CN1104956C - Fluid fuel recombined ceramic catalyst and manufacturing method thereof - Google Patents
Fluid fuel recombined ceramic catalyst and manufacturing method thereof Download PDFInfo
- Publication number
- CN1104956C CN1104956C CN97104939A CN97104939A CN1104956C CN 1104956 C CN1104956 C CN 1104956C CN 97104939 A CN97104939 A CN 97104939A CN 97104939 A CN97104939 A CN 97104939A CN 1104956 C CN1104956 C CN 1104956C
- Authority
- CN
- China
- Prior art keywords
- catalyst
- ceramic
- intermediate layer
- core
- fluid fuel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 127
- 239000000919 ceramic Substances 0.000 title claims abstract description 67
- 239000000446 fuel Substances 0.000 title claims abstract description 41
- 239000012530 fluid Substances 0.000 title claims abstract description 23
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 54
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims abstract description 22
- 238000000576 coating method Methods 0.000 claims abstract description 10
- 239000011248 coating agent Substances 0.000 claims abstract description 9
- 229910000510 noble metal Inorganic materials 0.000 claims abstract description 5
- 229910052723 transition metal Inorganic materials 0.000 claims abstract 3
- 239000000203 mixture Substances 0.000 claims description 40
- 229910000629 Rh alloy Inorganic materials 0.000 claims description 15
- 239000000843 powder Substances 0.000 claims description 14
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 12
- 238000005245 sintering Methods 0.000 claims description 12
- 229910001935 vanadium oxide Inorganic materials 0.000 claims description 12
- 239000000853 adhesive Substances 0.000 claims description 11
- 230000001070 adhesive effect Effects 0.000 claims description 11
- 150000003623 transition metal compounds Chemical class 0.000 claims description 10
- 229910019606 La0.5Sr0.5CoO3 Inorganic materials 0.000 claims description 9
- 239000005995 Aluminium silicate Substances 0.000 claims description 6
- 229910000923 precious metal alloy Inorganic materials 0.000 claims description 6
- 238000010276 construction Methods 0.000 claims description 5
- 239000004604 Blowing Agent Substances 0.000 claims description 4
- 230000035772 mutation Effects 0.000 claims description 3
- 239000010410 layer Substances 0.000 claims 24
- 229910000323 aluminium silicate Inorganic materials 0.000 claims 2
- 239000011247 coating layer Substances 0.000 claims 2
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 239000002905 metal composite material Substances 0.000 claims 1
- 150000003624 transition metals Chemical class 0.000 claims 1
- 238000002485 combustion reaction Methods 0.000 abstract description 11
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 abstract description 8
- 238000002407 reforming Methods 0.000 abstract description 6
- 239000002131 composite material Substances 0.000 abstract 2
- 239000011224 oxide ceramic Substances 0.000 abstract 2
- 229910052574 oxide ceramic Inorganic materials 0.000 abstract 2
- 229910052751 metal Inorganic materials 0.000 abstract 1
- 239000002184 metal Substances 0.000 abstract 1
- 231100000614 poison Toxicity 0.000 abstract 1
- 239000003440 toxic substance Substances 0.000 abstract 1
- 239000000126 substance Substances 0.000 description 16
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 13
- 239000001301 oxygen Substances 0.000 description 13
- 229910052760 oxygen Inorganic materials 0.000 description 13
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 12
- 239000007789 gas Substances 0.000 description 11
- 239000002912 waste gas Substances 0.000 description 11
- 239000003502 gasoline Substances 0.000 description 10
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 10
- 238000002360 preparation method Methods 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 230000003197 catalytic effect Effects 0.000 description 8
- 239000003344 environmental pollutant Substances 0.000 description 7
- 238000010304 firing Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 6
- 239000003921 oil Substances 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 238000006722 reduction reaction Methods 0.000 description 6
- 239000004372 Polyvinyl alcohol Substances 0.000 description 5
- 238000000354 decomposition reaction Methods 0.000 description 5
- 229920002451 polyvinyl alcohol Polymers 0.000 description 5
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- 235000012211 aluminium silicate Nutrition 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 description 4
- 239000002828 fuel tank Substances 0.000 description 4
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 4
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 230000008521 reorganization Effects 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical group CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 238000000804 electron spin resonance spectroscopy Methods 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000001294 propane Substances 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- JMMZCWZIJXAGKW-UHFFFAOYSA-N 2-methylpent-2-ene Chemical compound CCC=C(C)C JMMZCWZIJXAGKW-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 230000033116 oxidation-reduction process Effects 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- IATRAKWUXMZMIY-UHFFFAOYSA-N strontium oxide Chemical compound [O-2].[Sr+2] IATRAKWUXMZMIY-UHFFFAOYSA-N 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000001784 detoxification Methods 0.000 description 1
- 238000004455 differential thermal analysis Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000004992 fission Effects 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- -1 oxonium ion Chemical class 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000005381 potential energy Methods 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000007306 turnover Effects 0.000 description 1
Images
Classifications
-
- Y02T10/126—
Landscapes
- Catalysts (AREA)
Abstract
The present invention provides a fluid fuel reforming ceramic catalyst comprising a transition metal element composite oxide ceramic core (2), an alumina-based silicate ceramic intermediate layer (3) covering the core (2), and a noble metal-containing ceramic outer layer (4), which is prepared by igniting the transition metal element composite oxide ceramic to form the core, coating the alumina-based silicate ceramic intermediate layer on the core, and coating the high metal-containing ceramic outer layer on the intermediate layer, and which can increase the octane number of the fluid fuel, enhance the combustion efficiency thereof, and reduce toxic substances in exhaust gas.
Description
Technical field
The present invention relates to improve effectively efficiency of combustion and pass through the fluid fuel reforming ceramic catalysts that reorganization reduces disagreeable material in gasoline, light oil and other liquid fuel and natural gas and other gaseous fuel.
Background technology
For example gasoline also contains about 30% benzene, acetaldehyde and other incombustible and environmental pollutants except that containing about 60% inflammable substance, and contains about 10% raising octane number material, antifreezing agent and gaseous additives.Incombustible and environmental pollutants are discharged as material disagreeable in the waste gas owing to imperfect combustion.These incombustibles and environmental pollutants are reassembled as the ratio that inflammable substance can improve the inflammable substance that helps active combustion.Yet the supply (or air supply) that burning reorganization material must improve oxygen.Yet relatively large air contains relatively large nitrogen inevitably, increases the content of nitrogen oxide in the waste gas so inevitably.Although dissolve portion of air in the fuel, be not that the airborne oxygen of used dissolving all helps combustion reaction.If activate the oxygen of the dissolving that does not help combustion reaction, the extra inflammable substance that obtains by reorganization incombustible and environmental pollutants can burn effectively so, and need not to increase from the external world supply of air.
Therefore, the purpose of this invention is to provide airborne oxygen that the incombustible that will contain in the fluid fuel and environmental pollutants be reassembled as inflammable substance and be dissolved in fuel by activation with the catalyst that reduces disagreeable content of material in the waste gas and the manufacture method of this class catalyst.
Summary of the invention
In order to address the above problem, the invention provides:
(1) fluid fuel recombination catalyst, comprise transition metal compound oxidate ceramic core, cover core based on the silicate ceramics intermediate layer of aluminium oxide and the top ceramic layer that contains precious metal alloys that covers the intermediate layer,
(2) make the method for fluid fuel ceramic catalyst, comprise coating based on the silicate ceramics intermediate layer of aluminium oxide to cover transition metal compound oxidate ceramic core, coating contains the top ceramic layer of precious metal alloys.
Description of drawings
Fig. 1 is the cutaway view that illustrates ceramic catalyst structure of the present invention.
The chromatogram of Fig. 2 for showing that the preceding light oil of impregnated catalyst is formed.
Fig. 3 is the chromatogram that light oil is formed behind the demonstration impregnated catalyst.
The electron spin resonance spectroscopy of Fig. 4 for showing that the oxygen base generates in the fuel.
Fig. 5 illustrates the relation between total aldehyde concentration in rotating speed of automobile engine and the waste gas.
Fig. 6 illustrates the relation between the NOx concentration in automobile speed and the waste gas.
Fig. 7 illustrates the composition of burning gases in the engine cylinder and the relation between the rotating speed.
Fig. 8 illustrates the relation between catalyst consumption and the octane number.
Fig. 9 illustrates the relation between air-fuel ratio and the efficiency of combustion.
The specific embodiment
Following paragraph has been described fluid fuel reforming ceramic catalysts of the present invention.Fig. 1 is the cutaway view that illustrates fluid fuel reforming ceramic catalysts structure of the present invention.Fluid fuel reforming ceramic catalysts 1 has three-decker basically, comprises transition metal compound oxidate ceramic core 2, covers (promptly based on aluminium oxide) the silicate ceramics intermediate layer 3 is made up of aluminium oxide basically of core 2 and the top ceramic layer that contains precious metal alloys 4 in covering intermediate layer 3.
Outer 4 and intermediate layer 3 forms by porous material, have allow gas by and the aperture that allows liquid to pass in and out.Core 2 also is a porous, although its porosity greater than intermediate layer 3 and skin 4, also allows gas to pass through and allows the liquid turnover.The tilting structure that border between each layer or composition change gradually, or the stepped construction of constitutive mutation.Should be noted that the variation of tilting structure potential energy is more continuous than stepped construction.This allows electronics motion successfully on the border, allows oxidation-reduction reaction successfully to carry out, and strengthens intermediate layer and outer field regeneration efficiency by this.Therefore, the most handy tilting structure in each border.
Ceramic catalyst of the present invention generally is spherical substantially, also can make cylindricality substantially.
Yet the cylindricality catalyst can not keep containing core and intermediate layer and outer field three-decker at its two ends, all expose at its two ends.Comparatively speaking, be roughly spherical catalyst and on all directions, all keep three-decker, therefore preferably use to be substantially spherical catalyst.
Ceramic catalyst of the present invention can use with liquid fuel such as gasoline, light oil and heavy oil and kerosene and the gaseous fuel such as town gas and propane.Ceramic catalyst of the present invention can directly place fuel, for example they is immersed in the fuel tank.
Core is made up of the transition metal compound oxidate ceramic, and it has the oxidation-reduction catalysis effect, and when Determination of Trace Sulfur, lead and other inorganic substances that contain in owing to pollution feul when outer and intermediate layer were lost its catalytic activity, core can make their regenerate.Electron motion in the core constitute is to intermediate layer and skin, and reduction is by the intermediate layer of catalyst poisoning contaminating impurity and outer field constitute.Because intermediate layer of polluting and therefore outer and detoxification, its catalytic activity is renewable.
The most handy MnO that contains of core
2, NiO, CoO and CuO the transition metal compound oxidate ceramic.Calculate by weight, core preferably contains 40-70 part MnO
2And the NiO of every kind of each 10-20 part, CoO and CuO.Above-mentioned four kinds of materials are critical.If any shortage in them or exceed above-mentioned scope does not then generate and has aperture and help the perovskite type crystal structure of oxidation-reduction electronics with storage, the result significantly reduces regeneration function.Catalyst of the present invention can contain other material, and effect has illeffects unless they are to redox catalysis.
The function in intermediate layer is that incombustible in the fuel and environmental pollutants are reassembled as inflammable substance.For example, the benzene that contains in the gasoline is because the phenyl ring bond fission, and described outer field catalytic action causes water decomposition and the hydrogen that produces carries out hydrogenation, is considered to be reassembled as methane, propane or other inflammable substance.Acetaldehyde is considered to be reassembled as methane, hydrogen and carbon dioxide by reacting with caused hydrogen ion and oxonium ion that water decomposition produces by outer catalytic action.
The intermediate layer is preferably by basically by aluminium oxide (promptly based on aluminium oxide) and silicate or preferably kaolin and the quartzy silicate ceramics of forming of carbon containing are formed.Calculate by weight, 70-90 part Al is preferably contained in the intermediate layer
2O
3With 10-30 part silicate, or preferably contain 5-10 part kaolin and 5-20 part carbon containing quartz.Al
2O
3Major function be carrier with silicate of catalytic action.Excessive Al
2O
3Reduce the silicate amount and the infringement catalytic action of carrying, and Al
2O
3Deficiency cause the reduction of mechanical strength.
Outer field function is to activate contained airborne oxygen in the fuel, emit by in the fuel moisture decomposition and the hydrogen and the newborn oxygen that produce.Thereby the inflammable substance that can burn increases by reorganization need not from the supply of external world's increase air.
Skin is preferably by containing Pt-Pd-Rh alloy and Al
2O
3Fire mixture, Mo-Al
2O
3Catalyst, La
0.5-Sr
0.5CoO
3Catalyst, be stated from Al
2O
3On vanadium oxide catalyst and/or Ag-Al
2O
3The precious metal alloys pottery that contains of catalyst is formed.
Be stated from Al
2O
3On vanadium oxide catalyst and Ag-Al
2O
3At least need one of them in the catalyst.
Calculate by weight, skin preferably contains Pt-Pd-Rh alloy and Al
2O
3Fire mixture, Mo-Al
2O
3Catalyst, La
0.5-Sr
0.5CoO
3Catalyst, be stated from Al
2O
3On vanadium oxide catalyst and/or Ag-Al
2O
3Catalyst, every kind contains 15-25 part.When components contents exceeds above-mentioned scope, be difficult to generate required pottery by firing, the result reduces the oxygen amount of activation and the water yield of decomposition.
The Pt-Pd-Rh alloy preferably contains Pt, Pd and the Rh of about 5-7: 1-3: 1-3 (weight ratio).Pt-Pd-Rh alloy and Al
2O
3Preferably mix with the ratio of about 4-5: 5-6 in advance.Al
2O
3Major function be carrier with Pt-Pd-Rh alloy of catalytic action.Al
2O
3The excessive silicate amount and the infringement catalytic action that can reduce carrying, and Al
2O
3Deficiency can cause the reduction of mechanical strength.Fire Pt-Pd-Rh alloy and Al at about 850-930 ℃
2O
3Mixture can prepare fires mixture.Mo-Al
2O
3Catalyst is with Al
2O
3Be the Mo catalyst of carrier, ratio is about 1: 1.La
0.5-Sr
0.5CoO
3Catalyst is the mixture of firing of lanthana, strontium oxide strontia and cobalt oxide.Be stated from Al
2O
3On vanadium oxide catalyst by about 9: 1 Al
2O
3Form with vanadium oxide.Ag-Al
2O
3Catalyst is with Al
2O
3Be the Ag catalyst of carrier, ratio is about 1Ag: 9Al
2O
3
As what mention previously, the method of making ceramic catalyst of the present invention comprises fires transition metal compound oxidate ceramic core, outside core, be coated with silicate ceramics intermediate layer, and outside the intermediate layer, be coated with the top ceramic layer that contains noble metal based on aluminium oxide.Provide the method for making above-mentioned preferred ceramic catalyst below.
The catalyst that is used for core
MnO with required ratio
2, NiO, CoO and CuO mixture of powders and extra adhesive approximately 900-1000 ℃ fire, will fire product then and wear into powder.Make the pre-burned powder that obtains so for example that diameter is the ball of 1.5-2.0mm, with extra adhesive at about 1150-1350 ℃ of sintering.Sintering carries out in air.
The catalyst that is used for the intermediate layer
With the lanthana of required ratio and the silicate mixture such as kaolin and carbon containing quartz and extra adhesive approximately 1050-1200 ℃ fire, will fire product then and wear into powder.Add the pre-burned powder paste that adhesive and blowing agent (by emitting carbon dioxide or other gas makes the sintered product porous during sintering) preparation obtains like this.The paste that will obtain like this is coated on outside the core balls then, and its thickness is for example about 1mm.Catalyst that then will be by being coated with paste preparation outside core balls is at about 900-1100 ℃ of sintering.Sintering carries out in air.
When 900-1100 ℃ of sintering intermediate layer catalyst, the constitute of core and intermediate layer catalyst melts and counterdiffusion mutually.Thereby the border between core and intermediate layer forms the tilting structure that composition gradually changes.
Outer layer catalyst
The Pt-Pd-Rh alloy and the Al that prepare required ratio
2O
3Fire mixture, Mo-Al
2O
3Catalyst, La
0.5-Sr
0.5CoO
3Catalyst, be stated from Al
2O
3On vanadium oxide catalyst and/or Ag-Al
2O
3The mixture of powders of catalyst.Add adhesive and blowing agent mixture is made paste.The paste that will obtain like this is coated on firing outside the catalyst spheres of core and intermediate layer composition then, and its thickness is for example about 1mm.The product of firing coating in about 600-700 ℃ reducing atmosphere obtains ceramic catalyst of the present invention.With Pt-Pd-Rh alloy and Al
2O
3With required ratio mixture, and approximately 850-930 ℃ fire mixture, preparation Pt-Pd-Rh alloy and Al
2O
3Fire mixture.
When firing outer layer catalyst for 600-700 ℃, the constitute of skin and intermediate layer catalyst melts and counterdiffusion mutually.Thereby the border between skin and intermediate layer forms the tilting structure that composition gradually changes.
The stepped construction of component sudden change if desired so will be catalyst coated outside the core catalyst as the intermediate layer that the stickum of adhesive mixes with wax or other, omission sintering process subsequently.Equally, will be coated on outside the catalyst of intermediate layer, omit sintering process subsequently with the outer layer catalyst that identical stickum mixes.
In the manufacture process of ceramic catalyst of the present invention, core forms sphere substantially during sintering, uses intermediate layer and the skin that coating forms spherical substantially shell subsequently.Therefore, the whole ceramic catalyst of finishing is substantially sphere.
When in hydrostatic column, carrying out sintering, form columniform substantially core.Then, use coating subsequently and form the intermediate layer and the skin of columniform shell substantially.Therefore, the whole ceramic catalyst of finishing is substantially columniform.
Embodiment
Provide following examples so that detail of the present invention to be described.Embodiment only illustrates the present invention rather than in order to limit.
Embodiment described below is whole to be substantially spherically, and the border between each layer is to form the tilting structure that gradually changes.
The core catalyst
The adding of 58ml 7% (weight) polyvinyl alcohol water solution is contained 54g MnO
2, 15gNiO, 15g CoO and 16g CuO (all being powder type) mixture in.The mixture that obtains is like this fired at 950 ℃, will be fired product and wear into powder.With preparing paste in 30ml 7% (weight) the polyvinyl alcohol water solution adding pre-burned powder, paste is made the ball that diameter is approximately 2mm.1200 ℃ of sintered balls, obtain the core catalyst.
The intermediate layer catalyst
The adding of 40ml7% (weight) polyvinyl alcohol water solution is contained in the 100g mixture of 85g aluminium oxide, 5g kaolin and 10g carbon containing quartz.The mixture that obtains is like this fired at 1150 ℃, will be fired product and wear into powder.To prepare paste in 30ml7% (weight) polyvinyl alcohol water solution and 10ml12% (weight) the aqueous sodium carbonate adding pre-burned powder.The paste that obtains like this is coated on outside the spherical core catalyst, and thickness is approximately 1mm.At the ball of 900 ℃ of sinter coatings, obtain to contain the catalyst of the core that is coated with the intermediate layer.
Outer layer catalyst
The Pt-Pd-Rh alloy (ratio of the Pt that contains, Pd and Rh is 3: 1: 1) and the Al that will contain equivalent
2O
3Mixture fire at about 900 ℃.Then with the Pt-Pd-Rh alloy and the Al of equivalent
2O
3Fire mixture, Mo-Al
2O
3Catalyst (Mo that contains and Al
2O
3Ratio be 1: 1), carry Al
2O
3The vanadium oxide catalyst (Al that contains
2O
3With the ratio of vanadium oxide be 9: 1), Ag-Al
2O
3Catalyst (Ag that contains and Al
2O
3Ratio be 1: 9), La
0.5-Sr
0.5CoO
3Catalyst (gross weight 100g) mixes.Add 30ml7% (weight) polyvinyl alcohol water solution and 10ml12% (weight) aqueous sodium carbonate and prepare the mixture paste.The paste that obtains is coated on outside the spherical core, and thickness is approximately 1mm.Then the paste that obtains is coated on firing outside the catalyst spheres that core and intermediate layer form, its thickness is about 1mm.In carbon monoxide atmosphere, fire the coating ball at about 670 ℃ and obtain three layers of ceramic catalyst.
Ceramic catalyst with such acquisition carries out following test.
Incombustible is reassembled as inflammable substance
To drop in 1 liter of light oil by the 130mg catalyst spheres of above-mentioned preparation.Allow light oil place 1 hour, use gas chromatographic analysis then in room temperature.Use Hewlett-Packard ' s 5290 serial II chromatogram and alumina powder posts, carry out chromatography at 350 ℃.The chromatogram that before the catalyst spheres that shown Fig. 2 and Fig. 3 drops into and input back obtains.In Fig. 2 and Fig. 3, A
1And A
2Expression is based on the inflammable substance of methane, A
3Expression is based on the inflammable substance of ethane, ethene and acetylene, A
4Expression is based on the inflammable substance of propane and propylene.B represents pentane, and C represents butane, and D represents methylpentene, and E represents benzene.Can find out obviously that from chromatogram after catalyst of the present invention dropped into, the incombustible such as methylpentene and benzene reduced, and inflammable substance increases.
Be dissolved in the activation of the oxygen in the fuel
To drop in 1 liter of gasoline by the 130mg catalyst spheres of above-mentioned preparation.Allow gasoline place 1 hour in room temperature, electron spin resonance spectroscopy (ESR) (Fig. 4) has confirmed the generation of oxygen base in the gasoline.a
1-a
8Be decided to be the oxygen base.
The reduction of aldehyde concentration in the waste gas
About 8g is equipped with (capacity is 60 liters) in the petrolic fuel tanks of automobile of 1200cc by the catalyst spheres input of above-mentioned preparation, measures in engine speed and the waste gas relation between the aldehyde concentration always.Measure the absorption spectrum that obtains by spectrum analysis (by the infrared beamsplitter FTIR-2 that uses Shimazu Corp. to produce), determine its concentration.Fig. 5 has shown the input catalyst and has not dropped into result's (six mean value to get on the car) that catalyst obtains.As seen in fig. 5, the input of catalyst obviously reduces total aldehyde concentration, and irrelevant with engine speed.
The reduction of NOx concentration in the waste gas
About 8g is equipped with (capacity is 60 liters) in the petrolic fuel tanks of automobile of 1200cc by the catalyst spheres input of above-mentioned preparation, measures the relation between the NOx concentration in automobile speed and the waste gas.With its concentration of gas Chromatographic Determination.Fig. 6 has shown the input catalyst and has not dropped into the result that catalyst obtains.As seen in fig. 6, the input of catalyst obviously (approximately 29-33%) reduces NOx concentration in the waste gas, and irrelevant with the speed of a motor vehicle.Carry out differential thermal analysis by reducing about 7 ℃ of after drop into 271 ℃, measure pyrolysis temperature (burning-point) by 278 ℃ before the catalyst input.The reduction of this temperature is considered to suppress emitting of Nox.
The composition of burning gases in the cylinder
About 8g is equipped with (capacity is 60 liters) in the petrolic fuel tanks of automobile of 1200cc by the catalyst spheres input of above-mentioned preparation, with the composition of burning gases in the gas Chromatographic Determination engine cylinder.When in cylinder, firing and the back piston that explodes when getting back to the home position, get gas that 5ml discharges as sample.Obtain the seen in fig. 7 of result as showing, unreacted matters significantly is reduced to by about 15-21% before dropping into and drops into approximately 1.5-3.5% of back.After dropping into catalyst, the concentration of methane and acetylene also greatly reduces.
The relation of catalyst and octane number
It is in about 86 the regular price gasoline that the catalyst by above-mentioned preparation of difference amount is put into original octane number before the catalyst input, measures the variation of octane number.As Fig. 8 finding, the input of catalyst significantly improves octane number.Along with the increase of catalyst input amount (mg/l), octane number is linear substantially to be increased.
Relation with efficiency of combustion
In regular price gasoline, drop into the front and back of catalyst, measure petrolic efficiency of combustion with the ratio of every liter of 130mg.Drop into the efficiency of combustion before and after the catalyst in the regular price gasoline that Fig. 9 has shown.Under the condition of keeping constant fuel consumption, measure.As Fig. 9 finding, when air-fuel ratio was 16.7, the input of catalyst improved about 30% efficiency of combustion.
As discussed above, ceramic catalyst of the present invention is by being reassembled as incombustible in the fuel and environmental pollutants inflammable substance, activating oxygen contained in the fuel and emitting newborn oxygen by water contained in the decomposition fuel, strengthen the economy of fuel, and reduce the harmful substance in the waste gas.
Claims (12)
1. fluid fuel reformation ceramic catalyst, it comprises transition metal compound oxidate ceramic core, cover core based on the silicate ceramics intermediate layer of aluminium oxide and the top ceramic layer that contains precious metal alloys that covers the intermediate layer.
2. according to the fluid fuel reformation ceramic catalyst of claim 1, wherein core is mainly by containing MnO
2, NiO, CoO and CuO the transition metal composite oxides form, the intermediate layer is made up of the silicate ceramics based on aluminium oxide that contains aluminium oxide and silicate, skin comprises Pt-Pd-Rh alloy and Al by containing
2O
3On fire mixture, Mo-Al
2O
3Catalyst, La
0.5-Sr
0.5CoO
3Catalyst and be stated from Al
2O
3On vanadium oxide catalyst and/or Ag-Al
2O
3The pottery that contains precious metal alloys of catalyst is formed.
3. according to the fluid fuel reformation ceramic catalyst of claim 2, wherein core is by 40-70 part (weight) MnO
2And NiO, the CoO of every kind of each 10-20 part (weight) and CuO composition, the intermediate layer is made up of 70-90 part (weight) aluminium oxide and 10-30 part (weight) silicate, and is outer by 15-25 part (weight) Pt-Pd-Rh alloy and Al
2O
3The Mo-Al that fires mixture and every kind of each 15-25 part (weight)
2O
3Catalyst, La
0.5-Sr
0.5CoO
3Catalyst and be stated from Al
2O
3On vanadium oxide catalyst and/or Ag-Al
2O
3Catalyst is formed.
4. according to the fluid fuel reformation ceramic catalyst of claim 1, wherein core and intermediate layer and intermediate layer and outer field border have the tilting structure that the pottery composition gradually changes.
5. according to the fluid fuel reformation ceramic catalyst of claim 1, wherein core and intermediate layer and intermediate layer and outer field border have the stepped construction of ceramic constitutive mutation.
6. according to the fluid fuel reformation ceramic catalyst of claim 1, wherein core is roughly sphere, and intermediate layer and skin form spherical housing substantially.
7. according to the fluid fuel reformation ceramic catalyst of claim 1, wherein core is roughly cylindricality, and that intermediate layer and skin are roughly is cylindrical.
8. make the method for fluid fuel reformation ceramic catalyst, comprise the transition metal compound oxidate ceramic is fired the formation core, outside core, be coated with silicate ceramics intermediate layer based on aluminium oxide, and the step that outside the intermediate layer, is coated with the top ceramic layer that contains noble metal.
9. make the method for fluid fuel reformation ceramic catalyst, be included in the silicate ceramics intermediate layer of the outer coating of transition metal compound oxidate ceramic core, and outside the intermediate layer, be coated with the top ceramic layer that contains noble metal based on aluminium oxide.
10. make the method for fluid fuel reformation ceramic catalyst according to claim 8, wherein be coated with the intermediate layer of mixing and do not carry out sintering, the stepped construction with ceramic constitutive mutation is made on the border between core and intermediate layer and intermediate layer and the skin with skin with stickum.
11., wherein pass through with MnO according to the method for claim 8 manufacturing fluid fuel reformation ceramic catalyst
2, NiO, CoO and CuO mix with adhesive, fires mixture at 900-1000 ℃, will fire product and wear into powder, then with ground product with adhesive at 1150-1350 ℃ of sintering, form transition metal compound oxidate ceramic core; By aluminium oxide and silicate are mixed with adhesive, fire mixture at 1050-1200 ℃, to fire product and wear into powder, add adhesive and blowing agent ground product is made paste, paste is coated on outside the core, at 900-1100 ℃ of sinter coating layer, to form silicate ceramics intermediate layer based on aluminium oxide; By with Pt-Pd-Rh alloy and Al
2O
3Fire mixture, Mo-Al
2O
3Catalyst, La
0.5-Sr
0.5CoO
3Catalyst and at least a Al that is stated from
2O
3On vanadium oxide catalyst Ag-Al
2O
3Catalyst mix adds adhesive and blowing agent mixture is made paste, and paste is coated on the intermediate layer, fires coating layer at 600-700 ℃ in reducing atmosphere, forms the top ceramic layer that contains noble metal.
12. according to the method for claim 8 manufacturing fluid fuel reformation ceramic catalyst, wherein core is by 40-70 part (weight) MnO
2And NiO, the CoO of every kind of each 10-20 part (weight) and CuO composition, the intermediate layer is made up of 70-90 part (weight) aluminium oxide and 10-30 part (weight) silicate, and is outer by every kind of Pt-Pd-Rh alloy and Al that contains 1 5-25 part (weight)
2O
3Fire mixture, Mo-Al
2O
3Catalyst, La
0.5-Sr
0.5CoO
3Catalyst and be stated from Al
2O
3On vanadium oxide catalyst and/or Ag-Al
2O
3Catalyst is formed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN97104939A CN1104956C (en) | 1997-03-25 | 1997-03-25 | Fluid fuel recombined ceramic catalyst and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN97104939A CN1104956C (en) | 1997-03-25 | 1997-03-25 | Fluid fuel recombined ceramic catalyst and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1194182A CN1194182A (en) | 1998-09-30 |
CN1104956C true CN1104956C (en) | 2003-04-09 |
Family
ID=5167560
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN97104939A Expired - Fee Related CN1104956C (en) | 1997-03-25 | 1997-03-25 | Fluid fuel recombined ceramic catalyst and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1104956C (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101003787B1 (en) * | 2010-06-18 | 2010-12-23 | 군산대학교산학협력단 | Fuel pretreatment module for internal combustion engine |
KR101328151B1 (en) * | 2013-04-11 | 2013-11-13 | 고천일 | Apparatus for manufacturing a reforming fuel and a method for manuracturing the same |
CN105478154B (en) * | 2015-12-14 | 2019-09-03 | 中石化南京催化剂有限公司 | One kind being used for the agent of high activity fluid catalytic |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2462928A1 (en) * | 1979-08-08 | 1981-02-20 | Johnson Matthey Co Ltd | PROCESS FOR REMOVING OZONE FROM A GAS MIXTURE |
EP0262962A2 (en) * | 1986-09-30 | 1988-04-06 | Engelhard Corporation | Catalyst for purifying motor vehicle exhaust gases and process for production thereof |
EP0443765A1 (en) * | 1990-02-22 | 1991-08-28 | Engelhard Corporation | Catalyst composition containing segregated platinum and rhodium components |
US5182249A (en) * | 1990-10-22 | 1993-01-26 | East China University Of Chemical Technology | Non-precious metal three way catalyst |
-
1997
- 1997-03-25 CN CN97104939A patent/CN1104956C/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2462928A1 (en) * | 1979-08-08 | 1981-02-20 | Johnson Matthey Co Ltd | PROCESS FOR REMOVING OZONE FROM A GAS MIXTURE |
EP0262962A2 (en) * | 1986-09-30 | 1988-04-06 | Engelhard Corporation | Catalyst for purifying motor vehicle exhaust gases and process for production thereof |
EP0443765A1 (en) * | 1990-02-22 | 1991-08-28 | Engelhard Corporation | Catalyst composition containing segregated platinum and rhodium components |
US5182249A (en) * | 1990-10-22 | 1993-01-26 | East China University Of Chemical Technology | Non-precious metal three way catalyst |
Also Published As
Publication number | Publication date |
---|---|
CN1194182A (en) | 1998-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3286134B2 (en) | Ceramic catalyst for reforming fluid fuel | |
JP3375790B2 (en) | Exhaust gas purification system and exhaust gas purification method | |
JP3042601B2 (en) | Internal combustion engine using ceramic catalyst for reforming fluid fuel and means for transportation or power generation using the same | |
CN101219380B (en) | Exhaust gas purifying catalyst and producing method thereof | |
US6221804B1 (en) | Catalyst for purifying exhaust gas and manufacturing method thereof | |
CN101601999B (en) | Automobile exhaust purification catalyst and preparation method thereof | |
EP2045010B1 (en) | Exhaust gas purifying catalyst | |
CN1021412C (en) | Honeycomb catalyst of rare earth composite oxide type containing noble metal and its preparing method | |
JPH06233918A (en) | Catalyst for purifying exhaust gas | |
CN1032749A (en) | Rhodium-free three-member catalyst | |
CN1173829A (en) | Catalyst | |
US7399728B2 (en) | Catalyst formulation, exhaust system, and gas treatment device | |
FR2899493A1 (en) | PURIFICATION STRUCTURE INCORPORATING AN ELECTROCHEMICAL CATALYSIS SYSTEM | |
CN109772165B (en) | Tail gas purification reactor, preparation method thereof and tail gas purification reactor | |
US20060088459A1 (en) | Catalyst for treatment and control of post-combustion emissions | |
CN1104956C (en) | Fluid fuel recombined ceramic catalyst and manufacturing method thereof | |
JP4573993B2 (en) | Exhaust gas purification catalyst and method for producing the same | |
US20080318769A1 (en) | Catalyst and Method for Manufacturing Catalyst for Use in Exhaust Emission Control | |
US7622095B2 (en) | Catalyst composition for use in a lean NOx trap and method of using | |
US6050247A (en) | Internal combustion engines, fluid fuel reforming ceramic catalyst and transporting and power-generating means employing them | |
US6205985B1 (en) | Catalyst for reforming fossil fuel | |
KR100306927B1 (en) | Ceramic catalyst for reforming liquid fuel and method for producing the same | |
EP3384984B1 (en) | Catalyst composition for inhibiting diesel engine white smoke emission | |
JPH09928A (en) | Low-temperature ignitable catalyst composition and low-temperature ignitable catalyst for purification of waste gas as well as waste gas purifying device and waste gas purifying method utilizing the same | |
CA2193146C (en) | Fluid fuel reforming ceramic catalysts and their manufacturing methods |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20030409 |