CN110491995B - Perovskite solar cell packaging structure and method - Google Patents
Perovskite solar cell packaging structure and method Download PDFInfo
- Publication number
- CN110491995B CN110491995B CN201910610614.4A CN201910610614A CN110491995B CN 110491995 B CN110491995 B CN 110491995B CN 201910610614 A CN201910610614 A CN 201910610614A CN 110491995 B CN110491995 B CN 110491995B
- Authority
- CN
- China
- Prior art keywords
- layer
- perovskite solar
- solar cell
- filling layer
- protective layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004806 packaging method and process Methods 0.000 title claims abstract description 35
- 238000000034 method Methods 0.000 title claims description 13
- 239000010410 layer Substances 0.000 claims abstract description 192
- 239000011241 protective layer Substances 0.000 claims abstract description 85
- 229910052751 metal Inorganic materials 0.000 claims abstract description 29
- 239000002184 metal Substances 0.000 claims abstract description 29
- 239000000758 substrate Substances 0.000 claims description 37
- 239000011521 glass Substances 0.000 claims description 25
- 239000000463 material Substances 0.000 claims description 15
- 238000007789 sealing Methods 0.000 claims description 15
- 238000003475 lamination Methods 0.000 claims description 14
- 230000007704 transition Effects 0.000 claims description 12
- 230000005525 hole transport Effects 0.000 claims description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 239000010949 copper Substances 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 6
- 239000005038 ethylene vinyl acetate Substances 0.000 claims description 4
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 claims description 4
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 claims description 4
- 239000002861 polymer material Substances 0.000 claims description 4
- 239000005341 toughened glass Substances 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims description 3
- 229920001971 elastomer Polymers 0.000 claims description 3
- 239000000806 elastomer Substances 0.000 claims description 3
- -1 polyethylene octene Polymers 0.000 claims description 3
- 229920002050 silicone resin Polymers 0.000 claims description 3
- 239000000853 adhesive Substances 0.000 claims description 2
- 230000001070 adhesive effect Effects 0.000 claims description 2
- 229920005549 butyl rubber Polymers 0.000 claims description 2
- 229920001169 thermoplastic Polymers 0.000 claims description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims 1
- 239000000741 silica gel Substances 0.000 claims 1
- 229910002027 silica gel Inorganic materials 0.000 claims 1
- 238000010248 power generation Methods 0.000 abstract description 7
- 239000000178 monomer Substances 0.000 abstract description 3
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- 210000004027 cell Anatomy 0.000 description 97
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 15
- 239000002243 precursor Substances 0.000 description 15
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 14
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical group CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 13
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 12
- 238000004528 spin coating Methods 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 239000002904 solvent Substances 0.000 description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 7
- 235000011613 Pinus brutia Nutrition 0.000 description 7
- 241000018646 Pinus brutia Species 0.000 description 7
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 6
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000002002 slurry Substances 0.000 description 4
- 239000004408 titanium dioxide Substances 0.000 description 4
- 238000000137 annealing Methods 0.000 description 3
- 210000003850 cellular structure Anatomy 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000008367 deionised water Substances 0.000 description 3
- 229910021641 deionized water Inorganic materials 0.000 description 3
- 239000003599 detergent Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000007772 electrode material Substances 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- XDXWNHPWWKGTKO-UHFFFAOYSA-N 207739-72-8 Chemical compound C1=CC(OC)=CC=C1N(C=1C=C2C3(C4=CC(=CC=C4C2=CC=1)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)C1=CC(=CC=C1C1=CC=C(C=C13)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)C1=CC=C(OC)C=C1 XDXWNHPWWKGTKO-UHFFFAOYSA-N 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000001680 brushing effect Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 229910021419 crystalline silicon Inorganic materials 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 1
- 239000002313 adhesive film Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 238000012536 packaging technology Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000010665 pine oil Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000012815 thermoplastic material Substances 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/10—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/80—Constructional details
- H10K30/88—Passivation; Containers; Encapsulations
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/50—Forming devices by joining two substrates together, e.g. lamination techniques
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Photovoltaic Devices (AREA)
Abstract
本发明涉及钙钛矿太阳能电池封装结构,包括层压件和安装在层压件周围的辅助框架,所述层压件包括依次叠置的正面保护层、上填充层、钙钛矿太阳能电池、中填充层、下填充层和背面保护层;所述下填充层与钙钛矿太阳能电池的正面直接接触,且下填充层填充在钙钛矿太阳能电池的正面与背面保护层之间;所述上填充层与钙钛矿太阳能电池的背面直接接触,且上填充层填充在钙钛矿太阳能电池的背面与正面保护层之间。本发明的有益效果是:本发明通过即插即用式的金属电极相互连接,可以控制光伏组件整体的电流电压和发电量,且组件安装方便,同时能够提高单体钙钛矿太阳能电池的稳定性,以延长光伏组件的寿命。
The present invention relates to a perovskite solar cell packaging structure, comprising a laminate and an auxiliary frame installed around the laminate, wherein the laminate comprises a front protective layer, an upper filling layer, a perovskite solar cell, a middle filling layer, a lower filling layer and a back protective layer stacked in sequence; the lower filling layer is in direct contact with the front of the perovskite solar cell, and the lower filling layer is filled between the front and back protective layers of the perovskite solar cell; the upper filling layer is in direct contact with the back of the perovskite solar cell, and the upper filling layer is filled between the back and front protective layers of the perovskite solar cell. The beneficial effects of the present invention are: the present invention can control the current, voltage and power generation of the entire photovoltaic module through the interconnection of plug-and-play metal electrodes, and the module is easy to install, and at the same time can improve the stability of the monomer perovskite solar cell to extend the life of the photovoltaic module.
Description
技术领域Technical Field
本发明属于光伏发电技术领域,具体涉及一种基于钙钛矿太阳能电池的封装方法。The present invention belongs to the technical field of photovoltaic power generation, and in particular relates to a packaging method based on perovskite solar cells.
背景技术Background technique
目前,晶硅太阳能电池产业化技术已经非常成熟,然而与传统能源相比,较高的发电成本制约了晶硅太阳能电池的大规模普及。近年来,钙钛矿太阳能电池发展迅速,其优点十分突出:1、有机-无机杂化钙钛矿材料制作简单、成本较低;2、具有较为适宜的带隙宽度(1.5~2.3eV),光吸收范围较大;3、电荷扩散长度高达微米级,电荷寿命较长等;4、可制备柔性、透明电池。因此,钙钛矿太阳能电池及相关材料已成为光伏领域研究热点,目前获得了超过23%的光电转换效率,应用前景十分广阔。At present, the industrialization technology of crystalline silicon solar cells is very mature. However, compared with traditional energy sources, the high cost of power generation restricts the large-scale popularization of crystalline silicon solar cells. In recent years, perovskite solar cells have developed rapidly, and their advantages are very prominent: 1. Organic-inorganic hybrid perovskite materials are simple to make and low in cost; 2. They have a more suitable band gap width (1.5-2.3eV) and a larger light absorption range; 3. The charge diffusion length is as high as micrometers, and the charge life is long; 4. Flexible and transparent batteries can be prepared. Therefore, perovskite solar cells and related materials have become a hot research topic in the photovoltaic field. At present, they have achieved a photoelectric conversion efficiency of more than 23%, and their application prospects are very broad.
然而,典型的钙钛矿太阳能电池结构中,使用金属作为顶电极、Spiro-OMeTAD(2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴)作为空穴传输层。但金属材料价格昂贵,且制作工艺设备要求高;空穴传输层稳定性不佳,价格昂贵。新型碳材料成为了很好的一个替换材料,其能级与金属接近、且拥有良好的空穴收集能力。However, in the typical perovskite solar cell structure, metal is used as the top electrode and Spiro-OMeTAD (2,2',7,7'-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene) is used as the hole transport layer. However, metal materials are expensive and require high manufacturing process equipment; the hole transport layer has poor stability and is expensive. The new carbon material has become a good alternative material, with energy levels close to those of metals and good hole collection capabilities.
单体钙钛矿太阳能电池的稳定性不佳,且单体面积小,发电量少,电流电压不满足常见器件的供电要求,且作为基板的导电玻璃非钢化玻璃,不适用于光伏建筑一体化等应用需求。例如:专利CN207217595U和专利CN207009453U分别公开了一种钙钛矿太阳能电池的封装结构,防止漏电,并提高电池耐久性能。但是,现有封装技术只是保护电池,不能灵活调控开路电压和电流密度,正负极连接处的水气渗透率较高,会影响对水极其敏感的钙钛矿太阳能电池寿命。The stability of single perovskite solar cells is poor, and the single cell area is small, the power generation is small, the current and voltage do not meet the power supply requirements of common devices, and the conductive glass used as the substrate is not tempered glass, which is not suitable for application requirements such as photovoltaic building integration. For example: Patent CN207217595U and Patent CN207009453U respectively disclose a packaging structure of a perovskite solar cell to prevent leakage and improve battery durability. However, the existing packaging technology only protects the battery and cannot flexibly adjust the open circuit voltage and current density. The water vapor permeability at the connection between the positive and negative electrodes is high, which will affect the life of the perovskite solar cell, which is extremely sensitive to water.
发明内容Summary of the invention
针对现有技术中钙钛矿太阳能电池光伏组件稳定性不佳、发电量少等问题,提供一种钙钛矿太阳能电池封装结构及方法,提高光伏电池的性能以及实用性。In view of the problems of poor stability and low power generation of perovskite solar cell photovoltaic modules in the prior art, a perovskite solar cell packaging structure and method are provided to improve the performance and practicality of photovoltaic cells.
这种钙钛矿太阳能电池封装结构,包括层压件和安装在层压件周围的辅助框架,所述层压件包括依次叠置的正面保护层、上填充层、钙钛矿太阳能电池、中填充层、下填充层和背面保护层;所述下填充层与钙钛矿太阳能电池的正面直接接触,且下填充层填充在钙钛矿太阳能电池的正面与背面保护层之间;所述上填充层与钙钛矿太阳能电池的背面直接接触,且上填充层填充在钙钛矿太阳能电池的背面与正面保护层之间;正面保护层和背面保护层的内侧不同端分别设有金属电极;正面保护层和背面保护层均设有内部连接件;钙钛矿太阳能电池的正极和负极分别通过内部连接件与背面保护层和正面保护层内侧的导电层连接;单体的层压件之间通过外部连接件从一个层压件的金属电极连接至另一个层压件的金属电极,并通过辅助框架固定;所述正面保护层和背面保护层均由基底和导电层构成。This perovskite solar cell packaging structure includes a laminate and an auxiliary frame installed around the laminate, wherein the laminate includes a front protective layer, an upper filling layer, a perovskite solar cell, a middle filling layer, a lower filling layer and a back protective layer stacked in sequence; the lower filling layer is in direct contact with the front of the perovskite solar cell, and the lower filling layer is filled between the front and back protective layers of the perovskite solar cell; the upper filling layer is in direct contact with the back of the perovskite solar cell, and the upper filling layer is filled between the back and front protective layers of the perovskite solar cell; metal electrodes are respectively provided at different ends of the inner sides of the front protective layer and the back protective layer; the front protective layer and the back protective layer are both provided with internal connectors; the positive and negative electrodes of the perovskite solar cell are respectively connected to the back protective layer and the conductive layer inside the front protective layer through the internal connectors; the single laminates are connected from the metal electrode of one laminate to the metal electrode of another laminate through external connectors and fixed by the auxiliary frame; the front protective layer and the back protective layer are both composed of a substrate and a conductive layer.
作为优选:所述外部连接件是有一定弹性的导电金属片,如铜片。Preferably, the external connecting member is a conductive metal sheet with a certain elasticity, such as a copper sheet.
作为优选:所述钙钛矿太阳能电池包括依次设置的底电极(正极)、过渡层、钙钛矿层、过渡层以及顶电极(负极),底电极与钙钛矿层之间的过渡层是电子传输层,顶电极与钙钛矿层之间的过渡层是空穴传输层;钙钛矿太阳能电池是单基板电池或是由若干个钙钛矿太阳能电池片组成的电池串,若是若干个钙钛矿太阳能电池片组成的电池串,则相邻的钙钛矿太阳能电池片之间通过金属电极相连,即金属电极从一个钙钛矿太阳能电池片的正极连接至相邻的另一个钙钛矿太阳能电池片的负极;或者,金属电极分别将相邻两个钙钛矿太阳能电池片的正极相连、负极相连;所述中填充层填充在相邻的钙钛矿太阳能电池片之间;所述金属电极为镀锡铜带或导电胶,其宽度为0.5mm~10mm。Preferably, the perovskite solar cell comprises a bottom electrode (positive electrode), a transition layer, a perovskite layer, a transition layer and a top electrode (negative electrode) arranged in sequence, the transition layer between the bottom electrode and the perovskite layer is an electron transport layer, and the transition layer between the top electrode and the perovskite layer is a hole transport layer; the perovskite solar cell is a single-substrate cell or a cell string composed of a plurality of perovskite solar cells. If the cell string is composed of a plurality of perovskite solar cells, adjacent perovskite solar cells are connected by metal electrodes, that is, the metal electrode is connected from the positive electrode of one perovskite solar cell to the negative electrode of another adjacent perovskite solar cell; or, the metal electrode connects the positive electrodes and the negative electrodes of two adjacent perovskite solar cells respectively; the middle filling layer is filled between adjacent perovskite solar cells; the metal electrode is a tinned copper strip or a conductive adhesive with a width of 0.5 mm to 10 mm.
作为优选:所述上填充层、中填充层和下填充层的材质为聚乙烯辛烯共弹性体、乙烯-醋酸乙烯酯共聚物、聚乙烯醇缩丁醛或有机硅树脂;上填充层和下填充层的厚度为0.1mm~5mm,中填充层的厚度与钙钛矿太阳能电池的厚度相同。Preferably, the material of the upper filling layer, the middle filling layer and the lower filling layer is polyethylene octene co-elastomer, ethylene-vinyl acetate copolymer, polyvinyl butyral or silicone resin; the thickness of the upper filling layer and the lower filling layer is 0.1mm to 5mm, and the thickness of the middle filling layer is the same as that of the perovskite solar cell.
作为优选:所述正面保护层由正面保护层基底和正面保护层导电层构成,背面保护层由背面保护层基底和背面保护层导电层构成;正面保护层导电层和背面保护层导电层的材质是通过CVD等方式制作的FTO、ITO或AZO;正面保护层基底和背面保护层基底的材质为超白玻璃、钢化玻璃或透明高分子材料;正面保护层和背面保护层的厚度为0.1μm~10mm。Preferably: the front protective layer is composed of a front protective layer substrate and a front protective layer conductive layer, and the back protective layer is composed of a back protective layer substrate and a back protective layer conductive layer; the material of the front protective layer conductive layer and the back protective layer conductive layer is FTO, ITO or AZO made by CVD or the like; the material of the front protective layer substrate and the back protective layer substrate is ultra-white glass, tempered glass or transparent polymer material; the thickness of the front protective layer and the back protective layer is 0.1μm to 10mm.
作为优选:所述辅助边框内侧设有柔性的密封垫片且固定在内表面,辅助框架和密封垫片的材料为硅胶、丁基胶或热塑高分子材料,密封垫片固定在辅助边框内表面,提高连接处的防水性能;辅助边框还包括外部连接件,在不同电池连接方式时,可以同时起到固定、密封和导电作用;钙钛矿太阳能电池片之间的电池连接方式包括串联和并联,其中串联包括横串和竖串;一个钙钛矿太阳能电池片的正极连接相邻的另一个钙钛矿太阳能电池片的负极的串联结构中,以电池正负极连线方向串联即为横串,并通过辅助框架固定;以电池正负极连线方向的垂直方向串联即为竖串,辅助框架中的外部连接件连接相邻两个钙钛矿太阳能电池片的正负极;相邻两个钙钛矿太阳能电池片的并联结构中,辅助框架中的外部连接件分别将相邻两个钙钛矿太阳能电池片的正极相连、负极相连。Preferably: a flexible sealing gasket is provided on the inner side of the auxiliary frame and fixed on the inner surface; the materials of the auxiliary frame and the sealing gasket are silicone, butyl rubber or thermoplastic polymer material; the sealing gasket is fixed on the inner surface of the auxiliary frame to improve the waterproof performance of the connection; the auxiliary frame also includes an external connector, which can simultaneously play a fixing, sealing and conductive role in different battery connection modes; the battery connection mode between the perovskite solar cells includes series connection and parallel connection, wherein the series connection includes horizontal string and vertical string; in the series connection structure in which the positive electrode of one perovskite solar cell is connected to the negative electrode of another adjacent perovskite solar cell, the series connection in the direction of the battery positive and negative electrode connection is a horizontal string, and is fixed by the auxiliary frame; the series connection in the direction perpendicular to the battery positive and negative electrode connection direction is a vertical string, and the external connector in the auxiliary frame connects the positive and negative electrodes of two adjacent perovskite solar cells; in the parallel structure of two adjacent perovskite solar cells, the external connector in the auxiliary frame connects the positive electrodes and the negative electrodes of the two adjacent perovskite solar cells respectively.
这种钙钛矿太阳能电池封装结构的封装方法,包括以下步骤:The packaging method of the perovskite solar cell packaging structure comprises the following steps:
1)将背面保护层、下填充层、中填充层、钙钛矿太阳能电池、上填充层及正面保护层按照一定的层次敷设后放入层压机内;1) Lay the back protective layer, the lower filling layer, the middle filling layer, the perovskite solar cell, the upper filling layer and the front protective layer in a certain layer and put them into a laminator;
2)在层压机内,加热使下填充层、中填充层和上填充层熔化,以将正面保护层、钙钛矿太阳能电池和背面保护层粘结在一起,形成层压件,冷却后取出;2) In a laminator, heating is performed to melt the lower filling layer, the middle filling layer and the upper filling layer to bond the front protection layer, the perovskite solar cell and the back protection layer together to form a laminate, which is then taken out after cooling;
3)将层压件根据需要连接,安装辅助框架进行固定。3) Connect the laminated parts as needed and install the auxiliary frame for fixing.
作为优选:所述步骤1)中,根据层压件的不同电池厚度以及封装结构,调节下填充层、中填充层和上填充层的厚度。Preferably, in step 1), the thicknesses of the lower filling layer, the middle filling layer and the upper filling layer are adjusted according to different battery thicknesses and packaging structures of the laminate.
作为优选:所述步骤2)中,钙钛矿吸光层采用纯无机钙钛矿或有机钙钛矿,根据钙钛矿太阳能电池的不同钙钛矿吸光层种类导致的耐温性能差异,调节下填充层、中填充层和上填充层的固化温度。Preferably, in step 2), the perovskite light absorbing layer is made of pure inorganic perovskite or organic perovskite, and the curing temperatures of the lower filling layer, the middle filling layer and the upper filling layer are adjusted according to the difference in temperature resistance caused by different types of perovskite light absorbing layers of the perovskite solar cell.
作为优选:所述步骤2)中,层压温度范围为100℃~150℃;层压时间为15min~30min。Preferably, in step 2), the lamination temperature ranges from 100° C. to 150° C., and the lamination time ranges from 15 min to 30 min.
本发明的有益效果是:The beneficial effects of the present invention are:
1)本发明通过即插即用式的金属电极相互连接,可以控制光伏组件整体的电流电压和发电量,且组件安装方便,同时能够提高单体钙钛矿太阳能电池的稳定性,以延长光伏组件的寿命。1) The present invention can control the overall current, voltage and power generation of the photovoltaic module through plug-and-play metal electrodes connected to each other, and the module is easy to install. At the same time, it can improve the stability of the single perovskite solar cell to extend the life of the photovoltaic module.
2)本发明通过将多个钙钛矿太阳能电池片相连,可以制作成高电压、高电流组件,且正面保护层和背面保护层能够提高电池机械抗压能力,上填充层、中填充层、下填充层起到粘结、固定电池,以及防护作用。2) The present invention can be made into a high-voltage, high-current component by connecting multiple perovskite solar cells, and the front protective layer and the back protective layer can improve the mechanical compressive resistance of the battery, and the upper filling layer, the middle filling layer, and the lower filling layer play a role in bonding, fixing the battery, and protecting it.
3)本发明不像传统电池需要正负电极通过金属电极引出至填充层外,避免了电极材料、填充材料不同的热膨胀系数导致的密封性下降以及水、氧渗透的薄弱区域的形成;此结构具有良好的密封性,使得电池能够防风、防水、隔绝大气,避免了环境对太阳能电池的腐蚀。3) Unlike traditional batteries, the present invention does not require the positive and negative electrodes to be led out of the filling layer through metal electrodes, thus avoiding the decrease in sealing caused by the different thermal expansion coefficients of the electrode material and the filling material and the formation of weak areas for water and oxygen penetration; this structure has good sealing properties, making the battery windproof, waterproof, and isolated from the atmosphere, avoiding environmental corrosion to the solar cell.
4)本发明的开路电压和电流密度可灵活调控的钙钛矿太阳能组件,不但解决了电池的封装问题,而且电池器件本身将具有广泛的用途。4) The perovskite solar module of the present invention, whose open circuit voltage and current density can be flexibly adjusted, not only solves the packaging problem of the battery, but also the battery device itself will have a wide range of uses.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为本发明钙钛矿太阳能电池封装结构的单体层压件的剖面图;FIG1 is a cross-sectional view of a single laminate of a perovskite solar cell encapsulation structure of the present invention;
图2为本发明钙钛矿太阳能电池封装结构的左右两个层压件串联(横串)连接图(实际数量可为n);FIG2 is a diagram showing a series (horizontal series) connection of two left and right laminates of a perovskite solar cell packaging structure according to the present invention (the actual number may be n);
图3为图2中左右两个层压件串联(横串)后A-A剖面图;FIG3 is a cross-sectional view of the left and right laminates in FIG2 after they are connected in series (horizontally);
图4为本发明钙钛矿太阳能电池封装结构的上下两个层压件待串联(竖串)连接图(实际数量可为n);FIG4 is a diagram of the upper and lower laminates of the perovskite solar cell packaging structure of the present invention to be connected in series (vertical series) (the actual number may be n);
图5为图4中上下两个层压件串联(竖串)后侧视图;FIG5 is a side view of the upper and lower laminates in FIG4 after being connected in series (vertical series);
图6为本发明钙钛矿太阳能电池封装结构的两个层压件待并联连接图(实际数量可为n);FIG6 is a diagram of two laminated components of the perovskite solar cell packaging structure to be connected in parallel (the actual number may be n);
图7为图6中两个层压件并联后侧视图;FIG7 is a side view of two laminates in FIG6 connected in parallel;
图8为对比例的钙钛矿太阳能电池封装结构剖面图。FIG8 is a cross-sectional view of the packaging structure of a perovskite solar cell of a comparative example.
附图标记说明:1、正面保护层;1a、正面保护层基底;1b、正面保护层导电层;2、背面保护层;2a、背面保护层基底;2b、背面保护层导电层;3、上填充层;4a、钙钛矿太阳能电池;4b、中填充层;5、下填充层;6a、内部连接件;6b、外部连接件;7、金属电极;8、辅助框架;8a、密封垫片;9、正极;10、负极。Explanation of the accompanying drawings: 1. front protective layer; 1a. front protective layer substrate; 1b. front protective layer conductive layer; 2. back protective layer; 2a. back protective layer substrate; 2b. back protective layer conductive layer; 3. upper filling layer; 4a. perovskite solar cell; 4b. middle filling layer; 5. lower filling layer; 6a. internal connector; 6b. external connector; 7. metal electrode; 8. auxiliary frame; 8a. sealing gasket; 9. positive electrode; 10. negative electrode.
具体实施方式Detailed ways
下面结合实施例对本发明做进一步描述。下述实施例的说明只是用于帮助理解本发明。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。The present invention is further described below in conjunction with embodiments. The description of the following embodiments is only used to help understand the present invention. It should be noted that for those of ordinary skill in the art, without departing from the principles of the present invention, several improvements and modifications may be made to the present invention, and these improvements and modifications also fall within the scope of protection of the claims of the present invention.
本发明通过即插即用式的正面保护层1和背面保护层2的金属电极7相互连接,可以控制光伏组件整体的电流电压和发电量,且组件方便安装,同时能够提高单体钙钛矿太阳能电池的稳定性,以延长光伏组件的寿命。具体而言,通过将多个钙钛矿太阳能电池片相连,可以制作成高电压、高电流组件,且正面保护层1和背面保护层2能够提高电池机械抗压能力,上填充层3、中填充层4b、下填充层5起到粘结、固定电池,以及防护作用。由于不像传统电池需要正负电极通过金属电极7引出至填充层外,避免了电极材料、填充材料不同的热膨胀系数导致的密封性下降以及水、氧渗透的薄弱区域的形成;此结构具有良好的密封性,使得电池能够防风、防水、隔绝大气,避免环境对太阳能电池的腐蚀。由此,本发明的开路电压和电流密度可灵活调控的钙钛矿太阳能组件,不但解决了电池的封装问题,而且电池器件本身将具有广泛的用途。The present invention can control the current, voltage and power generation of the photovoltaic module as a whole by connecting the metal electrodes 7 of the front protective layer 1 and the back protective layer 2 of the plug-and-play type, and the assembly is easy to install, and at the same time, the stability of the single perovskite solar cell can be improved to extend the life of the photovoltaic module. Specifically, by connecting multiple perovskite solar cells, a high-voltage, high-current component can be made, and the front protective layer 1 and the back protective layer 2 can improve the mechanical compressive resistance of the battery, and the upper filling layer 3, the middle filling layer 4b, and the lower filling layer 5 play a bonding, fixing battery, and protective role. Because unlike traditional batteries, the positive and negative electrodes are not required to be led out of the filling layer through the metal electrode 7, the decrease in sealing caused by the different thermal expansion coefficients of the electrode material and the filling material and the formation of weak areas of water and oxygen penetration are avoided; this structure has good sealing, so that the battery can be windproof, waterproof, and isolated from the atmosphere, avoiding environmental corrosion to the solar cell. Therefore, the perovskite solar module with flexible open circuit voltage and current density of the present invention not only solves the packaging problem of the battery, but also the battery device itself will have a wide range of uses.
如图1所示,所述的钙钛矿太阳能电池封装结构,包括层压件和辅助框架8,所述层压件包括依次叠置的正面保护层1、上填充层3、钙钛矿太阳能电池4a、中填充层4b、下填充层5和背面保护层2。所述上填充层3与钙钛矿太阳能电池4a的背面直接接触,且上填充层3填充在钙钛矿太阳能电池4a的背面与正面保护层1之间。内部连接件6a直接从钙钛矿太阳能电池4a的背面连接到正面保护层1内侧的正面保护层导电层1b上。下填充层5与钙钛矿太阳能电池4a的正面直接接触,且下填充层5填充在钙钛矿太阳能电池4a的正面与背面保护层2之间,通过打孔等方式用内部连接件6a直接从钙钛矿太阳能电池4a的正面连接到背面保护层2内侧的背面保护层导电层2b上。正面保护层导电层1b和背面保护层导电层2b与金属电极7导通,因此层压件内部的正极9和负极10等同于金属电极7的正负极。所述的辅助框架8用于层压件间的串并联固定以及电极导通。As shown in FIG1 , the perovskite solar cell packaging structure comprises a laminate and an auxiliary frame 8, wherein the laminate comprises a front protective layer 1, an upper filling layer 3, a perovskite solar cell 4a, a middle filling layer 4b, a lower filling layer 5 and a back protective layer 2 stacked in sequence. The upper filling layer 3 is in direct contact with the back of the perovskite solar cell 4a, and the upper filling layer 3 is filled between the back of the perovskite solar cell 4a and the front protective layer 1. The internal connector 6a is directly connected from the back of the perovskite solar cell 4a to the front protective layer conductive layer 1b on the inner side of the front protective layer 1. The lower filling layer 5 is in direct contact with the front of the perovskite solar cell 4a, and the lower filling layer 5 is filled between the front of the perovskite solar cell 4a and the back protective layer 2, and is directly connected from the front of the perovskite solar cell 4a to the back protective layer conductive layer 2b on the inner side of the back protective layer 2 by punching or the like. The front protective layer conductive layer 1b and the back protective layer conductive layer 2b are connected to the metal electrode 7, so the positive electrode 9 and the negative electrode 10 inside the laminate are equivalent to the positive and negative electrodes of the metal electrode 7. The auxiliary frame 8 is used for series and parallel fixation between the laminates and electrode conduction.
所述钙钛矿太阳能电池4a包括依次设置的底电极(正极)及过渡层、钙钛矿层、过渡层及顶电极(负极),底电极和钙钛矿层之间的过渡层是电子传输层,顶电极和钙钛矿层之间的过渡层是空穴传输层。The perovskite solar cell 4a includes a bottom electrode (positive electrode) and a transition layer, a perovskite layer, a transition layer and a top electrode (negative electrode) arranged in sequence. The transition layer between the bottom electrode and the perovskite layer is an electron transport layer, and the transition layer between the top electrode and the perovskite layer is a hole transport layer.
所述上填充层3、中填充层4b、下填充层5采用聚乙烯辛烯共弹性体(POE)、乙烯-醋酸乙烯酯共聚物(EVA)、聚乙烯醇缩丁醛(PVB)或有机硅树脂,可根据不同的钙钛矿吸光层种类导致的耐温性能差异,调节交联温度,以免在层压时,高温影响到钙钛矿吸光层,导致性能降低。若是光伏组件,选择的固化温度较高,若是普通组件,可以选择更低温的热塑性材料。普通组件指的是室内应用的组件,本发明的组件可直接用于光伏建筑一体化的建筑本身的一部分。The upper filling layer 3, the middle filling layer 4b, and the lower filling layer 5 are made of polyethylene octene co-elastomer (POE), ethylene-vinyl acetate copolymer (EVA), polyvinyl butyral (PVB) or silicone resin. The cross-linking temperature can be adjusted according to the difference in temperature resistance caused by different types of perovskite light-absorbing layers, so as to avoid high temperature affecting the perovskite light-absorbing layer during lamination, resulting in reduced performance. If it is a photovoltaic module, the selected curing temperature is higher. If it is an ordinary module, a thermoplastic material with a lower temperature can be selected. Ordinary modules refer to modules for indoor applications. The modules of the present invention can be directly used as part of the building itself of photovoltaic building integration.
所述正、背面保护层的基底可以选用超白玻璃、钢化玻璃等透明材料。The substrates of the front and back protective layers can be made of transparent materials such as ultra-white glass and tempered glass.
所述正、背面保护层内侧均设有导电层,其可以选用FTO、ATO、AZO。The inner sides of the front and back protective layers are both provided with conductive layers, which can be made of FTO, ATO, or AZO.
所述辅助框架8用于层压件之间的串并联的固定,连接处的密封和导电。The auxiliary frame 8 is used for fixing the series and parallel connections between the laminates, and for sealing and conducting the connections.
所述的钙钛矿太阳能电池封装结构的封装方法,具体步骤如下:The packaging method of the perovskite solar cell packaging structure comprises the following specific steps:
(1)层压敷设:将正面保护层1、上填充层3、钙钛矿太阳能电池4a、中填充层4b、下填充层5、背面保护层2按照一定的层次敷设好放入层压机内,准备层压;(1) Lamination: Lay the front protective layer 1, the upper filling layer 3, the perovskite solar cell 4a, the middle filling layer 4b, the lower filling layer 5, and the back protective layer 2 in a certain layer in a laminator and prepare for lamination;
(2)组件层压:在层压机内,加热上述敷设好的组件以使胶膜熔化,将正面保护层1、钙钛矿太阳能电池4a和背面保护层2粘结在一起,冷却后取出层压件;在加热之前,还可通过抽真空将组件内的空气抽出;(2) Component lamination: In a laminator, the laid components are heated to melt the adhesive film, and the front protective layer 1, the perovskite solar cell 4a and the back protective layer 2 are bonded together. After cooling, the laminate is taken out; before heating, the air in the components can also be evacuated by vacuuming;
(3)装边框:将层压件根据需要连接,安装辅助框架8。(3) Frame installation: connect the laminated parts as required and install the auxiliary frame 8.
其中钙钛矿太阳能电池4a可以是单体钙钛矿太阳能电池片或单体钙钛矿太阳能模块。The perovskite solar cell 4a may be a single perovskite solar cell sheet or a single perovskite solar module.
较佳的,步骤2)中,层压温度范围100℃~150℃,层压时间15min~30min。Preferably, in step 2), the lamination temperature ranges from 100° C. to 150° C., and the lamination time ranges from 15 min to 30 min.
将单体钙钛矿太阳能电池片或单体钙钛矿太阳能模块层压成组件。正负极连接在正、背面保护层内侧,相比传统的组件,不需要将正负极从填充层引出,因此避免了不同材料间的热膨胀系数不同导致的水汽渗漏。层压件之间通过金属电极7即插即用,辅助框架8提供固定密封和导电功能,组成电池组件或光伏组件,不但提高了单体钙钛矿太阳能电池片的寿命和耐候性能,同时安装方便、可靠、快捷。The single perovskite solar cell or single perovskite solar module is laminated into a component. The positive and negative electrodes are connected to the inner side of the positive and back protective layers. Compared with the traditional components, the positive and negative electrodes do not need to be led out of the filling layer, thus avoiding the water vapor leakage caused by the different thermal expansion coefficients between different materials. The laminated parts are plug-and-play through the metal electrode 7, and the auxiliary frame 8 provides fixed sealing and conductive functions to form a battery assembly or photovoltaic assembly, which not only improves the life and weather resistance of the single perovskite solar cell, but also makes the installation convenient, reliable and fast.
以下通过具体的实施例进一步详细说明本发明的钙钛矿太阳能电池封装结构及方法。The perovskite solar cell packaging structure and method of the present invention are further described in detail below through specific embodiments.
实施例1Example 1
单体钙钛矿太阳能电池片的封装,其中,单个电池片上只做一节电池。The packaging of a single perovskite solar cell, where only one battery is made on a single cell.
(1)在FTO玻璃基板的一端用激光刻蚀出一条绝缘线,将FTO玻璃基板分割成面积一大一小两端,后续工艺直至刷碳前,都在大面积一端进行。(1) An insulating line is etched at one end of the FTO glass substrate by laser, dividing the FTO glass substrate into two ends, one large and one small. Subsequent processes until carbon brushing are all carried out at the end with the large area.
(2)分别用丙酮、碱洗涤剂、去离子水、丙酮超声清洗FTO玻璃十分钟,最后吹干。(2) The FTO glass was cleaned with acetone, alkaline detergent, deionized water, and acetone ultrasonically for ten minutes respectively, and finally dried.
(3)在FTO玻璃基板上制备TiO2致密层,前驱体溶液溶剂为乙醇和水,前驱体溶液包括以下成分:钛酸四异丙酯(0.3mol/L)、乙酰丙酮(0.45mol/L)、盐酸(0.09mol/L)。吸取前驱体溶液,滴加于清洗干净的FTO玻璃基板上,使溶液铺满整个FTO玻璃基板表面,采用旋涂法成膜,旋涂速度3000rpm,时间20s。在马弗炉中510℃烧结30min。(3) Prepare a dense TiO2 layer on a FTO glass substrate. The precursor solution solvent is ethanol and water. The precursor solution includes the following components: tetraisopropyl titanate (0.3 mol/L), acetylacetone (0.45 mol/L), and hydrochloric acid (0.09 mol/L). Take the precursor solution and drip it onto the cleaned FTO glass substrate so that the solution covers the entire surface of the FTO glass substrate. Spin coating is used to form a film at a spin coating speed of 3000 rpm for 20 seconds. Sinter in a muffle furnace at 510°C for 30 minutes.
(4)在致密层上,丝网印刷二氧化钛浆料作为电子传输层,固含量10%,溶剂为松油醇,在马弗炉中510℃烧结30min。(4) On the dense layer, screen-print titanium dioxide slurry as an electron transport layer with a solid content of 10% and pine alcohol as the solvent, and sinter it at 510° C. in a muffle furnace for 30 min.
(5)量取461毫克碘化铅(PbI2)、159毫克CH3NH3I粉体、78毫克二甲亚砜混于600毫克N,N-二甲基甲酰胺(DMF),室温下搅拌1小时,形成CH3NH3PbI3钙钛矿前驱体溶液。以此前驱体溶液为旋涂液,采用旋涂法制备未经热处理的钙钛矿薄膜,旋涂速度5000rpm,时间20s,100℃退火5分钟。(5) 461 mg of lead iodide (PbI 2 ), 159 mg of CH 3 NH 3 I powder, and 78 mg of dimethyl sulfoxide were mixed in 600 mg of N,N-dimethylformamide (DMF) and stirred at room temperature for 1 hour to form a CH 3 NH 3 PbI 3 perovskite precursor solution. The precursor solution was used as a spin coating solution to prepare a perovskite film without heat treatment by spin coating at a speed of 5000 rpm for 20 seconds and annealing at 100°C for 5 minutes.
(6)在钙钛矿层上,丝网印刷碳浆料作为空穴传输层以及对电极,固含量37%,溶剂为松油醇,图案一端覆盖在钙钛矿层上,另一端跨过刻蚀线,直接接触到小面积的FTO玻璃基板,得到钙钛矿太阳能电池。(6) On the perovskite layer, screen-printed carbon paste is used as a hole transport layer and a counter electrode. The solid content is 37% and the solvent is pine alcohol. One end of the pattern covers the perovskite layer, and the other end crosses the etching line and directly contacts a small area of FTO glass substrate to obtain a perovskite solar cell.
(7)将下填充层5铺在背面保护层2上。(7) Lay the lower filling layer 5 on the back protection layer 2.
(8)将钙钛矿太阳能电池4a放在下填充层5上。(8) The perovskite solar cell 4 a is placed on the lower filling layer 5 .
(9)将钙钛矿太阳能电池4a四周垫上中填充层4b。(9) A middle filling layer 4b is placed around the perovskite solar cell 4a.
(10)在钙钛矿太阳能电池碳对极上覆盖上填充层3。(10) Cover the carbon counter electrode of the perovskite solar cell with a filling layer 3.
(11)在上填充层3外覆盖正面保护层1。(11) The front protection layer 1 is covered on the outside of the upper filling layer 3.
(12)使用镀锡铜带分别将钙钛矿太阳能电池4a的正、负极分别连接至背、正面保护层内侧的导电层上。(12) Use tinned copper tape to connect the positive and negative electrodes of the perovskite solar cell 4a to the conductive layers on the inner side of the back and front protective layers respectively.
(13)将摆放好的钙钛矿太阳能电池组件放入层压机,设定温度140℃,时间15min进行层压,制作成层压件。(13) The arranged perovskite solar cell components are placed in a laminator, the temperature is set to 140°C, and the lamination time is 15 minutes to produce a laminated part.
对比例1Comparative Example 1
单体钙钛矿太阳能电池片的封装,其中,单个电池片上只做一节电池。The packaging of a single perovskite solar cell, where only one battery is made on a single cell.
(1)在FTO玻璃基板的一端用激光刻蚀出一条绝缘线,将FTO玻璃基板分割成面积一大一小两端,后续工艺直至刷碳前,都在大面积一端进行。(1) An insulating line is etched at one end of the FTO glass substrate by laser, dividing the FTO glass substrate into two ends, one large and one small. Subsequent processes until carbon brushing are all carried out at the end with the large area.
(2)分别用丙酮、碱洗涤剂、去离子水、丙酮超声清洗FTO玻璃基板十分钟,最后吹干。(2) The FTO glass substrate was cleaned with acetone, alkaline detergent, deionized water, and acetone ultrasonically for ten minutes respectively, and finally dried.
(3)在FTO玻璃基板上制备TiO2致密层,前驱体溶液溶剂为乙醇和水,前驱体溶液包括以下成分:钛酸四异丙酯(0.3mol/L)、乙酰丙酮(0.45mol/L)、盐酸(0.09mol/L)。吸取前驱体溶液,滴加于清洗干净的FTO玻璃基板上,使溶液铺满整个FTO玻璃基板表面,采用旋涂法成膜,旋涂速度3000rpm,时间20s。在马弗炉中510℃烧结30min。(3) Prepare a dense TiO2 layer on a FTO glass substrate. The precursor solution solvent is ethanol and water. The precursor solution includes the following components: tetraisopropyl titanate (0.3 mol/L), acetylacetone (0.45 mol/L), and hydrochloric acid (0.09 mol/L). Take the precursor solution and drip it onto the cleaned FTO glass substrate so that the solution covers the entire surface of the FTO glass substrate. Spin coating is used to form a film at a spin coating speed of 3000 rpm for 20 seconds. Sinter in a muffle furnace at 510°C for 30 minutes.
(4)在致密层上,丝网印刷二氧化钛浆料作为电子传输层,固含量10%,溶剂为松油醇,在马弗炉中510℃烧结30min。(4) On the dense layer, screen-print titanium dioxide slurry as an electron transport layer with a solid content of 10% and pine alcohol as the solvent, and sinter it at 510° C. in a muffle furnace for 30 min.
(5)量取461毫克碘化铅(PbI2)、159毫克CH3NH3I粉体、78毫克二甲亚砜混于600毫克N,N-二甲基甲酰胺(DMF),室温下搅拌1小时,形成CH3NH3PbI3钙钛矿前驱体溶液。以此前驱体溶液为旋涂液,采用旋涂法制备未经热处理的钙钛矿薄膜,旋涂速度5000rpm,时间20s,100℃退火5分钟。(5) 461 mg of lead iodide (PbI 2 ), 159 mg of CH 3 NH 3 I powder, and 78 mg of dimethyl sulfoxide were mixed in 600 mg of N,N-dimethylformamide (DMF) and stirred at room temperature for 1 hour to form a CH 3 NH 3 PbI 3 perovskite precursor solution. The precursor solution was used as a spin coating solution to prepare a perovskite film without heat treatment by spin coating at a speed of 5000 rpm for 20 seconds and annealing at 100°C for 5 minutes.
(6)在钙钛矿层上,丝网印刷碳浆料作为空穴传输层以及对电极,固含量37%,溶剂为松油醇,图案一端覆盖在钙钛矿层上,另一端跨过刻蚀线,直接接触到小面积的FTO玻璃基板,得到钙钛矿太阳能电池。(6) On the perovskite layer, screen-printed carbon paste was used as a hole transport layer and a counter electrode. The solid content was 37% and the solvent was pine alcohol. One end of the pattern covered the perovskite layer, and the other end crossed the etching line and directly contacted a small area of FTO glass substrate to obtain a perovskite solar cell.
(7)将下填充层5铺在背面保护层2上。(7) Lay the lower filling layer 5 on the back protection layer 2.
(8)将钙钛矿太阳能电池4a放在下填充层5上。(8) The perovskite solar cell 4 a is placed on the lower filling layer 5 .
(9)将钙钛矿太阳能电池4a四周垫上中填充层4b。(9) A middle filling layer 4b is placed around the perovskite solar cell 4a.
(10)使用镀锡铜带分别将钙钛矿太阳能电池4a的正、负极引出至中填充层4b外。(10) Use tinned copper tape to lead the positive and negative electrodes of the perovskite solar cell 4a out of the middle filling layer 4b.
(11)在钙钛矿太阳能电池碳对极上覆盖上填充层3。(11) Cover the carbon counter electrode of the perovskite solar cell with a filling layer 3.
(12)在上填充层3外覆盖正面保护层1。(12) The front protection layer 1 is covered on the outside of the upper filling layer 3.
(13)将摆放好的钙钛矿太阳能电池组件放入层压机,设定温度140℃,时间15min进行层压,制作层压件。(13) Place the arranged perovskite solar cell components into a laminator, set the temperature to 140°C, and perform lamination for 15 min to produce a laminate.
实施例2Example 2
单体钙钛矿太阳能模块组件制作,其中,单个电池片上制作多节电池串并联,因此称之为单体钙钛矿太阳能模块。Monomer perovskite solar module assembly production, in which multiple cells are made on a single cell and connected in series and parallel, so it is called a monomer perovskite solar module.
(1)在FTO玻璃基板上用激光刻蚀出绝缘线,将FTO玻璃基板分割成几个面积相等的小单元。(1) Insulating lines are etched on the FTO glass substrate using a laser to divide the FTO glass substrate into several small units of equal area.
(2)分别用丙酮、碱洗涤剂、去离子水、丙酮超声清洗FTO玻璃基板十分钟,最后吹干。(2) The FTO glass substrate was cleaned with acetone, alkaline detergent, deionized water, and acetone ultrasonically for ten minutes respectively, and finally dried.
(3)在FTO玻璃基板上制备TiO2致密层,前驱体溶液溶剂为乙醇和水,前驱体溶液包括以下成分:钛酸四异丙酯(0.3mol/L)、乙酰丙酮(0.45mol/L)、盐酸(0.09mol/L)。吸取前驱体溶液,滴加于清洗干净的FTO玻璃基板上,使溶液铺满整个FTO玻璃基板表面,采用旋涂法成膜,旋涂速度3000rpm,时间20s。在马弗炉中510℃烧结30min。(3) Prepare a dense TiO2 layer on a FTO glass substrate. The precursor solution solvent is ethanol and water. The precursor solution includes the following components: tetraisopropyl titanate (0.3 mol/L), acetylacetone (0.45 mol/L), and hydrochloric acid (0.09 mol/L). Take the precursor solution and drip it onto the cleaned FTO glass substrate so that the solution covers the entire surface of the FTO glass substrate. Spin coating is used to form a film at a spin coating speed of 3000 rpm for 20 seconds. Sinter in a muffle furnace at 510°C for 30 minutes.
(4)在致密层上,丝网印刷二氧化钛浆料作为电子传输层,固含量10%,溶剂为松油醇,在马弗炉中510℃烧结30min。(4) On the dense layer, screen-print titanium dioxide slurry as an electron transport layer with a solid content of 10% and pine alcohol as the solvent, and sinter it at 510° C. in a muffle furnace for 30 min.
(5)在二氧化钛上,丝网印刷二氧化锆浆料作为绝缘层,固含量5%,溶剂为松油醇,在马弗炉中510℃烧结30min。(5) On the titanium dioxide, a zirconium dioxide slurry was screen-printed as an insulating layer, with a solid content of 5% and a solvent of pine alcohol, and sintered in a muffle furnace at 510°C for 30 min.
(6)在FTO玻璃基板上,丝网印刷导电银柵,固含量70%,溶剂为松油醇,在马弗炉中510℃烧结30min。(6) On the FTO glass substrate, a conductive silver grid was screen-printed with a solid content of 70% and a solvent of pine alcohol, and sintered in a muffle furnace at 510° C. for 30 min.
(7)量取461毫克碘化铅(PbI2)、159毫克CH3NH3I粉体、78毫克二甲亚砜混于600毫克N,N-二甲基甲酰胺(DMF),室温下搅拌1小时,形成CH3NH3PbI3钙钛矿前驱体溶液。以此前驱体溶液为旋涂液,采用旋涂法制备未经热处理的钙钛矿薄膜,旋涂速度5000rpm,时间20s,100℃退火5分钟。(7) 461 mg of lead iodide (PbI 2 ), 159 mg of CH 3 NH 3 I powder, and 78 mg of dimethyl sulfoxide were mixed in 600 mg of N,N-dimethylformamide (DMF) and stirred at room temperature for 1 hour to form a CH 3 NH 3 PbI 3 perovskite precursor solution. The precursor solution was used as a spin coating solution to prepare a perovskite film without heat treatment by spin coating at a speed of 5000 rpm for 20 seconds and annealing at 100°C for 5 minutes.
(8)在钙钛矿层上,丝网印刷碳浆料作为空穴传输层以及对电极,固含量37%,溶剂为松油醇,图案一端覆盖在钙钛矿层上,另一端跨过刻蚀线,覆盖到下一个单元的银线上,得到单基板上的钙钛矿太阳能电池串联模组。(8) On the perovskite layer, screen-printed carbon paste is used as a hole transport layer and a counter electrode. The solid content is 37% and the solvent is pine oil. One end of the pattern covers the perovskite layer, and the other end crosses the etching line and covers the silver wire of the next unit, thereby obtaining a perovskite solar cell series module on a single substrate.
(9)将下填充层5铺在背面保护层2上。(9) Lay the lower filling layer 5 on the back protection layer 2.
(10)将钙钛矿太阳能电池4a放在下填充层5上。(10) The perovskite solar cell 4 a is placed on the lower filling layer 5 .
(11)将钙钛矿太阳能电池4a四周垫上中填充层4b。(11) A middle filling layer 4b is placed around the perovskite solar cell 4a.
(12)在钙钛矿太阳能电池碳对极上覆盖上填充层3。(12) Cover the carbon counter electrode of the perovskite solar cell with a filling layer 3.
(13)在上填充层3外覆盖正面保护层1。(13) The front protection layer 1 is covered on the outside of the upper filling layer 3.
(14)使用镀锡铜带分别将钙钛矿太阳能电池4a的正、负极连接至背、正面保护层内侧的导电层上。(14) Use tinned copper tape to connect the positive and negative electrodes of the perovskite solar cell 4a to the conductive layers on the inner side of the back and front protective layers respectively.
(15)将摆放好的钙钛矿太阳能电池组件放入层压机,设定温度140℃,时间15min进行层压,制作成钙钛矿太阳能电池串联模组的组件。(15) The arranged perovskite solar cell components are placed in a laminator, and the temperature is set to 140° C. and the lamination time is 15 min to produce components of a perovskite solar cell series module.
实施例3Example 3
钙钛矿太阳能电池串联结构光伏组件制作。Production of photovoltaic modules with tandem structure of perovskite solar cells.
将单体钙钛矿太阳能模块层压后的组件,按图2所示,横串成串联组件,并安装辅助框架8。The laminated components of the single perovskite solar modules are strung together horizontally to form a series assembly as shown in FIG. 2 , and an auxiliary frame 8 is installed.
实施例4Example 4
钙钛矿太阳能电池串联结构光伏组件制作。Production of photovoltaic modules with tandem structure of perovskite solar cells.
将单体钙钛矿太阳能模块层压后的组件,按图2和4所示,制作成多行串联组件,同一行按图2结构串联,不同行间串联按图4结构,并安装辅助框架8。The laminated components of the single perovskite solar modules are made into multiple rows of series-connected components as shown in FIGS. 2 and 4 . The same row is connected in series according to the structure of FIG. 2 , and different rows are connected in series according to the structure of FIG. 4 , and an auxiliary frame 8 is installed.
实施例5Example 5
钙钛矿太阳能电池并联结构光伏组件制作。Production of photovoltaic modules with parallel structure of perovskite solar cells.
将单体钙钛矿太阳能模块层压后的组件,按图6所示,制作成并联组件,并安装辅助框架8。The laminated components of the single perovskite solar modules are made into parallel components as shown in FIG. 6 , and the auxiliary frame 8 is installed.
对比例1的电池需要正负极通过金属电极7引出至填充层外,电极材料、填充材料不同的热膨胀系数导致密封性下降;层压完放在室内1周后钙钛矿褪色,说明有水气渗透。本发明实施例的电极直接连接在内部,具有良好的密封性,目前16周无褪色。且本发明的组件即插即用,开路电压和电流密度可灵活调控,不但解决了电池的封装问题,而且电池器件本身将具有广泛的用途。The battery of comparative example 1 requires the positive and negative electrodes to be led out of the filling layer through the metal electrode 7. The different thermal expansion coefficients of the electrode material and the filling material lead to a decrease in sealing performance. After lamination, the perovskite faded after being placed indoors for one week, indicating that there was water vapor penetration. The electrodes of the embodiment of the present invention are directly connected to the inside, with good sealing performance, and there is no fading for 16 weeks. Moreover, the components of the present invention are plug-and-play, and the open circuit voltage and current density can be flexibly adjusted, which not only solves the packaging problem of the battery, but also the battery device itself will have a wide range of uses.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910610614.4A CN110491995B (en) | 2019-07-08 | 2019-07-08 | Perovskite solar cell packaging structure and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910610614.4A CN110491995B (en) | 2019-07-08 | 2019-07-08 | Perovskite solar cell packaging structure and method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110491995A CN110491995A (en) | 2019-11-22 |
CN110491995B true CN110491995B (en) | 2024-06-14 |
Family
ID=68546675
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910610614.4A Active CN110491995B (en) | 2019-07-08 | 2019-07-08 | Perovskite solar cell packaging structure and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110491995B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111048667A (en) * | 2019-12-19 | 2020-04-21 | 浙江天地环保科技有限公司 | A kind of high-efficiency large-area perovskite solar cell and preparation method thereof |
CN111628088A (en) * | 2020-07-07 | 2020-09-04 | 天合光能股份有限公司 | A simple encapsulation structure of perovskite solar cell and its manufacturing method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN210110842U (en) * | 2019-07-08 | 2020-02-21 | 浙江浙能技术研究院有限公司 | Perovskite solar cell packaging structure |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5911127B2 (en) * | 2010-12-07 | 2016-04-27 | デクセリアルズ株式会社 | Output measuring apparatus and measuring method for solar cell |
CN205890134U (en) * | 2016-05-26 | 2017-01-18 | 江苏东顺新能源科技有限公司 | Photovoltaic module lamination frame |
CN108922973B (en) * | 2018-06-30 | 2021-04-16 | 中国科学院上海硅酸盐研究所 | A photovoltaic module based on perovskite solar cell and its packaging method |
CN109411611B (en) * | 2018-11-28 | 2024-07-02 | 中国华能集团有限公司 | Perovskite solar cell packaging structure and packaging method |
-
2019
- 2019-07-08 CN CN201910610614.4A patent/CN110491995B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN210110842U (en) * | 2019-07-08 | 2020-02-21 | 浙江浙能技术研究院有限公司 | Perovskite solar cell packaging structure |
Also Published As
Publication number | Publication date |
---|---|
CN110491995A (en) | 2019-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108922973B (en) | A photovoltaic module based on perovskite solar cell and its packaging method | |
KR19980070676A (en) | Photovoltaic devices | |
CN102646728A (en) | Back electrode structure and preparation method of back contact silicon solar cell | |
CN103413847A (en) | Photovoltaic tile on roof and manufacturing method thereof | |
CN107958943A (en) | A kind of photovoltaic module and production method based on IBC cell packages | |
JP2014531774A (en) | Photovoltaic cell interconnection | |
CN115172486B (en) | IBC solar cell module, manufacturing method thereof and IBC solar cell pack string | |
CN106684188A (en) | Intelligent dual-glass solar module | |
CN106711263A (en) | Solar cell module and manufacturing method thereof | |
CN110491995B (en) | Perovskite solar cell packaging structure and method | |
CN104465837A (en) | Photovoltaic back plate, manufacturing method of photovoltaic back plate and photovoltaic module | |
CN112112372A (en) | Photovoltaic metal bottom plate, photovoltaic roof part and preparation method of photovoltaic roof part | |
CN111509069B (en) | Photovoltaic module | |
CN115425154A (en) | Preparation method of perovskite solar cell module | |
CN210110842U (en) | Perovskite solar cell packaging structure | |
JP2002111036A (en) | Solar cell module and method of construction | |
CN204857750U (en) | Novel solar cell panel | |
CN216252654U (en) | Photovoltaic module for removing ice and snow | |
CN117500296A (en) | A packaging method for perovskite solar cells that simultaneously improves photothermal management | |
CN118352416A (en) | Flexible photovoltaic module and photovoltaic awning | |
CN208352345U (en) | A kind of perovskite solar cell module | |
CN116053329A (en) | A photovoltaic module | |
JP3679548B2 (en) | Method for manufacturing solar cell module | |
CN209244038U (en) | A photovoltaic module for photovoltaic curtain wall | |
CN208820717U (en) | A kind of photovoltaic power generation watt and photovoltaic generating system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information |
Address after: 311121 Building 5, No. 2159-1 Yuhangtang Road, Wuchang Street, Yuhang District, Hangzhou City, Zhejiang Province Applicant after: ZHEJIANG ENERGY R & D INSTITUTE Co.,Ltd. Applicant after: Zhejiang Tiandi Environmental Protection Technology Co.,Ltd. Applicant after: SHANGHAI INSTITUTE OF CERAMICS, CHINESE ACADEMY OF SCIENCES Address before: 311121 Building 5, No. 2159-1 Yuhangtang Road, Wuchang Street, Yuhang District, Hangzhou City, Zhejiang Province Applicant before: ZHEJIANG ENERGY R & D INSTITUTE Co.,Ltd. Applicant before: ZHEJIANG TIANDI ENVIRONMENTAL PROTECTION TECHNOLOGY Co.,Ltd. Applicant before: SHANGHAI INSTITUTE OF CERAMICS, CHINESE ACADEMY OF SCIENCES |
|
CB02 | Change of applicant information | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address |
Address after: 5 / F, building 1, No. 2159-1, yuhangtang Road, Wuchang Street, Yuhang District, Hangzhou City, Zhejiang Province Patentee after: ZHEJIANG ENERGY R & D INSTITUTE Co.,Ltd. Country or region after: China Patentee after: Zhejiang Zheneng Technology Environmental Protection Group Co.,Ltd. Patentee after: SHANGHAI INSTITUTE OF CERAMICS, CHINESE ACADEMY OF SCIENCES Address before: 5 / F, building 1, No. 2159-1, yuhangtang Road, Wuchang Street, Yuhang District, Hangzhou City, Zhejiang Province Patentee before: ZHEJIANG ENERGY R & D INSTITUTE Co.,Ltd. Country or region before: China Patentee before: Zhejiang Tiandi Environmental Protection Technology Co.,Ltd. Patentee before: SHANGHAI INSTITUTE OF CERAMICS, CHINESE ACADEMY OF SCIENCES |
|
CP03 | Change of name, title or address |