CN110492114A - A kind of N doping porous carbon oxygen reduction catalyst and its preparation method and application - Google Patents
A kind of N doping porous carbon oxygen reduction catalyst and its preparation method and application Download PDFInfo
- Publication number
- CN110492114A CN110492114A CN201910770490.6A CN201910770490A CN110492114A CN 110492114 A CN110492114 A CN 110492114A CN 201910770490 A CN201910770490 A CN 201910770490A CN 110492114 A CN110492114 A CN 110492114A
- Authority
- CN
- China
- Prior art keywords
- porous carbon
- oxygen reduction
- reduction catalyst
- preparation
- carbon oxygen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 45
- 230000009467 reduction Effects 0.000 title claims abstract description 27
- CSJDCSCTVDEHRN-UHFFFAOYSA-N methane;molecular oxygen Chemical compound C.O=O CSJDCSCTVDEHRN-UHFFFAOYSA-N 0.000 title claims abstract description 25
- 238000002360 preparation method Methods 0.000 title claims abstract description 22
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims abstract description 20
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims abstract description 20
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims abstract description 20
- 239000000463 material Substances 0.000 claims abstract description 18
- 238000000034 method Methods 0.000 claims abstract description 13
- 239000000126 substance Substances 0.000 claims abstract description 12
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims abstract description 10
- 239000004743 Polypropylene Substances 0.000 claims abstract description 10
- 229920001155 polypropylene Polymers 0.000 claims abstract description 10
- 239000004698 Polyethylene Substances 0.000 claims abstract description 9
- 239000000446 fuel Substances 0.000 claims abstract description 9
- -1 polyethylene Polymers 0.000 claims abstract description 9
- 229920000573 polyethylene Polymers 0.000 claims abstract description 9
- 239000000047 product Substances 0.000 claims abstract description 7
- 239000013067 intermediate product Substances 0.000 claims abstract description 5
- 238000005406 washing Methods 0.000 claims abstract description 5
- 238000002156 mixing Methods 0.000 claims abstract description 3
- 238000000227 grinding Methods 0.000 claims abstract 2
- 238000006243 chemical reaction Methods 0.000 claims description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 11
- 239000008367 deionised water Substances 0.000 claims description 10
- 229910021641 deionized water Inorganic materials 0.000 claims description 10
- 229920000428 triblock copolymer Polymers 0.000 claims description 9
- 238000005119 centrifugation Methods 0.000 claims description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- 238000003763 carbonization Methods 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 6
- 238000001338 self-assembly Methods 0.000 claims description 4
- 238000004321 preservation Methods 0.000 claims description 3
- 239000012876 carrier material Substances 0.000 claims description 2
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 2
- 238000004140 cleaning Methods 0.000 claims 1
- 229960000935 dehydrated alcohol Drugs 0.000 claims 1
- 238000010792 warming Methods 0.000 claims 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 abstract description 13
- 239000003575 carbonaceous material Substances 0.000 abstract description 7
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 6
- 229920001400 block copolymer Polymers 0.000 abstract description 2
- 238000011031 large-scale manufacturing process Methods 0.000 abstract description 2
- 230000008569 process Effects 0.000 abstract description 2
- 238000001035 drying Methods 0.000 abstract 2
- 238000010000 carbonizing Methods 0.000 abstract 1
- 238000001027 hydrothermal synthesis Methods 0.000 abstract 1
- 238000006722 reduction reaction Methods 0.000 description 17
- 229910052799 carbon Inorganic materials 0.000 description 15
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 12
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 238000003756 stirring Methods 0.000 description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 230000007935 neutral effect Effects 0.000 description 5
- 238000001228 spectrum Methods 0.000 description 5
- 229910001873 dinitrogen Inorganic materials 0.000 description 4
- 125000005842 heteroatom Chemical group 0.000 description 4
- 230000010287 polarization Effects 0.000 description 4
- UGZADUVQMDAIAO-UHFFFAOYSA-L zinc hydroxide Chemical compound [OH-].[OH-].[Zn+2] UGZADUVQMDAIAO-UHFFFAOYSA-L 0.000 description 4
- 229940007718 zinc hydroxide Drugs 0.000 description 4
- 229910021511 zinc hydroxide Inorganic materials 0.000 description 4
- AAMATCKFMHVIDO-UHFFFAOYSA-N azane;1h-pyrrole Chemical compound N.C=1C=CNC=1 AAMATCKFMHVIDO-UHFFFAOYSA-N 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 238000005087 graphitization Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical group [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 238000001069 Raman spectroscopy Methods 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical group [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 239000010411 electrocatalyst Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 229910052717 sulfur Chemical group 0.000 description 2
- 239000011593 sulfur Chemical group 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 241000282414 Homo sapiens Species 0.000 description 1
- 238000001237 Raman spectrum Methods 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- DLGYNVMUCSTYDQ-UHFFFAOYSA-N azane;pyridine Chemical compound N.C1=CC=NC=C1 DLGYNVMUCSTYDQ-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002484 cyclic voltammetry Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002003 electron diffraction Methods 0.000 description 1
- 238000002524 electron diffraction data Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 229910021397 glassy carbon Inorganic materials 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000002088 nanocapsule Substances 0.000 description 1
- 150000002829 nitrogen Chemical class 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000013112 stability test Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9075—Catalytic material supported on carriers, e.g. powder carriers
- H01M4/9083—Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/96—Carbon-based electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Catalysts (AREA)
Abstract
本发明涉及一种氮掺杂多孔碳氧还原催化剂及其制备方法和应用,属于燃料电池催化剂材料领域。一种氮掺杂多孔碳氧还原催化剂的制备方法,将聚乙烯吡咯烷酮和聚环氧乙烷‑聚环氧丙烷‑聚环氧乙烷三嵌段共聚物(F127)混合后经过水热反应获得中间产物,将中间产物干燥后获得透明薄膜状物质;再将透明薄膜状物质在氮气条件下进行碳化,所得产物洗涤、干燥、研磨,既得。本发明制备氮掺杂纳米空心胶囊状多孔碳材料的操作简单,流程较少,设备投资少,重复性好,便于解决大规模生产难的问题。The invention relates to a nitrogen-doped porous carbon-oxygen reduction catalyst and its preparation method and application, belonging to the field of fuel cell catalyst materials. A preparation method of a nitrogen-doped porous carbon-oxygen reduction catalyst, which is obtained by hydrothermal reaction after mixing polyvinylpyrrolidone and polyethylene oxide-polypropylene oxide-polyethylene oxide tri-block copolymer (F127) The intermediate product is obtained by drying the intermediate product to obtain a transparent film-like substance; then carbonizing the transparent film-like substance under nitrogen, washing, drying and grinding the obtained product. The method for preparing the nitrogen-doped nanometer hollow capsule-like porous carbon material is simple in operation, less in flow process, less in equipment investment, good in repeatability, and convenient to solve the problem of difficulty in large-scale production.
Description
技术领域technical field
本发明涉及一种氮掺杂多孔碳氧还原催化剂及其制备方法和应用,属于燃料电池催化剂材料领域。The invention relates to a nitrogen-doped porous carbon-oxygen reduction catalyst and its preparation method and application, belonging to the field of fuel cell catalyst materials.
背景技术Background technique
近年来,能源短缺和环境污染是人类面临的两大问题,寻找一种可替代的新能源刻不容缓,燃料电池作为一种能量转换装置,具有能量转换率高,环境友好等优点。燃料电池阴极的氧还原反应在燃料电池中起着关键作用,由于其缓慢的动力学控制步骤限制了燃料电池的反应速度。虽然传统的Pt基材料是氧还原反应中最实用、最有效的电催化剂,但在燃料电池工业化中,它们受到高成本和容易中毒的阻碍。因此,开发廉价、高效、高耐受性和稳定的电催化剂成为势在必行的研究。In recent years, energy shortage and environmental pollution are two major problems faced by human beings. It is urgent to find an alternative new energy source. As an energy conversion device, fuel cells have the advantages of high energy conversion rate and environmental friendliness. The oxygen reduction reaction at the fuel cell cathode plays a key role in the fuel cell due to its slow kinetic-controlled step that limits the reaction rate of the fuel cell. Although conventional Pt-based materials are the most practical and efficient electrocatalysts for oxygen reduction reactions, they are hindered by high cost and susceptibility to poisoning in the industrialization of fuel cells. Therefore, it is imperative to develop cheap, efficient, high-tolerance and stable electrocatalysts.
掺杂杂原子会破坏碳材料的电中性,增加氧分子的吸附位置和氧还原位点。因此,杂原子掺杂碳材料受到了广泛的关注。N的半径大于碳,电负性略小于碳,比磷、硫等其他杂原子更容易和碳结合。在外电子中有5个电子使氮具有更好的电子贡献,这种氮源来源于吡咯氮,吡咯氮对催化性能提升显著,比磷、硫等杂原子提升性能更为显著。当N掺杂碳时,氮原子与周围C原子之间的相互作用导致电荷密度和自旋密度的重新分布,然后在碳材料表面产生具有丰富电子或缺少电子的一些活性位点。因此,掺杂氮可以改善碳材料的电子结合性能,提高催化活性。但是,目前氮掺杂多孔碳氧还原催化剂实验主要以MgO硬模板为主,制备工艺繁琐,而且需要除去硬模板。Doping with heteroatoms will destroy the electrical neutrality of carbon materials and increase the adsorption sites and oxygen reduction sites of oxygen molecules. Therefore, heteroatom-doped carbon materials have received extensive attention. The radius of N is larger than that of carbon, the electronegativity is slightly smaller than that of carbon, and it is easier to combine with carbon than other heteroatoms such as phosphorus and sulfur. There are 5 electrons in the outer electrons so that nitrogen has a better electron contribution. This nitrogen source comes from pyrrole nitrogen, which can significantly improve the catalytic performance, which is more significant than that of phosphorus, sulfur and other heteroatoms. When N-doped carbon, the interaction between nitrogen atoms and surrounding C atoms leads to the redistribution of charge density and spin density, and then generates some active sites with abundant electrons or lacking electrons on the surface of carbon materials. Therefore, nitrogen doping can improve the electronic binding properties of carbon materials and enhance the catalytic activity. However, the current nitrogen-doped porous carbon-oxygen reduction catalyst experiment mainly uses MgO hard template, the preparation process is cumbersome, and the hard template needs to be removed.
发明内容Contents of the invention
为了寻找可替代的催化剂,解决现有催化剂制备成本高,制备工艺繁琐的问题,本发明提供一种制备工艺简单、氮掺杂纳米空心胶囊状多孔碳氧还原催化剂的制备方法。In order to find an alternative catalyst and solve the problems of high preparation cost and cumbersome preparation process of the existing catalyst, the present invention provides a preparation method of a nitrogen-doped nano hollow capsule porous carbon-oxygen reduction catalyst with simple preparation process.
为实现上述发明目的,本发明采用以下技术方案:In order to realize the above-mentioned purpose of the invention, the present invention adopts the following technical solutions:
本发明一方面提供了一种氮掺杂多孔碳氧还原催化剂的制备方法,将聚乙烯吡咯烷酮(PVP)和聚环氧乙烷-聚环氧丙烷-聚环氧乙烷三嵌段共聚物混合后经水热自组装获得中间产物,将中间产物干燥后进行碳化,所得产物洗涤、干燥、研磨,既得。One aspect of the present invention provides a method for preparing a nitrogen-doped porous carbon-oxygen reduction catalyst, mixing polyvinylpyrrolidone (PVP) and polyethylene oxide-polypropylene oxide-polyethylene oxide triblock copolymer Afterwards, the intermediate product is obtained through hydrothermal self-assembly, the intermediate product is dried and then carbonized, and the obtained product is washed, dried and ground to obtain the obtained product.
上述制备方法中所述聚乙烯吡咯烷酮的用量为聚环氧乙烷-聚环氧丙烷-聚环氧乙烷三嵌段共聚物质量的10%~30%。The amount of polyvinylpyrrolidone used in the above preparation method is 10% to 30% of the mass of the polyethylene oxide-polypropylene oxide-polyethylene oxide tri-block copolymer.
优选地,所述聚乙烯吡咯烷酮的用量为聚环氧乙烷-聚环氧丙烷-聚环氧乙烷三嵌段共聚物质量的10%。Preferably, the polyvinylpyrrolidone is used in an amount of 10% of the mass of the polyethylene oxide-polypropylene oxide-polyethylene oxide triblock copolymer.
上述制备方法中所述水热自组装反应条件为:25~100℃,保温2~24h。The conditions for the hydrothermal self-assembly reaction in the above preparation method are: 25-100° C., heat preservation for 2-24 hours.
上述制备方法中,水热自组装反应前添加Zn(OH)2,Zn(OH)2与聚环氧乙烷-聚环氧丙烷-聚环氧乙烷三嵌段共聚物的质量比为1~2:4。In the above preparation method, Zn(OH) 2 is added before the hydrothermal self-assembly reaction, and the mass ratio of Zn(OH) 2 to polyethylene oxide-polypropylene oxide-polyethylene oxide triblock copolymer is 1 ~2:4.
上述制备方法中,所述碳化条件为:氮气气氛下,以2℃/min~5℃/min的升温速率升温至500~1000℃,保温2~6h后随炉冷却至室温。In the above preparation method, the carbonization condition is: under nitrogen atmosphere, the temperature is raised to 500-1000°C at a heating rate of 2°C/min-5°C/min, kept for 2-6 hours and then cooled to room temperature with the furnace.
上述制备方法中,所述洗涤为:利用1~8mol/LHCl溶液浸泡,2500r/min~4000r/min下用去离子水离心5~10min,重复离心至中性,然后用无水乙醇离心清洗。In the above preparation method, the washing is: soaking in 1-8mol/L HCl solution, centrifuging with deionized water at 2500r/min-4000r/min for 5-10min, repeated centrifugation until neutral, and then centrifuging with absolute ethanol for washing.
优选地,所用HCl溶液为2mol/LHCl溶液。Preferably, the HCl solution used is a 2mol/L HCl solution.
本发明另一方面提供了一种氮掺杂多孔碳氧还原催化剂,所述催化剂由上述制备方法制备得到,所述催化剂为具有纳米空心胶囊状结构的材料,其比表面积为100~2000g/m2。Another aspect of the present invention provides a nitrogen-doped porous carbon-oxygen reduction catalyst, the catalyst is prepared by the above preparation method, the catalyst is a material with a nano-hollow capsule structure, and its specific surface area is 100-2000 g/m 2 .
本发明第三方面提供了上述氮掺杂多孔碳氧还原催化剂作为燃料电池阴极催化剂材料和催化剂载体材料的应用。The third aspect of the present invention provides the application of the nitrogen-doped porous carbon-oxygen reduction catalyst as a fuel cell cathode catalyst material and catalyst carrier material.
本发明有益效果:本发明方法从成本上选用已经成熟的商业化原材料,三嵌段共聚物材料内只含有C、H、O,官能团只有羟基,对环境相对友好的碳源,多孔碳显示出纳米空心胶囊状结构,由于其较大的比表面积,更容易提供电转移路径和氧吸收位点,引入N杂原子后,增加了活性位点,大大提升催化性能。Beneficial effects of the present invention: the method of the present invention selects mature commercial raw materials in terms of cost. The triblock copolymer material only contains C, H, and O, and the functional groups are only hydroxyl groups. It is a carbon source that is relatively friendly to the environment, and porous carbon shows The hollow nanocapsule structure, due to its large specific surface area, is more likely to provide electrical transfer paths and oxygen absorption sites. After the introduction of N heteroatoms, the active sites are increased and the catalytic performance is greatly improved.
使用本发明所述方法制备的催化剂材料为三维多孔状高比表面积材料,具有良好的电催化性能,显著降低催化剂成本。The catalyst material prepared by using the method of the invention is a three-dimensional porous material with a high specific surface area, has good electrocatalytic performance, and significantly reduces the cost of the catalyst.
本发明制备氮掺杂多孔碳材料方法操作简单、流程较少、设备投资少、重复性好,便于解决大规模生产问题。The method for preparing the nitrogen-doped porous carbon material of the invention is simple in operation, less in flow process, less in equipment investment, good in repeatability, and convenient to solve the problem of large-scale production.
附图说明Description of drawings
图1是本发明实施例1的表征图;(a)是实施例1所制备的氮掺杂多孔碳氧还原催化剂材料的SEM图像(标尺为200nm);图1(b)、(c)是实施例1所制备的氮掺杂多孔碳氧还原催化剂材料的TEM图像;图1(d)是实施例1所制备的氮掺杂多孔碳氧还原催化剂材料的电子衍射图;Fig. 1 is the characterization figure of embodiment 1 of the present invention; (a) is the SEM image (scale is 200nm) of the nitrogen-doped porous carbon-oxygen reduction catalyst material prepared in embodiment 1; Fig. 1 (b), (c) is The TEM image of the nitrogen-doped porous carbon-oxygen reduction catalyst material prepared in Example 1; Figure 1(d) is an electron diffraction pattern of the nitrogen-doped porous carbon-oxygen reduction catalyst material prepared in Example 1;
图2是本发明对比例及实施例1~3所制备的氮掺杂多孔碳氧还原催化剂材料的XRD谱图;Fig. 2 is the XRD spectrogram of the nitrogen-doped porous carbon-oxygen reduction catalyst material prepared in Comparative Examples of the present invention and Examples 1-3;
图3是本发明对比例1及实施例1~3所制备的氮掺杂多孔碳氧还原催化剂材料的Raman光谱图;Fig. 3 is the Raman spectrogram of the nitrogen-doped porous carbon-oxygen reduction catalyst material prepared in Comparative Example 1 and Examples 1-3 of the present invention;
图4是实施例1制备的氮掺杂多孔碳氧还原催化剂材料的全谱及C1s和N1s谱图;图4(a)XPS总谱图,图4(b)C1s谱图,图4(c)N1s谱图;Fig. 4 is the full spectrum and C1s and N1s spectrogram of the nitrogen-doped porous carbon-oxygen reduction catalyst material prepared in embodiment 1; Fig. 4 (a) XPS general spectrogram, Fig. 4 (b) C1s spectrogram, Fig. 4 (c ) N1s spectrogram;
图5是测试结果图;图5(a)是对比例和本发明实施例1~3所制备的氮掺杂多孔碳氧还原催化剂材料的1600rpm的极化曲线,图5(b)是实施例1的旋转盘测试曲线,图5(c)是实施例1的K-L曲线,图5(d)是实施例2的循环寿命曲线。Fig. 5 is a test result figure; Fig. 5 (a) is the 1600rpm polarization curve of the nitrogen-doped porous carbon-oxygen reduction catalyst material prepared by comparative examples and Examples 1 to 3 of the present invention, and Fig. 5 (b) is an embodiment Figure 5(c) is the K-L curve of Example 1, and Figure 5(d) is the cycle life curve of Example 2.
具体实施方式Detailed ways
下述非限制性实施例可以使本领域的普通技术人员更全面地理解本发明,但不以任何方式限制本发明。The following non-limiting examples can enable those skilled in the art to understand the present invention more fully, but do not limit the present invention in any way.
下述实施例中所述试验方法,如无特殊说明,均为常规方法;所述试剂和材料,如无特殊说明,均可从商业途径获得。The test methods described in the following examples, unless otherwise specified, are conventional methods; the reagents and materials, unless otherwise specified, can be obtained from commercial sources.
对比例comparative example
1)取4g的聚环氧乙烷-聚环氧丙烷-聚环氧乙烷三嵌段共聚物(简称:F127),加入100ml的去离子水,搅拌均匀,得澄清透明溶液。1) Take 4g of polyethylene oxide-polypropylene oxide-polyethylene oxide triblock copolymer (abbreviation: F127), add 100ml of deionized water, stir evenly, and obtain a clear and transparent solution.
2)加入1.6g氢氧化锌于溶液中,移入反应釜,设置水热温度为80℃,保温12h,然后取出,60℃下干燥24h至透明薄膜状物质。2) Add 1.6g of zinc hydroxide to the solution, move it into the reaction kettle, set the hydrothermal temperature to 80°C, keep it warm for 12h, then take it out, and dry it at 60°C for 24h to a transparent film-like substance.
3)将透明薄膜状物质在通有氮气的管式炉进行碳化处理,碳化程序为:从室温以2℃/min的升温速率升温至700℃,保温3h,后随炉冷却至室温,取出;首先用2mol/LHCl溶液浸泡,4000r/min下用去离子水离心5min,重复离心至中性,然后用无水乙醇离心清洗,干燥,研磨。3) Carbonize the transparent film-like substance in a tube furnace with nitrogen gas. The carbonization procedure is as follows: from room temperature to 700°C at a heating rate of 2°C/min, keep it warm for 3 hours, then cool to room temperature with the furnace, and take it out; First soak in 2mol/L HCl solution, centrifuge with deionized water at 4000r/min for 5min, repeat centrifugation until neutral, then centrifuge with absolute ethanol, dry and grind.
实施例1Example 1
1)取4g的F127,加入100ml的去离子水,搅拌均匀,得澄清透明溶液。1) Take 4g of F127, add 100ml of deionized water, stir well, and get a clear and transparent solution.
2)加入F127质量的10%的聚乙烯吡咯烷酮(PVP),即0.4g PVP,搅拌均匀,得澄清透明溶液。2) Add 10% polyvinylpyrrolidone (PVP) based on the mass of F127, that is, 0.4 g of PVP, and stir evenly to obtain a clear and transparent solution.
3)加入1.6g氢氧化锌于溶液中,移入反应釜,设置水热温度为80℃,保温12h,然后取出,60℃下干燥24h至透明薄膜状物质。3) Add 1.6g of zinc hydroxide to the solution, move it into the reaction kettle, set the hydrothermal temperature at 80°C, keep it warm for 12h, then take it out, and dry it at 60°C for 24h to a transparent film-like substance.
4)将透明薄膜状物质在通有氮气的管式炉进行碳化处理,碳化程序为:从室温以2℃/min的升温速率升温至700℃,保温3h,后随炉冷却至室温,取出;首先用2mol/LHCl溶液浸泡,4000r/min下用去离子水离心5min,重复离心至中性,然后用无水乙醇离心清洗,干燥,研磨。4) Carbonize the transparent film-like substance in a tube furnace with nitrogen gas. The carbonization procedure is as follows: from room temperature to 700°C at a heating rate of 2°C/min, keep it warm for 3 hours, then cool to room temperature with the furnace, and take it out; First soak in 2mol/L HCl solution, centrifuge with deionized water at 4000r/min for 5min, repeat centrifugation until neutral, then centrifuge with absolute ethanol, dry and grind.
实施例2Example 2
1)取4g的F127,加入100ml的去离子水,搅拌均匀,得澄清透明溶液。1) Take 4g of F127, add 100ml of deionized water, stir well, and get a clear and transparent solution.
2)加入F127质量的20%的聚乙烯吡咯烷酮(PVP),即0.8g PVP,搅拌均匀,得澄清透明溶液。2) Add 20% polyvinylpyrrolidone (PVP) based on the mass of F127, that is, 0.8 g of PVP, and stir evenly to obtain a clear and transparent solution.
3)加入1.6g氢氧化锌于溶液中,移入反应釜,设置水热温度为80℃,保温12h,然后取出,60℃下干燥24h至透明薄膜状物质。3) Add 1.6g of zinc hydroxide to the solution, move it into the reaction kettle, set the hydrothermal temperature at 80°C, keep it warm for 12h, then take it out, and dry it at 60°C for 24h to a transparent film-like substance.
4)将透明薄膜状物质在通有氮气的管式炉进行碳化处理,碳化程序为:从室温以2℃/min的升温速率升温至700℃,保温3h,后随炉冷却至室温,取出;首先用2mol/LHCl溶液浸泡,4000r/min下用去离子水离心5min,重复离心至中性,然后用无水乙醇离心清洗,干燥,研磨。4) Carbonize the transparent film-like substance in a tube furnace with nitrogen gas. The carbonization procedure is as follows: from room temperature to 700°C at a heating rate of 2°C/min, keep it warm for 3 hours, then cool to room temperature with the furnace, and take it out; First soak in 2mol/L HCl solution, centrifuge with deionized water at 4000r/min for 5min, repeat centrifugation until neutral, then centrifuge with absolute ethanol, dry and grind.
实施例3Example 3
1)取4g的F127,加入100ml的去离子水,搅拌均匀,得澄清透明溶液。1) Take 4g of F127, add 100ml of deionized water, stir well, and get a clear and transparent solution.
2)加入F127质量的30%的聚乙烯吡咯烷酮(PVP),即1.2g PVP,搅拌均匀,得澄清透明溶液。2) Add 30% polyvinylpyrrolidone (PVP) by mass of F127, namely 1.2 g of PVP, and stir evenly to obtain a clear and transparent solution.
3)加入1.6g氢氧化锌于溶液中,移入反应釜,设置水热温度为80℃,保温12h,然后取出,60℃下干燥24h至透明薄膜状物质。3) Add 1.6g of zinc hydroxide to the solution, move it into the reaction kettle, set the hydrothermal temperature at 80°C, keep it warm for 12h, then take it out, and dry it at 60°C for 24h to a transparent film-like substance.
4)将透明薄膜状物质在通有氮气的管式炉进行碳化处理,碳化程序为:从室温以2℃/min的升温速率升温至700℃,保温3h,后随炉冷却至室温,取出;首先用2mol/LHCl溶液浸泡,4000r/min下用去离子水离心5min,重复离心至中性,然后用无水乙醇离心清洗,干燥,研磨。4) Carbonize the transparent film-like substance in a tube furnace with nitrogen gas. The carbonization procedure is as follows: from room temperature to 700°C at a heating rate of 2°C/min, keep it warm for 3 hours, then cool to room temperature with the furnace, and take it out; First soak in 2mol/L HCl solution, centrifuge with deionized water at 4000r/min for 5min, repeat centrifugation until neutral, then centrifuge with absolute ethanol, dry and grind.
效果实例:为了探究制备氮掺杂碳催化剂的形貌特征与电化学性能,使用SEM、XRD、XPS、Raman等手段对制备的产物进行物理表征并且将产物制备成电极测试相应的电化学性能。Effect example: In order to explore the morphology characteristics and electrochemical performance of the prepared nitrogen-doped carbon catalyst, SEM, XRD, XPS, Raman and other means were used to physically characterize the prepared product and prepare the product into an electrode to test the corresponding electrochemical performance.
图1(a)是实施例1所制备的氮掺杂碳催化剂的SEM照片(标尺为200nm),从图1(a)SEM照片中可以看出50000倍放大倍数下是纳米胶囊状多孔碳;从图1(b)(c)TEM照片可以看出内部为中空结构,壁厚约为5nm,图1(d)为其电子衍射环,说明石墨化程度高。Fig. 1 (a) is the SEM photo (scale is 200nm) of the nitrogen-doped carbon catalyst prepared in embodiment 1, it can be seen from Fig. 1 (a) SEM photo that under 50000 times magnification, it is nanocapsule-like porous carbon; From the TEM photos of Figure 1(b)(c), it can be seen that the interior is a hollow structure with a wall thickness of about 5nm, and Figure 1(d) is its electron diffraction ring, indicating a high degree of graphitization.
图2(a)所示为对比例及实施例1~3所制备的氮掺杂碳催化剂的XRD谱图,在2θ=29°对应(002)晶面,是石墨化碳,聚乙烯吡咯烷酮掺杂量不同,峰的大小不同,添加比例为10%时,峰最大。说明C-N-10%石墨化程度高,具有较好的导电性。Raman谱图如图3所示。D峰出现在1350cm-1处,G峰出现在1580cm-1处。由D峰和G峰可以看出,有较好的缺陷度和石墨化程度。Fig. 2 (a) shows the XRD spectrograms of the nitrogen-doped carbon catalysts prepared in Comparative Examples and Examples 1 to 3, corresponding to the (002) crystal plane at 2θ=29°, which is graphitized carbon, polyvinylpyrrolidone doped The size of the peak varies with the amount of impurity, and the peak is the largest when the addition ratio is 10%. It shows that C-N-10% has a high degree of graphitization and good electrical conductivity. The Raman spectrum is shown in Figure 3. D peak appears at 1350cm-1, G peak appears at 1580cm-1. It can be seen from the D peak and G peak that there is a good defect degree and graphitization degree.
实施例1所得材料的全谱及C1s和N1s谱图如图4(a)~(c)所示。从图4(a)中可明确发现有C,N元素存在,在C1s的谱图中可以分析sp3-C,sp2-C,C-N存在。在N1s谱图中,可以分析出有吡咯氮,吡啶氮,石墨氮存在,吡咯氮占比较大,表明N已经掺杂到碳中。The full spectrum and C1s and N1s spectra of the material obtained in Example 1 are shown in Figure 4(a)-(c). From Figure 4(a), it can be clearly found that there are C and N elements, and the presence of sp3-C, sp2-C, and C-N can be analyzed in the spectrum of C1s. In the N1s spectrum, pyrrole nitrogen, pyridine nitrogen, and graphitic nitrogen can be analyzed, and the proportion of pyrrole nitrogen is relatively large, indicating that N has been doped into carbon.
将制备的催化剂涂在玻璃碳电极上,在0.1M KOH溶液中进行循环伏安、极化曲线以及稳定性测试,测试结果如图5所示。The prepared catalyst was coated on the glassy carbon electrode, and the cyclic voltammetry, polarization curve and stability tests were carried out in 0.1M KOH solution. The test results are shown in Figure 5.
从图5(a)中可以看出,其中,F127为分子量Mn=12600g/mol样品,不加入Zn(OH)2,不加入PVP的纯物质高温生成的碳材料。不同比例的催化剂材料的1600rpm的极化曲线中,在添加的PVP比例为10%时体现了最优的性能:很好的起始电位,很好的极限电流密度(实施例1),从图5(b)可以看出,实施例1的催化剂随着旋转盘转数的增加,极限电流密度也随之增加,说明扩散层很薄,说明具有很多的活性位点。图5(c)为各电位下转移电子数,然后根据K-L公式计算转移电子数为3.98,利于四电子转移,适用于氧还原催化剂。由图5(d)可以看出,在循环2000圈和5000圈以后测试的极化曲线衰减很少,说明稳定性很好。It can be seen from Fig. 5(a) that F127 is a carbon material with a molecular weight of Mn=12600g/mol, without adding Zn(OH) 2 , and without adding PVP. In the polarization curve of 1600rpm of the catalyst material of different ratios, when the PVP ratio of adding is 10%, embodies optimal performance: very good starting potential, very good limiting current density (embodiment 1), from Fig. 5(b) It can be seen that the limiting current density of the catalyst in Example 1 increases with the increase of the number of revolutions of the rotating disk, indicating that the diffusion layer is very thin, indicating that there are many active sites. Figure 5(c) shows the number of transferred electrons at each potential, and the number of transferred electrons calculated according to the KL formula is 3.98, which is conducive to four-electron transfer and is suitable for oxygen reduction catalysts. It can be seen from Figure 5(d) that the measured polarization curve decays little after 2000 and 5000 cycles, indicating that the stability is very good.
对于任何熟悉本领域的技术人员而言,在不脱离本发明技术方案范围情况下,都可利用上述揭示的技术内容对本发明技术方案作出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均应仍属于本发明技术方案保护的范围内。For any person skilled in the art, without departing from the scope of the technical solution of the present invention, the technical content disclosed above can be used to make many possible changes and modifications to the technical solution of the present invention, or be modified to be equivalent to equivalent changes. Example. Therefore, any simple modifications, equivalent changes and modifications made to the above embodiments according to the technical essence of the present invention should still fall within the protection scope of the technical solution of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910770490.6A CN110492114B (en) | 2019-08-20 | 2019-08-20 | A nitrogen-doped porous carbon-oxygen reduction catalyst and its preparation method and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910770490.6A CN110492114B (en) | 2019-08-20 | 2019-08-20 | A nitrogen-doped porous carbon-oxygen reduction catalyst and its preparation method and application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110492114A true CN110492114A (en) | 2019-11-22 |
CN110492114B CN110492114B (en) | 2022-06-17 |
Family
ID=68552405
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910770490.6A Active CN110492114B (en) | 2019-08-20 | 2019-08-20 | A nitrogen-doped porous carbon-oxygen reduction catalyst and its preparation method and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110492114B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111495405A (en) * | 2020-03-11 | 2020-08-07 | 江苏大学 | A kind of preparation method of nitrogen-doped foam carbon cathode oxygen reduction catalyst |
CN111600039A (en) * | 2020-06-10 | 2020-08-28 | 昆明理工大学 | A kind of preparation method and application of Cl-N-C carbon-based catalyst |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104591178A (en) * | 2015-02-05 | 2015-05-06 | 中国科学院宁波材料技术与工程研究所 | Method for preparing graphene |
CN104689857A (en) * | 2015-03-26 | 2015-06-10 | 中国科学院青岛生物能源与过程研究所 | Preparing method for nitrogen-doped porous carbon material, catalyst comprising material and application of material |
CN105817254A (en) * | 2016-04-19 | 2016-08-03 | 江南大学 | Application of iron-based catalyst with porous film structure in Fischer-Tropsch reaction |
WO2018120067A1 (en) * | 2016-12-30 | 2018-07-05 | The University Of Hong Kong | Waste biomass-derived metal-free catalysts for oxygen reduction reaction |
CN109081340A (en) * | 2018-09-19 | 2018-12-25 | 中南大学 | A kind of pine tree based biomass active carbon and preparation method thereof and the application in electrochemical energy storage |
CN109167077A (en) * | 2018-09-13 | 2019-01-08 | 大连海事大学 | Phosphorus-doped porous carbon-oxygen reduction catalyst and preparation method and application thereof |
CN109594101A (en) * | 2019-01-22 | 2019-04-09 | 上海大学 | A kind of method for preparing catalyst of porous carbon load ruthenium |
CN110127695A (en) * | 2018-11-22 | 2019-08-16 | 南京林业大学 | A preparation method of sawdust-based porous carbon for supercapacitors |
-
2019
- 2019-08-20 CN CN201910770490.6A patent/CN110492114B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104591178A (en) * | 2015-02-05 | 2015-05-06 | 中国科学院宁波材料技术与工程研究所 | Method for preparing graphene |
CN104689857A (en) * | 2015-03-26 | 2015-06-10 | 中国科学院青岛生物能源与过程研究所 | Preparing method for nitrogen-doped porous carbon material, catalyst comprising material and application of material |
CN105817254A (en) * | 2016-04-19 | 2016-08-03 | 江南大学 | Application of iron-based catalyst with porous film structure in Fischer-Tropsch reaction |
WO2018120067A1 (en) * | 2016-12-30 | 2018-07-05 | The University Of Hong Kong | Waste biomass-derived metal-free catalysts for oxygen reduction reaction |
CN109167077A (en) * | 2018-09-13 | 2019-01-08 | 大连海事大学 | Phosphorus-doped porous carbon-oxygen reduction catalyst and preparation method and application thereof |
CN109081340A (en) * | 2018-09-19 | 2018-12-25 | 中南大学 | A kind of pine tree based biomass active carbon and preparation method thereof and the application in electrochemical energy storage |
CN110127695A (en) * | 2018-11-22 | 2019-08-16 | 南京林业大学 | A preparation method of sawdust-based porous carbon for supercapacitors |
CN109594101A (en) * | 2019-01-22 | 2019-04-09 | 上海大学 | A kind of method for preparing catalyst of porous carbon load ruthenium |
Non-Patent Citations (1)
Title |
---|
YOULIANG CHENG ET AL: "Controllable Morphologies of Carbon microspheres via Green Hydrothermal Method Using Fructose and Xylose", 《CHEMISTRY LETTERS》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111495405A (en) * | 2020-03-11 | 2020-08-07 | 江苏大学 | A kind of preparation method of nitrogen-doped foam carbon cathode oxygen reduction catalyst |
CN111495405B (en) * | 2020-03-11 | 2023-03-21 | 江苏大学 | Preparation method of nitrogen-doped carbon foam cathode oxygen reduction catalyst |
CN111600039A (en) * | 2020-06-10 | 2020-08-28 | 昆明理工大学 | A kind of preparation method and application of Cl-N-C carbon-based catalyst |
Also Published As
Publication number | Publication date |
---|---|
CN110492114B (en) | 2022-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Qiao et al. | Activated biochar derived from peanut shells as the electrode materials with excellent performance in Zinc-air battery and supercapacitance | |
CN102614904B (en) | Graphitized nitrogen-containing carbon material and application of same as electrocatalyst carrier | |
CN110911697A (en) | A transition metal/nitrogen-doped porous carbon nanosphere electrocatalyst and preparation method | |
CN102923688B (en) | Preparation method and application of nitrogen-doped carbon material | |
CN107256972A (en) | A kind of method based on the sour nickel nano film of the porous cobalt of hollow carbon sphere template growth | |
CN109081340B (en) | Pine-based biomass activated carbon, preparation method thereof and application thereof in electrochemical energy storage | |
CN108083261B (en) | Three-dimensional porous carbon material, three-dimensional porous nitrogen-doped carbon material, preparation method and application thereof | |
CN106803595A (en) | A kind of carbon-based oxygen reduction catalyst and preparation method and application | |
CN113135568A (en) | Nitrogen-doped porous carbon material and preparation method and application thereof | |
CN105513822B (en) | The preparation method of the electrode material of manganese dioxide cladding hollow carbon fiber | |
CN109167077B (en) | A kind of phosphorus-doped porous carbon-oxygen reduction catalyst, preparation method and application thereof | |
CN105152160A (en) | Preparation method of nitrogen-doped carbon microspheres | |
CN107579250A (en) | A kind of composite carbon material conductive agent | |
CN104645989A (en) | Heteroatom-doping porous carbon material and preparation method thereof | |
CN108314037A (en) | A kind of porous carbon materials and the preparation method and application thereof with cell cytoskeleton structure | |
CN110510596A (en) | Preparation and application of a nitrogen-iron co-doped biomass porous carbon material | |
CN110589823A (en) | A pomelo peel porous carbon material and its preparation method and application | |
CN108011094B (en) | Preparation method of composite positive electrode material of lithium-sulfur battery | |
CN110492114B (en) | A nitrogen-doped porous carbon-oxygen reduction catalyst and its preparation method and application | |
CN108281679A (en) | A kind of nitrogen-doped carbon nano material and its preparation method and application | |
Ding et al. | 3D spongy nanofiber structure Fe–NC catalysts built by a graphene regulated electrospinning method | |
CN108448124A (en) | A soybean bio-based fuel cell oxygen reduction catalyst and its preparation method and application | |
CN101916864A (en) | Palygorskite/Carbon Composite Material and Its Preparation and Application | |
CN114156467B (en) | NC@CoS with porous layered structure 2 Composite material and preparation method thereof | |
CN108242544A (en) | A kind of biomass activated carbon-based carbon material and its preparation method and application in sodium ion battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |