CN110465920A - It is a kind of novel using pollen as the magnetic pollen of template travelling Micro-Robot preparation method - Google Patents
It is a kind of novel using pollen as the magnetic pollen of template travelling Micro-Robot preparation method Download PDFInfo
- Publication number
- CN110465920A CN110465920A CN201910786240.1A CN201910786240A CN110465920A CN 110465920 A CN110465920 A CN 110465920A CN 201910786240 A CN201910786240 A CN 201910786240A CN 110465920 A CN110465920 A CN 110465920A
- Authority
- CN
- China
- Prior art keywords
- pollen
- swimming
- magnetic
- solution
- robot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 14
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims abstract description 48
- 230000009182 swimming Effects 0.000 claims abstract description 44
- 239000000243 solution Substances 0.000 claims abstract description 35
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 33
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims abstract description 32
- 239000008367 deionised water Substances 0.000 claims abstract description 28
- 229910021641 deionized water Inorganic materials 0.000 claims abstract description 28
- 239000000047 product Substances 0.000 claims abstract description 21
- 239000006228 supernatant Substances 0.000 claims abstract description 20
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims abstract description 18
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 17
- 238000011065 in-situ storage Methods 0.000 claims abstract description 11
- 238000011282 treatment Methods 0.000 claims abstract description 11
- 239000002245 particle Substances 0.000 claims abstract description 10
- 238000001291 vacuum drying Methods 0.000 claims abstract description 9
- 239000006249 magnetic particle Substances 0.000 claims abstract description 8
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 7
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 7
- 238000003786 synthesis reaction Methods 0.000 claims abstract description 7
- 239000011248 coating agent Substances 0.000 claims abstract description 6
- 238000000576 coating method Methods 0.000 claims abstract description 6
- 238000003756 stirring Methods 0.000 claims abstract description 6
- 238000003828 vacuum filtration Methods 0.000 claims abstract description 6
- 239000011259 mixed solution Substances 0.000 claims abstract description 4
- 238000000034 method Methods 0.000 claims description 15
- 239000000203 mixture Substances 0.000 claims description 15
- 235000003222 Helianthus annuus Nutrition 0.000 claims description 11
- 238000002474 experimental method Methods 0.000 claims description 9
- 238000005119 centrifugation Methods 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 240000001548 Camellia japonica Species 0.000 claims description 3
- 240000008620 Fagopyrum esculentum Species 0.000 claims description 3
- 235000009419 Fagopyrum esculentum Nutrition 0.000 claims description 3
- 229910021578 Iron(III) chloride Inorganic materials 0.000 claims description 3
- 239000012670 alkaline solution Substances 0.000 claims description 3
- 235000018597 common camellia Nutrition 0.000 claims description 3
- 238000007654 immersion Methods 0.000 claims description 3
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 claims description 3
- 244000020551 Helianthus annuus Species 0.000 claims 1
- 238000007598 dipping method Methods 0.000 abstract description 3
- 241000208818 Helianthus Species 0.000 description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000000126 substance Substances 0.000 description 5
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 240000002791 Brassica napus Species 0.000 description 2
- 235000004977 Brassica sinapistrum Nutrition 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910021577 Iron(II) chloride Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000004070 electrodeposition Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- NMCUIPGRVMDVDB-UHFFFAOYSA-L iron dichloride Chemical compound Cl[Fe]Cl NMCUIPGRVMDVDB-UHFFFAOYSA-L 0.000 description 2
- 238000000707 layer-by-layer assembly Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 238000004729 solvothermal method Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 1
- 238000000724 energy-dispersive X-ray spectrum Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000011664 nicotinic acid Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/50273—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J7/00—Micromanipulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0403—Moving fluids with specific forces or mechanical means specific forces
- B01L2400/043—Moving fluids with specific forces or mechanical means specific forces magnetic forces
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Health & Medical Sciences (AREA)
- Dispersion Chemistry (AREA)
- Mechanical Engineering (AREA)
- Robotics (AREA)
- Manufacturing & Machinery (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Hematology (AREA)
- Clinical Laboratory Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Soft Magnetic Materials (AREA)
Abstract
本发明提供了一种新型以花粉为模板的磁性花粉游动微机器人制备方法,属于磁性游动微机器人的制备及驱动技术领域。本发明通过花粉预处理来除去外部花粉鞘涂层:将花粉在氯仿/甲醇混合液中浸渍,然后真空抽滤除去溶液;真空干燥后在盐酸中进行第二次浸渍处理;用去离子水冲洗;然后在花粉上原位合成磁性粒子:将产物置于FeCl2溶液再置于FeCl3溶液中,都进行震荡,离心,去除上清液处理,烧瓶中加入去离子水,在氮气下加热,再加入经过上述步骤处理过的花粉,调节pH值,搅拌加热;使用磁铁保持住花粉粒子,倒掉上清液,得到磁性花粉游动微机器。本发明以花粉作为模板,制得的游动微机器人形状多种多样,生物相容性高。
The invention provides a novel preparation method of a magnetic pollen swimming micro-robot using pollen as a template, and belongs to the technical field of preparation and driving of a magnetic swimming micro-robot. In the present invention, the outer pollen sheath coating is removed by pollen pretreatment: the pollen is dipped in chloroform/methanol mixed solution, and then the solution is removed by vacuum filtration; the second dipping treatment is performed in hydrochloric acid after vacuum drying; rinsed with deionized water Then in situ synthesis of magnetic particles on pollen: the product is placed in FeCl 2 solution and then placed in FeCl 3 solution, both are shaken, centrifuged, the supernatant is removed, and deionized water is added to the flask, heated under nitrogen, Then add the pollen treated by the above steps, adjust the pH value, stir and heat; use a magnet to hold the pollen particles, and pour off the supernatant to obtain a magnetic pollen swimming micromachine. The invention uses pollen as a template, and the prepared swimming micro-robots have various shapes and high biocompatibility.
Description
技术领域technical field
本发明涉及一种新型以花粉为模板的磁性花粉游动微机器人制备方法,属于磁性游动微机器人的制备及驱动技术领域。The invention relates to a novel preparation method of a magnetic pollen swimming micro-robot using pollen as a template, and belongs to the technical field of preparation and driving of a magnetic swimming micro-robot.
背景技术Background technique
由于微米机器人在生物医学等领域的应用前景,所以合成各种特殊结构,使用特种材料的微米机器人成为目前的研究热点之一。自然界中的花粉有各种形状,我们利用花粉作为天然的模板,在花粉上原位合成磁性粒子,这样我们就得到具有各种形状的磁性花粉游动微机器,在磁场的控制下可以控制磁性花粉游动微机器人的运动方向和运动速度。本发明要解决现有的合成磁性游动微机器人的方法复杂,后处理麻烦,生物相容性低,实验可重复率低的问题。本发明的制备的磁性花粉游动微机器人体积小,磁性强,生物相容性好,在生物医学,仿生设计等领域有广泛的应用前景。Due to the application prospects of micro-robots in biomedicine and other fields, the synthesis of various special structures and micro-robots using special materials has become one of the current research hotspots. Pollen in nature has various shapes. We use pollen as a natural template to synthesize magnetic particles on the pollen in situ, so that we can get magnetic pollen swimming micromachines with various shapes, which can control the magnetic properties under the control of a magnetic field. Movement direction and movement speed of the pollen-swimming microrobot. The present invention solves the problems of complex method for synthesizing magnetic swimming microrobots, troublesome post-processing, low biocompatibility and low experiment repeatability. The magnetic pollen swimming microrobot prepared by the invention is small in size, strong in magnetism and good in biocompatibility, and has wide application prospects in the fields of biomedicine, bionic design and the like.
发明内容SUMMARY OF THE INVENTION
本发明的目的是为了解决上述现有技术存在的现有的游动机器人形状单一,制备复杂;溶剂热法难以精确游动机器人的化学组成和几何形态;电化学沉积法废液处理困难,成本高;层层组装法的常见组成物质的表面能低的问题,进而提供一种新型的以花粉为模板的磁性花粉游动微机器人的制备。The purpose of the present invention is to solve the problem that the existing swimming robots existing in the above-mentioned prior art have a single shape and are complicated to prepare; the solvothermal method is difficult to accurately determine the chemical composition and geometric shape of the swimming robot; the electrochemical deposition method is difficult to process waste liquid, and the cost The problem of low surface energy of common constituent substances of the layer-by-layer assembly method is provided, and the preparation of a new type of magnetic pollen-swimming microrobot using pollen as a template is provided.
本发明的目的是通过以下技术方案实现的:The purpose of this invention is to realize through the following technical solutions:
一种新型的以花粉为模板的磁性花粉游动微机器人的制备,包括以下步骤:The preparation of a new type of magnetic pollen-swimming micro-robot using pollen as a template includes the following steps:
一、通过花粉预处理来除去外部花粉鞘涂层1. Removal of the outer pollen sheath coating by pollen pretreatment
步骤一:将0.01g~0.1g的花粉在5~20ml的氯仿/甲醇混合液中浸渍12~36小时,然后真空抽滤除去溶液;Step 1: immerse 0.01g-0.1g of pollen in 5-20ml of chloroform/methanol mixture for 12-36 hours, and then remove the solution by vacuum filtration;
步骤二:将步骤一中得到的产物在20~60℃下真空干燥6~24小时;Step 2: vacuum drying the product obtained in step 1 at 20-60° C. for 6-24 hours;
步骤三:将步骤二中得到的产物在5~30ml的盐酸溶液中进行第二次浸渍处理0.5~2小时,离心去除上清液,真空干燥;Step 3: The product obtained in Step 2 is subjected to a second immersion treatment in 5-30ml of hydrochloric acid solution for 0.5-2 hours, centrifugation to remove the supernatant, and vacuum drying;
步骤四:将步骤三中得到的产物用去离子水冲洗2~5次;Step 4: rinse the product obtained in step 3 with deionized water for 2 to 5 times;
二、花粉上原位合成磁性粒子2. In situ synthesis of magnetic particles on pollen
步骤五:将步骤四中得到的产物放入0.01g/mL~0.5g/mL的FeCl2溶液中震荡0.5~3h,离心,去除上清液;Step 5: put the product obtained in step 4 into 0.01g/mL~0.5g/mL FeCl2 solution, shake for 0.5~3h, centrifuge, and remove the supernatant;
步骤六:将步骤五中得到的产物放入0.01g/mL~0.5g/mL的FeCl3溶液中震荡0.5~3h,离心,去除上清液;Step 6: put the product obtained in step 5 into 0.01g/mL~0.5g/mL FeCl3 solution, shake for 0.5~3h, centrifuge, and remove the supernatant;
步骤七:三口烧瓶中加入5~50mL去离子水,在氮气下加热至50~100℃,再加入经过上述步骤处理过的花粉,调节pH值,使整个溶液处于碱性环境中,剧烈搅拌混合物,在50~100℃下加热0.2~2h;;Step 7: Add 5-50 mL of deionized water to the three-necked flask, heat it to 50-100°C under nitrogen, then add the pollen treated in the above steps, adjust the pH value, make the whole solution in an alkaline environment, and vigorously stir the mixture , heated at 50~100℃ for 0.2~2h;
步骤八:反应烧瓶中使用磁铁保持住花粉粒子,快速倒掉上清液,得到原位合成的磁性花粉游动微机器。Step 8: use a magnet to hold the pollen particles in the reaction flask, and quickly pour off the supernatant to obtain an in-situ synthetic magnetic pollen swimming micromachine.
所述实验中所用的水均为去离子水,并且向去离子水中通高纯氮气一段时间后的,脱氧去离子水。The water used in the experiment was deionized water, and deoxygenated deionized water was passed through high-purity nitrogen gas into the deionized water for a period of time.
所述步骤一中所述花粉包括向日葵花粉、油菜花粉、茶花粉和荞麦花粉等,所有单个花粉粒径在5~50μm的未破壁花粉。In the first step, the pollen includes sunflower pollen, rape pollen, camellia pollen, buckwheat pollen, etc., all of which are unbroken pollen with a single pollen particle size of 5-50 μm.
所述步骤一中氯仿/甲醇混合液中体积比为氯仿/甲醇=3/1。In the step 1, the volume ratio in the chloroform/methanol mixed solution is chloroform/methanol=3/1.
所述步骤三中的离心处理的转速为2000~8000rpm。The rotational speed of the centrifugal treatment in the third step is 2000-8000 rpm.
所述步骤三中所用盐酸溶液的浓度为0.5~2mol/L。The concentration of the hydrochloric acid solution used in the step 3 is 0.5-2 mol/L.
所述步骤五中所用离心处理的转速为2000~8000rpm。The rotational speed of the centrifugation used in the step 5 is 2000-8000 rpm.
所述步骤七中用碱性溶液调节pH值在9~14之间。In the seventh step, an alkaline solution is used to adjust the pH value between 9 and 14.
本发明的有益效果为:The beneficial effects of the present invention are:
本发明的解决了现有技术存在的游动机器人形状单一,制备复杂。溶剂热法难以精确游动机器人的化学组成和几何形态;电化学沉积法废液处理困难,成本高;层层组装法的常见组成物质的表面能低的问题,本发明通过利用自然界中的花粉有各种形状的特性,以花粉作为模板,制得的游动微机器人形状多种多样,生物相容性高。The invention solves the problem that the shape of the swimming robot existing in the prior art is single and the preparation is complicated. Solvothermal method is difficult to accurately determine the chemical composition and geometric shape of the swimming robot; electrochemical deposition method is difficult to treat waste liquid, and the cost is high; the surface energy of common constituent substances of layer-by-layer assembly method is low. It has the characteristics of various shapes. Using pollen as a template, the prepared swimming microrobots have various shapes and high biocompatibility.
传统游动机器人的模板法制备中得到的游动机器人形状单一,多为球形、棒状、花生状。本发明将模板变为花粉,因为自然界的花粉具有各种形态,因此可以制得多种多样形状的游动机器人,并且此方法制备过程简单,可应用于工业,大批量生产;而且花粉为可使用产品,在生物体内无毒,生物相容性好。The shape of the swimming robot obtained by the template method of the traditional swimming robot is single, and most of them are spherical, rod-shaped and peanut-shaped. The present invention turns the template into pollen, because the pollen in nature has various forms, so the swimming robots of various shapes can be prepared, and the preparation process of the method is simple, and can be applied to industry and mass production; The product used is non-toxic in vivo and has good biocompatibility.
目前在石英玻璃毛细管中进行逆流运动的机器人最大逆流速度只能达到2mm/s,而且运动过程中机器人不能转向。以向日葵花粉为模板制得的磁性海胆状游动机器人为例,在石英玻璃毛细管中,磁性海胆状游动机器人可以在水流流速为8mm/s下可以进行逆流运动,因为海胆状的多刺结构,增加了游动机器人与基底的摩擦力,因此它可以一直贴壁运动,并且可以进行任意方向的转动。At present, the maximum countercurrent speed of the robot that performs countercurrent motion in the quartz glass capillary can only reach 2mm/s, and the robot cannot turn during the motion. Taking the magnetic sea urchin-like swimming robot made from sunflower pollen as a template as an example, in the quartz glass capillary, the magnetic sea urchin-like swimming robot can perform countercurrent motion at a water flow rate of 8 mm/s, because the sea urchin-like spiny structure , which increases the friction between the swimming robot and the substrate, so it can always move against the wall and can rotate in any direction.
在应用过程中可以通过调节磁场频率,磁性花粉游动机器人的运动速度随之变化;调节磁场角度,磁性花粉游动机器人的运动方向随之改变;调节磁场的磁感应强度,磁性花粉游动机器人可以逆流运动的逆流速度相应变化,来对磁性花粉游动机器人进行精准调控。During the application process, by adjusting the frequency of the magnetic field, the movement speed of the magnetic pollen swimming robot will change accordingly; by adjusting the angle of the magnetic field, the moving direction of the magnetic pollen swimming robot will change accordingly; by adjusting the magnetic induction intensity of the magnetic field, the magnetic pollen swimming robot can The countercurrent speed of the countercurrent motion changes accordingly to precisely control the magnetic pollen swimming robot.
附图说明Description of drawings
图1为直径15~35微米的海胆状磁性花粉游动机器人显微镜图。Figure 1 is a microscope image of a sea urchin-shaped magnetic pollen swimming robot with a diameter of 15-35 microns.
图2为直径15~35微米的海胆状磁性花粉游动机器人的扫描电镜图。Figure 2 is a scanning electron microscope image of a sea urchin-shaped magnetic pollen swimming robot with a diameter of 15-35 microns.
图3为海胆状磁性花粉游动机器人的EDS能谱图。Figure 3 shows the EDS spectrum of the sea urchin-shaped magnetic pollen swimming robot.
具体实施方式Detailed ways
下面将结合附图对本发明做进一步的详细说明:本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式,但本发明的保护范围不限于下述实施例。The present invention will be further described in detail below with reference to the accompanying drawings: the present embodiment is implemented on the premise of the technical solution of the present invention, and provides a detailed implementation manner, but the protection scope of the present invention is not limited to the following embodiments.
如图1、图2和图3所示,本实施例所涉及的一种新型以花粉为模板的磁性花粉游动微机器人制备方法,包括以下步骤:As shown in Figure 1, Figure 2 and Figure 3, a novel preparation method of a magnetic pollen swimming micro-robot using pollen as a template involved in this embodiment includes the following steps:
一、通过花粉预处理来除去外部花粉鞘涂层1. Removal of the outer pollen sheath coating by pollen pretreatment
步骤一:将0.01g~0.1g的花粉在5~20ml的氯仿/甲醇混合液中浸渍12~36小时,然后真空抽滤除去溶液;Step 1: immerse 0.01g-0.1g of pollen in 5-20ml of chloroform/methanol mixture for 12-36 hours, and then remove the solution by vacuum filtration;
步骤二:将步骤一中得到的产物在20~60℃下真空干燥6~24小时;Step 2: vacuum drying the product obtained in step 1 at 20-60° C. for 6-24 hours;
步骤三:将步骤二中得到的产物在5~30ml的盐酸溶液中进行第二次浸渍处理0.5~2小时,离心去除上清液,真空干燥;Step 3: The product obtained in Step 2 is subjected to a second immersion treatment in 5-30ml of hydrochloric acid solution for 0.5-2 hours, centrifugation to remove the supernatant, and vacuum drying;
步骤四:将步骤三中得到的产物用去离子水冲洗2~5次;Step 4: rinse the product obtained in step 3 with deionized water for 2 to 5 times;
二、花粉上原位合成磁性粒子2. In situ synthesis of magnetic particles on pollen
步骤五:将步骤四中得到的产物放入0.01g/mL~0.5g/mL的FeCl2溶液中震荡0.5~3h,离心,去除上清液;Step 5: put the product obtained in step 4 into 0.01g/mL~0.5g/mL FeCl2 solution, shake for 0.5~3h, centrifuge, and remove the supernatant;
步骤六:将步骤五中得到的产物放入0.01g/mL~0.5g/mL的FeCl3溶液中震荡0.5~3h,离心,去除上清液;Step 6: put the product obtained in step 5 into 0.01g/mL~0.5g/mL FeCl3 solution, shake for 0.5~3h, centrifuge, and remove the supernatant;
步骤七:三口烧瓶中加入5~50mL去离子水,在氮气下加热至50~100℃,再加入经过上述步骤处理过的花粉,调节pH值,使整个溶液处于碱性环境中,剧烈搅拌混合物,在50~100℃下加热0.2~2h;;Step 7: Add 5-50 mL of deionized water to the three-necked flask, heat it to 50-100°C under nitrogen, then add the pollen treated in the above steps, adjust the pH value, make the whole solution in an alkaline environment, and vigorously stir the mixture , heated at 50~100℃ for 0.2~2h;
步骤八:反应烧瓶中使用磁铁保持住花粉粒子,快速倒掉上清液,得到原位合成的磁性花粉游动微机器。Step 8: use a magnet to hold the pollen particles in the reaction flask, and quickly pour off the supernatant to obtain an in-situ synthetic magnetic pollen swimming micromachine.
所述实验中所用的水均为去离子水,并且向去离子水中通高纯氮气一段时间后的,脱氧去离子水。The water used in the experiment was deionized water, and deoxygenated deionized water was passed through high-purity nitrogen gas into the deionized water for a period of time.
所述步骤一中所述花粉包括向日葵花粉、油菜花粉、茶花粉和荞麦花粉等,所有单个花粉粒径在5~50μm的未破壁花粉。In the first step, the pollen includes sunflower pollen, rape pollen, camellia pollen, buckwheat pollen, etc., all of which are unbroken pollen with a single pollen particle size of 5-50 μm.
所述步骤一中氯仿/甲醇混合液中体积比为氯仿/甲醇=3/1。In the step 1, the volume ratio in the chloroform/methanol mixed solution is chloroform/methanol=3/1.
所述步骤三中的离心处理的转速为2000~8000rpm。The rotational speed of the centrifugal treatment in the third step is 2000-8000 rpm.
所述步骤三中所用盐酸溶液的浓度为0.5~2mol/L。The concentration of the hydrochloric acid solution used in the step 3 is 0.5-2 mol/L.
所述步骤五中所用离心处理的转速为2000~8000rpm。The rotational speed of the centrifugation used in the step 5 is 2000-8000 rpm.
所述步骤七中用碱性溶液调节pH值在9~14之间。In the seventh step, an alkaline solution is used to adjust the pH value between 9 and 14.
下面用以下实施例验证本发明的有益效果:Use the following examples to verify the beneficial effects of the present invention below:
本实施例的一种新型以花粉为模板的磁性花粉游动微机器人制备方法按以下步骤进行:A novel preparation method of a magnetic pollen swimming micro-robot using pollen as a template of the present embodiment is carried out according to the following steps:
实施例1Example 1
一、通过花粉预处理来除去外部花粉鞘涂层1. Removal of the outer pollen sheath coating by pollen pretreatment
步骤一:将0.0654g的向日葵花粉在10ml的氯仿/甲醇混合液中浸渍24小时,然后真空抽滤除去溶液;Step 1: Immerse 0.0654g of sunflower pollen in 10ml of chloroform/methanol mixture for 24 hours, and then remove the solution by vacuum filtration;
步骤二:将步骤一中得到的产物在60℃下真空干燥12小时;Step 2: vacuum drying the product obtained in step 1 at 60°C for 12 hours;
步骤三:将步骤二中得到的产物在10ml的1mol/L的盐酸中进行第二次浸渍处理1小时;Step 3: The product obtained in step 2 was subjected to a second dipping treatment for 1 hour in 10ml of 1mol/L hydrochloric acid;
步骤四:将经过步骤三干燥后向日葵花粉粒用10ml去离子水冲洗三次;Step 4: Rinse the sunflower pollen grains after drying in Step 3 with 10ml of deionized water three times;
二、向日葵花粉上原位合成磁性粒子2. In situ synthesis of magnetic particles on sunflower pollen
步骤五:制备0.02035g/mL的FeCl2溶液:将0.2035g FeCl2加入10mL脱气的去离子水;制备0.0331g/mL的FeCl3溶液:0.35g FeCl3加入10mL脱气的去离子水;Step 5: prepare 0.02035g/mL FeCl 2 solution: add 0.2035g FeCl 2 to 10mL degassed deionized water; prepare 0.0331g/mL FeCl 3 solution: add 0.35g FeCl 3 to 10mL degassed deionized water;
步骤六:将脱脂的向日葵花粉置于FeCl2溶液中,震荡1h,离心,去除上清液;Step 6: place the defatted sunflower pollen in FeCl 2 solution, shake for 1 h, centrifuge, and remove the supernatant;
步骤七:将上述向日葵花粉再加入到0.0331g/mL的FeCl3溶液中,震荡1h,离心,去除上清液,室温下烘干;Step 7: adding the above sunflower pollen to 0.0331g/mL FeCl 3 solution, shaking for 1 hour, centrifuging, removing the supernatant, and drying at room temperature;
步骤八:三口烧瓶中,加入脱气的20mL去离子水,在氮气下加热至80℃,再加入经过上述步骤处理过的花粉,用NaOH溶液调节pH值为12,剧烈搅拌混合物,在80℃下加热30min;Step 8: In a three-necked flask, add 20 mL of degassed deionized water, heat to 80°C under nitrogen, add the pollen treated in the above steps, adjust the pH to 12 with NaOH solution, stir the mixture vigorously, and heat the mixture at 80°C under heating for 30min;
步骤九:反应烧瓶中使用磁铁保持住花粉粒子,快速倒掉上清液,得到海胆状的磁性花粉游动微机器。Step 9: use a magnet to hold the pollen particles in the reaction flask, and quickly pour off the supernatant to obtain a sea urchin-shaped magnetic pollen swimming micromachine.
其中,步骤一中向日葵花粉为未破壁向日葵花粉;氯仿/甲醇混合液中体积比为氯仿/甲醇=3/1;实验中所有的离心处理的转速为4000r/min;实验中所用的水均为去离子水,并且向去离子水中通高纯氮气一段时间后的,脱氧去离子水。Wherein, the sunflower pollen in step 1 is unbroken sunflower pollen; the volume ratio in the chloroform/methanol mixture is chloroform/methanol=3/1; the rotational speed of all centrifugal treatments in the experiment is 4000 r/min; the water used in the experiment is It is deionized water, and deionized deionized water is obtained after passing high-purity nitrogen gas into the deionized water for a period of time.
本实施例得到的磁性花粉游动微机器人的光学显微镜照片如图1所示,从图1可以看出,这种实验方法得到的磁性花粉游动微机器人粒径比较均一,外形高度相同。The optical microscope photo of the magnetic pollen swimming microrobot obtained in this example is shown in Figure 1. It can be seen from Figure 1 that the magnetic pollen swimming microrobot obtained by this experimental method has a relatively uniform particle size and the same shape and height.
本实施例得到的磁性花粉游动微机器人的扫描电镜照片如图2所示,从图2可以看出,磁性花粉游动微机器人的直径为15~35nm,磁性花粉游动微机器人具有海胆状的多刺结构。The SEM photo of the magnetic pollen-swimming micro-robot obtained in this example is shown in FIG. 2 . It can be seen from FIG. 2 that the diameter of the magnetic pollen-swimming micro-robot is 15-35 nm, and the magnetic pollen-swimming micro-robot has a sea urchin-like shape. spiny structure.
本实施例得到的磁性花粉游动微机器人的EDS能谱图如图3所示,从图3可以看出,这种实验方法得到的磁性花粉游动微机器人含有磁性金属物质铁,证明我们成功将磁性粒子原位合成在花粉表面。The EDS energy spectrum of the magnetic pollen-swimming microrobot obtained in this example is shown in Figure 3. It can be seen from Figure 3 that the magnetic pollen-swimming microrobot obtained by this experimental method contains iron, a magnetic metal substance, which proves that our success Magnetic particles were synthesized in situ on the surface of pollen.
将本实施例得到的磁性花粉游动微机器人放在匀强旋转磁场中施加周期变化磁场,实现磁性花粉游动微机器人的自由运动。The magnetic pollen-swimming micro-robot obtained in this embodiment is placed in a uniformly strong rotating magnetic field to apply a periodically changing magnetic field, so as to realize the free movement of the magnetic pollen-swimming micro-robot.
实施例2Example 2
一、通过花粉预处理来除去外部花粉鞘涂层1. Removal of the outer pollen sheath coating by pollen pretreatment
步骤一:将0.05g的油菜花粉在10ml的氯仿/甲醇混合液中浸渍24小时,然后真空抽滤除去溶液;Step 1: Immerse 0.05g of rape pollen in 10ml of chloroform/methanol mixture for 24 hours, and then remove the solution by vacuum filtration;
步骤二:将步骤一中得到的产物在60℃下真空干燥12小时;Step 2: vacuum drying the product obtained in step 1 at 60°C for 12 hours;
步骤三:将步骤二中得到的产物在10ml的1mol/L的盐酸中进行第二次浸渍处理1小时;Step 3: The product obtained in step 2 was subjected to a second dipping treatment for 1 hour in 10ml of 1mol/L hydrochloric acid;
步骤四:将经过步骤三干燥后油菜花粉粒用10ml去离子水冲洗三次;Step 4: Rinse the rapeseed pollen grains after drying in step 3 with 10ml deionized water three times;
二、油菜花粉上原位合成磁性粒子2. In situ synthesis of magnetic particles on rape pollen
步骤五:制备0.02035g/mL的FeCl2溶液:将0.2035g FeCl2加入10mL脱气的去离子水;制备0.0331g/mL的FeCl3溶液:0.35g FeCl3加入10mL脱气的去离子水;Step 5: prepare 0.02035g/mL FeCl 2 solution: add 0.2035g FeCl 2 to 10mL degassed deionized water; prepare 0.0331g/mL FeCl 3 solution: add 0.35g FeCl 3 to 10mL degassed deionized water;
步骤六:将脱脂的油菜花粉置于FeCl2溶液中,震荡1h,离心,去除上清液;Step 6: Place the defatted rape pollen in FeCl 2 solution, shake for 1h, centrifuge, and remove the supernatant;
步骤七:将上述油菜花粉再加入到0.0331g/mL的FeCl3溶液中,震荡1h,离心,去除上清液,室温下烘干;Step 7: Add the rapeseed pollen to 0.0331g/mL FeCl 3 solution, shake for 1 hour, centrifuge, remove the supernatant, and dry at room temperature;
步骤八:三口烧瓶中,加入脱气的20mL去离子水,在氮气下加热至80℃,再加入经过上述步骤处理过的油菜花粉,用NaOH溶液调节pH值为12,剧烈搅拌混合物,在80℃下加热30min;Step 8: In the three-necked flask, add degassed 20mL deionized water, heat to 80°C under nitrogen, then add the rape pollen treated in the above steps, adjust the pH value to 12 with NaOH solution, stir the mixture vigorously, at 80°C. Heating at ℃ for 30min;
步骤九:反应烧瓶中使用磁铁保持住花粉粒子,快速倒掉上清液,得到油菜花粉外形的磁性花粉游动微机器。Step 9: use a magnet to hold the pollen particles in the reaction flask, and quickly pour off the supernatant to obtain a magnetic pollen swimming micromachine in the shape of rape pollen.
其中步骤一中油菜花粉为未破壁油菜花粉;氯仿/甲醇混合液中体积比为氯仿/甲醇=3/1;实验中所有的离心处理的转速为4000r/min。The rape pollen in step 1 is unbroken rape pollen; the volume ratio in the chloroform/methanol mixture is chloroform/methanol=3/1; and the rotational speed of all centrifugation in the experiment is 4000 r/min.
以上所述,仅为本发明较佳的具体实施方式,这些具体实施方式都是基于本发明整体构思下的不同实现方式,而且本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。The above are only preferred specific embodiments of the present invention, and these specific embodiments are based on different implementations under the overall concept of the present invention, and the protection scope of the present invention is not limited to this. Anyone familiar with the technical field Changes or substitutions that can be easily conceived by a skilled person within the technical scope disclosed by the present invention shall be covered within the protection scope of the present invention. Therefore, the protection scope of the present invention should be based on the protection scope of the claims.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910786240.1A CN110465920A (en) | 2019-08-24 | 2019-08-24 | It is a kind of novel using pollen as the magnetic pollen of template travelling Micro-Robot preparation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910786240.1A CN110465920A (en) | 2019-08-24 | 2019-08-24 | It is a kind of novel using pollen as the magnetic pollen of template travelling Micro-Robot preparation method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110465920A true CN110465920A (en) | 2019-11-19 |
Family
ID=68512294
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910786240.1A Pending CN110465920A (en) | 2019-08-24 | 2019-08-24 | It is a kind of novel using pollen as the magnetic pollen of template travelling Micro-Robot preparation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110465920A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113181529A (en) * | 2021-05-18 | 2021-07-30 | 哈尔滨医科大学 | Magnetic multi-thorn-shaped micro-nano robot for directional medicine delivery and preparation method thereof |
CN116038653A (en) * | 2022-12-21 | 2023-05-02 | 深圳大学 | Magnetic micro-robot with microalgae as template and preparation method thereof |
CN117361732A (en) * | 2023-10-11 | 2024-01-09 | 中国海洋大学 | Multi-thorn-shaped magnetic micro-nano robot for sewage treatment and preparation method thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101543521A (en) * | 2009-04-30 | 2009-09-30 | 浙江康恩贝制药股份有限公司 | Rape pollen soft capsule and method for preparing same |
CN102463102A (en) * | 2010-11-16 | 2012-05-23 | 中国科学院成都生物研究所 | Surface-bonded baicalin magnetic nano-particle, and preparation method and application thereof |
US20150037249A1 (en) * | 2012-02-19 | 2015-02-05 | Nvigen, Inc. | Uses of porous nanostructure in delivery |
CN104941544A (en) * | 2015-05-29 | 2015-09-30 | 蔡文 | Sporopollen microcapsule, and preparation method and application thereof |
CN107584112A (en) * | 2017-09-04 | 2018-01-16 | 哈尔滨工业大学 | A kind of preparation method of gallium nanometer rods and its application as nano-motor |
CN110076749A (en) * | 2019-03-01 | 2019-08-02 | 天津理工大学 | A kind of imitative jellyfish magnetic mini soft robot and preparation method thereof and driving method |
-
2019
- 2019-08-24 CN CN201910786240.1A patent/CN110465920A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101543521A (en) * | 2009-04-30 | 2009-09-30 | 浙江康恩贝制药股份有限公司 | Rape pollen soft capsule and method for preparing same |
CN102463102A (en) * | 2010-11-16 | 2012-05-23 | 中国科学院成都生物研究所 | Surface-bonded baicalin magnetic nano-particle, and preparation method and application thereof |
US20150037249A1 (en) * | 2012-02-19 | 2015-02-05 | Nvigen, Inc. | Uses of porous nanostructure in delivery |
CN104941544A (en) * | 2015-05-29 | 2015-09-30 | 蔡文 | Sporopollen microcapsule, and preparation method and application thereof |
CN107584112A (en) * | 2017-09-04 | 2018-01-16 | 哈尔滨工业大学 | A kind of preparation method of gallium nanometer rods and its application as nano-motor |
CN110076749A (en) * | 2019-03-01 | 2019-08-02 | 天津理工大学 | A kind of imitative jellyfish magnetic mini soft robot and preparation method thereof and driving method |
Non-Patent Citations (2)
Title |
---|
HAISHENG LIN: "Bioenabled Core/Shell Microparticles with Tailored Multimodal Adhesion and Optical Reflectivity", 《BIOENABLED CORE/SHELL MICROPARTICLES WITH TAILORED MULTIMODAL ADHESION AND OPTICAL REFLECTIVITY》 * |
张金升主编: "《纳米磁性液体的制备及其性能表征》", 31 August 2017, 哈尔滨工业大学出版社 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113181529A (en) * | 2021-05-18 | 2021-07-30 | 哈尔滨医科大学 | Magnetic multi-thorn-shaped micro-nano robot for directional medicine delivery and preparation method thereof |
CN116038653A (en) * | 2022-12-21 | 2023-05-02 | 深圳大学 | Magnetic micro-robot with microalgae as template and preparation method thereof |
CN116038653B (en) * | 2022-12-21 | 2024-01-12 | 深圳大学 | Magnetic micro-robot with microalgae as template and preparation method thereof |
CN117361732A (en) * | 2023-10-11 | 2024-01-09 | 中国海洋大学 | Multi-thorn-shaped magnetic micro-nano robot for sewage treatment and preparation method thereof |
CN117361732B (en) * | 2023-10-11 | 2024-04-05 | 中国海洋大学 | A spiny magnetic micro-nano robot for sewage treatment and its preparation method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Dendrimer modified magnetic nanoparticles for immobilized BSA: a novel chiral magnetic nano-selector for direct separation of racemates | |
Gao et al. | Block-copolymer-controlled growth of CaCO3 microrings | |
CN110465920A (en) | It is a kind of novel using pollen as the magnetic pollen of template travelling Micro-Robot preparation method | |
TWI542564B (en) | Semiconductor oxide nanotubes based composite particles useful for dye removal and process thereof | |
CN109627906B (en) | Super-hydrophobic graphene anticorrosive coating with double-layer inclusion structure and preparation method thereof | |
Choi et al. | Templated synthesis of porous capsules with a controllable surface morphology and their application as gas sensors | |
Waltz et al. | Evolution of the morphologies of zinc oxide mesocrystals under the influence of natural polysaccharides | |
CN103409750B (en) | Array type Silver nanorod of a kind of finishing gold nano grain and preparation method thereof | |
CN105621352B (en) | A kind of preparation method with chiral gold nanoparticle single thin film | |
CN108529692B (en) | Preparation method of hollow spherical nickel oxide | |
Miao et al. | Double‐Template Synthesis of CdS Nanotubes with Strong Electrogenerated Chemiluminescence | |
CN108459003A (en) | A kind of preparation method of silver nano-grain coating zinc oxide surface enhanced Raman scattering effect substrate | |
CN111647871B (en) | Gold nanocrystalline interface carbon-based material super-assembly controllable growth method | |
Wu et al. | Immobilization of HSA on polyamidoamine-dendronized magnetic microspheres for application in direct chiral separation of racemates | |
CN106966443A (en) | A kind of preparation method of transition metal oxide/sulfide nano composite material | |
CN101345112A (en) | A kind of magnetic inorganic hollow composite microsphere and preparation method thereof | |
CN111099650A (en) | CeO2Molten salt method for synthesizing nano spherical particles | |
CN103304149B (en) | A kind of method and coated substance of constructing hydrophobic coating at glass surface | |
CN109665489A (en) | A method for bidirectionally controllable self-assembly of metal nanoparticles with different charges on the substrate surface | |
CN109182952B (en) | Composite soft template liquid material plasma spraying method for preparing hollow micro-nano structure gas-sensitive coating | |
CN1243124C (en) | Preparing method for medium hole noble metal hollow microscapsule | |
Wang et al. | Lysozyme-mediated fabrication of well-defined core–shell nanoparticle@ metal–organic framework nanocomposites | |
CN100545218C (en) | Method of coating iron oxide with silica | |
CN100457617C (en) | Hollow silicon gel nano powder material and its preparation method | |
CN101279210A (en) | ZSM-5 Molecular Sieve Membrane and Its Application in Treating Arsenic |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information |
Inventor after: Wu Zhiguang Inventor after: Wang Jinmeng Inventor after: He Qiang Inventor before: Wang Jinmeng Inventor before: Wu Zhiguang Inventor before: He Qiang |
|
CB03 | Change of inventor or designer information |