[go: up one dir, main page]

CN110468150A - RGS1 gene is improving widow according to the application under environment in tomato bacterial leaf spot resistance as negative regulatory factor - Google Patents

RGS1 gene is improving widow according to the application under environment in tomato bacterial leaf spot resistance as negative regulatory factor Download PDF

Info

Publication number
CN110468150A
CN110468150A CN201910772381.8A CN201910772381A CN110468150A CN 110468150 A CN110468150 A CN 110468150A CN 201910772381 A CN201910772381 A CN 201910772381A CN 110468150 A CN110468150 A CN 110468150A
Authority
CN
China
Prior art keywords
tomato
low
leaf spot
bacterial leaf
light environment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910772381.8A
Other languages
Chinese (zh)
Other versions
CN110468150B (en
Inventor
师恺
王娇
马巧梅
胡璋健
王萍
王安然
李依镁
喻景权
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201910772381.8A priority Critical patent/CN110468150B/en
Publication of CN110468150A publication Critical patent/CN110468150A/en
Application granted granted Critical
Publication of CN110468150B publication Critical patent/CN110468150B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8213Targeted insertion of genes into the plant genome by homologous recombination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8281Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for bacterial resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Botany (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明公开了RGS1基因作为负调控因子在提高寡照环境下番茄细菌性叶斑病抗性中的应用,所述RGS1基因的蛋白编码区的核苷酸序列如SEQ ID NO.1所示,所述应用的途径为通过敲除RGS1基因使寡照环境下番茄突变体的细菌性叶斑病抗性得到提高。本发明利用CRISPR/Cas9基因编辑技术获得番茄RGS1基因编辑的突变体,发现该突变体不仅能够显著增强对番茄细菌性叶斑病的抗性,而且能够显著减轻寡照环境下番茄细菌性叶斑病的发生程度,证明了RGS1基因作为负调控因子在减轻寡照环境下番茄细菌性叶斑病病害发生中的用途,可用于抗寡照环境下细菌性叶斑病品种的选育。

The invention discloses the application of the RGS1 gene as a negative regulatory factor in improving the resistance of tomato bacterial leaf spot in a low-light environment. The nucleotide sequence of the protein coding region of the RGS1 gene is shown in SEQ ID NO.1. The approach of the above application is to improve the bacterial leaf spot resistance of tomato mutants in a low-light environment by knocking out the RGS1 gene. The present invention uses CRISPR/Cas9 gene editing technology to obtain a mutant of tomato RGS1 gene editing, and finds that the mutant can not only significantly enhance the resistance to tomato bacterial leaf spot, but also significantly reduce tomato bacterial leaf spot in a low-light environment The occurrence degree of the RGS1 gene proved the use of RGS1 gene as a negative regulator in alleviating the occurrence of tomato bacterial leaf spot disease under the low-light environment, and can be used for the breeding of bacterial leaf spot resistant varieties under the low-light environment.

Description

RGS1基因作为负调控因子在提高寡照环境下番茄细菌性叶斑 病抗性中的应用RGS1 gene acts as a negative regulator to enhance tomato bacterial leaf spot under low light conditions applications in disease resistance

技术领域technical field

本发明涉及生物技术领域,尤其涉及RGS1基因作为负调控因子在提高寡照环境下番茄细菌性叶斑病抗性中的应用。The invention relates to the field of biotechnology, in particular to the application of the RGS1 gene as a negative regulatory factor in improving the resistance of tomato bacterial leaf spot in a low-light environment.

背景技术Background technique

我国蔬菜播种面积在2000年到2015年经历了一个迅速增长的阶段,近几年依旧有缓慢增长的趋势,但基本保持稳定。目前,蔬菜已成为我国市场化程度最大的经济作物。2018年中国统计年鉴数据显示,在农作物种植结构中蔬菜的种植比例由2000年的9.75%上升到2017年的12.0%,居各类经济作物之首(http://www.stats.gov.cn/tjsj/ndsj/2018/indexch.htm)。其中,番茄因其营养丰富,口感鲜美,广受喜爱。同时,番茄也是设施栽培的主要蔬菜之一。随着大气环境不断变化以及农业种植方式的设施化,雾霾和连续阴雨等不适宜天气状况及设施遮阴等带来的寡照问题日益严重。番茄是喜光植物,当光照强度低于150umol m-2s-1时,番茄植株易徒长,开花数减少。尤其在寡照环境下,番茄病害爆发严重,各种细菌性、病毒性以及真菌性病害频繁发生,十分猖獗。寡照和病害的共同危害,加之单一的种植模式,对设施栽培番茄产量及品质造成了极大的威胁。From 2000 to 2015, the sown area of vegetables in my country experienced a stage of rapid growth. In recent years, there is still a slow growth trend, but it remains basically stable. At present, vegetables have become the economic crops with the largest degree of marketization in my country. According to the 2018 China Statistical Yearbook data, the proportion of vegetable planting in the crop planting structure increased from 9.75% in 2000 to 12.0% in 2017, ranking first among all kinds of economic crops (http://www.stats.gov.cn /tjsj/ndsj/2018/index.htm). Among them, tomato is widely loved because of its rich nutrition and delicious taste. At the same time, tomato is also one of the main vegetables in protected cultivation. With the continuous change of the atmospheric environment and the facility-based agricultural planting methods, the lack of sunshine caused by unfavorable weather conditions such as smog and continuous rain and shaded by facilities is becoming more and more serious. Tomato is a light-loving plant. When the light intensity is lower than 150umol m -2 s -1 , tomato plants tend to grow excessively and the number of flowering decreases. Especially in the low-light environment, the outbreak of tomato diseases is serious, and various bacterial, viral and fungal diseases occur frequently and are very rampant. The common hazards of lack of light and diseases, coupled with a single planting model, have posed a great threat to the yield and quality of protected tomato cultivation.

细菌性叶斑病是其中一种高发病害,由丁香假单胞杆菌番茄致病变种(Pseudomonas syringaepv.tomato DC3000)引发的,是一种革兰氏阴性细菌。这种病菌对番茄的危害主要表现在叶片上,也可发生在叶脉和果实,影响番茄的果实品质和产量。寡照环境下番茄细菌性叶斑病的爆发更为严重,给农户造成了更大的经济损失。Bacterial leaf spot is one of the high incidence diseases, caused by Pseudomonas syringa epv.tomato DC3000, which is a Gram-negative bacterium. The harm of this pathogen to tomato is mainly manifested on the leaves, and can also occur on the veins and fruits, affecting the fruit quality and yield of tomatoes. The outbreak of bacterial leaf spot of tomato was more serious in low-light environment, which caused greater economic losses to farmers.

一方面,我国主要使用化学农药防治细菌性叶斑病仍为最常见的手段。虽然化学农药防治具有使用方法简便、效率高、见效快的优点,但是也存在着严重的问题:一、长期使用某一种类的农药会使有害生物产生一定的抗性,防治效果逐渐下降;二、大量的化学农药投入严重破坏了农业生态平衡,一些害虫天敌因为农药影响而数量减少,以及有害生物可能产生一定抗性,很有可能出现有害生物再猖獗的情况;三、农药的使用不仅影响环境生态,残留的化学农药也会引发食品安全问题,对人们的身体健康造成威胁。On the one hand, the use of chemical pesticides to control bacterial leaf spot is still the most common means in China. Although chemical pesticide control has the advantages of simple use, high efficiency, and quick results, there are also serious problems: 1. Long-term use of a certain type of pesticide will cause harmful organisms to develop certain resistance, and the control effect will gradually decline; 2. 1. A large amount of chemical pesticide input has seriously damaged the agricultural ecological balance. The number of natural enemies of some pests has decreased due to the impact of pesticides, and harmful organisms may develop certain resistance, and it is very likely that harmful organisms will become rampant again; 3. The use of pesticides not only affects Environmental ecology, residual chemical pesticides will also cause food safety problems and pose a threat to people's health.

另一方面,在寡照环境下,可通过补光的措施来提高光照强度,减轻病害。但补光需要搭建设备,会消耗大量的人力、物力、资金。而且一般更针对设施蔬菜栽培,不适合大范围的露地栽培中寡照问题的解决,譬如露地栽培中遇到连续降雨天气,或是秋冬季普遍光照强度低等,小范围、短时间的补光难以从根本上解决日益严重的寡照问题。On the other hand, in a low-light environment, supplementary light measures can be used to increase light intensity and reduce diseases. However, supplementary light needs to build equipment, which will consume a lot of manpower, material resources and funds. Moreover, it is generally more aimed at facility vegetable cultivation, and is not suitable for solving the problem of lack of sunlight in large-scale open field cultivation. Fundamentally solve the increasingly serious problem of underprivileging.

综合上述两方面的考虑,寻找出新的、有效的、生态绿色、经济无害的方法,有效提高番茄应对寡照等不良环境下病害频发的能力,是目前蔬菜生产中亟待解决的难题之一,也是当今蔬菜生产和科研工作中的研究热点。而培育能够增强寡照等环境下对番茄病害抵抗性的抗性品种则是一个很好的解决方法,具有重要的实际生产意义。Taking the above two considerations into consideration, finding new, effective, ecologically green, and economically harmless methods to effectively improve the ability of tomatoes to cope with frequent diseases in adverse environments such as low light is one of the problems that need to be solved urgently in vegetable production. , is also a research hotspot in today's vegetable production and scientific research. Breeding resistant cultivars that can enhance resistance to tomato diseases in low-light and other environments is a good solution and has important practical production significance.

近年来CRISPR/Cas9基因编辑技术得到了迅速的发展,相比于传统育种,该技术能够精准敲除基因组中的任何基因,从而精确的改变农作物性状,快速获得理想种质,大大缩短育种时间。并且利用CRISPR/Cas9基因编辑技术进行育种可以不引入外源基因,规避了颇有争议的转基因技术。利用该技术,可以将一些作物本身负调控病害的基因精准敲除,创建、培育抗性品种。因此,寻找作物内负调控病害的基因就显得尤为重要。In recent years, CRISPR/Cas9 gene editing technology has been developed rapidly. Compared with traditional breeding, this technology can accurately knock out any gene in the genome, thereby precisely changing the traits of crops, quickly obtaining ideal germplasm, and greatly shortening the breeding time. And the use of CRISPR/Cas9 gene editing technology for breeding can not introduce foreign genes, avoiding the controversial transgenic technology. Using this technology, it is possible to precisely knock out genes that negatively regulate diseases in some crops, and create and breed resistant varieties. Therefore, it is particularly important to find genes that negatively regulate diseases in crops.

发明内容Contents of the invention

本发明提供了RGS1基因作为负调控因子在提高寡照环境下番茄细菌性叶斑病抗性中的新用途,为培育提高作物抗性,尤其是减轻寡照环境下细菌性叶斑病发生程度的番茄品种提供依据。The invention provides a new application of the RGS1 gene as a negative regulatory factor in improving the resistance of tomato bacterial leaf spot in a low-illumination environment, and for cultivating tomatoes with improved crop resistance, especially reducing the occurrence of bacterial leaf spot in a low-illumination environment. Variety provides the basis.

具体技术方案如下:The specific technical scheme is as follows:

本发明提供了RGS1基因作为负调控因子在提高寡照环境下番茄细菌性叶斑病抗性中的新用途,所述RGS1基因的全基因DNA序列如SEQ ID NO.2所示,蛋白编码区的核苷酸序列如SEQ ID NO.1所示,其蛋白编码区长度为1434bp;所述应用的途径为通过敲除RGS1基因使寡照环境下番茄突变体的细菌性叶斑病抗性得到提高。该RGS1基因编码的蛋白调控G蛋白的信号,由477个氨基酸组成,其序列如SEQ ID NO.3所示。The present invention provides a new application of RGS1 gene as a negative regulatory factor in improving the resistance of tomato bacterial leaf spot in a low-light environment. The whole gene DNA sequence of the RGS1 gene is shown in SEQ ID NO.2, and the protein coding region is The nucleotide sequence is shown as SEQ ID NO.1, and the length of the protein coding region is 1434bp; the application method is to improve the bacterial leaf spot resistance of tomato mutants under low light environment by knocking out the RGS1 gene. The protein encoded by the RGS1 gene regulates the signal of the G protein and consists of 477 amino acids, and its sequence is shown in SEQ ID NO.3.

在正常光照环境下,植物通过光合作用形成蔗糖等碳水化合物,经过韧皮部运输至细胞间隙,即质外体区域。在该区域通过蔗糖酶分解成葡萄糖和果糖。细胞膜上的RGS1基因可以感知质外体葡萄糖,发生胞吞(endocytosis),使得RGS1蛋白与G蛋白α亚基GPA1互作减弱,引起下游G蛋白的激活,从而增强植物对细菌性叶斑病的抗性。Under normal light conditions, plants form carbohydrates such as sucrose through photosynthesis, which are transported through the phloem to the intercellular space, that is, the apoplast region. Glucose and fructose are broken down in this area by sucrase. The RGS1 gene on the cell membrane can sense the apoplast glucose and undergo endocytosis, which weakens the interaction between the RGS1 protein and the G protein α subunit GPA1, causing the activation of the downstream G protein, thereby enhancing the plant's resistance to bacterial leaf spot. resistance.

而经试验发现,在寡照环境下,外界光强减弱,植物的光合作用减弱,导致番茄质外体葡萄糖含量显著减少;RGS1基因编码的RGS1蛋白通过感知质外体葡萄糖信号发生胞吞的程度减少,细胞膜上的RGS1蛋白依然与G蛋白α亚基GPA1互作,导致不能激活下游的G蛋白信号途径介导的抗病反应过程。本发明建立在上述试验现象的基础上,采用基因编辑技术使RGS1基因突变,引发G蛋白处于激活状态,进而增强植物对细菌性叶斑病的抗性。However, it has been found through experiments that in a low-light environment, the external light intensity is weakened, and the photosynthesis of plants is weakened, resulting in a significant decrease in the glucose content of the tomato apoplast; the degree of endocytosis of the RGS1 protein encoded by the RGS1 gene is reduced by sensing the apoplast glucose signal , the RGS1 protein on the cell membrane still interacts with the G protein α subunit GPA1, resulting in the inability to activate the disease resistance process mediated by the downstream G protein signaling pathway. Based on the above experimental phenomena, the present invention uses gene editing technology to mutate the RGS1 gene, causing the G protein to be in an activated state, thereby enhancing the resistance of plants to bacterial leaf spot.

本发明首先对番茄RGS1(基因编号:Solyc05g014160,PGSB网站http://pgsb.helmholtz-muenchen.de/plant/tomato/)进行序列分析,查找PAM序列,将NGG前的20个bp的序列定义为sgRNA,选择定位于基因蛋白编码区上且具有高度特异性的sgRNA序列,该特异性靶向RGS1基因蛋白编码区的sgRNA的DNA序列如SEQ ID NO.4所示。The present invention first carries out sequence analysis to tomato RGS1 (gene number: Solyc05g014160, PGSB website http://pgsb.helmholtz-muenchen.de/plant/tomato/), searches for the PAM sequence, and defines the sequence of 20 bp before NGG as sgRNA, select a highly specific sgRNA sequence positioned on the protein coding region of the gene, and the DNA sequence of the sgRNA specifically targeting the protein coding region of the RGS1 gene is shown in SEQ ID NO.4.

本发明通过基因编辑技术和组培技术,构建了RGS1基因CRISPR/Cas9载体,并筛选获得了遗传稳定并且不含外源Cas9蛋白的纯合突变体株系rgs1#1。通过在正常光和寡照环境下接种番茄细菌性叶斑病病原菌,统计发病率,发现rgs1#1植株能够显著减轻寡照环境下番茄细菌性叶斑病病害的发生程度。The present invention constructs the RGS1 gene CRISPR/Cas9 vector through gene editing technology and tissue culture technology, and screens to obtain a homozygous mutant strain rgs1#1 that is genetically stable and does not contain exogenous Cas9 protein. By inoculating the pathogenic bacteria of tomato bacterial leaf spot under normal light and low-light environment, and counting the incidence, it was found that rgs1#1 plants could significantly reduce the occurrence of tomato bacterial leaf spot disease under low-light environment.

进一步地,所述寡照环境为光照强度明显弱于番茄适宜生长所需光强的环境,所述光照强度<150umol m-2s-1,即光照强度>0umol m-2s-1且<150umol m-2s-1Further, the low light environment is an environment where the light intensity is significantly weaker than the light intensity required for the proper growth of tomato, and the light intensity is <150umol m -2 s -1 , that is, the light intensity is >0umol m -2 s -1 and <150umol m -2 s -1 .

此外,本发明还通过液相HPLC的方法,发现将番茄植株置于寡照环境6小时后,番茄叶片质外体葡萄糖含量显著降低;并通过构建35S:RGS1-GFP的农杆菌载体,利用该载体的农杆菌菌液注射烟草后,提取原生质体观察其亚细胞定位,发现RGS1基因定位于细胞膜上(图4a)。In addition, the present invention also finds that the glucose content of the apoplast of tomato leaves is significantly reduced after the tomato plants are placed in a low-light environment for 6 hours by liquid-phase HPLC; and by constructing an Agrobacterium vector of 35S:RGS1-GFP, the vector After the Agrobacterium liquid was injected into tobacco, the protoplasts were extracted to observe its subcellular localization, and it was found that the RGS1 gene was localized on the cell membrane (Fig. 4a).

本发明还提供了一种减轻寡照环境下番茄细菌性叶斑病的方法,包括:The present invention also provides a method for alleviating tomato bacterial leaf spot in a low-light environment, comprising:

(1)培育寡照环境下抗番茄细菌性叶斑病的番茄突变体;(1) cultivating tomato mutants resistant to tomato bacterial leaf spot in a low light environment;

(1-a)在番茄RGS1基因的蛋白编码区选取含有PAM结构的靶标片段,以其前20个碱基为依据,设计相应引物,构建CRISPR/Cas9载体;(1-a) Select a target fragment containing a PAM structure in the protein coding region of the tomato RGS1 gene, and design corresponding primers based on the first 20 bases thereof to construct a CRISPR/Cas9 vector;

(1-b)构建含步骤(1-a)所述CRISPR/Cas9载体的农杆菌基因工程菌;(1-b) constructing the Agrobacterium genetically engineered bacterium containing the CRISPR/Cas9 vector described in step (1-a);

(1-c)用步骤(1-b)所述基因工程菌转化番茄子叶,获得遗传稳定并且不含外源Cas9蛋白的突变体;(1-c) transforming tomato cotyledons with the genetically engineered bacteria described in step (1-b), to obtain a mutant that is genetically stable and does not contain exogenous Cas9 protein;

(2)用步骤(1)所述的番茄突变体替换寡照环境下种植的野生型番茄,所述寡照环境为光照强度明显弱于番茄适宜生长所需光强的环境,所述光照强度<150umol m-2s-1。进一步地,步骤(1-a)中,所述靶标片段PAM结构前20个碱基的核苷酸序列如SEQ ID NO.4所示。(2) Using the tomato mutant described in step (1) to replace the wild-type tomato planted in a low-light environment, the low-light environment is an environment where the light intensity is significantly weaker than the light intensity required for tomato growth, and the light intensity is <150umol m -2 s -1 . Further, in step (1-a), the nucleotide sequence of the first 20 bases of the PAM structure of the target fragment is shown in SEQ ID NO.4.

进一步地,构建所述CRISPR/Cas9载体的引物的核苷酸序列如SEQ ID NO.5和SEQID NO.6所示。Further, the nucleotide sequences of the primers for constructing the CRISPR/Cas9 vector are shown in SEQ ID NO.5 and SEQ ID NO.6.

与现有技术相比,本发明具有以下有益效果:Compared with the prior art, the present invention has the following beneficial effects:

本发明利用CRISPR/Cas9基因编辑技术获得番茄RGS1基因编辑突变体,发现该突变体能够显著增强对番茄细菌性叶斑病的抗性,而且能够显著减轻寡照环境下番茄细菌性叶斑病病害的发生程度,证明了RGS1基因作为负调控因子在提高寡照环境下番茄细菌性叶斑病抗性的用途,可用于抗细菌性叶斑病番茄品种的选育。The present invention utilizes the CRISPR/Cas9 gene editing technology to obtain the tomato RGS1 gene editing mutant, and finds that the mutant can significantly enhance the resistance to tomato bacterial leaf spot, and can significantly reduce the risk of tomato bacterial leaf spot disease in a low-light environment. The degree of occurrence proves the use of the RGS1 gene as a negative regulatory factor in improving the resistance of tomato bacterial leaf spot in a low-light environment, and can be used for the breeding of tomato varieties resistant to bacterial leaf spot.

附图说明Description of drawings

图1为实施例2中获得的T1代突变体植株的基因编辑位点;Fig. 1 is the gene editing site of the T1 generation mutant plant obtained in Example 2;

与未经过基因编辑的普通番茄相比,基因编辑突变体在sgRNA的位置发生碱基缺失。以下将未经过基因编辑的普通番茄称为对照,rgs1#1比对照少一个碱基。Compared with the non-gene-edited common tomato, the gene-edited mutant had a base deletion at the position of the sgRNA. Hereinafter, the common tomato without gene editing is called the control, and rgs1#1 has one base less than the control.

图2为实施例3中对照和RGS1基因突变型番茄在正常光环境和寡照环境下接种细菌性叶斑病病原菌后的病级指数柱形图;Fig. 2 is the histogram of the disease grade index of control and RGS1 gene mutant tomato inoculated with bacterial leaf spot pathogen under normal light environment and low light environment in embodiment 3;

其中,发病越严重,病级指数越高;对照植株在寡照环境下的病级指数显著高于其在正常光下的;对照植株的病级指数均显著高于突变材料的病级指数;突变材料在寡照环境下的病级指数与其正常光下的病级指数没有显著差异,略微升高;小写字母a、b、c代表不同植株之间在5%水平上的差异显著。Among them, the more severe the disease, the higher the disease grade index; the disease grade index of the control plants in the low-light environment was significantly higher than that of the normal light; the disease grade indexes of the control plants were significantly higher than those of the mutant materials; the mutation There is no significant difference between the disease grade index of the material under the low light environment and the disease grade index under the normal light, but slightly increased; the lowercase letters a, b, c represent significant differences at the 5% level between different plants.

图3为实施例4中寡照环境处理6h后番茄叶片质外体葡萄糖相对含量的测定;小写字母a、b代表不同处理之间在5%水平上的差异显著。Fig. 3 is the determination of the relative glucose content in the apoplast of tomato leaves after 6 hours of low-light environment treatment in Example 4; lowercase letters a and b represent significant differences at the 5% level between different treatments.

图4为实施例5中外源处理不同浓度的葡萄糖后番茄RGS1蛋白的胞吞情况;Figure 4 is the endocytosis of tomato RGS1 protein after exogenous treatment of different concentrations of glucose in Example 5;

其中,图4中所有荧光观察结果均用烟草原生质体体系。图4a代表未做任何处理下,RGS1-GFP融合蛋白的亚细胞定位图,位于细胞膜上。图4b代表不同浓度的葡萄糖处理30min后,RGS1-GFP绿色荧光蛋白被胞吞的情况,葡萄糖处理的浓度越高,胞吞的越多。Wherein, all the fluorescence observation results in Fig. 4 use the tobacco protoplast system. Figure 4a represents the subcellular localization of RGS1-GFP fusion protein without any treatment, located on the cell membrane. Figure 4b represents the endocytosis of RGS1-GFP after being treated with different concentrations of glucose for 30 min. The higher the concentration of glucose treatment, the more endocytosis.

具体实施方式Detailed ways

下面结合具体实施例对本发明作进一步描述,以下列举的仅是本发明的具体实施例,但本发明的保护范围不仅限于此。若未特别指明,实施例中所用的技术手段均为本领域技术人所熟知,所用原料、试剂盒均为市售商品。The present invention will be further described below in conjunction with specific embodiments, and the following enumerations are only specific embodiments of the present invention, but the protection scope of the present invention is not limited thereto. Unless otherwise specified, the technical means used in the examples are well known to those skilled in the art, and the raw materials and kits used are commercially available.

下述实施例中采用的番茄品种为番茄常规品种CR(Condine Red),以未经过基因编辑的普通番茄作为对照。The tomato variety used in the following examples is the conventional tomato variety CR (Condine Red), and a common tomato without gene editing was used as a control.

实施例1含特异sgRNA的CRISPR/Cas9载体的构建Example 1 Construction of CRISPR/Cas9 vector containing specific sgRNA

在PGSB网站http://pgsb.helmholtz-muenchen.de/plant/tomato/上找到RGS1(Solyc05g014160)的DNA序列,其序列如SEQ ID NO.1所示,输入http://crispr.hzau.edu.cn/cgi-bin/CRISPR2/CRISPR网站,找出onscore得分高,且GC含量>40%,位于蛋白编码区的一段PAM结构前的20bp碱基序列TCAGAAAGAGACATTGGTGG(SEQ IDNO.4)。Find the DNA sequence of RGS1 (Solyc05g014160) on the PGSB website http://pgsb.helmholtz-muenchen.de/plant/tomato/, its sequence is shown in SEQ ID NO.1, enter http://crispr.hzau.edu .cn/cgi-bin/CRISPR2/CRISPR website, find out the 20bp base sequence TCAGAAAGAGACATTGGTGG (SEQ ID NO.4) located in front of a PAM structure in the protein coding region with high onscore score and GC content >40%.

设计CRISPR引物,如下所示:Design CRISPR primers as follows:

CRISPR前引物(SEQ ID NO.5):GATTGTCAGAAAGAGACATTGGTGG;CRISPR front primer (SEQ ID NO.5): GATTGTCAGAAAGAGACATTGGTGG;

CRISPR后引物(SEQ ID NO.6):AAACCCACCAATGTCTCTTTCTGAC;Post CRISPR primer (SEQ ID NO.6): AAACCCACCAATGTCTCTTTTCTGAC;

取上述CRISPR的前后引物各5μl,混匀后用PCR仪进行退火使其形成双链。中间载体pMD18-T经BbsI单酶切,用普通DNA纯化试剂盒纯化后与载体用T4连接酶连接,16℃连接过夜。42℃热击转化涂板,抗性为氨苄青霉素。Take 5 μl each of the front and back primers of the above CRISPR, mix well, and anneal with a PCR machine to form double strands. The intermediate vector pMD18-T was cleaved with BbsI, purified with a common DNA purification kit, then ligated with the vector with T4 ligase, and ligated overnight at 16°C. Heat shock at 42°C to transform the coated plate, resistance to ampicillin.

板上长出部分一定大小的菌落后可挑单克隆菌落,用CRISPR前引物(SEQ IDNO.5):GATTGTCAGAAAGAGACATTGGTGG和载体后引物(SEQ ID NO.7):CTACTTATCGTCATCGTCTTTG,进行PCR验证。After some colonies of a certain size grow on the plate, single-clonal colonies can be picked, and PCR verification is performed using the CRISPR pre-primer (SEQ ID NO.5): GATTGTCAGAAAGAGACATTGGTGG and the vector post-primer (SEQ ID NO.7): CTACTTATCGTCATCGTCTTTG.

将条带大小正确的菌液送至测序公司测序,测序结果显示载体包含sgRNA序列,则可从菌液中提取质粒,在Hind III与Kpn I位点对质粒进行双酶切后,可连接至终载体pCAMBIA1301上。再次测序结果显示终载体包含sgRNA,可将所得最终质粒电击入GV3101农杆菌感受态,在28℃恒温条件中培养两天后,挑单克隆菌落进行PCR验证,获得可用于构建其CRISPR/Cas9基因编辑材料的农杆菌菌株。Send the bacterial solution with the correct band size to the sequencing company for sequencing. The sequencing results show that the vector contains sgRNA sequence, then the plasmid can be extracted from the bacterial solution, and after double digestion of the plasmid at the Hind III and Kpn I sites, it can be connected to On the final vector pCAMBIA1301. The re-sequencing results showed that the final vector contained sgRNA, and the resulting final plasmid could be electroporated into the competent GV3101 Agrobacterium. After culturing at a constant temperature of 28°C for two days, single-clonal colonies were selected for PCR verification to obtain a CRISPR/Cas9 gene editor that could be used to construct it. Material Agrobacterium strains.

实施例2 RGS1基因突变体材料制备与鉴定Example 2 Preparation and Identification of RGS1 Gene Mutant Materials

将消毒后的种子播种到培养基中,7天后切子叶。农杆菌侵染法将实施例1制备的最终质粒转化入子叶中,利用植物细胞全能性,子叶长成完整植株,获得T0代基因编辑番茄材料。The sterilized seeds were sown in the medium, and the cotyledons were cut after 7 days. Agrobacterium infection method The final plasmid prepared in Example 1 was transformed into cotyledons, and the totipotency of plant cells was utilized, and the cotyledons grew into complete plants to obtain the gene-edited tomato material of the T 0 generation.

T0代基因编辑番茄苗检测。利用CTAB法提取T0代植株的基因组DNA并以其为模板,在包含sgRNA的DNA序列前后约200bp处设计如下引物,进行PCR扩增测序验证:Detection of gene-edited tomato seedlings in T 0 generation. Using the CTAB method to extract the genomic DNA of the T 0 generation plants and use it as a template, design the following primers at about 200 bp before and after the DNA sequence containing the sgRNA, and perform PCR amplification and sequencing verification:

验证前引物(SEQ ID No.8):TTTTAAGTGCATCGGTGACPrimer before verification (SEQ ID No.8): TTTTAAGTGCATCGGTGAC

验证前引物(SEQ ID No.9):GACTGGAAAGCAAGGAGGPrimer before verification (SEQ ID No.9): GACTGGAAAGCAAGGAGG

所得PCR产物送测序公司测序。使用DNAMAN软件将测序结果与该段基因原序列进行比对,sgRNA序列发生碱基缺失、插入,且测序显示单峰的植株即为所需纯合材料,可进行自交繁种,获得T0代的种子。The resulting PCR products were sent to a sequencing company for sequencing. Use DNAMAN software to compare the sequencing results with the original sequence of the gene. The sgRNA sequence has base deletions and insertions, and the plants that show a single peak are the required homozygous materials, which can be used for self-breeding to obtain T 0 generation of seeds.

上述T0代种子播种后放置于生长室中,获得T1代植株。利用上述同样方法检测T1代植株的sgRNA序列碱基编辑情况。同时,利用CRISPR前引物(SEQ ID NO.5)和载体后引物(SEQ ID NO.7)对T1代植株进行PCR扩增DNA,检测扩增产物中是否含有Cas9序列。选取检测结果表明,存在sgRNA变异,且不含Cas9的植株,确定为T1代基因编辑植株的株系,命名为rgs1#1,其基因编辑位点如图1所示。The T 0 generation seeds were sown and placed in a growth chamber to obtain T 1 generation plants. The same method as above was used to detect the base editing of the sgRNA sequence in the T1 generation plants. At the same time, using the CRISPR pre-primer (SEQ ID NO.5) and vector post-primer (SEQ ID NO.7) to amplify the DNA of the T1 generation plants by PCR, and detect whether the amplified product contains the Cas9 sequence. The selected detection results showed that the plants with sgRNA variation and no Cas9 were identified as T1 generation gene edited plants, named rgs1# 1 , and their gene editing sites were shown in Figure 1.

rgs1#1比对照植株少一个碱基,让该株系自交繁种,获得T1代种子,播种后获得sgRNA发生变异、不含外源基因Cas9并能稳定遗传的T2代植株。rgs1#1 was one base less than the control plant, and the line was self - propagated to obtain T1 generation seeds. After sowing, T2 generation plants with sgRNA variation, no exogenous Cas9 gene and stable inheritance were obtained.

以下实施例均以上述纯合株系T2代植株作为材料进行实验。The following examples are all experimented with the above-mentioned homozygous line T 2 generation plants as materials.

实施例3 RGS1基因编辑突变体在正常光和寡照环境下的抗病性研究Example 3 Research on the disease resistance of RGS1 gene editing mutants under normal light and low light environment

将细菌性叶斑病病原菌菌种接种到含25mg/L利福平的固体培养基King’s B上,于28℃培养箱中培养2天,使菌活化,作为原板。从原板挑取菌落在新的King’s B培养基上划板,于28℃培养箱中培养1天。用10mM MgCl2溶液将菌液悬浮,调节OD600=0.1。加入0.02%的有机硅,喷施在番茄植株叶片背面,让细菌菌液浸润叶片。将植株置于温度25℃,空气相对湿度95%、光照和黑暗时间各12小时,光强450umol m-2s-1(正常光)和光强50umol m-2s-1(寡照)的环境下培养3天后,观察植株发病情况。Inoculate the bacteria of bacterial leaf spot pathogen onto the solid medium King's B containing 25 mg/L rifampicin, and cultivate them in an incubator at 28°C for 2 days to activate the bacteria, as the original plate. Pick the colony from the original plate, draw it on the new King's B medium, and culture it in the incubator at 28°C for 1 day. Suspend the bacterial liquid with 10 mM MgCl 2 solution, adjust OD 600 =0.1. Add 0.02% organic silicon and spray it on the back of the tomato plant leaves to allow the bacterial solution to infiltrate the leaves. Place the plants in an environment with a temperature of 25°C, relative air humidity of 95%, light and dark time of 12 hours each, light intensity of 450umol m -2 s -1 (normal light) and light intensity of 50umol m -2 s -1 (slightly illuminated) After 3 days of under-cultivation, the disease of the plants was observed.

根据叶片发病情况统计病级指数,得到如图2所示结果,对照植株在寡照环境下病级指数明显高于正常光环境;而突变体植株在寡照环境下和正常光下病级指数变化不明显;并且突变体植株在寡照环境下相比正常光下病级指数略高。The disease grade index was counted according to the incidence of the leaves, and the results shown in Figure 2 were obtained. The disease grade index of the control plant was significantly higher than that of the normal light environment under the low light environment; while the disease grade index of the mutant plants was not changed under the low light environment and under the normal light environment. Obvious; and the disease grade index of the mutant plants was slightly higher under low-light environment than under normal light.

病级指数的统计方式为:将发病的番茄叶片进行分级,分级标准为:0级表示未发病,1级表示叶片下表皮可见少数病斑,2级表示叶片下表皮局部密集病斑,3级表示叶片下表皮多部位密集病斑,4级表示叶片下表皮全叶可见病斑分布。0-4级别分别赋值0-4分。根据每个植株每个叶片的发病情况按分级进行分类,加权平均,求得每株病级指数。The statistical method of the disease grade index is: grade the diseased tomato leaves, and the classification standard is: 0 means no disease, 1 means a few lesions can be seen on the lower epidermis of the leaves, 2 means local dense lesions on the lower epidermis of the leaves, and 3 Indicates that the lower epidermis of the leaf has dense lesions in many parts, and grade 4 indicates that the distribution of lesions can be seen on the entire leaf of the lower epidermis of the leaf. 0-4 grades are assigned 0-4 points respectively. According to the disease condition of each leaf of each plant, it is classified by grade, and weighted average is obtained to obtain the disease grade index of each plant.

由图2可知,RGS1突变体能够显著减轻在寡照环境下细菌性叶斑病的发生。It can be seen from Figure 2 that the RGS1 mutant can significantly reduce the occurrence of bacterial leaf spot in a low-light environment.

实施例4寡照环境处理6h后质外体葡萄糖含量的测定Determination of the glucose content of the apoplast after the embodiment 4 oligo-illumination environment treatment 6h

将长势一致的普通番茄植株放在光强450umol m-2s-1(正常光)和光强50umol m- 2s-1(寡照)的环境下,于处理6h后,提取3g番茄叶片中的质外体液体。并通过HPLC液相色谱的方法,测定其质外体液体中葡萄糖的相对含量。Put common tomato plants with consistent growth under the environment of light intensity 450umol m -2 s -1 (normal light) and light intensity 50umol m - 2 s -1 (slightly illuminated), after 6 hours of treatment, extract 3g of tomato leaves Apoplast fluid. And by the method of HPLC liquid chromatography, measure the relative content of the glucose in its apoplast liquid.

由图3可知,寡照环境下处理6h后,相比正常光下,其质外体葡萄糖的相对含量显著降低。说明寡照环境下番茄植株叶片质外体的葡萄糖相对含量降低。It can be seen from Fig. 3 that the relative content of glucose in the apoplast decreased significantly after being treated for 6 hours under low-illumination environment, compared with that under normal light. It shows that the relative content of glucose in leaf apoplasts of tomato plants decreases under low light conditions.

实施例5外源处理不同浓度的葡萄糖后番茄RGS1蛋白的胞吞研究Example 5 Endocytosis of Tomato RGS1 Protein After Exogenous Treatment of Different Concentrations of Glucose

首先,以对照番茄cDNA为模板,扩增RGS1蛋白编码区片段(SEQ ID NO.2)并重组至pAC402-GFP载体,将重组载体电击进GV3101农杆菌感受态里,获得可用于转化侵染的农杆菌菌株。然后,将该农杆菌菌株注射烟草,2d后提原生质体观察RGS1基因的亚细胞定位。First, using the control tomato cDNA as a template, the RGS1 protein coding region fragment (SEQ ID NO.2) was amplified and recombined into the pAC402-GFP vector, and the recombinant vector was electroporated into the competent GV3101 Agrobacterium to obtain a vector that could be used for transformation and infection. Agrobacterium strains. Then, the Agrobacterium strain was injected into tobacco, and the protoplasts were extracted 2 days later to observe the subcellular localization of the RGS1 gene.

由图4a可知,RGS1基因定位于细胞膜上。It can be seen from Figure 4a that the RGS1 gene is localized on the cell membrane.

此外,在上述提取完备的原生质体悬浮液中加入葡萄糖溶液,使其葡萄糖终浓度分别为6%、3%、1%,处理30min后,于40倍水镜下观察其亚细胞定位情况。In addition, glucose solution was added to the above-mentioned fully extracted protoplast suspension to make the final concentrations of glucose 6%, 3%, and 1%, respectively. After 30 minutes of treatment, the subcellular localization was observed under a 40 times water microscope.

如图4b所示,当处理葡萄糖后,发现RGS1-GFP融合蛋白的绿色荧光往细胞质内移动,即RGS1蛋白感知葡萄糖发生胞吞现象。并且,随着外源葡萄糖处理的浓度增加,其绿色荧光往细胞质内移动的越多,即胞吞作用增强。As shown in Figure 4b, after the glucose was processed, it was found that the green fluorescence of the RGS1-GFP fusion protein moved into the cytoplasm, that is, the RGS1 protein sensed the endocytosis of glucose. Moreover, as the concentration of exogenous glucose treatment increases, the more the green fluorescence moves into the cytoplasm, that is, the endocytosis is enhanced.

由图4可知,葡萄糖处理可以导致RGS1蛋白的胞吞,且该胞吞作用具有浓度效应,葡萄糖浓度越低,胞吞越不明显。即质外体葡萄糖含量越少,细胞膜上的RGS1蛋白胞吞越少,下游G蛋白信号的激活越弱。It can be seen from Figure 4 that glucose treatment can lead to the endocytosis of RGS1 protein, and this endocytosis has a concentration effect, the lower the glucose concentration, the less obvious the endocytosis. That is, the less glucose content in the apoplast, the less endocytosis of RGS1 protein on the cell membrane, and the weaker the activation of downstream G protein signaling.

序列表sequence listing

<110> 浙江大学<110> Zhejiang University

<120> RGS1基因作为负调控因子在提高寡照环境下番茄细菌性叶斑病抗性中的应用<120> Application of RGS1 Gene as a Negative Regulator in Improving Tomato Bacterial Leaf Spot Resistance in Low-light Environment

<160> 9<160> 9

<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0

<210> 1<210> 1

<211> 1434<211> 1434

<212> DNA<212>DNA

<213> 番茄(Solanum lycopersicum L.)<213> Tomato (Solanum lycopersicum L.)

<400> 1<400> 1

atggatcacc agaccactct tccgaagctc ttatacatac tgcggcagaa acgacttcta 60atggatcacc agaccactct tccgaagctc ttatacatac tgcggcagaa acgacttcta 60

ttgaaagcga cattacctta catgattcac aagattccta ggtccaaagg cagtagcttt 120ttgaaagcga cattaccctta catgattcac aagattccta ggtccaaagg cagtagcttt 120

tggctagtgg caattcaagt tattgcaagc ttaaatctat tgttgtcgat agtgatggct 180tggctagtgg caattcaagt tattgcaagc ttaaatctat tgttgtcgat agtgatggct 180

ctcaattttc tgaagttcag aaagagacat tggtggaggt catgctatct ttgggcagtc 240ctcaattttc tgaagttcag aaagagacat tggtggaggt catgctatct ttgggcagtc 240

tggattgaag gtccactggg atttggtttg ctgttgagct gccgtattac acagatattc 300tggattgaag gtccactggg attggtttg ctgttgagct gccgtattac acagatattc 300

caactttatt atatatttgt gaagagacgt ctgccaccac ttagatccta tatttttctt 360caactttatt atatatttgt gaagagacgt ctgccaccac ttagatccta tatttttctt 360

ctgctgattc tcttgccatg gatagctctt gctgcagtta ttcagataaa aaagcctctg 420ctgctgattc tcttgccatg gatagctctt gctgcagtta ttcagataaa aaagcctctg 420

aacgaccggt gccacatggg gacgctgtgg atcatcattg ttatgggcct tcatgcatta 480aacgaccggt gccacatggg gacgctgtgg atcatcattg ttatggggcct tcatgcatta 480

tatgttgtag ctttgattgc ttttgctggg gctgtgcatc atgtggaatt cagatttcat 540tatgttgtag ctttgattgc ttttgctggg gctgtgcatc atgtggaatt cagatttcat 540

gaactcaaag acctttggag aggaattctt gtctcttcag cttccattgg aatatgggtg 600gaactcaaag acctttggag aggaattctt gtctcttcag cttccattgg aatatgggtg 600

gctgcttatg taatgaatga ggttcgcgaa gatatatcat cgctagaaat tgcctcaaga 660gctgcttatg taatgaatga ggttcgcgaa gatatatcat cgctagaaat tgcctcaaga 660

ttcttattat tggttatgac aagtgtcctt gtactggcat tcttctcttt ctcgatttct 720ttcttattat tggttatgac aagtgtcctt gtactggcat tcttctcttt ctcgatttct 720

caacctcttg tctcagttat gagcttgagg aagaagaatc agaaagaata caagacaatg 780caacctcttg tctcagttat gagcttgagg aagaagaatc agaaagaata caagacaatg 780

agtcaggcat taggtatacc tgatagtggg atcctattac agagggaatc gacaagcatt 840agtcaggcat taggtatacc tgatagtggg atcctattac agagggaatc gacaagcatt 840

ctagatccta atgaaccttt ggaaaagctc ctgctgaatc gaaggttccg tcagtccttc 900ctagatccta atgaaccttt ggaaaagctc ctgctgaatc gaaggttccg tcagtccttc 900

atggaatttg cagacagttg tctggctgga gagagtgtgc acttctatga tgaagtgcaa 960atggaatttg cagacagttg tctggctgga gagagtgtgc acttctatga tgaagtgcaa 960

cattttgata aaattcctat tcaggattca gttaggagaa tttacatggc acgccacata 1020cattttgata aaattcctat tcaggattca gttaggagaa tttacatggc acgccacata 1020

atagagaagt atattgctgc aggagcacca atggaggtga acatttctca ccgaatccgg 1080atagagaagt atattgctgc aggagcacca atggaggtga aatttctca ccgaatccgg 1080

caggaaattt tgaatactaa tgatctctcc cacactgacc tattcaaaaa cgctctaggt 1140caggaaattt tgaatactaa tgatctctcc cacactgacc tattcaaaaa cgctctaggt 1140

gaactgatgc agctgatgaa actgaactta gcaagagatt actggtcgtc aatgtacttc 1200gaactgatgc agctgatgaa actgaactta gcaagagatt actggtcgtc aatgtacttc 1200

atgaagctgc aagaggatat ccgcatgaga gcagttgatc cggagatgga acatgctagt 1260atgaagctgc aagaggatat ccgcatgaga gcagttgatc cggagatgga acatgctagt 1260

ggttggaatt tttccccaag attgagttct gtccattgca gtgatgaccc tttccagaat 1320ggttggaatt tttccccaag attgagttct gtccatgca gtgatgaccc tttccagaat 1320

gaacatacag aactgatggg ctccagctac ctgattctcc tgttcataaa cgatacgagc 1380gaacatacag aactgatggg ctccagctac ctgattctcc tgttcataaa cgatacgagc 1380

cttcaagacc aaattttgct gtgtgatgtt gcacctcatg ctttgcagac ctga 1434cttcaagacc aaattttgct gtgtgatgtt gcacctcatg ctttgcagac ctga 1434

<210> 2<210> 2

<211> 477<211> 477

<212> PRT<212> PRT

<213> 番茄(Solanum lycopersicum L.)<213> Tomato (Solanum lycopersicum L.)

<400> 2<400> 2

Met Asp His Gln Thr Thr Leu Pro Lys Leu Leu Tyr Ile Leu Arg GlnMet Asp His Gln Thr Thr Leu Pro Lys Leu Leu Tyr Ile Leu Arg Gln

1 5 10 151 5 10 15

Lys Arg Leu Leu Leu Lys Ala Thr Leu Pro Tyr Met Ile His Lys IleLys Arg Leu Leu Leu Lys Ala Thr Leu Pro Tyr Met Ile His Lys Ile

20 25 30 20 25 30

Pro Arg Ser Lys Gly Ser Ser Phe Trp Leu Val Ala Ile Gln Val IlePro Arg Ser Lys Gly Ser Ser Phe Trp Leu Val Ala Ile Gln Val Ile

35 40 45 35 40 45

Ala Ser Leu Asn Leu Leu Leu Ser Ile Val Met Ala Leu Asn Phe LeuAla Ser Leu Asn Leu Leu Leu Ser Ile Val Met Ala Leu Asn Phe Leu

50 55 60 50 55 60

Lys Phe Arg Lys Arg His Trp Trp Arg Ser Cys Tyr Leu Trp Ala ValLys Phe Arg Lys Arg His Trp Trp Arg Ser Cys Tyr Leu Trp Ala Val

65 70 75 8065 70 75 80

Trp Ile Glu Gly Pro Leu Gly Phe Gly Leu Leu Leu Ser Cys Arg IleTrp Ile Glu Gly Pro Leu Gly Phe Gly Leu Leu Leu Ser Cys Arg Ile

85 90 95 85 90 95

Thr Gln Ile Phe Gln Leu Tyr Tyr Ile Phe Val Lys Arg Arg Leu ProThr Gln Ile Phe Gln Leu Tyr Tyr Ile Phe Val Lys Arg Arg Leu Pro

100 105 110 100 105 110

Pro Leu Arg Ser Tyr Ile Phe Leu Leu Leu Ile Leu Leu Pro Trp IlePro Leu Arg Ser Tyr Ile Phe Leu Leu Leu Ile Leu Leu Pro Trp Ile

115 120 125 115 120 125

Ala Leu Ala Ala Val Ile Gln Ile Lys Lys Pro Leu Asn Asp Arg CysAla Leu Ala Ala Val Ile Gln Ile Lys Lys Pro Leu Asn Asp Arg Cys

130 135 140 130 135 140

His Met Gly Thr Leu Trp Ile Ile Ile Val Met Gly Leu His Ala LeuHis Met Gly Thr Leu Trp Ile Ile Ile Val Met Gly Leu His Ala Leu

145 150 155 160145 150 155 160

Tyr Val Val Ala Leu Ile Ala Phe Ala Gly Ala Val His His Val GluTyr Val Val Ala Leu Ile Ala Phe Ala Gly Ala Val His His Val Glu

165 170 175 165 170 175

Phe Arg Phe His Glu Leu Lys Asp Leu Trp Arg Gly Ile Leu Val SerPhe Arg Phe His Glu Leu Lys Asp Leu Trp Arg Gly Ile Leu Val Ser

180 185 190 180 185 190

Ser Ala Ser Ile Gly Ile Trp Val Ala Ala Tyr Val Met Asn Glu ValSer Ala Ser Ile Gly Ile Trp Val Ala Ala Tyr Val Met Asn Glu Val

195 200 205 195 200 205

Arg Glu Asp Ile Ser Ser Leu Glu Ile Ala Ser Arg Phe Leu Leu LeuArg Glu Asp Ile Ser Ser Leu Glu Ile Ala Ser Arg Phe Leu Leu Leu

210 215 220 210 215 220

Val Met Thr Ser Val Leu Val Leu Ala Phe Phe Ser Phe Ser Ile SerVal Met Thr Ser Val Leu Val Leu Ala Phe Phe Ser Phe Ser Ile Ser

225 230 235 240225 230 235 240

Gln Pro Leu Val Ser Val Met Ser Leu Arg Lys Lys Asn Gln Lys GluGln Pro Leu Val Ser Val Met Ser Leu Arg Lys Lys Asn Gln Lys Glu

245 250 255 245 250 255

Tyr Lys Thr Met Ser Gln Ala Leu Gly Ile Pro Asp Ser Gly Ile LeuTyr Lys Thr Met Ser Gln Ala Leu Gly Ile Pro Asp Ser Gly Ile Leu

260 265 270 260 265 270

Leu Gln Arg Glu Ser Thr Ser Ile Leu Asp Pro Asn Glu Pro Leu GluLeu Gln Arg Glu Ser Thr Ser Ile Leu Asp Pro Asn Glu Pro Leu Glu

275 280 285 275 280 285

Lys Leu Leu Leu Asn Arg Arg Phe Arg Gln Ser Phe Met Glu Phe AlaLys Leu Leu Leu Asn Arg Arg Phe Arg Gln Ser Phe Met Glu Phe Ala

290 295 300 290 295 300

Asp Ser Cys Leu Ala Gly Glu Ser Val His Phe Tyr Asp Glu Val GlnAsp Ser Cys Leu Ala Gly Glu Ser Val His Phe Tyr Asp Glu Val Gln

305 310 315 320305 310 315 320

His Phe Asp Lys Ile Pro Ile Gln Asp Ser Val Arg Arg Ile Tyr MetHis Phe Asp Lys Ile Pro Ile Gln Asp Ser Val Arg Arg Ile Tyr Met

325 330 335 325 330 335

Ala Arg His Ile Ile Glu Lys Tyr Ile Ala Ala Gly Ala Pro Met GluAla Arg His Ile Ile Glu Lys Tyr Ile Ala Ala Gly Ala Pro Met Glu

340 345 350 340 345 350

Val Asn Ile Ser His Arg Ile Arg Gln Glu Ile Leu Asn Thr Asn AspVal Asn Ile Ser His Arg Ile Arg Gln Glu Ile Leu Asn Thr Asn Asp

355 360 365 355 360 365

Leu Ser His Thr Asp Leu Phe Lys Asn Ala Leu Gly Glu Leu Met GlnLeu Ser His Thr Asp Leu Phe Lys Asn Ala Leu Gly Glu Leu Met Gln

370 375 380 370 375 380

Leu Met Lys Leu Asn Leu Ala Arg Asp Tyr Trp Ser Ser Met Tyr PheLeu Met Lys Leu Asn Leu Ala Arg Asp Tyr Trp Ser Ser Met Tyr Phe

385 390 395 400385 390 395 400

Met Lys Leu Gln Glu Asp Ile Arg Met Arg Ala Val Asp Pro Glu MetMet Lys Leu Gln Glu Asp Ile Arg Met Arg Ala Val Asp Pro Glu Met

405 410 415 405 410 415

Glu His Ala Ser Gly Trp Asn Phe Ser Pro Arg Leu Ser Ser Val HisGlu His Ala Ser Gly Trp Asn Phe Ser Pro Arg Leu Ser Ser Val His

420 425 430 420 425 430

Cys Ser Asp Asp Pro Phe Gln Asn Glu His Thr Glu Leu Met Gly SerCys Ser Asp Asp Pro Phe Gln Asn Glu His Thr Glu Leu Met Gly Ser

435 440 445 435 440 445

Ser Tyr Leu Ile Leu Leu Phe Ile Asn Asp Thr Ser Leu Gln Asp GlnSer Tyr Leu Ile Leu Leu Phe Ile Asn Asp Thr Ser Leu Gln Asp Gln

450 455 460 450 455 460

Ile Leu Leu Cys Asp Val Ala Pro His Ala Leu Gln ThrIle Leu Leu Cys Asp Val Ala Pro His Ala Leu Gln Thr

465 470 475465 470 475

<210> 3<210> 3

<211> 10426<211> 10426

<212> DNA<212>DNA

<213> 番茄(Solanum lycopersicum L.)<213> Tomato (Solanum lycopersicum L.)

<400> 3<400> 3

atggatcacc agaccactct tccgaagctc ttatacatac tgcggcagaa acggtaagaa 60atggatcacc agaccactct tccgaagctc ttatacatac tgcggcagaa acggtaagaa 60

tggtgtcgcc ggcgatggtc gtgctaataa tggaagaatt ggttttgggt tccaatttga 120tggtgtcgcc ggcgatggtc gtgctaataa tggaagaatt ggttttgggt tccaatttga 120

tggatatgct gttggttata attgggtcgg gtgttttaat gtgggtgatg ggtgggtttt 180tggatatgct gttggttata attgggtcgg gtgttttaat gtgggtgatg ggtgggtttt 180

ttaattaaag gtaaaatact aatattaaat taaattcaga aaattatttg gatggagaca 240ttaattaaag gtaaaatact aatattaaat taaattcaga aaattatttg gatggagaca 240

cgtgtccctc cgttagtcca aagggtaaat acgttctaaa atttagacgg taaggatatc 300cgtgtccctc cgttagtcca aagggtaaat acgttctaaa atttagacgg taaggatatc 300

actgtcctaa aagtataacg atgggtattt agataccatt tataatagtt cggggatata 360actgtcctaa aagtataacg atgggtattt agataccatt tataatagtt cggggatata 360

tttgttcttt ttccctttta taaaaacatg tgtgccacaa taatgtgatg ctcacagaat 420tttgttcttt ttccctttta taaaaacatg tgtgccacaa taatgtgatg ctcacagaat 420

gtttgacgcc ttgtctttta ttttatgaag taaagccact ttaatttttc ttgtgctgga 480gtttgacgcc ttgtctttta ttttatgaag taaagccact ttaatttttc ttgtgctgga 480

gctttttatg attaattttt tcaataattg tttaaagttg cattattttg tatatccatt 540gcttttttg attaattttttcaataattg tttaaagttg cattattttg tatatccatt 540

caatgcttga acttttattt ccatttaagt tacctaagtg ttggtattga ccacttgagt 600caatgcttga acttttattt ccatttaagt tacctaagtg ttggtattga ccacttgagt 600

ttcctctgca gacttctatt gaaagcgaca ttaccttaca tgattcacaa gattcctagg 660ttcctctgca gacttctatt gaaagcgaca ttaccttaca tgattcacaa gattcctagg 660

tccaaaggca gtagcttttg gctagtggca attcaagtta ttgcaagctt aaatctattg 720tccaaaggca gtagcttttg gctagtggca attcaagtta ttgcaagctt aaatctattg 720

ttgtcgatag tggtatctac ttttcatttc ctttatatgg tgttaatgct tcaaactctg 780ttgtcgatag tggtatctac ttttcatttc ctttatatgg tgttaatgct tcaaactctg 780

atttaacatt tcaaatcact aatgcgacta tattttaatt tccatataaa attcattagg 840atttaacatt tcaaatcact aatgcgacta tattttaatt tccatataaa attcattagg 840

gcggatgtag ttaacaagca acaggttcat ccgaatccat ccaatgattt taatagattt 900gcggatgtag ttaacaagca acaggttcat ccgaatccat ccaatgattt taatagattt 900

tatatatata tatatatata tatatatata tatatatata tatatatata taaacatata 960tatatatata tatatatata tatatatata tatatatata tatatatata taaacatata 960

tacatatata cacatatata catatatata catatataca tatatatgta gaatcaccaa 1020tacatatata cacatatata catatatata catatataca tatatatgta gaatcaccaa 1020

atttcaataa atactacatt tgaaaccaga atttttaagt gcatcggtga caaaaatata 1080atttcaataa atactacatt tgaaaccaga atttttaagt gcatcggtga caaaaatata 1080

gcgattcaac ccataaagtt taatcctaga tctgcctctg atattcatat ggcttctgca 1140gcgattcaac ccataaagtt taatcctaga tctgcctctg atattcatat ggcttctgca 1140

gatggctctc aattttctga agttcagaaa gagacattgg tggaggtcat gctatctttg 1200gatggctctc aattttctga agttcagaaa gagacattgg tggaggtcat gctatctttg 1200

ggcaggtaat ttactcttca atccatgaac gcatatgatt ttgttttcat atttcttgcc 1260ggcaggtaat ttactcttca atccatgaac gcatatgatt ttgttttcat atttcttgcc 1260

ttaatctggt gcttgattgg ttattctgta atacatctaa tcctccttgc tttccagtct 1320ttaatctggt gcttgattgg ttattctgta atacatctaa tcctccttgc tttccagtct 1320

ggattgaagg tccactggga tttggtttgc tgttgagctg ccgtattaca cagatattcc 1380ggattgaagg tccactggga tttggtttgc tgttgagctg ccgtattaca cagatattcc 1380

aactttatta tatatttgtg aagtaagttt gacttttcaa agcaattaat gataactgtt 1440aactttatta tatatttgtg aagtaagttt gacttttcaa agcaattaat gataactgtt 1440

gttctttgta attgatgaga tgattatgta tcttggcctc atcaatattc aattgagaaa 1500gttctttgta attgatgaga tgattatgta tcttggcctc atcaatattc aattgagaaa 1500

ctgttaaatg gtgcagcttc ctcaacaagt ctttttcctg gaagaaaata aacaaataga 1560ctgttaaatg gtgcagcttc ctcaacaagt ctttttcctg gaagaaaata aacaaataga 1560

aataactgca tgtctcctga ggaaaatagg ataatggact atcacatatg taattccggt 1620aataactgca tgtctcctga ggaaaatagg ataatggact atcacatatg taattccggt 1620

ttcacagaaa tgaaaagaag attgattacc tgcagatatt aaaggttgct caaaaatagt 1680ttcacagaaa tgaaaagaag attgattacc tgcagatatt aaaggttgct caaaaatagt 1680

acaccacccc tgagataaag tgatgttata ttcctgttgg catgcccttc ctaaagatat 1740acaccacccc tgagataaag tgatgttata ttcctgttgg catgcccttc ctaaagatat 1740

gtcacaactg aattaaaatg aaacagaatt catctattat gtcttttcta tacttttttt 1800gtcacaactg aattaaaatg aaacagaatt catctattat gtcttttcta tacttttttt 1800

ccttttcttc cttgtctctc tctctctctc tcatttactc ttttgtcgtt tgaaaaattt 1860ccttttcttc cttgtctctc tctctctctc tcatttactc ttttgtcgtt tgaaaaattt 1860

gagatatagc tttaaaagac tatttcttag tgctattgtt gattcatgtt acgtggaaaa 1920gagatatagc tttaaaagac tatttcttag tgctattgtt gattcatgtt acgtggaaaa 1920

actctttttc gatagtctta tatttctttg ttttgtatgg tgcttcagga gacgtctgcc 1980actctttttc gatagtctta tatttctttg ttttgtatgg tgcttcagga gacgtctgcc 1980

accacttaga tcctatattt ttcttctgct gattctcttg ccatggatag ctcttgctgc 2040accacttaga tcctatattt ttcttctgct gattctcttg ccatggatag ctcttgctgc 2040

aggtaagatt cttcaagttg aactctataa ataagtcttc ttttaagttt cttctattga 2100aggtaagatt cttcaagttg aactctataa ataagtcttc ttttaagttt cttctattga 2100

aatactaaaa tatatattag tagatgaggg acttagggag ctggtggtgg aggttaggat 2160aatactaaaa tatatattag tagatgaggg acttagggag ctggtggtgg aggttaggat 2160

gatgaaagac agggtattga cggtcaagct agtcaccgga gggcttactt taaacatgat 2220gatgaaagac agggtattga cggtcaagct agtcaccgga gggcttactt taaacatgat 2220

tagtgcttac ggcggcaagt gggcttggag gagaagatca agaagtgctt ctgggaggat 2280tagtgcttac ggcggcaagt gggcttggag gagaagatca agaagtgctt ctgggaggat 2280

ttggatgagg tgttgaggga tatgccacat ttcaaaaagc tattcactgg cagagatttc 2340ttggatgagg tgttgaggga tatgccacat ttcaaaaagc tattcactgg cagagatttc 2340

aatggtcata ttgggtcaat cactagtggt tttgacagcg gggatggagg ttttggtttt 2400aatggtcata ttgggtcaat cactagtggt tttgacagcggggatggagg ttttggtttt 2400

gggcttagga aaggaggagg agcatcactt cgggattttg ctaaagctta agagttggcg 2460gggcttagga aaggaggagg agcatcactt cgggattttg ctaaagctta aggagttggcg 2460

ataaaaaatt catgcttccc aaaaaaggag gaccacatgg ccttggagat gggagagaag 2520ataaaaaatt catgcttccc aaaaaaggag gaccacatgg ccttggagat gggagagaag 2520

ttagagtcga tggaggcttg gggaagtagt ggagatgcaa ataacatgtg ggataagata 2580ttagagtcga tggaggcttg gggaagtagt ggagatgcaa ataacatgtg ggataagata 2580

gctagttgcg ttaggaaagt agtcagagag gtgttaggtt ttttcaggga ctatttttgc 2640gctagttgcg ttaggaaagt agtcagagag gtgttaggtt ttttcaggga ctatttttgc 2640

ggccatcaaa gggattggtg gtgaaatgga gatgtacaag gtatcatgaa aagcaaaaaa 2700ggccatcaaa gggattggtg gtgaaatgga gatgtacaag gtatcatgaa aagcaaaaaa 2700

gttgctatgc taagttagtg ttgagaaaag atgaggtgga gaggcggaaa aacacgataa 2760gttgctatgc taagttagtg ttgagaaaag atgaggtgga gaggcggaaa aacacgataa 2760

ggtataaggt gatgagaaag gacacgaagt agcatgggac cccagcctta gtgctgagat 2820ggtataaggt gatgagaaag gacacgaagt agcatgggac cccagcctta gtgctgagat 2820

ttatacaaaa ccttgttacc tttgtcaaaa aaggaaagga cacgaagtag cagtcataac 2880ttatacaaaa ccttgttacc tttgtcaaaa aaggaaagga cacgaagtag cagtcataac 2880

ggcaaaaacg acaactttca aacgcttgtt tgtcgatcta ggggacaaag aagaggataa 2940ggcaaaaacg acaactttca aacgcttgtt tgtcgatcta ggggacaaag aagaggataa 2940

gaagttgtac aggctcgcca aggcgagaga aaggaatcct cgggacttgg atcaagtgaa 3000gaagttgtac aggctcgcca aggcgagaga aaggaatcct cgggacttgg atcaagtgaa 3000

gtacatcaaa gatgaggacg gtaaagtact agtggaagag gcccacatta gacgaagagg 3060gtacatcaaa gatgaggacg gtaaagtact agtggaagag gcccacatta gacgaagagg 3060

gaaagcatac tttcataaac tcttgaacaa agaaagggtc acaaacattg tgttgggtgt 3120gaaagcatac tttcataaac tcttgaacaa agaaagggtc acaaacattg tgttgggtgt 3120

tatagagaac tcggagagcg agattttgat tacggttggt gttttaaggt tgaagaggtt 3180tatagagaac tcggagagcg agatttgat tacggttggt gttttaaggt tgaagaggtt 3180

aagggtgcta tgtgtaagat gagtcagggt agagtcacta aactagatga attccggtag 3240aagggtgcta tgtgtaagat gagtcagggt agagtcacta aactagatga attccggtag 3240

agttccaaaa aagcacaaaa agggcgggtt tagcgtggtt gcctaggttg tttaatgtca 3300agttccaaaa aagcacaaaa agggcgggtt tagcgtggtt gcctaggttg tttaatgtca 3300

tttttaagac ctcaaaaaaa atattagtgt cccccttttt ttttaacgaa tgagcctctt 3360tttttaagac ctcaaaaaaa atattagtgt cccccttttt ttttaacgaa tgagcctctt 3360

ttacccattt aactacctac ttttatatgg gtaaaatgag tttgactcat tttttaccca 3420ttacccattt aactacctac ttttatatgg gtaaaatgag tttgactcat tttttaccca 3420

ttttaaatga gttggatgcc aacatttaag ttgggtaatt tgaatgggta cccatataaa 3480ttttaaatga gttggatgcc aacatttaag ttgggtaatt tgaatgggta cccatataaa 3480

ttacttattc tgccacctct aaattatggg aggtgactca gagcacttac cagtcgagat 3540ttacttattc tgccacctct aaattatggg aggtgactca gagcacttac cagtcgagat 3540

ggggtcgcac caaggatctg cattgcacct gtttctattt gtcttggtga tggataagtt 3600ggggtcgcac caaggatctg cattgcacct gtttctattt gtcttggtga tggataagtt 3600

gatacggcat attctgcatg aggtgtcttg gtgtttgtta tttgtaaatg acattgtttt 3660gatacggcat attctgcatg aggtgtcttg gtgtttgtta tttgtaaatg aattgtttt 3660

aattgaggag actcaggcgg agttaacgat tgattggagg tgttgagaca aatttgacaa 3720aattgaggag actcaggcgg agttaacgat tgattggagg tgttgagaca aatttgacaa 3720

tctaaatggt tcaagttgag ttggaccaag acagaagata tttgcctatt tggagtgtaa 3780tctaaatggt tcaagttgag ttggaccaag acagaagata tttgcctatt tggagtgtaa 3780

attcagtgat gtgacatagg caggggctga tccaaggttt aaaggctatg ggtgtcgtat 3840attcagtgat gtgacatagg caggggctga tccaaggttt aaaggctatg ggtgtcgtat 3840

cgccttttaa ataaacgtgt ttattaaatc aattaaatat ttaacctttt tcttaccttg 3900cgccttttaa ataaacgtgt ttattaaatc aattaaatat ttaacctttt tcttaccttg 3900

taaataacct cagacttcag ttcgattatt cgacttttga gttttggaca aattaaatga 3960taaataacct cagacttcag ttcgattatt cgacttttga gttttggaca aattaaatga 3960

attaaaaaaa agataatgac aacttggcgc aaaggaaaaa ttttccaata atatccttta 4020attaaaaaaa agataatgac aacttggcgc aaaggaaaaa ttttccaata atatccttta 4020

taattacacc cgctgatcat attctaaata cacttaatga tggcataatt atttatgttt 4080taattacacc cgctgatcat attctaaata cacttaatga tggcataatt atttatgttt 4080

attaatactt cacgctctat gtaacatgct taataaaaag tggctaaatt tttttcatat 4140attaatactt cacgctctat gtaacatgct taataaaaag tggctaaatt tttttcatat 4140

acataatttt agtaacagaa acgaagtctt atgtacttta ttttgtttac attctcgata 4200acataatttt agtaacagaa acgaagtctt atgtacttta ttttgtttac attctcgata 4200

agatttaaat tatcataatc taaactattt ctttttatac attgaaatgt tttaataata 4260agatttaaat tatcataatc taaactattt ctttttatac attgaaatgt tttaataata 4260

gaacaaagag taagaaaaac tcggcgtcat gttttcagaa ttttgaccaa aagagaagat 4320gaacaaagag taagaaaaac tcggcgtcat gttttcagaa ttttgaccaa aagagaagat 4320

aattttggag gagaaggttt taagcaaaca ttaatcattt gtttgactat aaattatctc 4380aattttggag gagaaggttt taagcaaaca ttaatcattt gtttgactat aaattatctc 4380

attaagggcc aaacaaacta aaattgtttc taatatacaa aagtagcatt cttttgtgga 4440attaagggcc aaacaaacta aaattgtttc taatatacaa aagtagcatt cttttgtgga 4440

attgtggtag tctaaaaaag aaagtgtatc acgtgaattg agatgaagga aaaaaaagtt 4500attgtggtag tctaaaaaag aaagtgtatc acgtgaattg agatgaagga aaaaaaagtt 4500

aacaaaataa aaattaaaaa gttttacaac atgttagcat atgtacatta tataatatag 4560aacaaaataa aaattaaaaa gttttacaac atgttagcat atgtacatta tataatatag 4560

taaagtacat aaatatcatg tagtggccat ggcttaatgg ataaggtgat tcttaattgc 4620taaagtacat aaatatcatg tagtggccat ggcttaatgg ataaggtgat tcttaattgc 4620

agtgatatat gttggtttga aacatatcgg gaatcgtttt tgcaaaataa aattgttgca 4680agtgatatat gttggtttga aacatatcgg gaatcgtttt tgcaaaataa aattgttgca 4680

taaatggata actcaaagtg cacctatgcg gaattgaact cgcgtctttg acgacaacaa 4740taaatggata actcaaagtg cacctatgcg gaattgaact cgcgtctttg acgacaacaa 4740

gttgacttgc caccagtgac aacatacgcc ccatttgtgc tgtgggtggc aagtttaata 4800gttgacttgc caccagtgac aacatacgcc ccatttgtgc tgtgggtggc aagtttaata 4800

tttatataat ataatgtaca tatatacatg tcttacagaa tatcaatgga gatcattggg 4860tttatataat ataatgtaca tatatacatg tcttacagaa tatcaatgga gatcattggg 4860

tgttgtggca cccccacggc tatgaataga tccgcccctg gtcgtaggag ccaagcatgg 4920tgttgtggca cccccacggc tatgaataga tccgcccctg gtcgtaggag ccaagcatgg 4920

aaatgagact tgatactcaa gttatcccta agagcgagat ggagatattt aagtatctag 4980aaatgagact tgatactcaa gttatcccta agagcgagat ggagatattt aagtatctag 4980

ggtttttgct ccaaggaaat ggggagatca atgataatgt ctcaccgtat tggtgcggca 5040ggtttttgct ccaaggaaat ggggagatca atgataatgt ctcaccgtat tggtgcggca 5040

tagatgaagt ggaggcttgc atctagtgtc ttgtgtgaca agaaggtacc accctaaatt 5100tagatgaagt ggaggcttgc atctagtgtc ttgtgtgaca agaaggtacc accctaaatt 5100

aaaggtaagt tttatatagt ggtgtttaga ccgactttgg tgcatggggc gatgtgttgt 5160aaaggtaagt tttatatagt ggtgtttaga ccgactttgg tgcatggggc gatgtgttgt 5160

ctagtcaaga actgccaggt tcagaagaag caagtggcag aaatgaggat attgagatgg 5220ctagtcaaga actgccaggt tcagaagaag caagtggcag aaatgaggat attgagatgg 5220

atgtgcgggc atataggagc aatcatatta ggaatgagga tatctgacac gaagtggaag 5280atgtgcgggc atataggagc aatcatatta ggaatgagga tatctgacac gaagtggaag 5280

tggcttcttg gtggacaaga tgtggtggac aagatgaggg aagggagatt gagatatttt 5340tggcttcttg gtggacaaga tgtggtggac aagatgaggg aagggagatt gagatatttt 5340

ggacacatga agaggagagg tgcggatgcc acaaaaagga ggtgtgagag gttggatata 5400ggacacatga agaggagagg tgcggatgcc acaaaaagga ggtgtgagag gttggatata 5400

ggggttgagg agaggcagag gtaggccgaa gaagttttgt gaagaggtga ttagccaaga 5460ggggttgagg agaggcagag gtaggccgaa gaagttttgt gaagaggtga ttagccaaga 5460

tatgccacat ttttagcgta ttgaggacat gaccttagat aggagggtac acgaataagg 5520tatgccacat ttttagcgta ttgaggacat gaccttagat aggagggtac acgaataagg 5520

tagaagatta gtaggtgctg agagttgtct tattacttac ctattcatgt ctttggatgg 5580tagaagatta gtaggtgctg agagttgtct tattacttac ctattcatgt ctttggatgg 5580

gtgggagtat agagcgtcat gtgggttgta gtattagcat acacatttag tctttagctt 5640gtgggagtat agagcgtcat gtgggttgta gtattagcat aacacatttag tctttagctt 5640

ttagtatctg attttatttg tggtttactg tgtttaggtg accgcacttt gctgctgctg 5700ttagtatctg attttatttg tggtttactg tgtttaggtg accgcacttt gctgctgctg 5700

ttacaattta cttgcatatc tgctaagcac tgctttgtta ttagctgtca tgtttttctt 5760ttacaattta cttgcatatc tgctaagcac tgctttgtta ttagctgtca tgtttttctt 5760

ttaattactg ttttgatttg ttggaaccga gagtgggtct gcgtacacta ccctaggttg 5820ttaattactg ttttgatttg ttggaaccga gagtgggtct gcgtacacta ccctaggttg 5820

ttactgttta cttagtagtt gctttcactg ggtatgttgt tgttgttgtg gaagtatgac 5880ttactgttta cttagtagtt gctttcactg ggtatgttgt tgttgttgtg gaagtatgac 5880

ttgtcttttg cctacacttt tgcagttaag ctactttatg cattttaatt ttgtgtttta 5940ttgtcttttg cctacacttt tgcagttaag ctactttatg cattttaatt ttgtgtttta 5940

gtatttggta agtttatctt tcagttgagt ctgccaaaac tttgtgcaag tgtgtgaaca 6000gtatttggta agtttatctt tcagttgagt ctgccaaaac tttgtgcaag tgtgtgaaca 6000

agtatttttt tactttcatt accatgtgac aatttgttga ttttagctca gtcaaattga 6060agtatttttt tactttcatt accatgtgac aatttgttga ttttagctca gtcaaattga 6060

ttttgataat cggcattaaa aattgctgaa aaattgcaaa aagtttgatt ttcaacactt 6120ttttgataat cggcattaaa aattgctgaa aaattgcaaa aagtttgatt ttcaacactt 6120

atgtgattag tgtattctgc tcttttcata ttgtcacttc ggcacatgaa ttatctgtca 6180atgtgattag tgtattctgc tcttttcata ttgtcacttc ggcacatgaa ttatctgtca 6180

tccctgatat taatattata agcttcattt gctaaagttg tttatgtaag aaaggatttt 6240tccctgatat taatattata agcttcattt gctaaagttg tttatgtaag aaaggatttt 6240

tgatattaat acggagtttg tctgatgaag ttattcagat aaaaaagcct ctgaacgacc 6300tgatattaat acggagtttg tctgatgaag ttattcagat aaaaaagcct ctgaacgacc 6300

ggtgccacat ggggacgctg tggatcatca ttgttatggg ccttcatgca ttatatgttg 6360ggtgccacat ggggacgctg tggatcatca ttgttatggg ccttcatgca ttatatgttg 6360

tagctttgat tgcttttgct ggggctgtgc atcatgtgga attcagattt catgaactca 6420tagctttgat tgcttttgct ggggctgtgc atcatgtgga attcagattt catgaactca 6420

aagacctttg gagaggaatt cttgtctctt cagcttccat tggtttgttt ctatccattt 6480aagacctttg gagaggaatt cttgtctctt cagcttccat tggtttgttt ctatccattt 6480

tcttcgtttg gtttctttcc tggcatgctt ctgtgtcttc ctgtgtgtgc tttggtaggg 6540tcttcgtttg gtttctttcc tggcatgctt ctgtgtcttc ctgtgtgtgc tttggtaggg 6540

gaatgacata ttaaggaatg aagtcagaaa gacatattta gtcttgatta acacttcctc 6600gaatgacata ttaaggaatg aagtcagaaa gacatattta gtcttgatta acacttcctc 6600

aatattgttg tccaagcatc taaaggtatt cttacacata ccagaagcac gagcattata 6660aatattgttg tccaagcatc taaaggtatt cttacacata ccagaagcac gagcattata 6660

ctgaaatact gtcaaggaaa attcaatgga ggaaagtaac tagcttcagt gtaatggtca 6720ctgaaatact gtcaaggaaa attcaatgga ggaaagtaac tagcttcagt gtaatggtca 6720

aagtggctga ctttcagatc taatagttga atttgacctt catgactgag acaccaattt 6780aagtggctga ctttcagatc taatagttga atttgacctt catgactgag acaccaattt 6780

aaaatacttc tcatgcattc ccctcaagtt ggataacatg catatcaaat cgcttacaga 6840aaaatacttc tcatgcattc ccctcaagtt ggataacatg catatcaaat cgcttacaga 6840

taaaattctt atcttaaatc tcagaaataa attgttatta attgcagctt gatatacagg 6900taaaattctt atcttaaatc tcagaaataa attgttatta attgcagctt gatatacagg 6900

gtttagataa tcacagataa caaaggcttc tagtatagga tctgtctata aagtataaac 6960gtttagataa tcacagataa caaaggcttc tagtatagga tctgtctata aagtataaac 6960

agtgagacat tttatacccc caatttaata caaaggaaag ttcaggaact acttggttaa 7020agtgagacat tttatacccc caatttaata caaaggaaag ttcaggaact acttggttaa 7020

acacaccaca ttatgtagat gtgagaactc aaatcaaagt ttttgatgga aattttaggt 7080acacaccaca ttatgtagat gtgagaactc aaatcaaagt ttttgatgga aattttaggt 7080

catgtaaatt gtgttgtagc cctggacaca agagtcttag cttggttcta ggaaagcatg 7140catgtaaatt gtgttgtagc cctggacaca agagtcttag cttggttcta ggaaagcatg 7140

ttatttattg ctttagcaag acttcgtttc ctcctagaga aaatttatac tcccttcact 7200ttatttattg ctttagcaag acttcgtttc ctcctagaga aaatttatac tcccttcact 7200

gtcacattta gcttcctgag aatcaaatag tgtgatattt gaccaagtct tttttgatat 7260gtcacattta gcttcctgag aatcaaatag tgtgatattt gaccaagtct tttttgatat 7260

attttcattt ttgtaaggta taattttgaa tgtctaaatt ttaatctaag aaatgaaaat 7320attttcattt ttgtaaggta taattttgaa tgtctaaatt ttaatctaag aaatgaaaat 7320

tctttatcca attatcaata gaattgatca aattgaccat aagcaaaact gtcaaccaaa 7380tctttatcca attatcaata gaattgatca aattgaccat aagcaaaact gtcaaccaaa 7380

ttgtatggga aactggggat gtatagagaa gtttttttcc tatgacttga gattcttgct 7440ttgtatggga aactggggat gtatagagaa gtttttttcc tatgacttga gattcttgct 7440

gacagaaatg tatacactct tcattctatg tgaccagttg cttttgacac acccaaatgt 7500gacagaaatg tatacactct tcattctatg tgaccagttg cttttgacac acccaaatgt 7500

gacgacaaaa cttttaaact gtgtattaga cacagttgag gaaaggtttg gtgtttcaaa 7560gacgacaaaa cttttaaact gtgtattaga cacagttgag gaaaggtttg gtgtttcaaa 7560

gtttctttcg tgaagttagg gtgtgaaagg gatacagtga catgttttgg gggtgggtgg 7620gtttctttcg tgaagttagg gtgtgaaagg gatacagtga catgttttgg gggtgggtgg 7620

gtgggttaat tatttggcct atcttcaatc acaggaaaga aaatccttct atccatcaaa 7680gtgggttaat tatttggcct atcttcaatc acaggaaaga aaatccttct atccatcaaa 7680

gcgtcattag caggattaac ttctagatct gacatttata agttggctat ataaagccct 7740gcgtcattag caggattaac ttctagatct gacatttata agttggctat ataaagccct 7740

cctatgcttg agaaaaataa aaaattgaga ggcactttca acatgttttt gctgcctgtc 7800cctatgcttg agaaaaataa aaaattgaga ggcactttca acatgttttt gctgcctgtc 7800

tttttctata aaaaaaaaac acctccagtc agttgcttca cagtggcttt gttaactgaa 7860tttttctata aaaaaaaaac acctccagtc agttgcttca cagtggcttt gttaactgaa 7860

gtatggttaa tggttaccat acttgataga aaggtgtaca agaagatgca atgaaagacc 7920gtatggttaa tggttaccat acttgataga aaggtgtaca agaagatgca atgaaagacc 7920

ctgatactcc gcatgatgtc aagttggctg caaaggacta ctcaagttct acccttatgc 7980ctgatactcc gcatgatgtc aagttggctg caaaggacta ctcaagttct acccttatgc 7980

acactcatcc tgcctataaa aaaatcaagg ttctcctttg ccctcaacac cccaaaagtg 8040acactcatcc tgcctataaa aaaatcaagg ttctcctttg ccctcaacac cccaaaagtg 8040

cccttgatag tacaacttct ggagcatggt acttttgaag cacttgcgta aatctgaaga 8100cccttgatag tacaacttct ggagcatggt acttttgaag cacttgcgta aatctgaaga 8100

taatttattc caatcctcca acctcttaga tcgtggtact ggctacttat atcatatgtt 8160taatttattc caatcctcca acctcttaga tcgtggtact ggctacttat atcatatgtt 8160

gctcagagtc tccaaaatgt cgcctcactc ttgttgaatc cttcctaaaa tgcactactt 8220gctcagagtc tccaaaatgt cgcctcactc ttgttgaatc cttcctaaaa tgcactactt 8220

ttggtattca tatacatttt tgaagagtct gagtaacata gcttatatcc ttgtattact 8280ttggtattca tatacatttt tgaagagtct gagtaacata gcttatatcc ttgtattact 8280

ggggaacaga gatgtccggt ggtgttcgtc cttcctgccc ttccactatg tgatggtgca 8340ggggaacaga gatgtccggt ggtgttcgtc cttcctgccc ttccactatg tgatggtgca 8340

agttactaaa tttcatgggg tgaaaggact ctgattggcc tcatgtatcc tctttcatca 8400agttactaaa tttcatgggg tgaaaggact ctgattggcc tcatgtatcc tctttcatca 8400

tgatagatac aaccacctgc tctaagtaag aaaaggatag aaaattatgt tcagatatta 8460tgatagatac aaccacctgc tctaagtaag aaaaggatag aaaattatgt tcagatatta 8460

acgctaggaa gttgtggttt tatttttaaa tgtatgaaga catatgaaac tctgtaatat 8520acgctaggaa gttgtggttttatttttaaa tgtatgaaga catatgaaac tctgtaatat 8520

cgcaacttgt tttttatctt taatatttat tggtttgtta catcatgctt tattcaaata 8580cgcaacttgt tttttatctt taatatttt tggtttgtta catcatgctt tattcaaata 8580

catatgttat gactttcatc tgtctgtttc aacattcact gttagttact tgtagttcaa 8640catatgttat gactttcatc tgtctgtttc aacattcact gttagttatact tgtagttcaa 8640

aactaaattg aaaatgatat ttcttcttag atatttcttc ttagacattt cccaagaata 8700aactaaattg aaaatgatat ttcttcttag atatttcttc ttagacattt cccaagaata 8700

ttttgtgttg ataccagtct gttttctctg tatcaaggaa tatgggtggc tgcttatgta 8760ttttgtgttg ataccagtct gttttctctg tatcaaggaa tatgggtggc tgcttatgta 8760

atgaatgagg ttcgcgaaga tatatcatcg ctagaaattg cctcaagatt cttattattg 8820atgaatgagg ttcgcgaaga tatatcatcg ctagaaattg cctcaagatt cttattattg 8820

gttatggtac aatttcctga tcttgtgcta ctttgttgat atgtgagtat cagaatatgt 8880gttatggtac aatttcctga tcttgtgcta ctttgttgat atgtgagtat cagaatatgt 8880

ttgttgactg cctacagttt ttctcttttt attcaacaga caagtgtcct tgtactggca 8940ttgttgactg cctacagtttttctcttttt attcaacaga caagtgtcct tgtactggca 8940

ttcttctctt tctcgatttc tcaacctctt gtctcagtta tgagcttgag gaagaagaat 9000ttcttctctt tctcgatttc tcaacctctt gtctcagtta tgagcttgag gaagaagaat 9000

cagaaagaat acaagacaat gagtcaggca ttaggtatac ctgatagtgg gatcctatta 9060cagaaagaat acaagacaat gagtcaggca ttaggtatac ctgatagtgg gatcctatta 9060

cagagggaat cgacaagcat tctagatcct aatgaacctt tggaaaagct cctgctgaat 9120cagagggaat cgacaagcat tctagatcct aatgaacctt tggaaaagct cctgctgaat 9120

cgaaggttcc gtcagtcctt catggaattt gcagacaggt tttactcatt ctccttttgc 9180cgaaggttcc gtcagtcctt catggaattt gcagacaggt tttactcatt ctccttttgc 9180

aaaaatatca ttaaatcttc atgctgcgtg cgtgcatcag cttatcatgt gaagagagaa 9240aaaaatatca ttaaatcttc atgctgcgtg cgtgcatcag cttatcatgt gaagagagaa 9240

gatggtcctg tcttttctcc ttgattttaa cataattgaa cgtcaaaaga aataaaatgt 9300gatggtcctg tcttttctcc ttgattttaa cataattgaa cgtcaaaaga aataaaatgt 9300

atgtgatatt cttggaaaca aagaaataac agatataagc agaccaactt ttctagagag 9360atgtgatatt cttggaaaca aagaaataac agatataagc agaccaactt ttctagagag 9360

gaactctaac agacaggtct gaaattgatt gcacagtaat agaatgacct ttttttcttt 9420gaactctaac aagacaggtct gaaattgatt gcacagtaat agaatgacct ttttttcttt 9420

tactttgttc acatcgtagt tgtctggctg gagagagtgt gcacttctat gatgaagtgc 9480tactttgttc acatcgtagt tgtctggctg gagagagtgt gcacttctat gatgaagtgc 9480

aacattttga taaaattcct attcaggatt cagttaggag aatttacatg gcacgccaca 9540aacattttga taaaattcct attcaggatt cagttaggag aatttacatg gcacgccaca 9540

taatagagaa gtatattgct gcaggtaagg tcaattcata tatgaagctt ttgatggtca 9600taatagagaa gtatattgct gcaggtaagg tcaattcata tatgaagctt ttgatggtca 9600

tattaaatct tcccttcaaa gattctttaa agcaagtttt cttgggaact tgatggatta 9660tattaaatct tcccttcaaa gattctttaa agcaagtttt cttgggaact tgatggatta 9660

tacactttga tttttttttc tgtatcctcc ggtcctccct ctgaaaagta ttctcgtgct 9720tacactttga tttttttttc tgtatcctcc ggtcctccct ctgaaaagta ttctcgtgct 9720

taaattttga tggttctctg acttgcattt gctcattaaa cacctgtagg agcaccaatg 9780taaattttga tggttctctg acttgcattt gctcattaaa cacctgtagg agcaccaatg 9780

gaggtgaaca tttctcaccg aatccggcag gaaattttga atactaatga tctctcccac 9840gaggtgaaca tttctcaccg aatccggcag gaaattttga atactaatga tctctcccac 9840

actgacctat tcaaaaacgc tctaggtgaa ctgatgcagc tgatgaaact ggttggtctt 9900actgacctat tcaaaaacgc tctaggtgaa ctgatgcagc tgatgaaact ggttggtctt 9900

ttacattctg aaccattact tgcttgatta taatggtatt ttgcatattg cttagttatc 9960ttacattctg aaccattact tgcttgatta taatggtatt ttgcatattg cttagttatc 9960

ctctttctat ccttccttcc gtctcactct catcatctct tgtactattg ttgaatcgtt 10020ctctttctat ccttcccttcc gtctcactct catcatctct tgtactattg ttgaatcgtt 10020

cttcttgtgg acacacaaag aacttagcaa gagattactg gtcgtcaatg tacttcatga 10080cttcttgtgg acacacaaag aacttagcaa gagattactg gtcgtcaatg tacttcatga 10080

agctgcaaga ggatatccgc atgagagcag ttgatccgga gatggaacat gctagtggtt 10140agctgcaaga ggatatccgc atgagagcag ttgatccgga gatggaacat gctagtggtt 10140

ggaatttttc cccaagattg agttctgtcc attgcagtga tgaccctttc cagaatgaac 10200ggaatttttc cccaagattg agttctgtcc attgcagtga tgaccctttc cagaatgaac 10200

atacagaact gcgatgatga aacatgtgag tagggtcatg acttcccaac gtgatggagt 10260atacagaact gcgatgatga aacatgtgag tagggtcatg acttcccaac gtgatggagt 10260

tgcatatatt tggccgtaac aggaagagaa gggaacctaa acgagacatg atattcatct 10320tgcatatatt tggccgtaac aggaagagaa gggaacctaa acgagacatg atattcatct 10320

tcacaggatg ggctccagct acctgattct cctgttcata aacgatacga gccttcaaga 10380tcacaggatg ggctccagct acctgattct cctgttcata aacgatacga gccttcaaga 10380

ccaaattttg ctgtgtgatg ttgcacctca tgctttgcag acctga 10426ccaaattttg ctgtgtgatg ttgcacctca tgctttgcag acctga 10426

<210> 4<210> 4

<211> 20<211> 20

<212> DNA<212>DNA

<213> 人工序列(Artificial sequence)<213> Artificial sequence (Artificial sequence)

<400> 4<400> 4

tcagaaagag acattggtgg 20tcagaaagag aattggtgg 20

<210> 5<210> 5

<211> 25<211> 25

<212> DNA<212>DNA

<213> 人工序列(Artificial sequence)<213> Artificial sequence (Artificial sequence)

<400> 5<400> 5

gattgtcaga aagagacatt ggtgg 25gattgtcaga aagagacatt ggtgg 25

<210> 6<210> 6

<211> 25<211> 25

<212> DNA<212>DNA

<213> 人工序列(Artificial sequence)<213> Artificial sequence (Artificial sequence)

<400> 6<400> 6

aaacccacca atgtctcttt ctgac 25aaacccacca atgtctcttt ctgac 25

<210> 7<210> 7

<211> 22<211> 22

<212> DNA<212>DNA

<213> 人工序列(Artificial sequence)<213> Artificial sequence (Artificial sequence)

<400> 7<400> 7

ctacttatcg tcatcgtctt tg 22ctacttatcg tcatcgtctt tg 22

<210> 8<210> 8

<211> 19<211> 19

<212> DNA<212>DNA

<213> 人工序列(Artificial sequence)<213> Artificial sequence (Artificial sequence)

<400> 8<400> 8

ttttaagtgc atcggtgac 19ttttaagtgc atcggtgac 19

<210> 9<210> 9

<211> 18<211> 18

<212> DNA<212>DNA

<213> 人工序列(Artificial sequence)<213> Artificial sequence (Artificial sequence)

<400> 9<400> 9

gactggaaag caaggagg 18gactggaaag caaggagg 18

Claims (5)

1.RGS1基因作为负调控因子在提高寡照环境下番茄细菌性叶斑病抗性中的应用,其特征在于,所述RGS1基因的蛋白编码区的核苷酸序列如SEQ ID NO.1所示,所述应用的途径为通过敲除RGS1基因使寡照环境下番茄突变体的细菌性叶斑病抗性得到提高。1. The application of the RGS1 gene as a negative regulatory factor in improving tomato bacterial leaf spot resistance in a low light environment, characterized in that the nucleotide sequence of the protein coding region of the RGS1 gene is as shown in SEQ ID NO.1 , the approach of the application is to improve the bacterial leaf spot resistance of tomato mutants under low-light environment by knocking out the RGS1 gene. 2.如权利要求1所述的应用,其特征在于,所述寡照环境为光照强度明显弱于番茄适宜生长所需光强的环境,所述光照强度<150umol m-2s-12 . The application according to claim 1 , wherein the low-light environment is an environment with light intensity significantly weaker than that required for proper growth of tomatoes, and the light intensity is <150umol m -2 s -1 . 3.一种减轻寡照环境下番茄细菌性叶斑病的方法,其特征在于,包括:3. A method for alleviating bacterial leaf spot of tomato under a low-light environment, characterized in that, comprising: (1)培育寡照环境下抗番茄细菌性叶斑病的番茄突变体;(1) cultivating tomato mutants resistant to tomato bacterial leaf spot in a low-light environment; (1-a)在番茄RGS1基因的蛋白编码区选取含有PAM结构的靶标片段,以其前20个碱基为依据,设计相应引物,构建CRISPR/Cas9载体;(1-a) Select a target fragment containing a PAM structure in the protein coding region of the tomato RGS1 gene, and design corresponding primers based on the first 20 bases thereof to construct a CRISPR/Cas9 vector; (1-b)构建含步骤(1-a)所述CRISPR/Cas9载体的农杆菌基因工程菌;(1-b) constructing the Agrobacterium genetically engineered bacterium containing the CRISPR/Cas9 vector described in step (1-a); (1-c)用步骤(1-b)所述基因工程菌转化番茄子叶,获得遗传稳定并且不含外源Cas9蛋白的突变体;(1-c) transforming tomato cotyledons with the genetically engineered bacteria described in step (1-b), to obtain a mutant that is genetically stable and does not contain exogenous Cas9 protein; (2)用步骤(1)所述的番茄突变体替换寡照环境下种植的野生型番茄,所述寡照环境为光照强度明显弱于番茄适宜生长所需光强的环境,所述光照强度<150umolm-2s-1(2) Use the tomato mutant described in step (1) to replace the wild-type tomato planted in a low-light environment, the low-light environment is an environment where the light intensity is significantly weaker than the light intensity required for tomato growth, and the light intensity is <150umolm -2 s -1 . 4.如权利要求3所述的减轻寡照环境下番茄细菌性叶斑病的方法,其特征在于,步骤(1-a)中,所述靶标片段PAM结构前20个碱基的核苷酸序列如SEQ ID NO.4所示。4. the method for alleviating bacterial leaf spot of tomato under the low light environment as claimed in claim 3, is characterized in that, in step (1-a), the nucleotide sequence of the first 20 bases of the target fragment PAM structure As shown in SEQ ID NO.4. 5.如权利要求3所述的减轻寡照环境下番茄细菌性叶斑病的方法,其特征在于,构建所述CRISPR/Cas9载体的引物的核苷酸序列如SEQ ID NO.5和SEQ ID NO.6所示。5. the method for alleviating the bacterial leaf spot of tomato under the low light environment as claimed in claim 3, is characterized in that, construct the nucleotide sequence of the primer of described CRISPR/Cas9 carrier such as SEQ ID NO.5 and SEQ ID NO .6 shown.
CN201910772381.8A 2019-08-21 2019-08-21 Application of RGS1 gene as a negative regulator in improving tomato bacterial leaf spot resistance under low light conditions Active CN110468150B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910772381.8A CN110468150B (en) 2019-08-21 2019-08-21 Application of RGS1 gene as a negative regulator in improving tomato bacterial leaf spot resistance under low light conditions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910772381.8A CN110468150B (en) 2019-08-21 2019-08-21 Application of RGS1 gene as a negative regulator in improving tomato bacterial leaf spot resistance under low light conditions

Publications (2)

Publication Number Publication Date
CN110468150A true CN110468150A (en) 2019-11-19
CN110468150B CN110468150B (en) 2020-10-30

Family

ID=68513189

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910772381.8A Active CN110468150B (en) 2019-08-21 2019-08-21 Application of RGS1 gene as a negative regulator in improving tomato bacterial leaf spot resistance under low light conditions

Country Status (1)

Country Link
CN (1) CN110468150B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113564178A (en) * 2021-07-22 2021-10-29 中国农业科学院蔬菜花卉研究所 Dark pulse obv gene and application thereof
CN113999863A (en) * 2021-11-01 2022-02-01 浙江大学 A method for improving water use efficiency of tomato crops
CN114836436A (en) * 2022-04-28 2022-08-02 山东农业大学 Application of soybean gene GmRGS1 and glucose in promoting nodule generation of legumes

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140007266A1 (en) * 2012-06-28 2014-01-02 The Penn State Research Foundation Methods of improving drought tolerance and seed production in rice
CN109609527A (en) * 2019-01-28 2019-04-12 浙江大学 Application of CDPK18L gene as a negative regulator in improving tomato bacterial leaf spot resistance and high temperature resistance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140007266A1 (en) * 2012-06-28 2014-01-02 The Penn State Research Foundation Methods of improving drought tolerance and seed production in rice
CN109609527A (en) * 2019-01-28 2019-04-12 浙江大学 Application of CDPK18L gene as a negative regulator in improving tomato bacterial leaf spot resistance and high temperature resistance

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
GENBANK:XM_010322661.3: "PREDICTED: Solanum lycopersicum regulator of G-protein signaling 1 (LOC101254487), transcript variant X2, mRNA", 《GENBANK数据库》 *
GENBANK:XP_019069626: "regulator of G-protein signaling 1 isoform X2", 《GENBANK数据库》 *
JUN XU等: "Host-induced Gene Silencing of a Regulator of G Protein Signalling Gene (VdRGS1) Confers Resistance to Verticillium Wilt in Cotton", 《PLANT BIOTECHNOLOGY JOURNAL》 *
XIANGXIU LIANG等: "Ligand-triggered De-Repression of Arabidopsis Heterotrimeric G Proteins Coupled to Immune Receptor Kinases", 《CELL RES.》 *
赵久凤等: "植物中异三体G 蛋白结构与功能", 《湖北农业科学》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113564178A (en) * 2021-07-22 2021-10-29 中国农业科学院蔬菜花卉研究所 Dark pulse obv gene and application thereof
CN113564178B (en) * 2021-07-22 2023-08-04 中国农业科学院蔬菜花卉研究所 A kind of dark vein obv gene and its application
CN113999863A (en) * 2021-11-01 2022-02-01 浙江大学 A method for improving water use efficiency of tomato crops
CN113999863B (en) * 2021-11-01 2024-01-05 浙江大学 Method for improving water utilization efficiency of tomato crops
CN114836436A (en) * 2022-04-28 2022-08-02 山东农业大学 Application of soybean gene GmRGS1 and glucose in promoting nodule generation of legumes
CN114836436B (en) * 2022-04-28 2023-06-02 山东农业大学 Application of soybean gene GmRGS1 and glucose in promotion of root nodule production of leguminous plants

Also Published As

Publication number Publication date
CN110468150B (en) 2020-10-30

Similar Documents

Publication Publication Date Title
CN109777810B (en) Application of PUB41 gene as negative regulatory factor in improving resistance to tomato gray mold and bacterial wilt
CN104829700A (en) Corn CCCH-type zinc finger protein, and encoding gene ZmC3H54 and application thereof
CN110004154B (en) Application of tea tree CsJAZ1 gene
CN110283843A (en) A method of mediate CsWRKY22 fixed point editor to improve citrus bacterial canker disease resistance based on CRISPRCas9
CN110468150B (en) Application of RGS1 gene as a negative regulator in improving tomato bacterial leaf spot resistance under low light conditions
CN111593058A (en) Bna-miR169n gene and application thereof in controlling drought resistance of brassica napus
CN113512558B (en) A method for improving tomato resistance to bacterial wilt
CN101358190A (en) An artificially synthesized gene sequence for expressing highly virulent protein to lepidopteran pests and its application
CN116640799A (en) Application of medicago sativa MtMET1 gene in regulation and control of plant stress tolerance
CN113234729A (en) Gene GauRev2 capable of obviously improving verticillium wilt resistance of cotton and application thereof
CN106496313B (en) Disease resistance-related protein IbSWEET10 and its encoding gene and application
CN113073111B (en) Method for improving resistance of tomato to bacterial wilt of soil-borne diseases
CN102010864B (en) Maize Pollen Tissue-Specific Promoter and Its Expression Vector
CN118256555A (en) Application of potato auxin transport gene StLAX5
CN114480416B (en) Application of tsaoko AtDRM2 gene in improving cold resistance of plants
CN112779270B (en) Functional gene for enhancing iron deficiency tolerance and iron accumulation of plants and application
CN114134155B (en) MLO gene mutant and preparation method and application thereof
CN113151293B (en) Stress resistance gene circuit AcDwEm and its application in improving crop salt tolerance, drought resistance and high temperature tolerance
CN104558131B (en) Peanut DELLA gene families and its encoding gene and application
CN107177565A (en) Anti- tomato stem wilt gene mLCB2b and its application
CN117363648B (en) SvMOC1 gene expression for regulating tillering number of broomcorn millet subfamily and application thereof
CN114164228B (en) Method for improving disease resistance of rice through gene editing and application thereof
CN106011145B (en) A kind of adversity gene and its coding albumen and application from jerusalem artichoke
CN112063597A (en) Maize multi-copper oxidase encoding gene ZmDEK559-2 and its application
CN118703510B (en) Application of a gene AT2G28200 in improving plant drought resistance

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant