[go: up one dir, main page]

CN110484518B - Self-assembled short peptide tag marked fluoridase aggregate and application - Google Patents

Self-assembled short peptide tag marked fluoridase aggregate and application Download PDF

Info

Publication number
CN110484518B
CN110484518B CN201910601278.7A CN201910601278A CN110484518B CN 110484518 B CN110484518 B CN 110484518B CN 201910601278 A CN201910601278 A CN 201910601278A CN 110484518 B CN110484518 B CN 110484518B
Authority
CN
China
Prior art keywords
fia
aggregate
fluoridase
self
short peptide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910601278.7A
Other languages
Chinese (zh)
Other versions
CN110484518A (en
Inventor
马龙
满淑丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University of Science and Technology
Original Assignee
Tianjin University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University of Science and Technology filed Critical Tianjin University of Science and Technology
Priority to CN201910601278.7A priority Critical patent/CN110484518B/en
Publication of CN110484518A publication Critical patent/CN110484518A/en
Application granted granted Critical
Publication of CN110484518B publication Critical patent/CN110484518B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1085Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P3/00Preparation of elements or inorganic compounds except carbon dioxide
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/03Investigating materials by wave or particle radiation by transmission
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/10Different kinds of radiation or particles
    • G01N2223/108Different kinds of radiation or particles positrons; electron-positron annihilation

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pulmonology (AREA)
  • Biophysics (AREA)
  • Theoretical Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

The invention relates to a self-assembled short peptide tag labeled fluoridase aggregate, which is prepared by combining a self-assembled short peptide tag and fluoridase. The present fluoridase aggregate is a nano-scale fluoridase utilizing self-assembled short peptide tags, which can improve catalytic efficiency, enhance thermal stability and have reusability, and can be applied to a biological conversion catalyst for fluoride, and at the same time, can be used in combination with nucleoside hydrolase to directly catalyze a substrate inorganic fluoride ion (F ) And S-adenosyl-L-methionine (SAM), which generates 5' -FDR (fluorinated deoxyribose) and can be potentially used in the preparation of a positron emission tomography radiotracer.

Description

一种自组装短肽标签标记的氟化酶聚集体及应用A self-assembled short peptide tag-labeled fluorase aggregate and its application

技术领域Technical field

本发明属于蛋白质与酶工程技术领域,尤其是一种自组装短肽标签标记的氟化酶聚集体及应用。The invention belongs to the technical field of protein and enzyme engineering, in particular to a self-assembled short peptide tag-labeled fluorase aggregate and its application.

背景技术Background technique

随着基因组学和蛋白质组学的发展,越来越多的蛋白质通过基因重组技术,使用工程菌种进行表达纯化。所以,廉价、经济的蛋白质纯化方法的开发仍然是一项基本任务,蛋白质纯化也同样是生物技术的核心要求之一。在制药行业中,利用传统的色谱技术如离子交换、亲和色谱、凝胶过滤和反相色谱等纯化分离蛋白质,已经被很好地开发和使用。然而,这些年来,在实验室中,对于许多研究者来说,采用纯化标签来纯化蛋白质变得十分流行。这些标签主要基于亲和力,包括His标签,GST标签、麦芽糖结合蛋白(MBP)标签和几丁质结合域(CBD)标签与内含肽介导的切割位点(IMPACT-CN)等。这些纯化标签通常能够使目的蛋白质含量达到约90%或更高的纯度,这样的纯度足以用于许多实验用途,例如测定酶学性质和蛋白质的表征。在这些纯化标签中,His-tag技术是无可争辩最常用的一种预填充镍柱来结合带His标签的靶蛋白,最终达到纯化的目的,这种方法使用很广泛,但是同样,使用镍柱也造成了蛋白纯化费用过高。因此,在近些年间,一类新的自组装短肽标签被用于蛋白质和多肽的无柱分离纯化。这些方法可用于快速地将目标蛋白质或多肽与背景杂质分离,并产生具有与His标签技术相当的产率和纯度的蛋白质或多肽,但不会使用昂贵的镍柱或树脂等,可以大幅度降低纯化蛋白的成本。With the development of genomics and proteomics, more and more proteins are expressed and purified through genetic recombination technology and engineered bacterial strains. Therefore, the development of cheap and economical protein purification methods remains a fundamental task, and protein purification is also one of the core requirements of biotechnology. In the pharmaceutical industry, the use of traditional chromatography techniques such as ion exchange, affinity chromatography, gel filtration, and reversed-phase chromatography for purification and separation of proteins has been well developed and used. Over the years, however, the use of purification tags to purify proteins has become popular in the laboratory for many researchers. These tags are mainly based on affinity, including His tag, GST tag, maltose-binding protein (MBP) tag and chitin-binding domain (CBD) tag with intein-mediated cleavage site (IMPACT-CN), etc. These purification tags typically enable the protein of interest to reach a purity of approximately 90% or higher, which is sufficient for many experimental uses, such as determination of enzymatic properties and protein characterization. Among these purification tags, His-tag technology is indisputably the most commonly used pre-packed nickel column to bind His-tagged target proteins and ultimately achieve the purpose of purification. This method is widely used, but again, using nickel Columns also contribute to the prohibitive cost of protein purification. Therefore, in recent years, a new class of self-assembled short peptide tags have been used for column-free separation and purification of proteins and peptides. These methods can be used to quickly separate target proteins or peptides from background impurities and produce proteins or peptides with yields and purity comparable to His tag technology, but without the use of expensive nickel columns or resins, which can be significantly reduced. Cost of purified protein.

自组装短肽标签是具有亲水性残基和疏水性残基序列的一种双亲性短肽,在与目的蛋白结合后,能够促使目的蛋白自组装具有纳米尺寸的蛋白质聚集体。其中原理是具有自组装标签的蛋白质,在表达的过程中,由于标签造成的分子间扩散和一些特定的分子间作用力的改变如范德华力、疏水作用、金属配位键等,从而在这些改变之下,形成了具有稳定结构的自组装蛋白质聚集体。由于这种自组装蛋白质聚集体具有较为良好的性质,所以其在生物工程和技术领域具有十分重要的潜在价值,这也让在近十年间,越来越多的研究人员从事这方面的研究。The self-assembling short peptide tag is an amphipathic short peptide with hydrophilic and hydrophobic residue sequences. After binding to the target protein, it can promote the target protein to self-assemble into nanometer-sized protein aggregates. The principle is that during the expression process of proteins with self-assembled tags, due to the intermolecular diffusion caused by the tag and the changes in some specific intermolecular forces such as van der Waals forces, hydrophobic interactions, metal coordination bonds, etc., these changes will occur. Under this, self-assembled protein aggregates with stable structures are formed. Because this self-assembled protein aggregate has relatively good properties, it has very important potential value in the fields of bioengineering and technology. This has also led to more and more researchers engaging in research in this area in the past decade.

随着研究的深入,人们发现了这类自组装短肽标签的特点之后,设计了一类能够诱导蛋白聚集且聚集体的活性不降低、热稳定性提高、易于纯化分离等诸多优点的自组装短肽标签,即ELK16、L6KD和18A等。这一系列短肽标签最先由清华大学林章凛课题组设计及发现,并且ELK16标签是β-片层结构,18A标签为α-螺旋结构,L6KD标签是一种与表面活性剂类似,且不属于β-片层或者α-螺旋的结构。随后,这三种标签被率先应用于脂肪酸酶A、木糖苷酶等工业用酶,并发现这些酶的活性被很好地保留或者有所提高,同时这些自组装蛋白聚集体具有热稳定性更好、能够重复使用以及简化了纯化方法,降低了使用成本等优点,从而受到了人们越来越多的关注。同时,有研究者将标签18A与腈水解酶结合,并将之包埋到藻酸钙包封珠中,制备成固定化颗粒,发现固定化后的腈水解酶仍保留较高的活性,其稳定性能达到天然酶的10倍左右。这些应用都表明了,自组装短肽标签在酶与蛋白质工程中具有巨大的潜力及应用价值。With the deepening of research, after people discovered the characteristics of this type of self-assembled short peptide tags, they designed a type of self-assembly that can induce protein aggregation without reducing the activity of the aggregates, improving thermal stability, and being easy to purify and isolate. Short peptide tags, namely ELK16, L6KD and 18A, etc. This series of short peptide tags were first designed and discovered by Lin Zhanglin's research group at Tsinghua University. The ELK16 tag has a β-sheet structure, the 18A tag has an α-helical structure, and the L6KD tag is a surfactant similar to A structure that is not a β-sheet or α-helix. Subsequently, these three tags were first applied to industrial enzymes such as fatty acid enzyme A and xylosidase, and it was found that the activities of these enzymes were well retained or improved, and these self-assembled protein aggregates had better thermal stability. It is good, can be reused, simplifies the purification method, and reduces the cost of use, etc., so it has attracted more and more attention. At the same time, some researchers combined tag 18A with nitrilase and embedded it into calcium alginate-coated beads to prepare immobilized particles. They found that the immobilized nitrilase still retains high activity, and its activity is still high. The stability performance is about 10 times that of natural enzymes. These applications demonstrate that self-assembled short peptide tags have great potential and application value in enzyme and protein engineering.

氟化酶(FIA)作为一种已发现的酶,其能够将无机氟离子(F-)催化到有机分子中形成碳-氟(C-F)键,生成有机氟化物。在2002年,英国David O’Hagan教授的研究小组从Streptomyces cattleya中分离出第一个天然氟化酶FIA(由flA基因编码)。它能够利用无机氟离子(F-)和S-腺苷-L-甲硫氨酸(SAM)催化SN2生物亲核反应,生成5’-氟化脱氧腺苷(5’-FDA)和L-蛋氨酸。随着对氟化酶及其代谢通路的研究,从2014年到2016年,在不同菌种中确定了四个新的FIA酶。其中,在Streptomycesxinghaiensis中发现的FIA酶具有最优的酶学性质。这些可以通过它的酶动力学实验数据证明,在Streptomycesxinghaiensis中发现的FIA,其催化效率Kcat值为0.277±0.007min-1,比其他四种氟化酶的催化效率更高;而且酶的特异性常数达到39.5±1.51mM-1min-1,更是远高于其他氟化酶。因此,利用此氟化酶进行分子改造,以求获得性质更加优良的氟化酶,对于它的应用具有十分积极的意义。Fluorinase (FIA) is a discovered enzyme that can catalyze inorganic fluoride ions (F - ) into organic molecules to form carbon-fluorine (CF) bonds to generate organic fluorides. In 2002, the research team of Professor David O'Hagan in the UK isolated the first natural fluorinase FIA (encoded by the flA gene) from Streptomyces cattleya. It can utilize inorganic fluoride ions (F - ) and S-adenosyl-L-methionine (SAM) to catalyze the SN 2 bionucleophilic reaction to generate 5'-fluorinated deoxyadenosine (5'-FDA) and L- Methionine. With the study of fluorinase and its metabolic pathways, four new FIA enzymes were identified in different bacterial species from 2014 to 2016. Among them, the FIA enzyme found in Streptomyces xinghaiensis has the best enzymatic properties. These can be proved by its enzyme kinetic experimental data. The catalytic efficiency K cat value of FIA found in Streptomycesxinghaiensis is 0.277±0.007min -1 , which is higher than the catalytic efficiency of the other four fluorases; and the enzyme is specific The property constant reaches 39.5±1.51mM -1 min -1 , which is much higher than other fluorinase. Therefore, using this fluorase to carry out molecular modification in order to obtain a fluorase with better properties is of very positive significance for its application.

正电子发射断层扫描(positron emission tomography,PET)是近年来发展成熟的一项医学成像技术,它能够提供三维和功能运动的图像,是核医学领域最先进的临床检查影像技术。该技术通过扫描检测被注射入或被吸入的放射物,产生人体局部或全身器官图像。因此,PET扫描需要预先制备放射性示踪剂,长久以来临床做常用的放射示踪物为氟-18(18F)标记的氟化葡萄糖(fluoro-D-glucose,FDG)。但是,其使用化学合成方法制备,成本较高,对环境有污染,并且需要严格的设备和熟悉操作的人员。Positron emission tomography (PET) is a medical imaging technology that has matured in recent years. It can provide three-dimensional and functional motion images and is the most advanced clinical examination imaging technology in the field of nuclear medicine. This technology scans and detects radioactive substances that have been injected or inhaled, producing images of local or whole-body organs in the human body. Therefore, PET scanning requires the preparation of radioactive tracers in advance. The radioactive tracer commonly used in clinical practice for a long time is fluoro-18 ( 18 F)-labeled fluorinated glucose (fluoro-D-glucose, FDG). However, it is prepared using chemical synthesis methods, which is expensive, pollutes the environment, and requires strict equipment and personnel familiar with the operation.

通过检索,尚未发现与本发明专利申请相关的专利公开文献。Through searching, no published patent documents related to the patent application of the present invention have been found.

发明内容Contents of the invention

本发明目的在于克服现有技术的不足之处,提供一种自组装短肽标签标记的氟化酶聚集体及应用,该氟化酶聚集体是一种利用自组装短肽标签的纳米级别的氟化酶,其能够提高催化效率,增强热稳定性以及具有重复使用性,该氟化酶聚集体能够应用在氟化物的生物转化催化剂方面中,同时,该氟化酶聚集体能够与核苷水解酶联用,直接催化底物无机氟离子(F-)和S-腺苷-L-甲硫氨酸(SAM),生成5’-FDR(氟化脱氧核糖),进而能够潜在应用在制备正电子发射断层扫描的放射性示踪剂中。The object of the present invention is to overcome the deficiencies of the prior art and provide a self-assembled short peptide tag-labeled fluorase aggregate and its application. The fluorase aggregate is a nano-level fluorase aggregate that utilizes self-assembled short peptide tags. Fluorinase can improve catalytic efficiency, enhance thermal stability and be reusable. The fluorase aggregate can be used as a bioconversion catalyst for fluoride. At the same time, the fluorase aggregate can interact with nucleosides. The combination of hydrolase directly catalyzes the substrates inorganic fluoride ion (F - ) and S-adenosyl-L-methionine (SAM) to generate 5'-FDR (fluorinated deoxyribose), which can be potentially used in the preparation of Radioactive tracers in positron emission tomography.

本发明解决其技术问题所采用的技术方案是:The technical solutions adopted by the present invention to solve the technical problems are:

一种自组装短肽标签标记的氟化酶聚集体,所述氟化酶聚集体是通过自组装短肽标签和氟化酶相结合制备得到的。A self-assembling short peptide tag-labeled fluorinase aggregate is prepared by combining a self-assembling short peptide tag and a fluorinase aggregate.

而且,所述氟化酶聚集体为FIA-ELK16,其编码基因的基因序列为SEQ NO.1,其编码基因的氨基酸序列为SEQ NO.2;Moreover, the fluorinase aggregate is FIA-ELK16, the gene sequence of its encoding gene is SEQ NO.1, and the amino acid sequence of its encoding gene is SEQ NO.2;

或者,所述氟化酶聚集体为FIA-L6KD,其编码基因的基因序列为SEQ NO.3,其编码基因的氨基酸序列为SEQ NO.4;Alternatively, the fluorinase aggregate is FIA-L6KD, the gene sequence of its encoding gene is SEQ NO.3, and the amino acid sequence of its encoding gene is SEQ NO.4;

或者,所述氟化酶聚集体为FIA-18A,其编码基因的基因序列为SEQ NO.5,其编码基因的氨基酸序列为SEQ NO.6。Alternatively, the fluorinase aggregate is FIA-18A, the gene sequence of its encoding gene is SEQ NO.5, and the amino acid sequence of its encoding gene is SEQ NO.6.

而且,所述FIA-ELK16、FIA-L6KD、FIA-18A的最适温度分别为40℃、50℃、60℃,最适pH值均为6.0。Moreover, the optimal temperatures of FIA-ELK16, FIA-L6KD, and FIA-18A are 40°C, 50°C, and 60°C respectively, and the optimal pH values are all 6.0.

而且,所述FIA-ELK16的尺寸为500-600nm;所述FIA-L6KD和FIA-18A的尺寸均为200-300nm。Moreover, the size of the FIA-ELK16 is 500-600nm; the size of the FIA-L6KD and FIA-18A are both 200-300nm.

而且,所述氟化酶聚集体的底物为S-腺苷-L-甲硫氨酸,即SAM。Moreover, the substrate of the fluorase aggregate is S-adenosyl-L-methionine, that is, SAM.

而且,所述氟化酶聚集体的催化产物为5’-氟化脱氧腺苷,即5’-FDA。Moreover, the catalytic product of the fluorinase aggregate is 5'-fluorinated deoxyadenosine, that is, 5'-FDA.

而且,所述自组装短肽标签为ELK16、L6KD或18A。Moreover, the self-assembling short peptide tag is ELK16, L6KD or 18A.

如上所述的自组装短肽标签标记的氟化酶聚集体的制备方法,步骤如下:The preparation method of self-assembled short peptide tag-labeled fluorase aggregates as described above, the steps are as follows:

⑴通过查阅文献,获得自组装短肽标签的氨基酸序列,将其DNA编码序列经过优化,即根据大肠杆菌对密码子的偏好性,将其DNA编码序列经过优化,并在体外合成;⑴ Obtain the amino acid sequence of the self-assembled short peptide tag by consulting the literature, and optimize its DNA coding sequence, that is, according to the codon preference of E. coli, its DNA coding sequence is optimized and synthesized in vitro;

⑵通过重叠PCR技术,将合成的自组装肽的DNA序列连接到氟化酶的DNA编码序列的下游,即3’末端,氟化酶的DNA序列为SEQ NO.7,构成重组DNA序列;⑵Use overlapping PCR technology to connect the DNA sequence of the synthesized self-assembling peptide to the downstream of the DNA coding sequence of fluorinase, that is, the 3' end. The DNA sequence of fluorinase is SEQ NO.7 to form a recombinant DNA sequence;

⑶将重组DNA序列插入到有卡那霉素抗性的质粒,构建重组质粒;⑶ Insert the recombinant DNA sequence into the kanamycin-resistant plasmid to construct the recombinant plasmid;

⑷重组质粒导入大肠杆菌BL21(DE3)中,放入含50mg/mL卡那霉素的LB培养基、37℃培养直至OD600值为0.6,然后16℃诱导,加入0.05~0.1mM IPTG诱导表达24小时,收集细菌;⑷Introduce the recombinant plasmid into E. coli BL21 (DE3), add LB medium containing 50 mg/mL kanamycin, and culture at 37°C until the OD 600 value is 0.6. Then induce at 16°C and add 0.05~0.1mM IPTG to induce expression. For 24 hours, bacteria were collected;

⑸再通过菌体破碎,离心收取沉淀,对沉淀物使用缓冲溶液洗脱三次后,将杂质除去,得到目的蛋白质,即为氟化酶聚集体。⑸ Then break the bacteria and collect the precipitate by centrifugation. After eluting the precipitate three times with buffer solution, remove the impurities to obtain the target protein, which is the fluorase aggregate.

如上所述的自组装短肽标签标记的氟化酶聚集体在氟化物的生物转化催化剂方面中的应用。Application of self-assembled short peptide tag-labeled fluorase aggregates as described above in bioconversion catalysts for fluoride.

如上所述的自组装短肽标签标记的氟化酶聚集体在制备正电子发射断层扫描的放射性示踪剂中的应用。Application of self-assembled short peptide tag-labeled fluorase aggregates as described above in the preparation of radioactive tracers for positron emission tomography.

本发明取得的优点和积极效果为:The advantages and positive effects achieved by the present invention are:

1、本发明氟化酶聚集体是一种利用自组装短肽标签的纳米级别的氟化酶,其能够提高催化效率,增强热稳定性以及具有重复使用性,该氟化酶聚集体能够应用在氟化物的生物转化催化剂方面中和应用在制备正电子发射断层扫描的放射性示踪剂中。1. The fluorase aggregate of the present invention is a nano-level fluorase that utilizes self-assembled short peptide tags, which can improve catalytic efficiency, enhance thermal stability and have reusability. The fluorase aggregate can be used Neutralization of fluoride biotransformation catalysts for use in the preparation of radioactive tracers for positron emission tomography.

2、本发明方法应用基因工程(genetic engineering)的方法,对可溶氟化酶进行分子改造,利用三种自组装短肽标签,构建能够提高酶的催化效率,增强热稳定性以及使其具有重复使用性的纳米级氟化酶。通过基因克隆方式得到三种质粒,将三种质粒分别转化进入大肠杆菌原核表达系统高效异源表达,经过诱导表达与纯化,得到氟化酶聚集体。2. The method of the present invention applies genetic engineering methods to carry out molecular modification of soluble fluorase, and uses three self-assembled short peptide tags to construct an enzyme that can improve the catalytic efficiency of the enzyme, enhance thermal stability and make it have Reusable nanoscale fluorinase. Three plasmids were obtained through gene cloning. The three plasmids were transformed into the Escherichia coli prokaryotic expression system for efficient heterologous expression. After induced expression and purification, the fluorase aggregates were obtained.

3、本发明通过透射电镜的观察,证明所制备的三种氟化酶聚集体都形成了纳米级别的蛋白质颗粒。3. Through transmission electron microscope observation, the present invention proves that the three prepared fluorase aggregates all form nanometer-level protein particles.

4、本发明通过高效液相法测定了三种氟化酶聚集体的酶动力学参数,证明了三种氟化酶聚集体能够催化S-腺苷-L-甲硫氨酸(SAM),生成5’-氟化脱氧腺苷(5’-FDA)。并且,实验还证明,在三种氟化酶聚集体中FIA-L6KD,相较于可溶氟化酶,具有更高的催化效率,更强的热稳定性,并且可以重复利用。同时,根据构建的核苷水解酶,与氟化酶一起进行两步酶促反应,说明了具有利用同位素标记18F合成5’-18FDR放射性示踪剂(radiotracer)的潜力,从而用于正电子发射断层扫描(positron emission tomography,PET)之中。4. The present invention measured the enzyme kinetic parameters of three fluorase aggregates through high-performance liquid phase method, and proved that the three fluorase aggregates can catalyze S-adenosyl-L-methionine (SAM), Generates 5'-fluorodeoxyadenosine (5'-FDA). Moreover, experiments also proved that among the three fluorase aggregates, FIA-L6KD has higher catalytic efficiency, stronger thermal stability, and can be reused compared to soluble fluorase. At the same time, according to the constructed nucleoside hydrolase, a two-step enzymatic reaction was performed together with fluorase, demonstrating the potential of using isotope-labeled 18 F to synthesize 5'- 18 FDR radiotracer, which can be used for normal In electron emission tomography (PET).

利用氟-18(18F)标记的氟离子,通过氟化酶的催化,可生成5’-18FDA,再被一些酶(如:核苷水解酶)催化生成与氟化核糖有相同效果的放射性示踪剂5’-18FDR(5’-fluorodeoxyribose,5’-FDR)。采用这种生物合成的方法,不仅能够降低放射性示踪剂的生产成本,而且更加地绿色环保。所以,利用三种自组装短肽标签,对氟化酶进行分子改造,获得酶学性质更加优良的氟化酶,对PET的应用与推广也具有十分积极的意义。Fluorine-18 ( 18 F)-labeled fluoride ions are catalyzed by fluorinase to generate 5'-18 FDA, which is then catalyzed by some enzymes (such as nucleoside hydrolase) to generate 5'- 18 FDA, which has the same effect as fluorinated ribose. Radioactive tracer 5'- 18 FDR (5'-fluorodeoxyribose, 5'-FDR). Using this biosynthesis method can not only reduce the production cost of radioactive tracers, but also be more environmentally friendly. Therefore, using three self-assembling short peptide tags to molecularly modify fluorase to obtain a fluorase with better enzymatic properties is also of great significance to the application and promotion of PET.

5、本发明方法通过对酶分子水平的改造,制备纳米级的氟化酶聚集体,以提高酶的催化效率、热稳定性及使其具有重复使用性;该方法是利用自组装短肽标签,构建能够提高酶的催化效率,热稳定性和使其具有重复使用性的纳米级氟化酶聚集体,本发明提供的三种氟化酶聚集体(FIA-ELK16、FIA-L6KD、FIA-18A)在无机氟离子的存在下,能够催化S-腺苷-L-甲硫氨酸(SAM),生成5’-氟化脱氧腺苷(5’-FDA)。5. The method of the present invention prepares nanoscale fluorase aggregates by modifying the enzyme molecule level to improve the catalytic efficiency, thermal stability and reusability of the enzyme; this method uses self-assembled short peptide tags , construct nanoscale fluorase aggregates that can improve the catalytic efficiency, thermal stability and reusability of the enzyme. The three fluorase aggregates provided by the invention (FIA-ELK16, FIA-L6KD, FIA- 18A) In the presence of inorganic fluoride ions, it can catalyze S-adenosyl-L-methionine (SAM) to generate 5'-fluorodeoxyadenosine (5'-FDA).

6、本发明纳米级氟化酶聚集体可以制备成生物催化剂,应用于氟化物的生物转化;纳米级氟化酶聚集体还可以制备用于正电子发射断层扫描(positron emissiontomography,PET)的放射性示踪剂,使用范围广泛。6. The nanoscale fluorinase aggregates of the present invention can be prepared into biocatalysts for biotransformation of fluoride; the nanoscale fluorinase aggregates can also be used to prepare radioactive materials for positron emission tomography (PET). Tracer, widely used.

附图说明Description of the drawings

图1为本发明中三种自组装肽标记的氟化酶聚集体FIA-ELK16、FIA-L6KD、FIA-18A可以催化的酶反应示意图;可以看出氟化酶聚集体能够利用无机氟离子(F-),催化S-腺苷-L-甲硫氨酸(SAM),生成5’-氟化脱氧腺苷(5’-FDA)和L-蛋氨酸;Figure 1 is a schematic diagram of the enzyme reactions that can be catalyzed by three self-assembling peptide-labeled fluorase aggregates FIA-ELK16, FIA-L6KD, and FIA-18A in the present invention; it can be seen that the fluorase aggregates can utilize inorganic fluoride ions ( F - ), catalyzes S-adenosyl-L-methionine (SAM) to generate 5'-fluorodeoxyadenosine (5'-FDA) and L-methionine;

图2为本发明中使用透射电镜观察三种氟化酶聚集体FIA-ELK16、FIA-L6KD、FIA-18A的颗粒尺寸大小的结果图;图中表明三种氟化酶聚集体的颗粒尺寸大小在纳米级别;Figure 2 is a diagram showing the results of using transmission electron microscopy to observe the particle size of three types of fluorinase aggregates FIA-ELK16, FIA-L6KD and FIA-18A in the present invention; the figure shows the particle size of three types of fluorinase aggregates at the nanometer level;

图3为本发明中使用HPLC/LC-MS检测氟化酶聚集体反应产物的结果图;其中液相色谱图和质谱图对应图1中所列的酶反应产物5'-氟化脱氧腺苷(5’-FDA),箭头所指为相应的酶反应产物的液相色谱信号,酶反应产物的结构及其分子量被附在质谱图上;Figure 3 is a diagram showing the results of using HPLC/LC-MS to detect fluorase aggregate reaction products in the present invention; the liquid chromatogram and mass spectrum correspond to the enzyme reaction product 5'-fluorodeoxyadenosine listed in Figure 1 (5'-FDA), the arrow points to the liquid chromatography signal of the corresponding enzyme reaction product, and the structure and molecular weight of the enzyme reaction product are attached to the mass spectrum;

图4为本发明中三种氟化酶聚集体FIA-ELK16、FIA-L6KD、FIA-18A的纯化结果图;其中FIA-ELK16和FIA-L6KD能够有好的纯化,FIA-18A也能够纯化出来;Figure 4 is a diagram showing the purification results of the three fluorinase aggregates FIA-ELK16, FIA-L6KD and FIA-18A in the present invention; among them, FIA-ELK16 and FIA-L6KD can be purified well, and FIA-18A can also be purified. ;

图5为本发明中三种氟化酶聚集体FIA-ELK16、FIA-L6KD、FIA-18A以S-腺苷-L-甲硫氨酸(SAM)作为底物得到的米曼氏酶动力学拟合曲线图;Figure 5 shows the Mieman enzyme kinetics of three fluorase aggregates FIA-ELK16, FIA-L6KD and FIA-18A in the present invention using S-adenosyl-L-methionine (SAM) as a substrate. Fitting curve graph;

图6为本发明中验证三种氟化酶聚集体FIA-ELK16、FIA-L6KD、FIA-18A具有重复使用性的结果图;Figure 6 is a diagram showing the results of verifying the reusability of three fluorase aggregates FIA-ELK16, FIA-L6KD and FIA-18A in the present invention;

图7为本发明中三种氟化酶聚集体与核苷水解酶(TvNH)两步酶促反应结果图;其中,图7A为本发明中使用高效液相色谱检测两步酶促反应的产物腺嘌呤(AD)的结果图;图7B为本发明中使用液质联用仪检测腺嘌呤的分子量的结果图;图7C为本发明中两步酶促反应的5’-FDR的相对产率结果图。Figure 7 is a diagram showing the results of the two-step enzymatic reaction between three fluorase aggregates and nucleoside hydrolase (TvNH) in the present invention; wherein, Figure 7A shows the use of high-performance liquid chromatography to detect the products of the two-step enzymatic reaction in the present invention. The result graph of adenine (AD); Figure 7B is the result graph of using liquid mass spectrometry to detect the molecular weight of adenine in the present invention; Figure 7C is the relative yield of 5'-FDR of the two-step enzymatic reaction in the present invention Result graph.

具体实施方式Detailed ways

下面详细叙述本发明的实施例,需要说明的是,本实施例是叙述性的,不是限定性的,不能以此限定本发明的保护范围。The embodiments of the present invention are described in detail below. It should be noted that this embodiment is illustrative, not restrictive, and cannot be used to limit the scope of the present invention.

本发明中所使用的原料,如无特殊说明,均为常规的市售产品;本发明中所使用的方法,如无特殊说明,均为本领域的常规方法。The raw materials used in the present invention, unless otherwise specified, are all conventional commercially available products; the methods used in the present invention, unless otherwise specified, are conventional methods in the field.

一种自组装短肽标签标记的氟化酶聚集体,所述氟化酶聚集体是通过自组装短肽标签和氟化酶相结合制备得到的。A self-assembling short peptide tag-labeled fluorinase aggregate is prepared by combining a self-assembling short peptide tag and a fluorinase aggregate.

较优地,所述氟化酶聚集体为FIA-ELK16,其编码基因的基因序列为SEQ NO.1,其编码基因的氨基酸序列为SEQ NO.2;Preferably, the fluorinase aggregate is FIA-ELK16, the gene sequence of its encoding gene is SEQ NO.1, and the amino acid sequence of its encoding gene is SEQ NO.2;

或者,所述氟化酶聚集体为FIA-L6KD,其编码基因的基因序列为SEQ NO.3,其编码基因的氨基酸序列为SEQ NO.4;Alternatively, the fluorinase aggregate is FIA-L6KD, the gene sequence of its encoding gene is SEQ NO.3, and the amino acid sequence of its encoding gene is SEQ NO.4;

或者,所述氟化酶聚集体为FIA-18A,其编码基因的基因序列为SEQ NO.5,其编码基因的氨基酸序列为SEQ NO.6。Alternatively, the fluorinase aggregate is FIA-18A, the gene sequence of its encoding gene is SEQ NO.5, and the amino acid sequence of its encoding gene is SEQ NO.6.

较优地,所述FIA-ELK16、FIA-L6KD、FIA-18A的最适温度分别为40℃、50℃、60℃,最适pH值均为6.0。Preferably, the optimal temperatures of FIA-ELK16, FIA-L6KD, and FIA-18A are 40°C, 50°C, and 60°C respectively, and the optimal pH values are all 6.0.

较优地,所述FIA-ELK16的尺寸为500-600nm;所述FIA-L6KD和FIA-18A的尺寸均为200-300nm。Preferably, the size of the FIA-ELK16 is 500-600nm; the size of the FIA-L6KD and FIA-18A are both 200-300nm.

较优地,所述氟化酶聚集体的底物为S-腺苷-L-甲硫氨酸,即SAM。Preferably, the substrate of the fluorase aggregate is S-adenosyl-L-methionine, that is, SAM.

较优地,所述氟化酶聚集体的催化产物为5’-氟化脱氧腺苷,即5’-FDA。Preferably, the catalytic product of the fluorase aggregate is 5'-fluorodeoxyadenosine, that is, 5'-FDA.

较优地,所述自组装短肽标签为ELK16、L6KD或18A。Preferably, the self-assembling short peptide tag is ELK16, L6KD or 18A.

如上所述的自组装短肽标签标记的氟化酶聚集体的制备方法,步骤如下:The preparation method of self-assembled short peptide tag-labeled fluorase aggregates as described above, the steps are as follows:

⑴通过查阅文献,获得自组装短肽标签的氨基酸序列,将其DNA编码序列经过优化,即根据大肠杆菌对密码子的偏好性,将其DNA编码序列经过优化,并在体外合成;⑴ Obtain the amino acid sequence of the self-assembled short peptide tag by consulting the literature, and optimize its DNA coding sequence, that is, according to the codon preference of E. coli, its DNA coding sequence is optimized and synthesized in vitro;

⑵通过重叠PCR技术,将合成的自组装肽的DNA序列连接到氟化酶的DNA编码序列的下游,即3’末端,氟化酶的DNA序列为SEQ NO.7,构成重组DNA序列;⑵Use overlapping PCR technology to connect the DNA sequence of the synthesized self-assembling peptide to the downstream of the DNA coding sequence of fluorinase, that is, the 3' end. The DNA sequence of fluorinase is SEQ NO.7 to form a recombinant DNA sequence;

⑶将重组DNA序列插入到有卡那霉素抗性的质粒,构建重组质粒;⑶ Insert the recombinant DNA sequence into the kanamycin-resistant plasmid to construct the recombinant plasmid;

⑷重组质粒导入大肠杆菌BL21(DE3)中,放入含50mg/mL卡那霉素的LB培养基、37℃培养直至OD值为0.6,然后16℃诱导,加入0.05~0.1mM IPTG诱导表达24小时,收集细菌;⑷Introduce the recombinant plasmid into E. coli BL21 (DE3), add LB medium containing 50 mg/mL kanamycin, culture at 37°C until the OD value is 0.6, then induce at 16°C, add 0.05~0.1mM IPTG to induce expression 24 hours, bacteria were collected;

⑸再通过菌体破碎,离心收取沉淀,对沉淀物使用缓冲溶液洗脱三次后,将杂质除去,得到目的蛋白质,即为氟化酶聚集体。⑸ Then break the bacteria and collect the precipitate by centrifugation. After eluting the precipitate three times with buffer solution, remove the impurities to obtain the target protein, which is the fluorase aggregate.

如上所述的自组装短肽标签标记的氟化酶聚集体能够应用在氟化物的生物转化催化剂方面中。The self-assembled short peptide tag-tagged fluorase aggregates as described above can be used as biotransformation catalysts for fluoride.

如上所述的自组装短肽标签标记的氟化酶聚集体能够应用在制备正电子发射断层扫描的放射性示踪剂中。The self-assembled short peptide tag-labeled fluorase aggregates as described above can be applied in the preparation of radioactive tracers for positron emission tomography.

具体地,如上所述的自组装短肽标签标记的氟化酶聚集体的制备方法,具体制备过程如下:Specifically, the preparation method of self-assembled short peptide tag-labeled fluorase aggregates as described above, the specific preparation process is as follows:

(1)通过查阅文献,获得三种自组装短肽标签ELK16、L6KD和18A的氨基酸序列,将其DNA编码序列经过优化,即根据大肠杆菌对密码子的偏好性,将其DNA编码序列经过优化,并在体外合成。(1) By reviewing the literature, we obtained the amino acid sequences of three self-assembled short peptide tags ELK16, L6KD and 18A, and optimized their DNA coding sequences, that is, based on the codon preference of E. coli, their DNA coding sequences were optimized , and synthesized in vitro.

(2)通过重叠PCR技术,将合成的三种自组装肽的DNA序列分别连接到氟化酶的DNA编码序列的下游,即3’末端,氟化酶的DNA序列为SEQ NO.7,构成重组DNA序列。(2) Through overlapping PCR technology, the DNA sequences of the three synthesized self-assembly peptides were connected to the downstream of the DNA coding sequence of fluorase, that is, the 3' end. The DNA sequence of fluorase is SEQ NO.7, forming Recombinant DNA sequences.

(3)将重组DNA序列插入到有卡那霉素抗性的质粒,构建重组质粒。(3) Insert the recombinant DNA sequence into the kanamycin-resistant plasmid to construct a recombinant plasmid.

(4)重组质粒导入大肠杆菌BL21(DE3)中,放入含50mg/mL卡那霉素的LB培养基、37℃培养直至OD600值为0.6,然后16℃诱导,加入0.05~0.1mM IPTG诱导表达24小时,收集细菌。(4) The recombinant plasmid is introduced into E. coli BL21 (DE3), placed in LB medium containing 50 mg/mL kanamycin, cultured at 37°C until the OD 600 value is 0.6, and then induced at 16°C, adding 0.05~0.1mM IPTG Expression was induced for 24 hours, and bacteria were collected.

(5)再通过菌体破碎,离心收取沉淀,对沉淀物使用缓冲溶液洗脱三次后,将杂质除去,得到目的蛋白质,即为氟化酶聚集体,结果如图4所示,图中表明可溶氟化酶及三种氟化酶聚集体可以表达并纯化出来。(5) Then break the bacteria and collect the precipitate by centrifugation. After eluting the precipitate three times with buffer solution, the impurities are removed to obtain the target protein, which is the fluorase aggregate. The results are shown in Figure 4. The figure shows Soluble fluorase and three fluorase aggregates can be expressed and purified.

(6)氟化酶聚集体尺寸大小的研究:利用透射电镜观察所纯化的氟化酶聚集体,结果如图2所示,可以得到三种氟化酶聚集体都具有纳米级尺寸。(6) Study on the size of fluorinase aggregates: Use transmission electron microscopy to observe the purified fluorinase aggregates. The results are shown in Figure 2. It can be seen that all three types of fluorinase aggregates have nanoscale sizes.

(7)酶学性质研究:对三种氟化酶聚集体进行酶学研究,发现其在KF(氟化钾)存在下,能够催化S-腺苷-L-甲硫氨酸(SAM),生成5’-氟化脱氧腺苷(5’-FDA)和L-蛋氨酸,结果如图1所示。利用高效液相法测定了三种氟化酶聚集体的酶学动力学参数,结果如图3所示,证明了三种氟化酶聚集体与可溶氟化酶相比,其中FIA-L6KD的催化效率更高。(7) Enzymatic properties study: Enzymatic studies were conducted on three fluorase aggregates and found that they can catalyze S-adenosyl-L-methionine (SAM) in the presence of KF (potassium fluoride). 5'-Fluorodeoxyadenosine (5'-FDA) and L-methionine are generated, and the results are shown in Figure 1. The high-performance liquid chromatography method was used to determine the enzymatic kinetic parameters of three fluorase aggregates. The results are shown in Figure 3, which proves that compared with soluble fluorase, the three fluorase aggregates have FIA-L6KD. The catalytic efficiency is higher.

(8)通过对三种氟化酶聚集体和可溶氟化酶进行热稳定性和可重复性实验,结果如图6所示,证明三种氟化酶聚集体中FIA-L6KD具有更强的热稳定性;并且三种氟化酶聚集体可以重复使用,九次以内仍有50%以上催化活性。(8) By conducting thermal stability and repeatability experiments on three types of fluorinase aggregates and soluble fluorase, the results are shown in Figure 6, which proves that FIA-L6KD among the three types of fluorinase aggregates has stronger Thermal stability; and the three fluorase aggregates can be reused and still have more than 50% catalytic activity within nine times.

最后,利用所构建的核苷水解酶与氟化酶氟化酶聚集体进行两步酶促反应,揭示了具有利用同位素标记18F合成5’-18FDR放射性示踪剂的潜力。Finally, the constructed nucleoside hydrolase and fluorase fluorase aggregate were used to perform a two-step enzymatic reaction, revealing the potential of using isotope-labeled 18 F to synthesize 5'- 18 FDR radioactive tracers.

更为具体的操作过程如下:The more specific operation process is as follows:

1.三种氟化酶聚集体序列的测定1. Determination of the sequences of three fluorase aggregates

三种自组装肽的基因序列,通过重叠PCR技术,分别连接到氟化酶序列下游,得到如序列1、3、5所述的基因,三种氟化酶聚集体氨基酸序列如下:The gene sequences of the three self-assembling peptides were connected to the downstream of the fluorase sequence through overlapping PCR technology to obtain the genes described in sequences 1, 3, and 5. The amino acid sequences of the three fluorase aggregates are as follows:

FIA-ELK16:FIA-ELK16:

MSADPTQRPIIGFMSDLGTTDDSVAQCKGLMHSICPGVTVIDVCHSMTPWDVEEGARYIVDLPRFFPEGTVFATTTYPATGTETRSVAVRIKQAAKGGARGQWAGSAGGFERAEGSYIYVAPNNGLLTTVLEEHGYIEAYEVSSTKVIPERPEPTFYSREMVAIPAAHLAAGFPLSEVGRPLEDSEIVRYQPPQVEISGDTLTGVVSAIDHPYGNVWTNIHRTHLEKAGIGYGKRIKIILDDVLPFEQTLVPTFADAGEIGGVAAYLNSRGYLSLARNLASLAYPFNLKAGLKVRVETNPTPPTTPTPPTTPTPTPLELELKLKLELELKLKMSADPTQRPIIGFMSDLGTTDDSVAQCKGLMHSICPGVTVIDVCHSMTPWDVEEGARYIVDLPRFFPEGTVFATTTYPATGTETRSVAVRIKQAAKGGARGQWAGSAGGFERAEGSYIYVAPNNGLLTTVLEEHGYIEAYEVSSTKVIPERPEPTFYSREMVAIPAAHLAAGFPLSEVGRPLEDSEIVRYQPPQVEISGDTLTGVVSAIDHPYGNVWTNIHRTHLEK AGIGYGKRIKIILDDVLPFEQTLVPTFADAGEIGGVAAYLNSRGYLSLARNLASLAYPFNLKAGLKVRVETNPTPPTTPTPPTTPTPLELELKLKLELELKLK

FIA-L6KD:FIA-L6KD:

MSADPTQRPIIGFMSDLGTTDDSVAQCKGLMHSICPGVTVIDVCHSMTPWDVEEGARYIVDLPRFFPEGTVFATTTYPATGTETRSVAVRIKQAAKGGARGQWAGSAGGFERAEGSYIYVAPNNGLLTTVLEEHGYIEAYEVSSTKVIPERPEPTFYSREMVAIPAAHLAAGFPLSEVGRPLEDSEIVRYQPPQVEISGDTLTGVVSAIDHPYGNVWTNIHRTHLEKAGIGYGKRIKIILDDVLPFEQTLVPTFADAGEIGGVAAYLNSRGYLSLARNLASLAYPFNLKAGLKVRVETNPTPPTTPTPPTTPTPTPLLLLLLKDMSADPTQRPIIGFMSDLGTTDDSVAQCKGLMHSICPGVTVIDVCHSMTPWDVEEGARYIVDLPRFFPEGTVFATTTYPATGTETRSVAVRIKQAAKGGARGQWAGSAGGFERAEGSYIYVAPNNGLLTTVLEEHGYIEAYEVSSTKVIPERPEPTFYSREMVAIPAAHLAAGFPLSEVGRPLEDSEIVRYQPPQVEISGDTLTGVVSAIDHPYGNVWTNIHRTHLEK AGIGYGKRIKIILDDVLPFEQTLVPTFADAGEIGGVAAYLNSRGYLSLARNLASLAYPFNLKAGLKVRVETNPTPPTTPTPPTTPTPTPLLLLLLKD

FIA-18A:FIA-18A:

MSADPTQRPIIGFMSDLGTTDDSVAQCKGLMHSICPGVTVIDVCHSMTPWDVEEGARYIVDLPRFFPEGTVFATTTYPATGTETRSVAVRIKQAAKGGARGQWAGSAGGFERAEGSYIYVAPNNGLLTTVLEEHGYIEAYEVSSTKVIPERPEPTFYSREMVAIPAAHLAAGFPLSEVGRPLEDSEIVRYQPPQVEISGDTLTGVVSAIDHPYGNVWTNIHRTHLEKAGIGYGKRIKIILDDVLPFEQTLVPTFADAGEIGGVAAYLNSRGYLSLARNLASLAYPFNLKAGLKVRVETNPTPPTTPTPPTTPTPTPEWLKAFYEKVLEKLKELF。MSADPTQRPIIGFMSDLGTTDDSVAQCKGLMHSICPGVTVIDVCHSMTPWDVEEGARYIVDLPRFFPEGTVFATTTYPATGTETRSVAVRIKQAAKGGARGQWAGSAGGFERAEGSYIYVAPNNGLLTTVLEEHGYIEAYEVSSTKVIPERPEPTFYSREMVAIPAAHLAAGFPLSEVGRPLEDSEIVRYQPPQVEISGDTLTGVVSAIDHPYGNVWTNIHRTHLEK AGIGYGKRIKIILDDVLPFEQTLVPTFADAGEIGGVAAYLNSRGYLSLARNLASLAYPFNLKAGLKVRVETNPTPPTTPTPPTTPTPEWLKAFYEKVLEKLKELF.

2.三种氟化酶聚集体的质粒构建,过表达和纯化2. Plasmid construction, overexpression and purification of three fluorase aggregates

将得到的三种氟化酶聚集体的DNA编码序列,通过双酶切,将基因插入到质粒载体上,构建重组质粒。The DNA coding sequences of the three obtained fluorase aggregates were digested by double enzymes, and the genes were inserted into plasmid vectors to construct recombinant plasmids.

重组质粒应用热休克方法转化入大肠杆菌BL21(DE3)。具体为将三种氟化酶聚集体的质粒和大肠杆菌转化态细胞分别混合均匀,42℃加热90秒进行转化。将分别含有三种氟化酶聚集体质粒的BL21(DE3)细胞放入含50mg/mL卡那霉素的LB培养基直至在600nm(OD600)的吸光度值达到0.6左右。将其冷却到室温,加入终浓度为0.05mM的异丙基-β-D-硫代半乳糖苷(isopropylthiogalactoside,IPTG),16℃培养24小时。The recombinant plasmid was transformed into E. coli BL21(DE3) using heat shock method. Specifically, the plasmids of the three fluorase aggregates and the transformed cells of Escherichia coli were mixed evenly and heated at 42°C for 90 seconds to transform. BL21 (DE3) cells containing three fluorase aggregate plasmids were placed into LB medium containing 50 mg/mL kanamycin until the absorbance value at 600 nm (OD 600 ) reached about 0.6. Cool it to room temperature, add isopropyl-β-D-thiogalactoside (IPTG) with a final concentration of 0.05mM, and incubate at 16°C for 24 hours.

随后将细胞收集、裂解、离心,收集沉淀,用裂解缓冲液清洗三次,获得三种聚集体。随后纯化的蛋白用聚丙烯酰胺凝胶电泳(SDS-PAGE)进行分析,随后以氟化酶为对照,通过灰度分析软件imageJ对聚集体定量。The cells were then collected, lysed, and centrifuged, and the pellet was collected and washed three times with lysis buffer to obtain three aggregates. The purified protein was then analyzed by polyacrylamide gel electrophoresis (SDS-PAGE), and then the aggregates were quantified by grayscale analysis software imageJ using fluorase as a control.

3.高效液相仪(HPLC)和液质联用仪(LC-MS)检测酶反应产物3. Detect enzyme reaction products with high performance liquid chromatography (HPLC) and liquid mass spectrometry (LC-MS)

HPLC/LC-MS被用来检测三种氟化酶聚集体催化底物产生的酶反应产物。该反应在20mM,pH 7.8的磷酸盐缓冲液中进行。包含有氟化酶聚集体(0.5mg/mL),KF(200mM)和底物SAM(200μM),反应30分钟。反应结束后,向体系中加入质量浓度为10%的三氟乙酸以终止反应,再离心(12000rpm,10min)除去蛋白,上清液用于分析。HPLC/LC-MS was used to detect the enzymatic reaction products produced by the substrates catalyzed by three fluorase aggregates. The reaction was performed in 20mM phosphate buffer, pH 7.8. Contains fluorase aggregate (0.5mg/mL), KF (200mM) and substrate SAM (200μM), react for 30 minutes. After the reaction, trifluoroacetic acid with a mass concentration of 10% was added to the system to terminate the reaction, and then centrifuged (12000 rpm, 10 min) to remove the protein, and the supernatant was used for analysis.

4.测定三种氟化酶聚集体的结构形态与尺寸大小4. Determination of the structure, form and size of three fluorase aggregates

通过透色电镜(TEM)对三种氟化酶聚集体进行观察,以确定聚集体结构状态与尺寸大小。取10μL终浓度为0.5mg/mL的三种氟化酶聚集体以及其对照组可溶氟化酶,随后,分别移液到辉光放电的碳涂覆的铜网上,并在室温下(25℃)孵育60秒并用滤纸吸干。再将网格置于一滴磷钨酸(PTA,2%v/v,pH 7.0)上50秒。除去过量的PTA,用透射电子显微镜(TEM)观察样品。Three types of fluorase aggregates were observed through transmission electron microscopy (TEM) to determine the structural state and size of the aggregates. Take 10 μL of three fluorase aggregates with a final concentration of 0.5 mg/mL and their control group soluble fluorase, and then pipet them onto the glow-discharged carbon-coated copper grid respectively, and incubate at room temperature (25 °C) for 60 seconds and blotted with filter paper. The grid was then placed on a drop of phosphotungstic acid (PTA, 2% v/v, pH 7.0) for 50 seconds. Excess PTA was removed and the samples were observed with a transmission electron microscope (TEM).

5.三种氟化酶聚集体的酶动力学实验5. Enzyme kinetic experiments of three fluorinase aggregates

通过高效液相法检测酶反应产物,以确定三种氟化酶聚集体的各自活性和酶动力学常数。酶反应由加入的氟化酶聚集体(终浓度为0.5mg/mL)激活。反应体系为磷酸盐缓冲液(20mM,pH 7.8),其中加入200mM KF,底物浓度为0μM到800μM。随后,在同一底物下,取不同时间点的反应产物,使用高效液相仪检测。The enzyme reaction products were detected by high-performance liquid chromatography to determine the respective activities and enzyme kinetic constants of the three fluorase aggregates. The enzymatic reaction is activated by the addition of fluorase aggregates (final concentration 0.5 mg/mL). The reaction system is phosphate buffer (20mM, pH 7.8), in which 200mM KF is added, and the substrate concentration ranges from 0 μM to 800 μM. Subsequently, under the same substrate, the reaction products at different time points were taken and detected using a high-performance liquid chromatograph.

通过检测所得,绘制不同底物浓度下的酶反应曲线,以确定在不同浓度下,酶反应的最初速度(以5’-FDA的生成速度计),制作米曼氏酶动力学曲线。最终得Vmax、Km、Kcat和特异性常数(specificity constant)这些酶动力学常数,结果如图5所示。Based on the detection results, the enzyme reaction curves at different substrate concentrations are drawn to determine the initial speed of the enzyme reaction (based on the production rate of 5'-FDA) at different concentrations, and a Miemann enzyme kinetic curve is produced. Finally, the enzyme kinetic constants V max , K m , K cat and specificity constant (specificity constant) were obtained, and the results are shown in Figure 5.

表1为三种氟化酶聚集体和可溶氟化酶以S-腺苷-L-甲硫氨酸作为底物得到的米曼氏酶动力学参数Table 1 shows the kinetic parameters of Mieman enzyme obtained by using S-adenosyl-L-methionine as the substrate for three fluorase aggregates and soluble fluorase.

6.测定三种氟化酶聚集体的热稳定性和可重复使用性6. Determination of thermal stability and reusability of three fluorase aggregates

通过测定三种氟化酶聚集体的半衰期(t1/2),以确定其在不同温度下的热稳定性。在不同温度下,将三种包涵体氟化酶分别保存相应时间,然后进行酶促反应。反应体系为磷酸盐缓冲液(20mM,pH 7.8),包含包含有氟化酶聚集体(0.5mg/mL),KF(200mM)和底物SAM(200μM),反应30分钟。随后,经过高效液相色谱仪检测反应产物,确定产物浓度,绘制酶活性曲线,再根据公式t1/2=ln2/kd计算可得三种氟化酶聚集体在不同温度下的半衰期时间。The half-lives (t 1/2 ) of three fluorase aggregates were determined to determine their thermal stability at different temperatures. The three inclusion body fluorases were stored at different temperatures for corresponding times, and then enzymatic reactions were performed. The reaction system was phosphate buffer (20mM, pH 7.8), containing fluorase aggregates (0.5mg/mL), KF (200mM) and substrate SAM (200μM), and the reaction was carried out for 30 minutes. Subsequently, the reaction product is detected by high-performance liquid chromatography, the product concentration is determined, the enzyme activity curve is drawn, and then the half-life time of the three fluorase aggregates at different temperatures can be calculated according to the formula t 1/2 = ln2/k d .

由于三种氟化酶聚集体在酶促反应结束后,可通过高速离心使其与反应产物分离,从而达到可重复使用的目的。Since the three fluorase aggregates can be separated from the reaction products through high-speed centrifugation after the enzymatic reaction is completed, they can be reused.

表2为三种氟化酶聚集体和可溶氟化酶的半衰期(t1/2)。Table 2 shows the half-lives (t 1/2 ) of three fluorase aggregates and soluble fluorase.

此外,氟化酶聚集体的反应产物5’-FDA能够作为底物,在核苷水解酶的作用下,经酶促反应生成5’-FDR,和其他下游物质(如多肽,抗体,亲和体分子等)进行生物共轭交联(bio-conjugation),以此具有引入同位素标记18F的潜在能力。此18F标记物可以作为放射示踪物(radiotracer)用于正电子发射断层扫描(positron emission tomography,PET)。In addition, the reaction product of fluorase aggregates, 5'-FDA, can be used as a substrate to generate 5'-FDR through an enzymatic reaction under the action of nucleoside hydrolase, and other downstream substances (such as polypeptides, antibodies, affinity It has the potential to introduce isotope-labeled 18 F through bio-conjugation. This 18 F marker can be used as a radiotracer for positron emission tomography (PET).

7. 5’-FDR的生物合成7. Biosynthesis of 5’-FDR

将三种氟化酶聚集体分别置于其各自最适温度下,按照上述酶促反应体系,进行反应60min,反应结束后,通过95℃,5min对体系中的酶灭活,通过离心(13000r/min,10min),收集反应液。取反应液200μL,向其中加入终浓度为0.5mg/mL的Trypanosoma vivax核苷水解酶(TvNH),加水定容至400μL,37℃反应60min后,通过95℃,5min对体系中的酶灭活,通过离心(13000r/min,10min),收集反应液,用于HPLC和LC/MS的检测。The three fluorase aggregates were placed at their respective optimal temperatures and reacted for 60 minutes according to the above enzymatic reaction system. After the reaction was completed, the enzyme in the system was inactivated at 95°C for 5 minutes and centrifuged (13000r). /min, 10min), collect the reaction solution. Take 200 μL of the reaction solution, add Trypanosoma vivax nucleoside hydrolase (TvNH) with a final concentration of 0.5 mg/mL, add water to adjust the volume to 400 μL, react at 37°C for 60 minutes, and then inactivate the enzyme in the system at 95°C for 5 minutes. , collect the reaction solution by centrifugation (13000r/min, 10min) and use it for HPLC and LC/MS detection.

SAM在氟化酶的催化下生成5’-FDA,然后其在TvNH的催化下,生成两种反应产物5’-FDR和腺嘌呤(AD),且两种产物的比例为1:1。由于5’-FDR不具有紫外吸收,而AD在260nm处有较强的紫外吸收,所以利用检测AD的含量,即可知5’-FDR的生成量。结果如图7A所示,AD标准品的保留时间在6min左右,四种氟化酶的反应产物与标准品保留时间一致,说明四种氟化酶与TvNH经过两步酶促反应,能够产生5’-FDR。为了进一步验证反应产物中有AD,经过LC-MS检测,如图7B所示,该处的[M+H]+=136.1,而AD的相对分子质量为M=135.1,理论计算[M+H]+=136.1,与检测结果一致。因此,再次说明TvNH能够催化5’-FDA生成5’-FDR。SAM generates 5'-FDA under the catalysis of fluorase, which then generates two reaction products, 5'-FDR and adenine (AD), under the catalysis of TvNH, and the ratio of the two products is 1:1. Since 5'-FDR does not have UV absorption, but AD has strong UV absorption at 260nm, the amount of 5'-FDR generated can be known by detecting the content of AD. The results are shown in Figure 7A. The retention time of the AD standard is about 6 minutes, and the reaction products of the four fluorases are consistent with the retention times of the standards, indicating that the four fluorases and TvNH can produce 5 after a two-step enzymatic reaction. '-FDR. In order to further verify that there is AD in the reaction product, after LC-MS detection, as shown in Figure 7B, [M+H] + =136.1, and the relative molecular mass of AD is M=135.1, and the theoretical calculation [M+H ] + =136.1, consistent with the test results. Therefore, it once again shows that TvNH can catalyze 5'-FDA to generate 5'-FDR.

同时,利用HPLC对反应产物AD定量,即为5’-FDR的产量,以可溶氟化酶FIA为对照,四种氟化酶和TvNH通过两步酶促反应生成5’-FDR的相对产率如图7C所示。由图可得,在一定的时间里,由于FIA-18A的最大反应速率较高,所以其产生的5’-FDA最多,导致5’-FDR的相对产率较高;FIA-L6KD的最大反应速率与FIA相近,所以两者5’-FDR的相对产率基本相同。这一实验,也表明了可以直接利用SAM,经过两步酶促反应,直接产生5’-FDR。验证了利用氟化酶,能够潜在的生成[18F]-氟化物,应用于PET的可行性。At the same time, HPLC was used to quantify the reaction product AD, which is the yield of 5'-FDR. Using the soluble fluorase FIA as a control, the relative yields of 5'-FDR generated by four fluorases and TvNH through a two-step enzymatic reaction. The rate is shown in Figure 7C. It can be seen from the figure that in a certain period of time, due to the higher maximum reaction rate of FIA-18A, it produces the most 5'-FDA, resulting in a higher relative yield of 5'-FDR; the maximum reaction rate of FIA-L6KD The rate is similar to FIA, so the relative yields of 5'-FDR between the two are basically the same. This experiment also showed that SAM can be directly used to directly produce 5'-FDR through a two-step enzymatic reaction. The feasibility of using fluorinase to potentially generate [ 18 F]-fluoride for PET was verified.

尽管为说明目的公开了本发明的实施例,但是本领域的技术人员可以理解:在不脱离本发明及所附权利要求的精神和范围内,各种替换、变化和修改都是可能的,因此,本发明的范围不局限于实施例和附图所公开的内容。Although the embodiments of the present invention have been disclosed for illustrative purposes, those skilled in the art will appreciate that various substitutions, changes and modifications are possible without departing from the spirit and scope of the present invention and the appended claims. , the scope of the present invention is not limited to the contents disclosed in the embodiments and drawings.

序列sequence

所述氟化酶聚集体为FIA-ELK16,其编码基因的基因序列为SEQ NO.1:The fluorinase aggregate is FIA-ELK16, and the gene sequence of its encoding gene is SEQ NO.1:

atgtctgcggacccgacccagcgcccgatcattggcttcatgtctgacctgggcactaccgacgactccgtggcgcagtgcaaaggtctgatgcactctatctgcccgggtgttaccgttatcgacgtttgccacagcatgaccccgtgggacgttgaagaaggtgctcgttacatcgttgacctgccgcgcttcttcccggagggcactgttttcgcgaccaccacctacccggcgaccggtactgaaacccgtagcgttgcggttcgcatcaaacaggcggcgaaaggcggtgcgcgtggccagtgggcgggttccgcgggtggtttcgaacgtgcggaaggttcttacatctacgttgcaccgaacaacggcctgctgaccaccgttctggaggagcacggctacatcgaagcgtacgaagtttcttctaccaaagttatcccggaacgtccggaaccgactttctattctcgtgaaatggttgcgatcccggcagcgcacctggcagctggtttcccgctgtctgaagttggtcgtccgctggaagattctgaaatcgttcgttatcagccgccgcaggtggaaatcagcggtgacaccctgaccggtgttgtttctgcgatcgaccatccgttcggtaacgtttggaccaacatccaccgtacccacctggaaaaagcgggtatcggttacggtaaacgtatcaaaatcatcctggacgacgttctgccgtttgagcagaccctggttccgaccttcgcggatgctggtgaaattggcggcgtggcagcgtatctgaactctcgtggttacctgtctctggcgcgtaacgcggcatccctggcgtatccgtttaacctgaaggcgggtctgaaagttcgtgttgaaaccaacccgacaccacctactacaccgacgccgcctaccacgccaaccccgactcctctggaattggaactgaaactgaaattagaacttgaattaaaacttaaataaatgtctgcggacccgacccagcgcccgatcattggcttcatgtctgacctgggcactaccgacgactccgtggcgcagtgcaaaggtctgatgcactctatctgcccgggtgttaccgttatcgacgtttgccacagcatgaccccgtgggacgttgaagaaggtgctcgttacatcgttgacctgccgc gcttcttcccggagggcactgttttcgcgaccaccacctacccggcgaccggtactgaaacccgtagcgttgcggttcgcatcaaacaggcggcgaaaggcggtgcgcgtggccagtgggcgggttccgcgggtggtttcgaacgtgcggaaggttcttacatctacgttgcaccgaacaac ggcctgctgaccaccgttctggaggagcacggctacatcgaagcgtacgaagtttcttctaccaaagttatcccggaacgtccggaaccgactttctattctcgtgaaatggttgcgatcccggcagcgcacctggcagctggtttcccgctgtctgaagttggtcgtccgctggaagattctgaaatcg ttcgttatcagccgccgcaggtggaaatcagcggtgacaccctgaccggtgttgtttctgcgatcgaccatccgttcggtaacgtttggaccaacatccaccgtacccacctggaaaaagcgggtatcggttacggtaaacgtatcaaaaatcatcctggacgacgttctgccgtttgagcagaccct ggttccgaccttcgcggatgctggtgaaattggcggcgtggcagcgtatctgaactctcgtggttacctgtctctggcgcgtaacgcggcatccctggcgtatccgtttaacctgaaggcgggtctgaaagttcgtgttgaaaccaacccgacaccacctactacaccgacgccgcctaccacgccaaccccgact cctctggaattggaactgaaactgaaattagaacttgaattaaaacttaaataa

其编码基因的氨基酸序列为SEQ NO.2:The amino acid sequence of its encoding gene is SEQ NO.2:

MSADPTQRPIIGFMSDLGTTDDSVAQCKGLMHSICPGVTVIDVCHSMTPWDVEEGARYIVDLPRFFPEGTVFATTTYPATGTETRSVAVRIKQAAKGGARGQWAGSAGGFERAEGSYIYVAPNNGLLTTVLEEHGYIEAYEVSSTKVIPERPEPTFYSREMVAIPAAHLAAGFPLSEVGRPLEDSEIVRYQPPQVEISGDTLTGVVSAIDHPYGNVWTNIHRTHLEKAGIGYGKRIKIILDDVLPFEQTLVPTFADAGEIGGVAAYLNSRGYLSLARNLASLAYPFNLKAGLKVRVETNPTPPTTPTPPTTPTPTPLELELKLKLELELKLK;MSADPTQRPIIGFMSDLGTTDDSVAQCKGLMHSICPGVTVIDVCHSMTPWDVEEGARYIVDLPRFFPEGTVFATTTYPATGTETRSVAVRIKQAAKGGARGQWAGSAGGFERAEGSYIYVAPNNGLLTTVLEEHGYIEAYEVSSTKVIPERPEPTFYSREMVAIPAAHLAAGFPLSEVGRPLEDSEIVRYQPPQVEISGDTLTGVVSAIDHPYGNVWTNIHRTHLEK AGIGYGKRIKIILDDVLPFEQTLVPTFADAGEIGGVAAYLNSRGYLSLARNLASLAYPFNLKAGLKVRVETNPTPPTTPTPPTTPTPTPLELELKLKLELELKLK;

所述氟化酶聚集体为FIA-L6KD,其编码基因的基因序列为SEQ NO.3:The fluorinase aggregate is FIA-L6KD, and the gene sequence of its encoding gene is SEQ NO.3:

atgtctgcggacccgacccagcgcccgatcattggcttcatgtctgacctgggcactaccgacgactccgtggcgcagtgcaaaggtctgatgcactctatctgcccgggtgttaccgttatcgacgtttgccacagcatgaccccgtgggacgttgaagaaggtgctcgttacatcgttgacctgccgcgcttcttcccggagggcactgttttcgcgaccaccacctacccggcgaccggtactgaaacccgtagcgttgcggttcgcatcaaacaggcggcgaaaggcggtgcgcgtggccagtgggcgggttccgcgggtggtttcgaacgtgcggaaggttcttacatctacgttgcaccgaacaacggcctgctgaccaccgttctggaggagcacggctacatcgaagcgtacgaagtttcttctaccaaagttatcccggaacgtccggaaccgactttctattctcgtgaaatggttgcgatcccggcagcgcacctggcagctggtttcccgctgtctgaagttggtcgtccgctggaagattctgaaatcgttcgttatcagccgccgcaggtggaaatcagcggtgacaccctgaccggtgttgtttctgcgatcgaccatccgttcggtaacgtttggaccaacatccaccgtacccacctggaaaaagcgggtatcggttacggtaaacgtatcaaaatcatcctggacgacgttctgccgtttgagcagaccctggttccgaccttcgcggatgctggtgaaattggcggcgtggcagcgtatctgaactctcgtggttacctgtctctggcgcgtaacgcggcatccctggcgtatccgtttaacctgaaggcgggtctgaaagttcgtgttgaaaccaacccgacccctccaaccacacctacaccgcctacgacaccgacgccaacgccgttactgctgttattactgaaagattaa ttcgtgttgaaaccaac ccgacccctcc aaccacacctacaccgccta cgacaccgac gccaacgccgttatactgc tgttattactgaaagattaa

其编码基因的氨基酸序列为SEQ NO.4:The amino acid sequence of its encoding gene is SEQ NO.4:

MSADPTQRPIIGFMSDLGTTDDSVAQCKGLMHSICPGVTVIDVCHSMTPWDVEEGARYIVDLPRFFPEGTVFATTTYPATGTETRSVAVRIKQAAKGGARGQWAGSAGGFERAEGSYIYVAPNNGLLTTVLEEHGYIEAYEVSSTKVIPERPEPTFYSREMVAIPAAHLAAGFPLSEVGRPLEDSEIVRYQPPQVEISGDTLTGVVSAIDHPYGNVWTNIHRTHLEKAGIGYGKRIKIILDDVLPFEQTLVPTFADAGEIGGVAAYLNSRGYLSLARNLASLAYPFNLKAGLKVRVETNPTPPTTPTPPTTPTPTPLLLLLLKD;MSADPTQRPIIGFMSDLGTTDDSVAQCKGLMHSICPGVTVIDVCHSMTPWDVEEGARYIVDLPRFFPEGTVFATTTYPATGTETRSVAVRIKQAAKGGARGQWAGSAGGFERAEGSYIYVAPNNGLLTTVLEEHGYIEAYEVSSTKVIPERPEPTFYSREMVAIPAAHLAAGFPLSEVGRPLEDSEIVRYQPPQVEISGDTLTGVVSAIDHPYGNVWTNIHRTHLEK AGIGYGKRIKIILDDVLPFEQTLVPTFADAGEIGGVAAYLNSRGYLSLARNLASLAYPFNLKAGLKVRVETNPTPPTTPTPPTTPTPTPLLLLLLKD;

所述氟化酶聚集体为FIA-18A,其编码基因的基因序列为SEQ NO.5:The fluorinase aggregate is FIA-18A, and the gene sequence of its encoding gene is SEQ NO.5:

atgtctgcggacccgacccagcgcccgatcattggcttcatgtctgacctgggcactaccgacgactccgtggcgcagtgcaaaggtctgatgcactctatctgcccgggtgttaccgttatcgacgtttgccacagcatgaccccgtgggacgttgaagaaggtgctcgttacatcgttgacctgccgcgcttcttcccggagggcactgttttcgcgaccaccacctacccggcgaccggtactgaaacccgtagcgttgcggttcgcatcaaacaggcggcgaaaggcggtgcgcgtggccagtgggcgggttccgcgggtggtttcgaacgtgcggaaggttcttacatctacgttgcaccgaacaacggcctgctgaccaccgttctggaggagcacggctacatcgaagcgtacgaagtttcttctaccaaagttatcccggaacgtccggaaccgactttctattctcgtgaaatggttgcgatcccggcagcgcacctggcagctggtttcccgctgtctgaagttggtcgtccgctggaagattctgaaatcgttcgttatcagccgccgcaggtggaaatcagcggtgacaccctgaccggtgttgtttctgcgatcgaccatccgttcggtaacgtttggaccaacatccaccgtacccacctggaaaaagcgggtatcggttacggtaaacgtatcaaaatcatcctggacgacgttctgccgtttgagcagaccctggttccgaccttcgcggatgctggtgaaattggcggcgtggcagcgtatctgaactctcgtggttacctgtctctggcgcgtaacgcggcatccctggcgtatccgtttaacctgaaggcgggtctgaaagttcgtgttgaaaccaacccaacccctccgacaacaccgacgccaccgaccacgcctacacctacgccggaatggctgaaagcattttatgaaaaagtgct ggaaaaattaaaagaactgttttaa gttcgtgttgaaaccaac ccaacccctc cgacaacaccgacgccaccg accacg cctacacctacgccggaatggc tgaaag cattttatgaaaaagtgct g gaaaaattaaaagaactgttttaa

其编码基因的氨基酸序列为SEQ NO.6:The amino acid sequence of its encoding gene is SEQ NO.6:

MSADPTQRPIIGFMSDLGTTDDSVAQCKGLMHSICPGVTVIDVCHSMTPWDVEEGARYIVDLPRFFPEGTVFATTTYPATGTETRSVAVRIKQAAKGGARGQWAGSAGGFERAEGSYIYVAPNNGLLTTVLEEHGYIEAYEVSSTKVIPERPEPTFYSREMVAIPAAHLAAGFPLSEVGRPLEDSEIVRYQPPQVEISGDTLTGVVSAIDHPYGNVWTNIHRTHLEKAGIGYGKRIKIILDDVLPFEQTLVPTFADAGEIGGVAAYLNSRGYLSLARNLASLAYPFNLKAGLKVRVETNPTPPTTPTPPTTPTPTPEWLKAFYEKVLEKLKELF。MSADPTQRPIIGFMSDLGTTDDSVAQCKGLMHSICPGVTVIDVCHSMTPWDVEEGARYIVDLPRFFPEGTVFATTTYPATGTETRSVAVRIKQAAKGGARGQWAGSAGGFERAEGSYIYVAPNNGLLTTVLEEHGYIEAYEVSSTKVIPERPEPTFYSREMVAIPAAHLAAGFPLSEVGRPLEDSEIVRYQPPQVEISGDTLTGVVSAIDHPYGNVWTNIHRTHLEK AGIGYGKRIKIILDDVLPFEQTLVPTFADAGEIGGVAAYLNSRGYLSLARNLASLAYPFNLKAGLKVRVETNPTPPTTPTPPTTPTPEWLKAFYEKVLEKLKELF.

氟化酶的DNA序列为SEQ NO.7:The DNA sequence of fluorase is SEQ NO.7:

Atgtctgcggacccgacccagcgcccgatcattggcttcatgtctgacctgggcactaccgacgactccgtggcgcagtgcaaaggtctgatgcactctatctgcccgggtgttaccgttatcgacgtttgccacagcatgaccccgtgggacgttgaagaaggtgctcgttacatcgttgacctgccgcgcttcttcccggagggcactgttttcgcgaccaccacctacccggcgaccggtactgaaacccgtagcgttgcggttcgcatcaaacaggcggcgaaaggcggtgcgcgtggccagtgggcgggttccgcgggtggtttcgaacgtgcggaaggttcttacatctacgttgcaccgaacaacggcctgctgaccaccgttctggaggagcacggctacatcgaagcgtacgaagtttcttctaccaaagttatcccggaacgtccggaaccgactttctattctcgtgaaatggttgcgatcccggcagcgcacctggcagctggtttcccgctgtctgaagttggtcgtccgctggaagattctgaaatcgttcgttatcagccgccgcaggtggaaatcagcggtgacaccctgaccggtgttgtttctgcgatcgaccatccgttcggtaacgtttggaccaacatccaccgtacccacctggaaaaagcgggtatcggttacggtaaacgtatcaaaatcatcctggacgacgttctgccgtttgagcagaccctggttccgaccttcgcggatgctggtgaaattggcggcgtggcagcgtatctgaactctcgtggttacctgtctctggcgcgtaacgcggcatccctggcgtatccgtttaacctgaaggcgggtctgaaagttcgtgttgaaaccaac。Atgtctgcggacccgacccagcgcccgatcattggcttcatgtctgacctgggcactaccgacgactccgtggcgcagtgcaaaggtctgatgcactctcttgcccgggtgttaccgttatcgacgtttgccacagcatgaccccgtgggacgttgaagaaggtgctcgttacatcgttgacctgccgc gcttcttcccggagggcactgttttcgcgaccaccacctacccggcgaccggtactgaaacccgtagcgttgcggttcgcatcaaacaggcggcgaaaggcggtgcgcgtggccagtgggcgggttccgcgggtggtttcgaacgtgcggaaggttcttacatctacgttgcaccgaacaac ggcctgctgaccaccgttctggaggagcacggctacatcgaagcgtacgaagtttcttctaccaaagttatcccggaacgtccggaaccgactttctattctcgtgaaatggttgcgatcccggcagcgcacctggcagctggtttcccgctgtctgaagttggtcgtccgctggaagattctgaaatcg ttcgttatcagccgccgcaggtggaaatcagcggtgacaccctgaccggtgttgtttctgcgatcgaccatccgttcggtaacgtttggaccaacatccaccgtacccacctggaaaaagcgggtatcggttacggtaaacgtatcaaaaatcatcctggacgacgttctgccgtttgagcagaccct ggttccgaccttcgcggatgctggtgaaattggcggcgtggcagcgtatctgaactctcgtggttacctgtctctggcgcgtaacgcggcatccctggcgtatccgtttaacctgaaggcgggtctgaaagttcgtgttgaaaccaac.

序列表sequence list

<110> 天津科技大学<110> Tianjin University of Science and Technology

<120> 一种自组装短肽标签标记的氟化酶聚集体及应用<120> A self-assembled short peptide tag-labeled fluorase aggregate and its application

<160> 7<160> 7

<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0

<210> 1<210> 1

<211> 999<211> 999

<212> DNA/RNA<212>DNA/RNA

<213> 氟化酶聚集体为FIA-ELK16的编码基因的基因序列(Unknown)<213> The fluorase aggregate is the gene sequence of the gene encoding FIA-ELK16 (Unknown)

<400> 1<400> 1

atgtctgcgg acccgaccca gcgcccgatc attggcttca tgtctgacct gggcactacc 60atgtctgcgg acccgaccca gcgcccgatc attggcttca tgtctgacct gggcactacc 60

gacgactccg tggcgcagtg caaaggtctg atgcactcta tctgcccggg tgttaccgtt 120gacgactccg tggcgcagtg caaaggtctg atgcactcta tctgcccggg tgttaccgtt 120

atcgacgttt gccacagcat gaccccgtgg gacgttgaag aaggtgctcg ttacatcgtt 180atcgacgttt gccacagcat gaccccgtgg gacgttgaag aaggtgctcg ttacatcgtt 180

gacctgccgc gcttcttccc ggagggcact gttttcgcga ccaccaccta cccggcgacc 240gacctgccgc gcttcttccc ggagggcact gttttcgcga ccaccaccta cccggcgacc 240

ggtactgaaa cccgtagcgt tgcggttcgc atcaaacagg cggcgaaagg cggtgcgcgt 300ggtactgaaa cccgtagcgt tgcggttcgc atcaaacagg cggcgaaagg cggtgcgcgt 300

ggccagtggg cgggttccgc gggtggtttc gaacgtgcgg aaggttctta catctacgtt 360ggccagtggg cgggttccgc gggtggtttc gaacgtgcgg aaggttctta catctacgtt 360

gcaccgaaca acggcctgct gaccaccgtt ctggaggagc acggctacat cgaagcgtac 420gcaccgaaca acggcctgct gaccaccgtt ctggaggagc acggctacat cgaagcgtac 420

gaagtttctt ctaccaaagt tatcccggaa cgtccggaac cgactttcta ttctcgtgaa 480gaagtttctt ctaccaaagt tatcccggaa cgtccggaac cgactttcta ttctcgtgaa 480

atggttgcga tcccggcagc gcacctggca gctggtttcc cgctgtctga agttggtcgt 540atggttgcga tcccggcagc gcacctggca gctggtttcc cgctgtctga agttggtcgt 540

ccgctggaag attctgaaat cgttcgttat cagccgccgc aggtggaaat cagcggtgac 600ccgctggaag attctgaaat cgttcgttat cagccgccgc aggtggaaat cagcggtgac 600

accctgaccg gtgttgtttc tgcgatcgac catccgttcg gtaacgtttg gaccaacatc 660accctgaccg gtgttgtttc tgcgatcgac catccgttcg gtaacgtttg gaccaacatc 660

caccgtaccc acctggaaaa agcgggtatc ggttacggta aacgtatcaa aatcatcctg 720caccgtaccc acctggaaaa agcgggtatc ggttacggta aacgtatcaa aatcatcctg 720

gacgacgttc tgccgtttga gcagaccctg gttccgacct tcgcggatgc tggtgaaatt 780gacgacgttc tgccgtttga gcagaccctg gttccgacct tcgcggatgc tggtgaaatt 780

ggcggcgtgg cagcgtatct gaactctcgt ggttacctgt ctctggcgcg taacgcggca 840ggcggcgtgg cagcgtatct gaactctcgt ggttacctgt ctctggcgcg taacgcggca 840

tccctggcgt atccgtttaa cctgaaggcg ggtctgaaag ttcgtgttga aaccaacccg 900tccctggcgt atccgtttaa cctgaaggcg ggtctgaaag ttcgtgttga aaccaacccg 900

acaccaccta ctacaccgac gccgcctacc acgccaaccc cgactcctct ggaattggaa 960acaccaccta ctacaccgac gccgcctacc acgccaaccc cgactcctct ggaattggaa 960

ctgaaactga aattagaact tgaattaaaa cttaaataa 999ctgaaactga aattagaact tgaattaaaa cttaaataa 999

<210> 2<210> 2

<211> 332<211> 332

<212> PRT<212> PRT

<213> 氟化酶聚集体为FIA-ELK16的编码基因的氨基酸序列(Unknown)<213> The fluorase aggregate is the amino acid sequence of the gene encoding FIA-ELK16 (Unknown)

<400> 2<400> 2

Met Ser Ala Asp Pro Thr Gln Arg Pro Ile Ile Gly Phe Met Ser AspMet Ser Ala Asp Pro Thr Gln Arg Pro Ile Ile Gly Phe Met Ser Asp

1 5 10 151 5 10 15

Leu Gly Thr Thr Asp Asp Ser Val Ala Gln Cys Lys Gly Leu Met HisLeu Gly Thr Thr Asp Asp Ser Val Ala Gln Cys Lys Gly Leu Met His

20 25 30 20 25 30

Ser Ile Cys Pro Gly Val Thr Val Ile Asp Val Cys His Ser Met ThrSer Ile Cys Pro Gly Val Thr Val Ile Asp Val Cys His Ser Met Thr

35 40 45 35 40 45

Pro Trp Asp Val Glu Glu Gly Ala Arg Tyr Ile Val Asp Leu Pro ArgPro Trp Asp Val Glu Glu Gly Ala Arg Tyr Ile Val Asp Leu Pro Arg

50 55 60 50 55 60

Phe Phe Pro Glu Gly Thr Val Phe Ala Thr Thr Thr Tyr Pro Ala ThrPhe Phe Pro Glu Gly Thr Val Phe Ala Thr Thr Thr Tyr Pro Ala Thr

65 70 75 8065 70 75 80

Gly Thr Glu Thr Arg Ser Val Ala Val Arg Ile Lys Gln Ala Ala LysGly Thr Glu Thr Arg Ser Val Ala Val Arg Ile Lys Gln Ala Ala Lys

85 90 95 85 90 95

Gly Gly Ala Arg Gly Gln Trp Ala Gly Ser Ala Gly Gly Phe Glu ArgGly Gly Ala Arg Gly Gln Trp Ala Gly Ser Ala Gly Gly Phe Glu Arg

100 105 110 100 105 110

Ala Glu Gly Ser Tyr Ile Tyr Val Ala Pro Asn Asn Gly Leu Leu ThrAla Glu Gly Ser Tyr Ile Tyr Val Ala Pro Asn Asn Gly Leu Leu Thr

115 120 125 115 120 125

Thr Val Leu Glu Glu His Gly Tyr Ile Glu Ala Tyr Glu Val Ser SerThr Val Leu Glu Glu His Gly Tyr Ile Glu Ala Tyr Glu Val Ser Ser

130 135 140 130 135 140

Thr Lys Val Ile Pro Glu Arg Pro Glu Pro Thr Phe Tyr Ser Arg GluThr Lys Val Ile Pro Glu Arg Pro Glu Pro Thr Phe Tyr Ser Arg Glu

145 150 155 160145 150 155 160

Met Val Ala Ile Pro Ala Ala His Leu Ala Ala Gly Phe Pro Leu SerMet Val Ala Ile Pro Ala Ala His Leu Ala Ala Gly Phe Pro Leu Ser

165 170 175 165 170 175

Glu Val Gly Arg Pro Leu Glu Asp Ser Glu Ile Val Arg Tyr Gln ProGlu Val Gly Arg Pro Leu Glu Asp Ser Glu Ile Val Arg Tyr Gln Pro

180 185 190 180 185 190

Pro Gln Val Glu Ile Ser Gly Asp Thr Leu Thr Gly Val Val Ser AlaPro Gln Val Glu Ile Ser Gly Asp Thr Leu Thr Gly Val Val Ser Ala

195 200 205 195 200 205

Ile Asp His Pro Tyr Gly Asn Val Trp Thr Asn Ile His Arg Thr HisIle Asp His Pro Tyr Gly Asn Val Trp Thr Asn Ile His Arg Thr His

210 215 220 210 215 220

Leu Glu Lys Ala Gly Ile Gly Tyr Gly Lys Arg Ile Lys Ile Ile LeuLeu Glu Lys Ala Gly Ile Gly Tyr Gly Lys Arg Ile Lys Ile Ile Leu

225 230 235 240225 230 235 240

Asp Asp Val Leu Pro Phe Glu Gln Thr Leu Val Pro Thr Phe Ala AspAsp Asp Val Leu Pro Phe Glu Gln Thr Leu Val Pro Thr Phe Ala Asp

245 250 255 245 250 255

Ala Gly Glu Ile Gly Gly Val Ala Ala Tyr Leu Asn Ser Arg Gly TyrAla Gly Glu Ile Gly Gly Val Ala Ala Tyr Leu Asn Ser Arg Gly Tyr

260 265 270 260 265 270

Leu Ser Leu Ala Arg Asn Leu Ala Ser Leu Ala Tyr Pro Phe Asn LeuLeu Ser Leu Ala Arg Asn Leu Ala Ser Leu Ala Tyr Pro Phe Asn Leu

275 280 285 275 280 285

Lys Ala Gly Leu Lys Val Arg Val Glu Thr Asn Pro Thr Pro Pro ThrLys Ala Gly Leu Lys Val Arg Val Glu Thr Asn Pro Thr Pro Pro Thr

290 295 300 290 295 300

Thr Pro Thr Pro Pro Thr Thr Pro Thr Pro Thr Pro Leu Glu Leu GluThr Pro Thr Pro Pro Thr Thr Pro Thr Pro Thr Pro Leu Glu Leu Glu

305 310 315 320305 310 315 320

Leu Lys Leu Lys Leu Glu Leu Glu Leu Lys Leu LysLeu Lys Leu Lys Leu Glu Leu Glu Leu Lys Leu Lys

325 330 325 330

<210> 3<210> 3

<211> 975<211> 975

<212> DNA/RNA<212>DNA/RNA

<213> 氟化酶聚集体为FIA-L6KD的编码基因的基因序列(Unknown)<213> The fluorase aggregate is the gene sequence of the gene encoding FIA-L6KD (Unknown)

<400> 3<400> 3

atgtctgcgg acccgaccca gcgcccgatc attggcttca tgtctgacct gggcactacc 60atgtctgcgg acccgaccca gcgcccgatc attggcttca tgtctgacct gggcactacc 60

gacgactccg tggcgcagtg caaaggtctg atgcactcta tctgcccggg tgttaccgtt 120gacgactccg tggcgcagtg caaaggtctg atgcactcta tctgcccggg tgttaccgtt 120

atcgacgttt gccacagcat gaccccgtgg gacgttgaag aaggtgctcg ttacatcgtt 180atcgacgttt gccacagcat gaccccgtgg gacgttgaag aaggtgctcg ttacatcgtt 180

gacctgccgc gcttcttccc ggagggcact gttttcgcga ccaccaccta cccggcgacc 240gacctgccgc gcttcttccc ggagggcact gttttcgcga ccaccaccta cccggcgacc 240

ggtactgaaa cccgtagcgt tgcggttcgc atcaaacagg cggcgaaagg cggtgcgcgt 300ggtactgaaa cccgtagcgt tgcggttcgc atcaaacagg cggcgaaagg cggtgcgcgt 300

ggccagtggg cgggttccgc gggtggtttc gaacgtgcgg aaggttctta catctacgtt 360ggccagtggg cgggttccgc gggtggtttc gaacgtgcgg aaggttctta catctacgtt 360

gcaccgaaca acggcctgct gaccaccgtt ctggaggagc acggctacat cgaagcgtac 420gcaccgaaca acggcctgct gaccaccgtt ctggaggagc acggctacat cgaagcgtac 420

gaagtttctt ctaccaaagt tatcccggaa cgtccggaac cgactttcta ttctcgtgaa 480gaagtttctt ctaccaaagt tatcccggaa cgtccggaac cgactttcta ttctcgtgaa 480

atggttgcga tcccggcagc gcacctggca gctggtttcc cgctgtctga agttggtcgt 540atggttgcga tcccggcagc gcacctggca gctggtttcc cgctgtctga agttggtcgt 540

ccgctggaag attctgaaat cgttcgttat cagccgccgc aggtggaaat cagcggtgac 600ccgctggaag attctgaaat cgttcgttat cagccgccgc aggtggaaat cagcggtgac 600

accctgaccg gtgttgtttc tgcgatcgac catccgttcg gtaacgtttg gaccaacatc 660accctgaccg gtgttgtttc tgcgatcgac catccgttcg gtaacgtttg gaccaacatc 660

caccgtaccc acctggaaaa agcgggtatc ggttacggta aacgtatcaa aatcatcctg 720caccgtaccc acctggaaaa agcgggtatc ggttacggta aacgtatcaa aatcatcctg 720

gacgacgttc tgccgtttga gcagaccctg gttccgacct tcgcggatgc tggtgaaatt 780gacgacgttc tgccgtttga gcagaccctg gttccgacct tcgcggatgc tggtgaaatt 780

ggcggcgtgg cagcgtatct gaactctcgt ggttacctgt ctctggcgcg taacgcggca 840ggcggcgtgg cagcgtatct gaactctcgt ggttacctgt ctctggcgcg taacgcggca 840

tccctggcgt atccgtttaa cctgaaggcg ggtctgaaag ttcgtgttga aaccaacccg 900tccctggcgt atccgtttaa cctgaaggcg ggtctgaaag ttcgtgttga aaccaacccg 900

acccctccaa ccacacctac accgcctacg acaccgacgc caacgccgtt actgctgtta 960acccctccaa ccacacctac accgcctacg acaccgacgc caacgccgtt actgctgtta 960

ttactgaaag attaa 975ttatactgaaag attaa 975

<210> 4<210> 4

<211> 324<211> 324

<212> PRT<212> PRT

<213> 氟化酶聚集体为FIA-L6KD的编码基因的氨基酸序列(Unknown)<213> The fluorase aggregate is the amino acid sequence of the gene encoding FIA-L6KD (Unknown)

<400> 4<400> 4

Met Ser Ala Asp Pro Thr Gln Arg Pro Ile Ile Gly Phe Met Ser AspMet Ser Ala Asp Pro Thr Gln Arg Pro Ile Ile Gly Phe Met Ser Asp

1 5 10 151 5 10 15

Leu Gly Thr Thr Asp Asp Ser Val Ala Gln Cys Lys Gly Leu Met HisLeu Gly Thr Thr Asp Asp Ser Val Ala Gln Cys Lys Gly Leu Met His

20 25 30 20 25 30

Ser Ile Cys Pro Gly Val Thr Val Ile Asp Val Cys His Ser Met ThrSer Ile Cys Pro Gly Val Thr Val Ile Asp Val Cys His Ser Met Thr

35 40 45 35 40 45

Pro Trp Asp Val Glu Glu Gly Ala Arg Tyr Ile Val Asp Leu Pro ArgPro Trp Asp Val Glu Glu Gly Ala Arg Tyr Ile Val Asp Leu Pro Arg

50 55 60 50 55 60

Phe Phe Pro Glu Gly Thr Val Phe Ala Thr Thr Thr Tyr Pro Ala ThrPhe Phe Pro Glu Gly Thr Val Phe Ala Thr Thr Thr Tyr Pro Ala Thr

65 70 75 8065 70 75 80

Gly Thr Glu Thr Arg Ser Val Ala Val Arg Ile Lys Gln Ala Ala LysGly Thr Glu Thr Arg Ser Val Ala Val Arg Ile Lys Gln Ala Ala Lys

85 90 95 85 90 95

Gly Gly Ala Arg Gly Gln Trp Ala Gly Ser Ala Gly Gly Phe Glu ArgGly Gly Ala Arg Gly Gln Trp Ala Gly Ser Ala Gly Gly Phe Glu Arg

100 105 110 100 105 110

Ala Glu Gly Ser Tyr Ile Tyr Val Ala Pro Asn Asn Gly Leu Leu ThrAla Glu Gly Ser Tyr Ile Tyr Val Ala Pro Asn Asn Gly Leu Leu Thr

115 120 125 115 120 125

Thr Val Leu Glu Glu His Gly Tyr Ile Glu Ala Tyr Glu Val Ser SerThr Val Leu Glu Glu His Gly Tyr Ile Glu Ala Tyr Glu Val Ser Ser

130 135 140 130 135 140

Thr Lys Val Ile Pro Glu Arg Pro Glu Pro Thr Phe Tyr Ser Arg GluThr Lys Val Ile Pro Glu Arg Pro Glu Pro Thr Phe Tyr Ser Arg Glu

145 150 155 160145 150 155 160

Met Val Ala Ile Pro Ala Ala His Leu Ala Ala Gly Phe Pro Leu SerMet Val Ala Ile Pro Ala Ala His Leu Ala Ala Gly Phe Pro Leu Ser

165 170 175 165 170 175

Glu Val Gly Arg Pro Leu Glu Asp Ser Glu Ile Val Arg Tyr Gln ProGlu Val Gly Arg Pro Leu Glu Asp Ser Glu Ile Val Arg Tyr Gln Pro

180 185 190 180 185 190

Pro Gln Val Glu Ile Ser Gly Asp Thr Leu Thr Gly Val Val Ser AlaPro Gln Val Glu Ile Ser Gly Asp Thr Leu Thr Gly Val Val Ser Ala

195 200 205 195 200 205

Ile Asp His Pro Tyr Gly Asn Val Trp Thr Asn Ile His Arg Thr HisIle Asp His Pro Tyr Gly Asn Val Trp Thr Asn Ile His Arg Thr His

210 215 220 210 215 220

Leu Glu Lys Ala Gly Ile Gly Tyr Gly Lys Arg Ile Lys Ile Ile LeuLeu Glu Lys Ala Gly Ile Gly Tyr Gly Lys Arg Ile Lys Ile Ile Leu

225 230 235 240225 230 235 240

Asp Asp Val Leu Pro Phe Glu Gln Thr Leu Val Pro Thr Phe Ala AspAsp Asp Val Leu Pro Phe Glu Gln Thr Leu Val Pro Thr Phe Ala Asp

245 250 255 245 250 255

Ala Gly Glu Ile Gly Gly Val Ala Ala Tyr Leu Asn Ser Arg Gly TyrAla Gly Glu Ile Gly Gly Val Ala Ala Tyr Leu Asn Ser Arg Gly Tyr

260 265 270 260 265 270

Leu Ser Leu Ala Arg Asn Leu Ala Ser Leu Ala Tyr Pro Phe Asn LeuLeu Ser Leu Ala Arg Asn Leu Ala Ser Leu Ala Tyr Pro Phe Asn Leu

275 280 285 275 280 285

Lys Ala Gly Leu Lys Val Arg Val Glu Thr Asn Pro Thr Pro Pro ThrLys Ala Gly Leu Lys Val Arg Val Glu Thr Asn Pro Thr Pro Pro Thr

290 295 300 290 295 300

Thr Pro Thr Pro Pro Thr Thr Pro Thr Pro Thr Pro Leu Leu Leu LeuThr Pro Thr Pro Pro Thr Thr Pro Thr Pro Thr Pro Leu Leu Leu Leu

305 310 315 320305 310 315 320

Leu Leu Lys AspLeu Leu Lys Asp

<210> 5<210> 5

<211> 1005<211> 1005

<212> DNA/RNA<212>DNA/RNA

<213> 氟化酶聚集体为FIA-18A的编码基因的基因序列(Unknown)<213> The fluorase aggregate is the gene sequence of the gene encoding FIA-18A (Unknown)

<400> 5<400> 5

atgtctgcgg acccgaccca gcgcccgatc attggcttca tgtctgacct gggcactacc 60atgtctgcgg acccgaccca gcgcccgatc attggcttca tgtctgacct gggcactacc 60

gacgactccg tggcgcagtg caaaggtctg atgcactcta tctgcccggg tgttaccgtt 120gacgactccg tggcgcagtg caaaggtctg atgcactcta tctgcccggg tgttaccgtt 120

atcgacgttt gccacagcat gaccccgtgg gacgttgaag aaggtgctcg ttacatcgtt 180atcgacgttt gccacagcat gaccccgtgg gacgttgaag aaggtgctcg ttacatcgtt 180

gacctgccgc gcttcttccc ggagggcact gttttcgcga ccaccaccta cccggcgacc 240gacctgccgc gcttcttccc ggagggcact gttttcgcga ccaccaccta cccggcgacc 240

ggtactgaaa cccgtagcgt tgcggttcgc atcaaacagg cggcgaaagg cggtgcgcgt 300ggtactgaaa cccgtagcgt tgcggttcgc atcaaacagg cggcgaaagg cggtgcgcgt 300

ggccagtggg cgggttccgc gggtggtttc gaacgtgcgg aaggttctta catctacgtt 360ggccagtggg cgggttccgc gggtggtttc gaacgtgcgg aaggttctta catctacgtt 360

gcaccgaaca acggcctgct gaccaccgtt ctggaggagc acggctacat cgaagcgtac 420gcaccgaaca acggcctgct gaccaccgtt ctggaggagc acggctacat cgaagcgtac 420

gaagtttctt ctaccaaagt tatcccggaa cgtccggaac cgactttcta ttctcgtgaa 480gaagtttctt ctaccaaagt tatcccggaa cgtccggaac cgactttcta ttctcgtgaa 480

atggttgcga tcccggcagc gcacctggca gctggtttcc cgctgtctga agttggtcgt 540atggttgcga tcccggcagc gcacctggca gctggtttcc cgctgtctga agttggtcgt 540

ccgctggaag attctgaaat cgttcgttat cagccgccgc aggtggaaat cagcggtgac 600ccgctggaag attctgaaat cgttcgttat cagccgccgc aggtggaaat cagcggtgac 600

accctgaccg gtgttgtttc tgcgatcgac catccgttcg gtaacgtttg gaccaacatc 660accctgaccg gtgttgtttc tgcgatcgac catccgttcg gtaacgtttg gaccaacatc 660

caccgtaccc acctggaaaa agcgggtatc ggttacggta aacgtatcaa aatcatcctg 720caccgtaccc acctggaaaa agcgggtatc ggttacggta aacgtatcaa aatcatcctg 720

gacgacgttc tgccgtttga gcagaccctg gttccgacct tcgcggatgc tggtgaaatt 780gacgacgttc tgccgtttga gcagaccctg gttccgacct tcgcggatgc tggtgaaatt 780

ggcggcgtgg cagcgtatct gaactctcgt ggttacctgt ctctggcgcg taacgcggca 840ggcggcgtgg cagcgtatct gaactctcgt ggttacctgt ctctggcgcg taacgcggca 840

tccctggcgt atccgtttaa cctgaaggcg ggtctgaaag ttcgtgttga aaccaaccca 900tccctggcgt atccgtttaa cctgaaggcg ggtctgaaag ttcgtgttga aaccaaccca 900

acccctccga caacaccgac gccaccgacc acgcctacac ctacgccgga atggctgaaa 960acccctccga caacaccgac gccaccgacc acgcctacac ctacgccgga atggctgaaa 960

gcattttatg aaaaagtgct ggaaaaatta aaagaactgt tttaa 1005gcattttatg aaaaagtgct ggaaaaatta aaagaactgt tttaa 1005

<210> 6<210> 6

<211> 334<211> 334

<212> PRT<212> PRT

<213> 氟化酶聚集体为FIA-18A的编码基因的氨基酸序列(Unknown)<213> The fluorase aggregate is the amino acid sequence of the gene encoding FIA-18A (Unknown)

<400> 6<400> 6

Met Ser Ala Asp Pro Thr Gln Arg Pro Ile Ile Gly Phe Met Ser AspMet Ser Ala Asp Pro Thr Gln Arg Pro Ile Ile Gly Phe Met Ser Asp

1 5 10 151 5 10 15

Leu Gly Thr Thr Asp Asp Ser Val Ala Gln Cys Lys Gly Leu Met HisLeu Gly Thr Thr Asp Asp Ser Val Ala Gln Cys Lys Gly Leu Met His

20 25 30 20 25 30

Ser Ile Cys Pro Gly Val Thr Val Ile Asp Val Cys His Ser Met ThrSer Ile Cys Pro Gly Val Thr Val Ile Asp Val Cys His Ser Met Thr

35 40 45 35 40 45

Pro Trp Asp Val Glu Glu Gly Ala Arg Tyr Ile Val Asp Leu Pro ArgPro Trp Asp Val Glu Glu Gly Ala Arg Tyr Ile Val Asp Leu Pro Arg

50 55 60 50 55 60

Phe Phe Pro Glu Gly Thr Val Phe Ala Thr Thr Thr Tyr Pro Ala ThrPhe Phe Pro Glu Gly Thr Val Phe Ala Thr Thr Thr Tyr Pro Ala Thr

65 70 75 8065 70 75 80

Gly Thr Glu Thr Arg Ser Val Ala Val Arg Ile Lys Gln Ala Ala LysGly Thr Glu Thr Arg Ser Val Ala Val Arg Ile Lys Gln Ala Ala Lys

85 90 95 85 90 95

Gly Gly Ala Arg Gly Gln Trp Ala Gly Ser Ala Gly Gly Phe Glu ArgGly Gly Ala Arg Gly Gln Trp Ala Gly Ser Ala Gly Gly Phe Glu Arg

100 105 110 100 105 110

Ala Glu Gly Ser Tyr Ile Tyr Val Ala Pro Asn Asn Gly Leu Leu ThrAla Glu Gly Ser Tyr Ile Tyr Val Ala Pro Asn Asn Gly Leu Leu Thr

115 120 125 115 120 125

Thr Val Leu Glu Glu His Gly Tyr Ile Glu Ala Tyr Glu Val Ser SerThr Val Leu Glu Glu His Gly Tyr Ile Glu Ala Tyr Glu Val Ser Ser

130 135 140 130 135 140

Thr Lys Val Ile Pro Glu Arg Pro Glu Pro Thr Phe Tyr Ser Arg GluThr Lys Val Ile Pro Glu Arg Pro Glu Pro Thr Phe Tyr Ser Arg Glu

145 150 155 160145 150 155 160

Met Val Ala Ile Pro Ala Ala His Leu Ala Ala Gly Phe Pro Leu SerMet Val Ala Ile Pro Ala Ala His Leu Ala Ala Gly Phe Pro Leu Ser

165 170 175 165 170 175

Glu Val Gly Arg Pro Leu Glu Asp Ser Glu Ile Val Arg Tyr Gln ProGlu Val Gly Arg Pro Leu Glu Asp Ser Glu Ile Val Arg Tyr Gln Pro

180 185 190 180 185 190

Pro Gln Val Glu Ile Ser Gly Asp Thr Leu Thr Gly Val Val Ser AlaPro Gln Val Glu Ile Ser Gly Asp Thr Leu Thr Gly Val Val Ser Ala

195 200 205 195 200 205

Ile Asp His Pro Tyr Gly Asn Val Trp Thr Asn Ile His Arg Thr HisIle Asp His Pro Tyr Gly Asn Val Trp Thr Asn Ile His Arg Thr His

210 215 220 210 215 220

Leu Glu Lys Ala Gly Ile Gly Tyr Gly Lys Arg Ile Lys Ile Ile LeuLeu Glu Lys Ala Gly Ile Gly Tyr Gly Lys Arg Ile Lys Ile Ile Leu

225 230 235 240225 230 235 240

Asp Asp Val Leu Pro Phe Glu Gln Thr Leu Val Pro Thr Phe Ala AspAsp Asp Val Leu Pro Phe Glu Gln Thr Leu Val Pro Thr Phe Ala Asp

245 250 255 245 250 255

Ala Gly Glu Ile Gly Gly Val Ala Ala Tyr Leu Asn Ser Arg Gly TyrAla Gly Glu Ile Gly Gly Val Ala Ala Tyr Leu Asn Ser Arg Gly Tyr

260 265 270 260 265 270

Leu Ser Leu Ala Arg Asn Leu Ala Ser Leu Ala Tyr Pro Phe Asn LeuLeu Ser Leu Ala Arg Asn Leu Ala Ser Leu Ala Tyr Pro Phe Asn Leu

275 280 285 275 280 285

Lys Ala Gly Leu Lys Val Arg Val Glu Thr Asn Pro Thr Pro Pro ThrLys Ala Gly Leu Lys Val Arg Val Glu Thr Asn Pro Thr Pro Pro Thr

290 295 300 290 295 300

Thr Pro Thr Pro Pro Thr Thr Pro Thr Pro Thr Pro Glu Trp Leu LysThr Pro Thr Pro Pro Thr Thr Pro Thr Pro Thr Pro Glu Trp Leu Lys

305 310 315 320305 310 315 320

Ala Phe Tyr Glu Lys Val Leu Glu Lys Leu Lys Glu Leu PheAla Phe Tyr Glu Lys Val Leu Glu Lys Leu Lys Glu Leu Phe

325 330 325 330

<210> 7<210> 7

<211> 897<211> 897

<212> DNA/RNA<212>DNA/RNA

<213> 氟化酶的DNA序列(Unknown)<213> DNA sequence of fluorase (Unknown)

<400> 7<400> 7

atgtctgcgg acccgaccca gcgcccgatc attggcttca tgtctgacct gggcactacc 60atgtctgcgg acccgaccca gcgcccgatc attggcttca tgtctgacct gggcactacc 60

gacgactccg tggcgcagtg caaaggtctg atgcactcta tctgcccggg tgttaccgtt 120gacgactccg tggcgcagtg caaaggtctg atgcactcta tctgcccggg tgttaccgtt 120

atcgacgttt gccacagcat gaccccgtgg gacgttgaag aaggtgctcg ttacatcgtt 180atcgacgttt gccacagcat gaccccgtgg gacgttgaag aaggtgctcg ttacatcgtt 180

gacctgccgc gcttcttccc ggagggcact gttttcgcga ccaccaccta cccggcgacc 240gacctgccgc gcttcttccc ggagggcact gttttcgcga ccaccaccta cccggcgacc 240

ggtactgaaa cccgtagcgt tgcggttcgc atcaaacagg cggcgaaagg cggtgcgcgt 300ggtactgaaa cccgtagcgt tgcggttcgc atcaaacagg cggcgaaagg cggtgcgcgt 300

ggccagtggg cgggttccgc gggtggtttc gaacgtgcgg aaggttctta catctacgtt 360ggccagtggg cgggttccgc gggtggtttc gaacgtgcgg aaggttctta catctacgtt 360

gcaccgaaca acggcctgct gaccaccgtt ctggaggagc acggctacat cgaagcgtac 420gcaccgaaca acggcctgct gaccaccgtt ctggaggagc acggctacat cgaagcgtac 420

gaagtttctt ctaccaaagt tatcccggaa cgtccggaac cgactttcta ttctcgtgaa 480gaagtttctt ctaccaaagt tatcccggaa cgtccggaac cgactttcta ttctcgtgaa 480

atggttgcga tcccggcagc gcacctggca gctggtttcc cgctgtctga agttggtcgt 540atggttgcga tcccggcagc gcacctggca gctggtttcc cgctgtctga agttggtcgt 540

ccgctggaag attctgaaat cgttcgttat cagccgccgc aggtggaaat cagcggtgac 600ccgctggaag attctgaaat cgttcgttat cagccgccgc aggtggaaat cagcggtgac 600

accctgaccg gtgttgtttc tgcgatcgac catccgttcg gtaacgtttg gaccaacatc 660accctgaccg gtgttgtttc tgcgatcgac catccgttcg gtaacgtttg gaccaacatc 660

caccgtaccc acctggaaaa agcgggtatc ggttacggta aacgtatcaa aatcatcctg 720caccgtaccc acctggaaaa agcgggtatc ggttacggta aacgtatcaa aatcatcctg 720

gacgacgttc tgccgtttga gcagaccctg gttccgacct tcgcggatgc tggtgaaatt 780gacgacgttc tgccgtttga gcagaccctg gttccgacct tcgcggatgc tggtgaaatt 780

ggcggcgtgg cagcgtatct gaactctcgt ggttacctgt ctctggcgcg taacgcggca 840ggcggcgtgg cagcgtatct gaactctcgt ggttacctgt ctctggcgcg taacgcggca 840

tccctggcgt atccgtttaa cctgaaggcg ggtctgaaag ttcgtgttga aaccaac 897tccctggcgt atccgtttaa cctgaaggcg ggtctgaaag ttcgtgttga aaccaac 897

Claims (3)

1. A self-assembled short peptide tag-labeled fluoroenzyme aggregate, characterized by: the fluoridase aggregate is prepared by combining self-assembled short peptide tags with fluoridase;
the fluoridase aggregate is FIA-ELK16, the gene sequence of the coding gene is SEQ NO.1, and the amino acid sequence of the coding gene is SEQ NO.2;
or the fluoridase aggregate is FIA-L6KD, the gene sequence of the coding gene is SEQ NO.3, and the amino acid sequence of the coding gene is SEQ NO.4;
or the fluoridase aggregate is FIA-18A, the gene sequence of the coding gene is SEQ NO.5, and the amino acid sequence of the coding gene is SEQ NO.6;
the optimal temperatures of the FIA-ELK16, the FIA-L6KD and the FIA-18A are respectively 40 ℃, 50 ℃, 60 ℃ and 6.0 respectively;
the size of the FIA-ELK16 is 500-600nm; the sizes of the FIA-L6KD and the FIA-18A are 200-300nm;
the substrate of the fluoridase aggregate is S-adenosyl-L-methionine, namely SAM;
the catalysis product of the fluoridase aggregate is 5 '-fluoridated deoxyadenosine, namely 5' -FDA;
the self-assembled short peptide tag is ELK16, L6KD or 18A;
the preparation method of the self-assembled short peptide tag-labeled fluoridase aggregate comprises the following steps:
the method comprises the steps of obtaining an amino acid sequence of a self-assembled short peptide tag by consulting a literature, optimizing a DNA coding sequence of the amino acid sequence, namely optimizing the DNA coding sequence according to the preference of escherichia coli for codons, and synthesizing the DNA coding sequence in vitro;
connecting the DNA sequence of the synthesized self-assembled peptide to the downstream, namely the 3' -end, of the DNA coding sequence of the fluoridase by an overlapping PCR technology, wherein the DNA sequence of the fluoridase is SEQ NO.7 to form a recombinant DNA sequence;
thirdly, inserting the recombinant DNA sequence into a plasmid with kanamycin resistance to construct a recombinant plasmid;
recombinant preparation of four kinds of Chinese medicinal materialsIntroducing the plasmid into Escherichia coli BL21 (DE 3), culturing in LB medium containing 50mg/mL kanamycin at 37deg.C until OD 600 The value is 0.6, then the induction is carried out at 16 ℃, 0.05 to 0.1mM IPTG is added for induction expression for 24 hours, and bacteria are collected;
fifthly, crushing the thalli, centrifuging to collect precipitate, eluting the precipitate with a buffer solution for three times, and removing impurities to obtain target protein, namely a fluoridase aggregate;
the fluoridase aggregate can utilize inorganic fluoride F - Catalyzing the SAM of S-adenosyl-L-methionine to produce 5 '-fluorodeoxyadenosine 5' -FDA) and L-methionine;
the kinetic parameters of the Miman enzyme obtained by using S-adenosyl-L-methionine as a substrate of FIA-ELK16, FIA-L6KD and FIA-18A are as follows:
the half-life of FIA-ELK16, FIA-L6KD, FIA-18A (t 1/2 ) The method comprises the following steps:
the FIA-ELK16, the FIA-L6KD and the FIA-18A can be reused.
2. Use of the self-assembled short peptide tag-labeled fluoroenzyme aggregate of claim 1 in a bioconversion catalyst of fluoride.
3. Use of a self-assembled short peptide tag-labeled fluoridase aggregate according to claim 1 for the preparation of a positron emission tomography radiotracer.
CN201910601278.7A 2019-07-03 2019-07-03 Self-assembled short peptide tag marked fluoridase aggregate and application Active CN110484518B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910601278.7A CN110484518B (en) 2019-07-03 2019-07-03 Self-assembled short peptide tag marked fluoridase aggregate and application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910601278.7A CN110484518B (en) 2019-07-03 2019-07-03 Self-assembled short peptide tag marked fluoridase aggregate and application

Publications (2)

Publication Number Publication Date
CN110484518A CN110484518A (en) 2019-11-22
CN110484518B true CN110484518B (en) 2023-11-10

Family

ID=68546783

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910601278.7A Active CN110484518B (en) 2019-07-03 2019-07-03 Self-assembled short peptide tag marked fluoridase aggregate and application

Country Status (1)

Country Link
CN (1) CN110484518B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112760303B (en) * 2021-02-05 2023-06-20 天津科技大学 A highly stereoselective methionine adenosyltransferase and its preparation method and application

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104755502A (en) * 2012-10-12 2015-07-01 清华大学 Production and purification methods of polypeptide
CN108570439A (en) * 2017-03-13 2018-09-25 浙江京新药业股份有限公司 The fusion protein of oxidoreducing enzyme, genetic engineering bacterium and its preparation method and application

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104755502A (en) * 2012-10-12 2015-07-01 清华大学 Production and purification methods of polypeptide
CN108570439A (en) * 2017-03-13 2018-09-25 浙江京新药业股份有限公司 The fusion protein of oxidoreducing enzyme, genetic engineering bacterium and its preparation method and application

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Self-assembled nano-aggregates of fluorinases demonstrate enhanced enzymatic activity, thermostability and reusability;Chunhao Tu等;《Biomater. Sci》;20191125;全文 *
海洋链霉菌Streptomyces xinghaiensis NRRL B-24674中氟化酶的研究;李玉峰;《中国优秀硕士学位论文全文数据库 基础科学辑》;20170715;正文第6-7、16、25、60页 *
自组装氟化酶聚集体的表达纯化及催化活性研究;屠春浩;《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》;20200715;全文 *
自组装短肽诱导酶活性聚集体的分离纯化及其稳定性研究;徐天旺;《中国优秀硕士学位论文全文数据库 基础科学辑》;20190115;摘要 *

Also Published As

Publication number Publication date
CN110484518A (en) 2019-11-22

Similar Documents

Publication Publication Date Title
CN113151201B (en) High thermostability and high activity isoeugenol monooxygenase mutant and its application
CN106148311A (en) The mutant of a kind of D psicose 3 epimerase and application thereof
CN112877307B (en) Amino acid dehydrogenase mutant and application thereof
CN112280761A (en) A kind of recombinant transaminase and mutant of said recombinant transaminase and application thereof
CN105543191A (en) Esterase PHE21 and encoding gene and application thereof
CN108342378A (en) A kind of glutamic acid decarboxylase enzyme mutant and its encoding gene and application
CN110484518B (en) Self-assembled short peptide tag marked fluoridase aggregate and application
CN114891707B (en) Recombinant strain and method for producing bilirubin by whole-cell catalysis thereof
CN106244569B (en) Esterase EstC10, and coding gene and application thereof
CN113337495B (en) A kind of method and application of improving sialic acid production
CN105802935A (en) Esterase PHE14 as well as encoding gene and application thereof
Pei et al. Catalytically active inclusion bodies (CatIBs) induced by terminally attached self-assembling coiled-coil domains: To enhance the stability of (R)-hydroxynitrile lyase
CN105132400B (en) The enzyme and preparation method thereof of C3H6O3 function is synthesized with catalysis formaldehyde
CN109971803A (en) A kind of L-erythrulose and erythritol production method
CN106755155A (en) A kind of method for preparing beta Alanine with double enzyme series connection
CN112831532B (en) Method for enzymatic synthesis of D-leucine
CN113061590B (en) Algae toxin degrading enzyme, composite material and application
CN109666687B (en) Escherichia coli engineering strain for producing scyllo-inositol through biotransformation and construction method and application thereof
CN116949115A (en) Application of efficient sucrose phosphorylase in preparation of glyceroglycosides
CN109943583B (en) A method for preparing ribavirin by using genetically engineered bacteria
CN107119003A (en) A kind of utilization glucan synthesizes recombinant bacterium and its construction method and the application of 3 hydracrylic acids
CN106086107B (en) Production method of trehalose
CN113736813B (en) Recombinant E.coli expression L-aspartic acid-alpha-decarboxylase vector and method
CN115896062B (en) Nicotinamide riboside kinase mutant and related products and application thereof
CN114958793B (en) A method for preparing mNampt mutants with high catalytic activity, mutants, recombinant bacteria and applications thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant