is, a layer of TiAl is deposited on the inner wall and bottom of the inner barrier layer 04, and the TiAl layer is also grooved. As shown in FIG. 8, since the NMOS high-K metal gate structure and the PMOS high-K metal gate structure are formed on the same silicon substrate, the two are in the same manufacturing process, and the metal compound layer TiAl is deposited The function is to use it as the metal work function layer of the NMOS in the same manufacturing process as the PMOS.
所述PMOS高K金属栅极结构还包括沉积于所述金属化合物层上的粘合层07,本发明进一步地,所述粘合层为由TiN和Ti构成的叠层。所述PMOS高K金属栅极结构还包括填充于所述凹槽内、所述粘合层表面的金属,所述金属优选为铝。所述粘合层的作用是将所述金属铝和所述金属化合物TiAl层更好的粘合在一起。The PMOS high-K metal gate structure further includes an adhesive layer 07 deposited on the metal compound layer. Further in the present invention, the adhesive layer is a laminated layer composed of TiN and Ti. The PMOS high-K metal gate structure further includes metal filled in the groove and on the surface of the adhesive layer, and the metal is preferably aluminum. The function of the bonding layer is to better bond the metal aluminum and the metal compound TiAl layer together.
如图10所示,图10为图8中所述PMOS高K金属栅极结构的放大示意图,而图9为现有技术中PMOS高K金属栅极结构示意图,图9中的结构和图10相比,本发明的所述高K金属栅极结构在所述金属化合物层06与所述金属功函数层03之间增加一层内部阻挡层04,防止金属化合物层06(TiAl层)向金属功函数层03(TiN层)扩散。提高了PMOS器件的稳定性。As shown in Figure 10, Figure 10 is an enlarged schematic diagram of the PMOS high-K metal gate structure described in Figure 8, and Figure 9 is a schematic diagram of the PMOS high-K metal gate structure in the prior art, the structure in Figure 9 and Figure 10 Compared with the high-K metal gate structure of the present invention, an internal barrier layer 04 is added between the metal compound layer 06 and the metal work function layer 03 to prevent the metal compound layer 06 (TiAl layer) from The work function layer 03 (TiN layer) is diffused. The stability of the PMOS device is improved.
如图10所示,进一步地,本发明的所述高K金属栅极结构还包括位于所述凹槽型的外部阻挡层与硅衬底之间叠层;所述叠层自下而上依次为层间介质层、HfO2层、TiN层。更进一步地,所述叠层中所述层间介质层的厚度为8~10埃;所述HfO2层的厚度为20埃;所述TiN层的厚度为20埃。As shown in FIG. 10 , further, the high-K metal gate structure of the present invention also includes stacked layers between the groove-shaped external barrier layer and the silicon substrate; the stacked layers are sequentially arranged from bottom to top For the interlayer dielectric layer, HfO 2 layer, TiN layer. Furthermore, the thickness of the interlayer dielectric layer in the stack is 8-10 angstroms; the thickness of the HfO 2 layer is 20 angstroms; and the thickness of the TiN layer is 20 angstroms.
本发明还提供所述高K金属栅极结构的制作方法,如图11所示,图11显示为本发明的高K金属栅极结构的制作方法流程图,该方法包括以下步骤:The present invention also provides a method for manufacturing the high-K metal gate structure, as shown in FIG. 11 , which is a flow chart of the method for manufacturing the high-K metal gate structure of the present invention. The method includes the following steps:
步骤一、提供分别用于制作PMOS、NMOS高K金属栅极结构的凹槽,所述凹槽位于同一半导体结构上;如图1所示,图1显示为本发明用于制作PMOS高K金属栅极结构的半导体结构示意图,图1中的所述半导体结构中伪栅极还没有被去除,因此,用于制作所述PMOS、NMOS高K金属栅极结构的凹槽还没有形成。所述半导体结构中包含硅衬底及位于该硅衬底上的PWell区、NWell区;所述PWell区和NWell区之间由STI隔离;所述NMOS高K金属栅极结构位于所述PWell区上方;所述PMOS高K金属栅极结构位于所述NWell区上方;所述PWell区、NWell区的两侧各形成有源、漏区。Step 1, providing grooves for making PMOS and NMOS high-K metal gate structures respectively, the grooves are located on the same semiconductor structure; as shown in Figure 1, Figure 1 shows that the present invention is used to make PMOS high-K metal gate structures A schematic diagram of the semiconductor structure of the gate structure. In the semiconductor structure in FIG. 1 , the dummy gate has not been removed, so the grooves for making the PMOS and NMOS high-K metal gate structures have not been formed yet. The semiconductor structure includes a silicon substrate and a PWell region and an NWell region located on the silicon substrate; the PWell region and the NWell region are isolated by STI; the NMOS high-K metal gate structure is located in the PWell region above; the PMOS high-K metal gate structure is located above the NWell region; source and drain regions are formed on both sides of the PWell region and the NWell region.
如图2所示,图2显示的是本发明的半导体结构中去除伪栅极形成凹槽01的结构示意图;所述半导体结构上的所述凹槽为多个,可以用于分别制作PMOS高K金属栅极结构和NMOS金属栅极结构。如2中右端的凹槽为形成PMOS高K金属栅极结构所用,图2左端的凹槽为形成NMOS高K金属栅极结构所用,所述凹槽为在经过层间介质层(LD0)CMP(化学机械研磨)后,去除了伪栅极后形成。As shown in Figure 2, what Figure 2 shows is the structure diagram of removing the dummy gate to form the groove 01 in the semiconductor structure of the present invention; there are multiple grooves on the semiconductor structure, which can be used to make PMOS high K metal gate structure and NMOS metal gate structure. For example, the groove at the right end in Figure 2 is used to form the PMOS high-K metal gate structure, and the groove at the left end of Figure 2 is used to form the NMOS high-K metal gate structure. After (chemical mechanical polishing), the dummy gate is removed and formed.
步骤二、在所述半导体结构上沉积第一TaN层,沉积在所述凹槽内的所述第一TaN层形成凹槽型的外部阻挡层;如图3所示,图3显示为本发明的半导体结构上沉积外部阻挡层和金属功函数层后的结构示意图,在所述半导体结构上沉积所述第一TaN层的同时,所述凹槽内部也被沉积了一层TaN,形成所述第一TaN层,作为所述PMOS高K金属栅极结构的外部阻挡层02。所述第一TaN层不仅沉积在所述用于制作PMOS高K金属栅极结构的凹槽内,同时也沉积在用于制作所述NMOS高K金属栅极结构的凹槽内,以及该半导体结构的上表面。Step 2, depositing a first TaN layer on the semiconductor structure, the first TaN layer deposited in the groove forms a groove-shaped external barrier layer; as shown in Figure 3, Figure 3 shows the embodiment of the present invention A schematic diagram of the structure after depositing an external barrier layer and a metal work function layer on the semiconductor structure. While depositing the first TaN layer on the semiconductor structure, a layer of TaN is also deposited inside the groove, forming the The first TaN layer serves as an external barrier layer 02 of the PMOS high-K metal gate structure. The first TaN layer is not only deposited in the groove for making the PMOS high-K metal gate structure, but also deposited in the groove for making the NMOS high-K metal gate structure, and the semiconductor the upper surface of the structure.
步骤三、在所述第一TaN层上沉积一层TiN层,沉积在所述用于制作PMOS高K金属栅极结构的凹槽内的所述TiN层形成金属功函数层;如图3所示,沉积在所述外部阻挡层02上的TiN层作为所述PMOS高K金属栅极结构的金属功函数层03。所述金属功函数层03(TiN层)同时沉积在用于制作PMOS、NMOS高K金属栅极结构的凹槽中的第一TaN层上以及半导体结构上表面的第一TaN层上。Step 3, depositing a TiN layer on the first TaN layer, the TiN layer deposited in the groove for making the PMOS high-K metal gate structure forms a metal work function layer; as shown in Figure 3 As shown, the TiN layer deposited on the external barrier layer 02 serves as the metal work function layer 03 of the PMOS high-K metal gate structure. The metal work function layer 03 (TiN layer) is simultaneously deposited on the first TaN layer in the groove for making PMOS and NMOS high-K metal gate structures and on the first TaN layer on the upper surface of the semiconductor structure.
步骤四、在所述TiN层上沉积第二TaN层,沉积在所述用于制作PMOS高K金属栅极结构的凹槽内的该第二TaN层形成内部阻挡层;如图4所示,图4显示为本发明中在金属功函数层上沉积内部阻挡层后的半导体结构示意图。所述内部阻挡层04同时沉积在用于制作PMOS、NMOS高K金属栅极结构的凹槽中的所述TiN层上以及该半导体结构上表面的TiN层上。Step 4, depositing a second TaN layer on the TiN layer, the second TaN layer deposited in the groove for making the PMOS high-K metal gate structure forms an internal barrier layer; as shown in Figure 4, FIG. 4 is a schematic diagram of a semiconductor structure after depositing an internal barrier layer on the metal work function layer in the present invention. The internal barrier layer 04 is simultaneously deposited on the TiN layer in the groove for making PMOS and NMOS high-K metal gate structures and on the TiN layer on the upper surface of the semiconductor structure.
步骤五、利用光刻和刻蚀工艺将所述用于制作NMOS高K金属栅极结构的凹槽上表面区域暴露出来;如图5所示,图5显示为本发明中将用于制作NMOS高K金属栅极结构的凹槽上表面区域暴露出来后的半导体结构示意图,而在所述制作PMOS高K金属栅极结构上表面区域还覆盖有光刻胶05。PMOS结构区域整体为牺牲层保护。Step 5, using photolithography and etching processes to expose the upper surface area of the groove used to make the NMOS high-K metal gate structure; as shown in Figure 5, Figure 5 shows that the present invention will be used to make NMOS A schematic diagram of the semiconductor structure after the upper surface area of the groove of the high-K metal gate structure is exposed, and the upper surface area of the PMOS high-K metal gate structure is also covered with photoresist 05 . The entire PMOS structure area is protected by the sacrificial layer.
步骤六、对所述用于制作NMOS高K金属栅极结构的凹槽内的第二TaN层进行氟化处理,使其形成TaFx化合物;该步骤中所述氟化处理过程中所用的气体由含有CxFy、NF3、BF3、SiF4、Ar、H2、N2的等离子气体组合产生。使用等离子体(Plasma)设备,对于所述第二TaN层做氟化处理,置换TaN层中的N元素,使此TaN层完全形成TaFx化合物。Step 6. Perform fluorination treatment on the second TaN layer in the groove for making the NMOS high-K metal gate structure to form a TaFx compound; the gas used in the fluorination treatment process in this step is composed of Combination of plasma gas containing CxFy, NF3, BF3, SiF4, Ar, H2, N2 is generated. A plasma (Plasma) device is used to perform fluorination treatment on the second TaN layer to replace the N element in the TaN layer, so that the TaN layer completely forms a TaFx compound.
步骤七、水洗去除所述TaFx化合物;所述TaFx化合物很容易被水洗过程移除,从而在不影响其他层的情况下,完全移除所述第二TaN层。如图6所示,图6显示为将用于制作NMOS高K金属栅极结构的凹槽内的第二TaN层和金属功函数层移除后的结构示意图。在所述用于制作NMOS高K金属栅极结构的凹槽内留下所述第一TaN层(外部阻挡层02)。水洗使得NMOS区TaN去除而不损伤所述TiN层。如果使用传统的酸洗去除方法,在去除所述第二TaN层的时候,由于酸洗对于TiN的蚀刻速率远大于TaN的蚀刻速率,下层TiN层极易被一并去除掉,使外部阻挡层TaN暴露出来,被酸损伤。Step 7, washing to remove the TaFx compound; the TaFx compound can be easily removed by water washing, so that the second TaN layer can be completely removed without affecting other layers. As shown in FIG. 6 , FIG. 6 is a schematic structural diagram after removing the second TaN layer and the metal work function layer in the groove used to fabricate the NMOS high-K metal gate structure. The first TaN layer (external barrier layer 02 ) is left in the groove for making the NMOS high-K metal gate structure. Washing with water allows removal of TaN in the NMOS region without damaging the TiN layer. If the traditional pickling removal method is used, when removing the second TaN layer, since the etching rate of pickling for TiN is much greater than that of TaN, the lower TiN layer is easily removed together, making the outer barrier layer The TaN is exposed and damaged by the acid.
步骤八、湿法刻蚀去除所述用于制作NMOS高K金属栅极结构的凹槽内的TiN层;如图6所示,图6显示为将用于制作NMOS高K金属栅极结构的凹槽内的第二TaN层和金属功函数层移除后的结构示意图。步骤八中采用热SC1清洗液进行所述湿法刻蚀。进一步地,所述热SC1清洗液中包含去离子水、双氧水、NH4OH。更进一步地,本发明中所述热SC1清洗液中去离子水、双氧水、NH4OH的配比为:5:1.1:1。并且所述热SC1清洗液中去离子水、双氧水、NH4OH的配比为:5:1.1:1。Step 8, wet etching to remove the TiN layer in the groove used to make the NMOS high-K metal gate structure; as shown in Figure 6, Figure 6 shows the TiN layer that will be used to make the NMOS high-K metal gate structure Schematic diagram of the structure after removing the second TaN layer and metal work function layer in the groove. In step 8, the wet etching is carried out by using hot SC1 cleaning solution. Further, the hot SC1 cleaning solution includes deionized water, hydrogen peroxide, and NH 4 OH. Furthermore, the ratio of deionized water, hydrogen peroxide, and NH 4 OH in the hot SC1 cleaning solution in the present invention is: 5:1.1:1. And the ratio of deionized water, hydrogen peroxide and NH 4 OH in the hot SC1 cleaning solution is: 5:1.1:1.
步骤九、依次在所述半导体结构上表面及所述凹槽内沉积金属化合物层、依附于该金属化合物层上的粘合层以及金属;如图7所示,图7显示为本发明中在半导体结构上沉积金属化合物层、粘合层以及金属后的结构示意图。其中所述金属化合物层06为TiAl层,粘合层07由TiN和Ti构成的叠层,该步骤中沉积的金属08为铝。Step 9, sequentially depositing a metal compound layer, an adhesive layer attached to the metal compound layer, and metal on the upper surface of the semiconductor structure and in the groove; as shown in FIG. Schematic of the structure after depositing a metal compound layer, an adhesion layer, and metal on a semiconductor structure. Wherein the metal compound layer 06 is a TiAl layer, the bonding layer 07 is a stack of TiN and Ti, and the metal 08 deposited in this step is aluminum.
步骤十、对所述半导体结构上表面进行平坦化研磨,至暴露出凹槽间的层间介质层为止。如图8所示,图8显示为本发明中的半导体结构表面研磨后的结构示意图。因此,在所述用于制作NMOS高K金属栅极结构的凹槽内壁沉积有外部阻挡层02、金属化合物层06、粘合层07以及金属08,而在制作PMOS高K金属栅极结构的凹槽内壁沉积有外部阻挡层02、金属功函数层03、内部阻挡层04、金属化合物层06、粘合层07以及金属08。Step 10, planarizing and grinding the upper surface of the semiconductor structure until the interlayer dielectric layer between the grooves is exposed. As shown in FIG. 8 , FIG. 8 is a schematic view of the surface of the semiconductor structure in the present invention after grinding. Therefore, the outer barrier layer 02, the metal compound layer 06, the adhesive layer 07 and the metal 08 are deposited on the inner wall of the groove for making the NMOS high-K metal gate structure, while the PMOS high-K metal gate structure is made An outer barrier layer 02 , a metal work function layer 03 , an inner barrier layer 04 , a metal compound layer 06 , an adhesive layer 07 and a metal 08 are deposited on the inner wall of the groove.
综上所述,本发明在TiN和TiAl之间,新增一层TaN阻挡层,使TiN内外均由TaN阻挡层保护,内部沉积填充金属层无法扩散进入PMOS功函数金属TiN层,提高PMOS器件的稳定性。在PMOS沉积功函数TiN之后,沉积此新增TaN阻挡层,PMOS内部TaN阻挡层的沉积同时,NMOS也会沉积上这一层TaN,需要将NMOS侧的TaN和TiN一并移除,并且不损伤到外层的阻挡层TaN层。如果使用传统的酸洗去除方法,在去除新增TaN层的时候,由于酸洗对于TiN的蚀刻速率远大于TaN的蚀刻速率,下层TiN层极易被一并去除掉,使外层阻挡层TaN暴露出来,被酸损伤。本发明针对实现上述PMOS栅极结构,避免NMOS结构损伤做了一并揭示。在新增TaN阻挡层沉积完成后,通过光刻和蚀刻的工艺,使NMOS结构暴露出来,PMOS结构整体为牺牲层保护,之后使用等离子体设备,对于新增TaN层做氟化处理,置换TaN层中的N元素,使此TaN层完全形成TaFx化合物,这一化合物,很容易被水洗过程移除,从而在不影响其他层的情况下,完全移除新增TaN层,进而实现上述改进的PMOS栅极结构,并且不影响NMOS结构。所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。In summary, the present invention adds a TaN barrier layer between TiN and TiAl, so that the inside and outside of TiN are protected by the TaN barrier layer, and the internal deposition filling metal layer cannot diffuse into the PMOS work function metal TiN layer, thereby improving the performance of PMOS devices. stability. After the work function TiN is deposited on the PMOS, this new TaN barrier layer is deposited. At the same time as the deposition of the TaN barrier layer inside the PMOS, this layer of TaN will also be deposited on the NMOS. It is necessary to remove the TaN and TiN on the NMOS side together, and do not damage to the outer barrier TaN layer. If the traditional pickling removal method is used, when removing the newly added TaN layer, since the etching rate of pickling for TiN is much greater than that of TaN, the lower TiN layer is easily removed together, making the outer barrier layer TaN Exposed and damaged by acid. The present invention also discloses the realization of the above-mentioned PMOS gate structure and the avoidance of damage to the NMOS structure. After the deposition of the new TaN barrier layer is completed, the NMOS structure is exposed through photolithography and etching processes, and the PMOS structure as a whole is protected by a sacrificial layer. Afterwards, plasma equipment is used to fluorinate the newly added TaN layer to replace TaN The N element in the layer makes the TaN layer completely form a TaFx compound. This compound can be easily removed by water washing, so that the newly added TaN layer can be completely removed without affecting other layers, thereby achieving the above-mentioned improvement. PMOS gate structure, and does not affect the NMOS structure. Therefore, the present invention effectively overcomes various shortcomings in the prior art and has high industrial application value.
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。The above-mentioned embodiments only illustrate the principles and effects of the present invention, but are not intended to limit the present invention. Anyone skilled in the art can modify or change the above-mentioned embodiments without departing from the spirit and scope of the present invention. Therefore, all equivalent modifications or changes made by those skilled in the art without departing from the spirit and technical ideas disclosed in the present invention shall still be covered by the claims of the present invention.
Claims (19)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910809005.1A CN110504302A (en) | 2019-08-29 | 2019-08-29 | A high-K metal gate structure and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910809005.1A CN110504302A (en) | 2019-08-29 | 2019-08-29 | A high-K metal gate structure and its manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110504302A true CN110504302A (en) | 2019-11-26 |
Family
ID=68590413
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910809005.1A Pending CN110504302A (en) | 2019-08-29 | 2019-08-29 | A high-K metal gate structure and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110504302A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113644031A (en) * | 2021-07-20 | 2021-11-12 | 上海华力集成电路制造有限公司 | Device structure and method for preventing TiAl from diffusing into PMOS metal gate dielectric layer |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1494119A (en) * | 2002-10-04 | 2004-05-05 | ������������ʽ���� | Manufacturing method of semiconductor device |
CN101882595A (en) * | 2009-05-08 | 2010-11-10 | 盛美半导体设备(上海)有限公司 | Method and device for removing barrier layer |
CN105304565A (en) * | 2014-05-28 | 2016-02-03 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor device and forming method thereof |
CN105448831A (en) * | 2014-08-05 | 2016-03-30 | 中芯国际集成电路制造(上海)有限公司 | High-K metal gate CMOS device and forming method thereof |
-
2019
- 2019-08-29 CN CN201910809005.1A patent/CN110504302A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1494119A (en) * | 2002-10-04 | 2004-05-05 | ������������ʽ���� | Manufacturing method of semiconductor device |
CN101882595A (en) * | 2009-05-08 | 2010-11-10 | 盛美半导体设备(上海)有限公司 | Method and device for removing barrier layer |
CN105304565A (en) * | 2014-05-28 | 2016-02-03 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor device and forming method thereof |
CN105448831A (en) * | 2014-08-05 | 2016-03-30 | 中芯国际集成电路制造(上海)有限公司 | High-K metal gate CMOS device and forming method thereof |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113644031A (en) * | 2021-07-20 | 2021-11-12 | 上海华力集成电路制造有限公司 | Device structure and method for preventing TiAl from diffusing into PMOS metal gate dielectric layer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI416667B (en) | Semiconductor component and method of manufacturing same | |
TWI419264B (en) | Method of manufacturing a semiconductor device | |
US8828814B2 (en) | Integrated semiconductor device and fabrication method | |
TWI393218B (en) | Semiconductor device manufacturing method | |
CN105280486A (en) | Fabrication method of metal gate structure | |
TWI601207B (en) | Method of forming a semiconductor device | |
TW201732899A (en) | Semiconductor element, fin field effect transistor element and method of forming same | |
TWI473166B (en) | Semiconductor component manufacturing method | |
CN104241291A (en) | Embedded Memory and Methods of Forming the Same | |
TW201603125A (en) | Metal gate structure and manufacturing method thereof | |
CN102437032B (en) | Method for manufacturing metal gate in gate-last process | |
CN104752447B (en) | A kind of semiconductor devices and preparation method thereof | |
US20170278755A1 (en) | Semiconductor Structures and Methods of Forming the Same | |
CN104517842B (en) | A kind of method for making semiconductor devices | |
CN118099162A (en) | Semiconductor device and manufacturing method thereof | |
CN103730418A (en) | Method for manufacturing semiconductor device | |
CN114551357B (en) | Stacked nano-sheet gate-all-around CMOS device and preparation method thereof | |
CN103545256B (en) | Form the method for cmos device | |
CN110504302A (en) | A high-K metal gate structure and its manufacturing method | |
CN106876273A (en) | The manufacture method of semiconductor structure | |
CN104752349B (en) | A method of making semiconductor devices | |
CN108400115A (en) | A kind of semiconductor devices and its manufacturing method and electronic device | |
CN104766883A (en) | A kind of semiconductor device and its manufacturing method | |
CN111312590B (en) | Method for improving high uniformity of fin field effect transistor gate | |
CN104217951B (en) | A kind of semiconductor devices and its manufacture method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20191126 |