[go: up one dir, main page]

CN110492744B - Constant power load control method and circuit applied to DC-DC converter - Google Patents

Constant power load control method and circuit applied to DC-DC converter Download PDF

Info

Publication number
CN110492744B
CN110492744B CN201910763948.5A CN201910763948A CN110492744B CN 110492744 B CN110492744 B CN 110492744B CN 201910763948 A CN201910763948 A CN 201910763948A CN 110492744 B CN110492744 B CN 110492744B
Authority
CN
China
Prior art keywords
module
mld
model
control
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910763948.5A
Other languages
Chinese (zh)
Other versions
CN110492744A (en
Inventor
陈艳峰
许铭林
张波
丘东元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201910763948.5A priority Critical patent/CN110492744B/en
Publication of CN110492744A publication Critical patent/CN110492744A/en
Application granted granted Critical
Publication of CN110492744B publication Critical patent/CN110492744B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of DC power input into DC power output
    • H02M3/02Conversion of DC power input into DC power output without intermediate conversion into AC
    • H02M3/04Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
    • H02M3/10Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/157Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0012Control circuits using digital or numerical techniques

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明公开了一种应用于DC‑DC变换器的恒功率负载控制方法及电路,包括步骤:1)通过电压采样模块和电流采样模块分别对输出电压和电感电流进行采样,并将采样信号输入ADC模块;2)通过ADC模块将输入的采样信号转化为数字信号,并输入校正模块;3)校正模块将数字信号与预测模型求解所得预测值进行比较,其差值作为校正信号输入MLD‑MPC控制模块;4)MLD‑MPC控制模块根据校正信号求解控制模型,根据求解所得开关占空比,实现对DC‑DC变换器的恒功率负载控制。本发明解决了传统恒功率控制方法存在稳态误差、动态性能差等问题,使得DC‑DC变换器在面对输入电压突变、负载突变等扰动时能够快速稳定地调节,维持恒功率输出。

Figure 201910763948

The invention discloses a constant power load control method and circuit applied to a DC-DC converter, comprising the steps of: 1) respectively sampling the output voltage and the inductor current through a voltage sampling module and a current sampling module, and inputting the sampling signals ADC module; 2) The input sampling signal is converted into a digital signal through the ADC module, and input to the correction module; 3) The correction module compares the digital signal with the predicted value obtained by solving the prediction model, and the difference is input as a correction signal to MLD-MPC Control module; 4) The MLD-MPC control module solves the control model according to the correction signal, and realizes the constant power load control of the DC-DC converter according to the switching duty ratio obtained by the solution. The invention solves the problems of steady-state error and poor dynamic performance in the traditional constant power control method, so that the DC-DC converter can adjust quickly and stably in the face of disturbances such as sudden changes in input voltage and load, and maintain constant power output.

Figure 201910763948

Description

应用于DC-DC变换器的恒功率负载控制方法及电路Constant power load control method and circuit applied to DC-DC converter

技术领域technical field

本发明涉及电力电子DC-DC变换器的技术领域,尤其是指一种应用于DC-DC变换器的恒功率负载控制方法及电路。The invention relates to the technical field of power electronic DC-DC converters, in particular to a constant power load control method and circuit applied to the DC-DC converters.

背景技术Background technique

电力电子DC-DC变换器由于其体积小、重量轻、效率高等优点被广泛应用于直流微网中。随着DC-DC变换器应用场景越发多样,恒功率负载等非线性负载对DC-DC变换器的控制方法提出了更高的要求。传统的线性化建模方法难以准确描述具带恒功率负载的DC-DC变换器的非线性特征,因此DC-DC变换器的恒功率控制需要更准确的模型。Power electronic DC-DC converters are widely used in DC microgrids due to their small size, light weight and high efficiency. As the application scenarios of DC-DC converters become more and more diverse, non-linear loads such as constant power loads put forward higher requirements for the control method of DC-DC converters. Traditional linearization modeling methods are difficult to accurately describe the nonlinear characteristics of DC-DC converters with constant power loads, so the constant power control of DC-DC converters requires more accurate models.

目前应用于DC-DC变换器的恒功率负载控制方法主要有:1、状态反馈控制:将DC-DC变换器的输出电容与输出电阻作为其反馈变量,列出系统状态方程并进行Taylor展开,通过舍弃高阶无穷小项等方式将状态方程线性化,并对该近似线性系统进行控制。2、虚拟阻抗控制:在DC-DC变换器中加入电流采样模块,使得采样电流流经一个虚拟电阻后,加入控制环节中,以改善系统稳定性。因为该控制环节的戴维宁等效电路等效于电路中串联一个电阻,但实际上该虚拟电阻并不消耗功率,因此也被称为虚拟阻抗控制。现有的DC-DC变换器的恒功率负载控制方法由于取线性近似等方式,尽管能达成控制效果,但在精确性和动态性能等方面存在稳态误差、超调、调节时间长等问题。At present, the constant power load control methods applied to DC-DC converters mainly include: 1. State feedback control: take the output capacitance and output resistance of the DC-DC converter as its feedback variables, list the system state equation and carry out Taylor expansion, The state equation is linearized by discarding high-order infinitesimal terms, and the approximate linear system is controlled. 2. Virtual impedance control: A current sampling module is added to the DC-DC converter, so that the sampling current flows through a virtual resistor and then added to the control link to improve system stability. Because the Thevenin equivalent circuit of the control link is equivalent to a resistor in series in the circuit, but in fact the virtual resistor does not consume power, it is also called virtual impedance control. Although the existing constant power load control method of DC-DC converter can achieve the control effect due to the linear approximation, it has problems such as steady-state error, overshoot, and long adjustment time in terms of accuracy and dynamic performance.

发明内容SUMMARY OF THE INVENTION

本发明的目的在于克服现有技术的缺点与不足,提出了一种应用于DC-DC变换器的恒功率负载控制方法及电路,解决传统恒功率控制方法存在稳态误差、动态性能差等问题,使得DC-DC变换器在面对输入电压突变、负载突变等扰动时能够快速稳定地调节,维持恒功率输出。The purpose of the present invention is to overcome the shortcomings and deficiencies of the prior art, and proposes a constant power load control method and circuit applied to a DC-DC converter, so as to solve the problems such as steady-state error and poor dynamic performance in the traditional constant power control method. , so that the DC-DC converter can adjust quickly and stably in the face of disturbances such as sudden changes in input voltage and load, and maintain constant power output.

为实现上述目的,本发明所提供的技术方案为:应用于DC-DC变换器的恒功率负载控制方法,需配置有电压采样模块、电流采样模块、ADC模块、校正模块和MLD-MPC控制模块,其中,所述电压采样模块用于对输出电压进行采样,所述电流采样模块用于对电感电流进行采样,所述ADC模块用于将采样信号转换为数字信号,所述校正模块用于校正控制模型误差,所述MLD-MPC控制模块用于控制DC-DC变换器占空比;In order to achieve the above purpose, the technical solution provided by the present invention is as follows: a constant power load control method applied to a DC-DC converter needs to be configured with a voltage sampling module, a current sampling module, an ADC module, a calibration module and an MLD-MPC control module , wherein the voltage sampling module is used to sample the output voltage, the current sampling module is used to sample the inductor current, the ADC module is used to convert the sampling signal into a digital signal, and the correction module is used to correct control model error, the MLD-MPC control module is used to control the duty cycle of the DC-DC converter;

所述恒功率负载控制方法,包括以下步骤:The constant power load control method includes the following steps:

1)通过电压采样模块和电流采样模块分别对输出电压和电感电流进行采样,并将采样信号输入ADC模块;1) Sample the output voltage and the inductor current through the voltage sampling module and the current sampling module respectively, and input the sampling signal into the ADC module;

2)通过ADC模块将输入的采样信号转化为数字信号,并输入校正模块;2) Convert the input sampling signal into a digital signal through the ADC module, and input it into the correction module;

3)校正模块将数字信号与预测模型求解所得预测值进行比较,其差值作为校正信号输入MLD-MPC控制模块;3) The correction module compares the predicted value obtained by solving the digital signal with the prediction model, and the difference is input to the MLD-MPC control module as a correction signal;

4)MLD-MPC控制模块根据校正信号求解控制模型,根据求解所得开关占空比,实现对DC-DC变换器的恒功率负载控制。4) The MLD-MPC control module solves the control model according to the correction signal, and realizes the constant power load control of the DC-DC converter according to the obtained switching duty cycle.

进一步,所述校正模块内部使用混合逻辑动态模型,即MLD模型,对输出电压和电感电流进行预测,MLD模型的基本特征为:通过定义0-1逻辑变量,将DC-DC变换器的非线性系统划分为M个有限线性子系统的集合,构建辅助变量将其表达为线性系统的形式,通过混合整数不等式描述子系统间的切换逻辑,MLD模型具有以下形式:Further, the correction module internally uses a mixed logic dynamic model, namely the MLD model, to predict the output voltage and inductor current. The basic features of the MLD model are: by defining 0-1 logic variables, the nonlinearity of the DC-DC converter is calculated. The system is divided into a set of M finite linear subsystems, and auxiliary variables are constructed to express it in the form of a linear system. The switching logic between subsystems is described by mixed integer inequalities. The MLD model has the following form:

Figure GDA0002445450950000031
Figure GDA0002445450950000031

其中,M表示非线性系统能够划分为M个线性子模型;k表示离散模型时刻,对应连续时间有t=kTs,Ts为离散模型采样时间;x(k)表示系统在时刻k的状态变量;x(k+1)表示系统在时刻k+1的状态变量;u(k)表示系统在时刻k的输入变量;y(k)表示系统在时刻k的输出变量;δj为系统在时刻k的0-1逻辑变量;Aj,Bj,aj,Cj,Dj,bj分别为系统状态方程对应参数矩阵。Among them, M represents that the nonlinear system can be divided into M linear sub-models; k represents the time of the discrete model, and the corresponding continuous time is t=kTs, where Ts is the sampling time of the discrete model; x(k) represents the state variable of the system at time k; x(k+1) represents the state variable of the system at time k+1; u(k) represents the input variable of the system at time k; y(k) represents the output variable of the system at time k; δ j is the system at time k 0-1 logical variables; A j , B j , a j , C j , D j , b j are the corresponding parameter matrices of the system state equation, respectively.

进一步,所述MLD-MPC控制模块的控制过程如下:Further, the control process of the MLD-MPC control module is as follows:

S1、MLD-MPC控制模块初始化,开始对当前时刻下的系统进行优化控制;S1. The MLD-MPC control module is initialized and begins to optimize the control of the system at the current moment;

S2、MLD-MPC控制模块检测系统参数是否发生变化;若系统参数发生变化,根据新的系统参数重新构建线性子模型的离散状态方程,根据重新构建的离散状态方程,更新MLD模型,并将新的MLD模型应用于校正模块和MLD-MPC控制模块中,执行步骤S3;若系统参数无变化,则直接执行步骤S3;S2. The MLD-MPC control module detects whether the system parameters change; if the system parameters change, rebuild the discrete state equation of the linear sub-model according to the new system parameters, update the MLD model according to the reconstructed discrete state equation, and put the new The MLD model is applied to the calibration module and the MLD-MPC control module, and step S3 is performed; if the system parameters do not change, step S3 is directly performed;

S3、更新MLD模型后,以更新的MLD模型作为约束条件,重构MLD-MPC控制模型并进行求解,该过程在MLD-MPC控制模块中完成;S3. After updating the MLD model, the MLD-MPC control model is reconstructed and solved using the updated MLD model as a constraint, and the process is completed in the MLD-MPC control module;

S4、判断MLD-MPC控制模型是否有可行解;S4. Determine whether the MLD-MPC control model has a feasible solution;

S5:若无可行解,则判定为系统失稳,MLD-MPC控制模块报错并初始化;S5: If there is no feasible solution, it is determined that the system is unstable, and the MLD-MPC control module reports an error and initializes it;

S6:若控制模型有可行解,将最优解的系统控制序列第一个元素作为该时刻系统控制策略,并返回步骤S1,开始下一时刻的控制优化。S6: If the control model has a feasible solution, take the first element of the system control sequence of the optimal solution as the system control strategy at this moment, and return to step S1 to start the control optimization at the next moment.

应用于DC-DC变换器的恒功率负载控制电路,由电压采样模块、电流采样模块、ADC模块、校正模块和MLD-MPC控制模块组成,其中,所述电压采样模块与DC-DC变换器的主电路输出电容两端连接,所述电流采样模块与DC-DC变换器的主电路储能电感串联,所述ADC模块分别与电压采样模块、电流采样模块和校正模块连接,所述校正模块与MLD-MPC控制模块连接,所述MLD-MPC控制模块与DC-DC变换器的主电路开关管驱动连接;工作时,电压采样模块和电流采样模块分别对输出电压和电感电流进行采样,并将采样信号输入ADC模块,ADC模块将输入的采样信号转化为数字信号,输入校正模块,校正模块将数字信号与预测模型求解所得预测值进行比较,其差值作为校正信号输入MLD-MPC控制模块,MLD-MPC控制模块根据校正信号求解控制模型,根据求解所得开关占空比,对DC-DC变换器的主电路开关管导通状态进行控制,实现对DC-DC变换器的恒功率负载控制。The constant power load control circuit applied to the DC-DC converter is composed of a voltage sampling module, a current sampling module, an ADC module, a correction module and an MLD-MPC control module, wherein the voltage sampling module and the DC-DC converter are connected. The two ends of the output capacitor of the main circuit are connected, the current sampling module is connected in series with the energy storage inductance of the main circuit of the DC-DC converter, the ADC module is respectively connected with the voltage sampling module, the current sampling module and the calibration module, and the calibration module is connected to the The MLD-MPC control module is connected, and the MLD-MPC control module is driven and connected to the main circuit switch tube of the DC-DC converter; during operation, the voltage sampling module and the current sampling module respectively sample the output voltage and the inductor current, and collect The sampled signal is input to the ADC module, the ADC module converts the input sampled signal into a digital signal, and the correction module is inputted. The MLD-MPC control module solves the control model according to the correction signal, and controls the conduction state of the switch tube of the main circuit of the DC-DC converter according to the obtained switch duty ratio, so as to realize the constant power load control of the DC-DC converter.

本发明与现有技术相比,具有如下优点与有益效果:Compared with the prior art, the present invention has the following advantages and beneficial effects:

1、本发明起动性能好,变换器起动过程能够快速响应,并且没有超调。1. The present invention has good starting performance, and the starting process of the converter can respond quickly without overshoot.

2、本发明稳定性强,当输入或负载端发生较大扰动时仍能保持输出功率恒定。2. The present invention has strong stability, and can keep the output power constant when the input or the load end is disturbed greatly.

3、本发明可以推广至多个变换器装置级联或并联的恒功率控制,对于多个变换器装置并联或级联,只要可以将其划分为有限个线性系统的组合,即可应用本发明方法。3. The present invention can be extended to constant power control in which multiple converter devices are cascaded or connected in parallel. For multiple converter devices connected in parallel or in parallel, as long as they can be divided into a combination of finite linear systems, the method of the present invention can be applied. .

4、本发明便于配置整定,只需输入变换器元件参数即可在控制模块中自主生成控制模型。4. The present invention is convenient for configuration and tuning, and the control model can be generated in the control module independently only by inputting the parameters of the converter elements.

附图说明Description of drawings

图1为MLD-MPC控制模块的控制逻辑图。Fig. 1 is the control logic diagram of the MLD-MPC control module.

图2为应用于DC-DC变换器的恒功率负载控制电路的电路图。FIG. 2 is a circuit diagram of a constant power load control circuit applied to a DC-DC converter.

图3为应用于DC-DC变换器的恒功率负载控制方法在输入电压扰动下的输出功率响应。FIG. 3 shows the output power response of the constant power load control method applied to the DC-DC converter under the disturbance of the input voltage.

图4为应用于DC-DC变换器的恒功率负载控制方法在负载电阻扰动下的输出功率响应。FIG. 4 shows the output power response of the constant power load control method applied to the DC-DC converter under the disturbance of the load resistance.

图5为应用于DC-DC变换器的恒功率负载控制方法在输出功率设定值变化下的实际输出功率响应。FIG. 5 shows the actual output power response of the constant power load control method applied to the DC-DC converter under the change of the output power setting value.

具体实施方式Detailed ways

下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。The present invention will be described in further detail below with reference to the embodiments and the accompanying drawings, but the embodiments of the present invention are not limited thereto.

本实施例所提供的应用于DC-DC变换器的恒功率负载控制方法,首先,需配置有电压采样模块、电流采样模块、ADC模块、校正模块和MLD-MPC控制模块,其中,所述电压采样模块用于对输出电压进行采样,所述电流采样模块用于对电感电流进行采样,所述ADC模块用于将采样信号转换为数字信号,所述校正模块用于校正控制模型误差,所述MLD-MPC控制模块用于控制DC-DC变换器占空比;所述恒功率负载控制方法,包括以下步骤:In the constant power load control method applied to the DC-DC converter provided by this embodiment, firstly, a voltage sampling module, a current sampling module, an ADC module, a correction module and an MLD-MPC control module need to be configured, wherein the voltage The sampling module is used to sample the output voltage, the current sampling module is used to sample the inductor current, the ADC module is used to convert the sampled signal into a digital signal, the correction module is used to correct the control model error, the The MLD-MPC control module is used to control the duty cycle of the DC-DC converter; the constant power load control method includes the following steps:

1)通过电压采样模块和电流采样模块分别对输出电压和电感电流进行采样,并将采样信号输入ADC模块;1) Sample the output voltage and the inductor current through the voltage sampling module and the current sampling module respectively, and input the sampling signal into the ADC module;

2)通过ADC模块将输入的采样信号转化为数字信号,并输入校正模块;2) Convert the input sampling signal into a digital signal through the ADC module, and input it into the correction module;

3)校正模块将数字信号与预测模型求解所得预测值进行比较,其差值作为校正信号输入MLD-MPC控制模块;3) The correction module compares the predicted value obtained by solving the digital signal with the prediction model, and the difference is input to the MLD-MPC control module as a correction signal;

4)MLD-MPC控制模块根据校正信号求解控制模型,根据求解所得开关占空比,实现对DC-DC变换器的恒功率负载控制。4) The MLD-MPC control module solves the control model according to the correction signal, and realizes the constant power load control of the DC-DC converter according to the obtained switching duty cycle.

校正模块内部使用混合逻辑动态模型,即MLD模型,对输出电压和电感电流进行预测,MLD模型的基本特征为:通过定义0-1逻辑变量,将DC-DC变换器的非线性系统划分为M个有限线性子系统的集合,构建辅助变量将其表达为线性系统的形式,通过混合整数不等式描述子系统间的切换逻辑,MLD模型具有以下形式:The mixed logic dynamic model, namely the MLD model, is used in the correction module to predict the output voltage and inductor current. The basic characteristics of the MLD model are: by defining 0-1 logic variables, the nonlinear system of the DC-DC converter is divided into M A set of finite linear subsystems, and auxiliary variables are constructed to express it in the form of a linear system. The switching logic between subsystems is described by mixed integer inequalities. The MLD model has the following form:

Figure GDA0002445450950000061
Figure GDA0002445450950000061

其中,M表示非线性系统能够划分为M个线性子模型;k表示离散模型时刻,对应连续时间有t=kTs,Ts为离散模型采样时间;x(k)表示系统在时刻k的状态变量;x(k+1)表示系统在时刻k+1的状态变量;u(k)表示系统在时刻k的输入变量;y(k)表示系统在时刻k的输出变量;δj为系统在时刻k的0-1逻辑变量;Aj,Bj,aj,Cj,Dj,bj分别为系统状态方程对应参数矩阵。Among them, M represents that the nonlinear system can be divided into M linear sub-models; k represents the time of the discrete model, and the corresponding continuous time is t=kTs, where Ts is the sampling time of the discrete model; x(k) represents the state variable of the system at time k; x(k+1) represents the state variable of the system at time k+1; u(k) represents the input variable of the system at time k; y(k) represents the output variable of the system at time k; δ j is the system at time k 0-1 logical variables; A j , B j , a j , C j , D j , b j are the corresponding parameter matrices of the system state equation, respectively.

如图1所示,MLD-MPC控制模块的控制过程如下:As shown in Figure 1, the control process of the MLD-MPC control module is as follows:

S1、MLD-MPC控制模块初始化,开始对当前时刻下的系统进行优化控制;S1. The MLD-MPC control module is initialized and begins to optimize the control of the system at the current moment;

S2、MLD-MPC控制模块检测系统参数是否发生变化;若系统参数发生变化,根据新的系统参数重新构建线性子模型的离散状态方程,根据重新构建的离散状态方程,更新MLD模型,并将新的MLD模型应用于校正模块和MLD-MPC控制模块中,而后执行步骤S3;若系统参数无变化,则直接执行步骤S3;S2. The MLD-MPC control module detects whether the system parameters change; if the system parameters change, rebuild the discrete state equation of the linear sub-model according to the new system parameters, update the MLD model according to the reconstructed discrete state equation, and put the new The MLD model is applied to the calibration module and the MLD-MPC control module, and then step S3 is performed; if the system parameters do not change, step S3 is directly performed;

S3、更新MLD模型后,以更新的MLD模型作为约束条件,重构MLD-MPC控制模型并进行求解,该过程在MLD-MPC控制模块中完成;S3. After updating the MLD model, the MLD-MPC control model is reconstructed and solved using the updated MLD model as a constraint, and the process is completed in the MLD-MPC control module;

S4、判断MLD-MPC控制模型是否有可行解;S4. Determine whether the MLD-MPC control model has a feasible solution;

S5:若无可行解,则判定为系统失稳,MLD-MPC控制模块报错并初始化;S5: If there is no feasible solution, it is determined that the system is unstable, and the MLD-MPC control module reports an error and initializes it;

S6:若控制模型有可行解,将最优解的系统控制序列第一个元素作为该时刻系统控制策略,并返回步骤S1,开始下一时刻的控制优化。S6: If the control model has a feasible solution, take the first element of the system control sequence of the optimal solution as the system control strategy at this moment, and return to step S1 to start the control optimization at the next moment.

如图2所示,给出了一种应用于DC-DC变换器的恒功率负载控制电路,该DC-DC变换器具体为Boost变换器,包含输入直流电源、储能电感L、N沟道MOS管、功率二极管D、输出电容C、输出负载R,恒功率负载控制电路包含电压采样模块、电流采样模块、ADC模块、校正模块和MLD-MPC控制模块;输入直流电源的正极连接储能电感L的一端;储能电感L的另一端分别与功率二极管D的阳极、N沟道MOS管的D极相连;功率二极管D的阴极分别与输出电容C的一端和输出负载R的一端相连;输出负载R的另一端与输出电容C的另一端、N沟道MOS管的S极、输入直流电源负极相连;电压采样模块与输出电容C两端连接,电流采样模块与储能电感L连接,对电感电流进行采集,ADC模块分别与电压采样模块、电流采样模块和校正模块连接,校正模块与MLD-MPC控制模块连接,MLD-MPC控制模块与N沟道MOS管驱动连接。输出电压Vout和电感电流Il经过采样传输给校正模块,与模块内部MLD模型预测信号比较后,其误差信号作为校正变量输入MLD-MPC控制模块,MLD-MPC控制模块通过校正变量与状态变量优化求解,控制开关管的导通与关断,实现负载的恒功率控制。As shown in Figure 2, a constant power load control circuit applied to a DC-DC converter is given. The DC-DC converter is specifically a Boost converter, which includes an input DC power supply, an energy storage inductor L, and an N channel. MOS tube, power diode D, output capacitor C, output load R, the constant power load control circuit includes voltage sampling module, current sampling module, ADC module, correction module and MLD-MPC control module; the positive pole of the input DC power supply is connected to the energy storage inductor One end of L; the other end of the energy storage inductor L is connected to the anode of the power diode D and the D pole of the N-channel MOS transistor respectively; the cathode of the power diode D is respectively connected to one end of the output capacitor C and one end of the output load R; the output The other end of the load R is connected to the other end of the output capacitor C, the S pole of the N-channel MOS tube, and the negative pole of the input DC power supply; the voltage sampling module is connected to both ends of the output capacitor C, and the current sampling module is connected to the energy storage inductor L. The inductor current is collected, the ADC module is respectively connected with the voltage sampling module, the current sampling module and the calibration module, the calibration module is connected with the MLD-MPC control module, and the MLD-MPC control module is connected with the N-channel MOS transistor driver. The output voltage V out and the inductor current I l are sampled and transmitted to the correction module. After comparing with the predicted signal of the MLD model inside the module, the error signal is input to the MLD-MPC control module as a correction variable. The MLD-MPC control module passes the correction variable and state variable. The optimization solution controls the on and off of the switch to realize the constant power control of the load.

采用输出电压uC和电感电流iL作为其控制变量与状态变量,记状态变量为:The output voltage u C and the inductor current i L are used as its control variable and state variable, and the state variable is recorded as:

x=[iL uC]T x = [i Lu C ] T

由该Boost变换器的工作逻辑,可得其离散线性子系统状态方程分别为From the working logic of the Boost converter, the state equations of the discrete linear subsystems can be obtained as follows:

x(k+1)=Ad1x(k)+Bd1u(k)x(k+1)=A d1 x(k)+B d1 u(k)

x(k+1)=Ad2x(k)+Bd2u(k)x(k+1)=A d2 x(k)+B d2 u(k)

x(k+1)=Ad3x(k)x(k+1)=A d3 x(k)

其中,Ad1,Ad2,Ad3,Bd1,Bd2为离散线性子系统状态方程参数矩阵,k表示离散模型时刻,对应连续时间有t=kTs。根据变换器的工作逻辑,定义0-1离散逻辑变量并建立其MLD模型,如下:Among them, A d1 , A d2 , A d3 , B d1 , B d2 are the discrete linear subsystem state equation parameter matrix, k represents the discrete model time, and the corresponding continuous time is t=kT s . According to the working logic of the converter, define the 0-1 discrete logic variable and establish its MLD model, as follows:

Figure GDA0002445450950000081
Figure GDA0002445450950000081

其中,C,D,分别为计算输出变量的对应参数矩阵,δ3(k),δ4(k),δ5(k)分别表示在时刻k,系统工作在三个离散线性子系统时的0-1逻辑变量。Among them, C and D are the corresponding parameter matrices of the calculated output variables, respectively, δ 3 (k), δ 4 (k), δ 5 (k) represent the time k, respectively, when the system works in three discrete linear subsystems 0-1 logical variable.

将Boost变换器的实际状态变量与MLD模型计算得到的状态变量进行比较,其差值作为校正变量,与当前时刻的状态变量一同输入MLD-MPC控制模块。The actual state variables of the boost converter are compared with the state variables calculated by the MLD model, and the difference is used as a correction variable, which is input to the MLD-MPC control module together with the state variables at the current moment.

MLD-MPC控制模块内部优化控制函数如下The internal optimization control function of the MLD-MPC control module is as follows

Figure GDA0002445450950000082
Figure GDA0002445450950000082

y(k|t)=x(k|t)y(k|t)=x(k|t)

其中,x(k|t)表示基于时刻k的状态变量对系统进行预测,在未来时刻t的状态变量,y(k|t)表示基于时刻k的状态变量对系统进行预测,在未来时刻t的输出变量,K表示预测时域长度,yset表示输出变量预设值,yset=[I0 U0]T,I0为电感电流预设值,U0为电容电压预设值。根据负载功率P与阻值R求解方程可以得到:Among them, x(k|t) represents the prediction of the system based on the state variable at time k, and the state variable at the future time t, and y(k|t) represents the prediction of the system based on the state variable at time k, and at the future time t The output variable of , K represents the prediction time domain length, y set represents the preset value of the output variable, y set = [I 0 U 0 ] T , I 0 is the preset value of the inductor current, and U 0 is the preset value of the capacitor voltage. Solving the equation according to the load power P and the resistance value R can get:

Figure GDA0002445450950000083
Figure GDA0002445450950000083

MLD-MPC控制模块内部通过求解优化函数,得到下一时刻最优开关逻辑,进而决定下一时刻开关管开通状态,维持控制变量稳定在设定值。By solving the optimization function inside the MLD-MPC control module, the optimal switching logic at the next moment is obtained, and then the on-state of the switch tube at the next moment is determined to keep the control variable stable at the set value.

如图3所示,给出了在输入电压扰动下的输出功率响应,图3中(a)为输入电压扰动曲线,图3中(b)为负载功率响应曲线,从图3中可以直观看出,当输入电压在50%-200%范围内发生突变时,输出功率能够快速进行调节,并维持在设定值。As shown in Figure 3, the output power response under input voltage disturbance is given. Figure 3 (a) is the input voltage disturbance curve, and Figure 3 (b) is the load power response curve, which can be seen intuitively from Figure 3. Out, when the input voltage has a sudden change in the range of 50%-200%, the output power can be quickly adjusted and maintained at the set value.

如图4所示,给出了在负载电阻扰动下的输出功率响应,图4中(a)为负载电阻扰动曲线,图4中(b)为负载功率响应曲线,从图4中可以直观看出,当输入电压在25%-200%范围内发生突变时,输出功率能够快速进行调节,并维持在设定值。As shown in Figure 4, the output power response under load resistance disturbance is given. Figure 4(a) is the load resistance disturbance curve, and Figure 4(b) is the load power response curve. It can be seen intuitively from Figure 4 Out, when the input voltage has a sudden change in the range of 25%-200%, the output power can be quickly adjusted and maintained at the set value.

如图5所示,给出了在输出功率设定值变化下的实际输出功率响应,图5中(a)为负载功率设定值变化曲线,图5中(b)为输出功率响应曲线,从图5中可以直观看出,当负载功率设定值在50%-150%范围内发生突变时,输出功率能够随之快速进行调节,并维持在新的设定值保持稳定。As shown in Figure 5, the actual output power response under the change of the output power setting value is given. Figure 5 (a) is the load power setting value change curve, Figure 5 (b) is the output power response curve, It can be seen intuitively from Figure 5 that when the load power setting value changes abruptly in the range of 50%-150%, the output power can be quickly adjusted and maintained at the new setting value and remains stable.

上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。The above-mentioned embodiments are preferred embodiments of the present invention, but the embodiments of the present invention are not limited by the above-mentioned embodiments, and any other changes, modifications, substitutions, combinations, The simplification should be equivalent replacement manners, which are all included in the protection scope of the present invention.

Claims (2)

1.应用于DC-DC变换器的恒功率负载控制方法,其特征在于:需配置有电压采样模块、电流采样模块、ADC模块、校正模块和MLD-MPC控制模块,其中,所述电压采样模块用于对输出电压进行采样,所述电流采样模块用于对主电路储能电感电流进行采样,所述ADC模块用于将采样信号转换为数字信号,所述校正模块用于校正控制模型误差,所述MLD-MPC控制模块用于控制DC-DC变换器占空比;1. be applied to the constant power load control method of DC-DC converter, it is characterized in that: need to be equipped with voltage sampling module, current sampling module, ADC module, correction module and MLD-MPC control module, wherein, described voltage sampling module used to sample the output voltage, the current sampling module is used to sample the energy storage inductor current of the main circuit, the ADC module is used to convert the sampled signal into a digital signal, the correction module is used to correct the control model error, The MLD-MPC control module is used to control the duty cycle of the DC-DC converter; 所述恒功率负载控制方法,包括以下步骤:The constant power load control method includes the following steps: 1)通过电压采样模块和电流采样模块分别对输出电压和电感电流进行采样,并将采样信号输入ADC模块;1) Sample the output voltage and the inductor current through the voltage sampling module and the current sampling module respectively, and input the sampling signal into the ADC module; 2)通过ADC模块将输入的采样信号转化为数字信号,并输入校正模块;2) Convert the input sampling signal into a digital signal through the ADC module, and input it into the correction module; 3)校正模块将数字信号与预测模型求解所得预测值进行比较,其差值作为校正信号输入MLD-MPC控制模块;3) The correction module compares the predicted value obtained by solving the digital signal with the prediction model, and the difference is input to the MLD-MPC control module as a correction signal; 4)MLD-MPC控制模块根据校正信号求解控制模型,根据求解所得开关占空比,实现对DC-DC变换器的恒功率负载控制;4) The MLD-MPC control module solves the control model according to the correction signal, and realizes the constant power load control of the DC-DC converter according to the obtained switching duty cycle; 所述校正模块内部使用混合逻辑动态模型,即MLD模型,对输出电压和电感电流进行预测,MLD模型的基本特征为:通过定义0-1逻辑变量,将DC-DC变换器的非线性系统划分为M个有限线性子系统的集合,构建辅助变量将其表达为线性系统的形式,通过混合整数不等式描述子系统间的切换逻辑,MLD模型具有以下形式:The correction module uses a mixed logic dynamic model, namely the MLD model, to predict the output voltage and inductor current. The basic characteristics of the MLD model are: by defining 0-1 logic variables, the nonlinear system of the DC-DC converter is divided For a set of M finite linear subsystems, construct auxiliary variables to express it in the form of a linear system, and describe the switching logic between subsystems through mixed integer inequalities. The MLD model has the following form:
Figure FDA0002528696470000021
Figure FDA0002528696470000021
其中,M表示非线性系统能够划分为M个线性子模型;k表示离散模型时刻,对应连续时间有t=kTs,Ts为离散模型采样时间;x(k)表示系统在时刻k的状态变量;x(k+1)表示系统在时刻k+1的状态变量;u(k)表示系统在时刻k的输入变量;y(k)表示系统在时刻k的输出变量;δj为系统在时刻k的0-1逻辑变量;Aj,Bj,aj,Cj,Dj,bj分别为系统状态方程对应参数矩阵。Among them, M represents that the nonlinear system can be divided into M linear sub-models; k represents the time of the discrete model, and the corresponding continuous time is t=kTs, where Ts is the sampling time of the discrete model; x(k) represents the state variable of the system at time k; x(k+1) represents the state variable of the system at time k+1; u(k) represents the input variable of the system at time k; y(k) represents the output variable of the system at time k; δ j is the system at time k 0-1 logical variables; A j , B j , a j , C j , D j , b j are the corresponding parameter matrices of the system state equation, respectively.
2.根据权利要求1所述的应用于DC-DC变换器的恒功率负载控制方法,其特征在于:所述MLD-MPC控制模块的控制过程如下:2. the constant power load control method applied to DC-DC converter according to claim 1, is characterized in that: the control process of described MLD-MPC control module is as follows: S1、MLD-MPC控制模块初始化,开始对当前时刻下的系统进行优化控制;S1. The MLD-MPC control module is initialized and begins to optimize the control of the system at the current moment; S2、MLD-MPC控制模块检测系统参数是否发生变化;若系统参数发生变化,根据新的系统参数重新构建线性子模型的离散状态方程,根据重新构建的离散状态方程,更新MLD模型,并将新的MLD模型应用于校正模块和MLD-MPC控制模块中,而后执行步骤S3;若系统参数无变化,则直接执行步骤S3;S2. The MLD-MPC control module detects whether the system parameters change; if the system parameters change, rebuild the discrete state equation of the linear sub-model according to the new system parameters, update the MLD model according to the reconstructed discrete state equation, and put the new The MLD model is applied to the correction module and the MLD-MPC control module, and then step S3 is performed; if the system parameters do not change, step S3 is directly performed; S3、若系统参数发生变化,更新MLD模型,则以新的MLD模型作为约束条件,若系统参数无变化,则以原有的MLD模型作为约束条件,构建MLD-MPC控制模型并进行求解,该过程在MLD-MPC控制模块中完成;S3. If the system parameters change and the MLD model is updated, the new MLD model is used as the constraint condition. If the system parameters do not change, the MLD-MPC control model is constructed and solved by using the original MLD model as the constraint condition. The process is completed in the MLD-MPC control module; S4、判断MLD-MPC控制模型是否有可行解;S4. Determine whether the MLD-MPC control model has a feasible solution; S5:若无可行解,则判定为系统失稳,MLD-MPC控制模块报错并初始化;S5: If there is no feasible solution, it is determined that the system is unstable, and the MLD-MPC control module reports an error and initializes it; S6:若控制模型有可行解,将最优解的系统控制序列第一个元素作为该时刻系统控制策略,并返回步骤S1,开始下一时刻的控制优化。S6: If the control model has a feasible solution, take the first element of the system control sequence of the optimal solution as the system control strategy at this moment, and return to step S1 to start the control optimization at the next moment.
CN201910763948.5A 2019-08-19 2019-08-19 Constant power load control method and circuit applied to DC-DC converter Active CN110492744B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910763948.5A CN110492744B (en) 2019-08-19 2019-08-19 Constant power load control method and circuit applied to DC-DC converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910763948.5A CN110492744B (en) 2019-08-19 2019-08-19 Constant power load control method and circuit applied to DC-DC converter

Publications (2)

Publication Number Publication Date
CN110492744A CN110492744A (en) 2019-11-22
CN110492744B true CN110492744B (en) 2020-09-22

Family

ID=68552167

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910763948.5A Active CN110492744B (en) 2019-08-19 2019-08-19 Constant power load control method and circuit applied to DC-DC converter

Country Status (1)

Country Link
CN (1) CN110492744B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111697857B (en) * 2020-06-29 2021-05-11 浙江大学 MPC control method of single-phase cascade rectifier for DC microgrid
CN112260539B (en) * 2020-09-23 2021-08-24 武汉德普新源科技有限公司 Output response rapid adjustment method of DC-DC converter
CN112886609B (en) * 2021-01-15 2022-09-30 北方工业大学 Alternating current constant power load optimization control model and optimization control method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101276207A (en) * 2008-05-07 2008-10-01 浙江大学 Predictive function control method for multivariable nonlinear systems based on Hammerstein model
CN103178718A (en) * 2013-02-28 2013-06-26 重庆大学 Digitally Controlled Constant Power DC/DC Converter
CN105450021A (en) * 2015-12-22 2016-03-30 西北工业大学 Low-voltage direct-current constant-power load stabilization method dedicated for aviation
CN106130125A (en) * 2016-01-12 2016-11-16 湖南工程学院 Electric automobile fuzzy sliding mode feedback charge controller and feedback charge control method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101276207A (en) * 2008-05-07 2008-10-01 浙江大学 Predictive function control method for multivariable nonlinear systems based on Hammerstein model
CN103178718A (en) * 2013-02-28 2013-06-26 重庆大学 Digitally Controlled Constant Power DC/DC Converter
CN105450021A (en) * 2015-12-22 2016-03-30 西北工业大学 Low-voltage direct-current constant-power load stabilization method dedicated for aviation
CN106130125A (en) * 2016-01-12 2016-11-16 湖南工程学院 Electric automobile fuzzy sliding mode feedback charge controller and feedback charge control method thereof

Also Published As

Publication number Publication date
CN110492744A (en) 2019-11-22

Similar Documents

Publication Publication Date Title
CN103051186B (en) Fast transient response digital switch converter and control method of fast transient response digital switch converter
CN110492744B (en) Constant power load control method and circuit applied to DC-DC converter
Leng et al. A simple model predictive control for Buck converter operating in CCM
CN109921504B (en) Vehicle-mounted hybrid energy storage system and its nonlinear robust adaptive power control method
CN108494259A (en) A kind of control method of high-voltage DC power supply connection in series-parallel combined system
CN105391299A (en) Single strategy model prediction control method of Buck converter
CN110311562A (en) A kind of DC-DC converter
CN114825935B (en) A dual-time-scale optimal control method for a four-switch buck-boost converter
CN109149937A (en) A kind of SIDO buck switch converters and its digital control method
CN106707740A (en) Design method for digital power loop compensator based on integral separation PID
CN112600432A (en) Control method for predicting charge of LLC resonant converter
CN111245238A (en) Three-level Boost circuit control method and system
CN109217664A (en) Fuzzy PI control method for boots circuit analog load unit
CN116345897B (en) A Passive Control Method Based on Buck-Boost Converter
CN108649799B (en) Novel bidirectional DC converter and control method thereof
CN114362544B (en) Topology structure of charge-controlled LLC resonant converter and its load feedforward method
EP4307547A2 (en) Synchronous buck circuit control method and apparatus, system, and electronic apparatus
CN108521221B (en) It is a kind of based on exponential convergence to the current-sharing control method of DC-DC type Buck converter in parallel
CN110289762B (en) A high current power supply and its constant current control method and system
CN118920863A (en) Node current-based ZVS four-switch Buck-Boost converter prediction control strategy
CN106357112A (en) Compensation method for reducing nonlinearity caused by ADC (Analog Digital Converter) quantification effect of DC/DC (Direct Current/Direct Current) converter
CN116131613A (en) Control parameter design method of non-minimum-phase single-inductance double-output Buck-Boost converter
CN110380602A (en) A kind of DC-DC converter based on soft start
CN115833603A (en) Model prediction device and control method for DC converter based on multi-phase LLC
CN114123773A (en) A design method of a single-inductor dual-output DC-DC step-down device and its step-down device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant