CN110458032B - Whole-process litchi growth condition monitoring method and system, cloud server and storage medium - Google Patents
Whole-process litchi growth condition monitoring method and system, cloud server and storage medium Download PDFInfo
- Publication number
- CN110458032B CN110458032B CN201910644269.6A CN201910644269A CN110458032B CN 110458032 B CN110458032 B CN 110458032B CN 201910644269 A CN201910644269 A CN 201910644269A CN 110458032 B CN110458032 B CN 110458032B
- Authority
- CN
- China
- Prior art keywords
- lychee
- litchi
- cloud server
- plantation
- growth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 68
- 241001629511 Litchi Species 0.000 title claims abstract description 44
- 238000012544 monitoring process Methods 0.000 title claims abstract description 32
- 238000003860 storage Methods 0.000 title claims abstract description 13
- 230000007613 environmental effect Effects 0.000 claims abstract description 28
- 235000013399 edible fruits Nutrition 0.000 claims abstract description 18
- 238000001514 detection method Methods 0.000 claims abstract description 17
- 235000015742 Nephelium litchi Nutrition 0.000 claims description 184
- 244000183278 Nephelium litchi Species 0.000 claims description 174
- 230000017260 vegetative to reproductive phase transition of meristem Effects 0.000 claims description 22
- 230000008569 process Effects 0.000 claims description 20
- 239000002689 soil Substances 0.000 claims description 19
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 18
- 230000010152 pollination Effects 0.000 claims description 16
- 238000012549 training Methods 0.000 claims description 14
- 238000004891 communication Methods 0.000 claims description 12
- QVFWZNCVPCJQOP-UHFFFAOYSA-N chloralodol Chemical compound CC(O)(C)CC(C)OC(O)C(Cl)(Cl)Cl QVFWZNCVPCJQOP-UHFFFAOYSA-N 0.000 claims description 11
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 9
- 239000001569 carbon dioxide Substances 0.000 claims description 9
- 239000003630 growth substance Substances 0.000 claims description 8
- 238000012795 verification Methods 0.000 claims description 7
- 241000257303 Hymenoptera Species 0.000 claims description 6
- 230000018109 developmental process Effects 0.000 claims description 6
- 239000007921 spray Substances 0.000 claims description 6
- 238000010200 validation analysis Methods 0.000 claims description 5
- 238000004364 calculation method Methods 0.000 claims description 4
- 238000005286 illumination Methods 0.000 claims description 4
- 230000006870 function Effects 0.000 abstract description 8
- 238000005516 engineering process Methods 0.000 abstract description 5
- 238000012545 processing Methods 0.000 abstract description 4
- 230000006855 networking Effects 0.000 abstract 2
- 238000013135 deep learning Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 9
- 230000005070 ripening Effects 0.000 description 7
- 238000013480 data collection Methods 0.000 description 6
- 230000009418 agronomic effect Effects 0.000 description 5
- 238000004590 computer program Methods 0.000 description 5
- 238000012806 monitoring device Methods 0.000 description 4
- 230000004720 fertilization Effects 0.000 description 3
- 239000002420 orchard Substances 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000035558 fertility Effects 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000007198 pollen germination Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G17/00—Cultivation of hops, vines, fruit trees, or like trees
- A01G17/005—Cultivation methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/23—Clustering techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/06—Buying, selling or leasing transactions
- G06Q30/0601—Electronic shopping [e-shopping]
- G06Q30/0641—Shopping interfaces
- G06Q30/0643—Graphical representation of items or shoppers
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/02—Agriculture; Fishing; Forestry; Mining
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T19/00—Manipulating 3D models or images for computer graphics
- G06T19/003—Navigation within 3D models or images
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/56—Extraction of image or video features relating to colour
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/52—Surveillance or monitoring of activities, e.g. for recognising suspicious objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/60—Type of objects
- G06V20/68—Food, e.g. fruit or vegetables
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Business, Economics & Management (AREA)
- General Engineering & Computer Science (AREA)
- Economics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Evolutionary Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Bioinformatics & Computational Biology (AREA)
- Finance (AREA)
- Accounting & Taxation (AREA)
- Software Systems (AREA)
- Evolutionary Computation (AREA)
- General Business, Economics & Management (AREA)
- Strategic Management (AREA)
- Marketing (AREA)
- Multimedia (AREA)
- Artificial Intelligence (AREA)
- Computer Graphics (AREA)
- Primary Health Care (AREA)
- Mining & Mineral Resources (AREA)
- Animal Husbandry (AREA)
- Health & Medical Sciences (AREA)
- Agronomy & Crop Science (AREA)
- General Health & Medical Sciences (AREA)
- Human Resources & Organizations (AREA)
- Environmental Sciences (AREA)
- Marine Sciences & Fisheries (AREA)
- Botany (AREA)
- Tourism & Hospitality (AREA)
- Computer Hardware Design (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Development Economics (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种荔枝生长状况全程监控方法、系统、云服务器及存储介质,属于物联网、图像处理、虚拟现实等技术领域。The invention relates to a whole-process monitoring method, system, cloud server and storage medium for litchi growth conditions, belonging to the technical fields of Internet of Things, image processing, virtual reality and the like.
背景技术Background technique
农业果实远程监测是实时探测农业果园中果树作物的生长环境信息,对果树作物长势进行动态检测。据研究表明,荔枝在花期授粉受精的情况直接影响荔枝的坐果率,而荔枝授粉受精的对环境条件极为敏感,在温度低于17℃或高于27℃时花粉萌发就受到抑制,而降雨量较高则影响受精。因此花期温度偏低时,就需要采取人工调控,通过喷洒生长调节剂促进荔枝花粉萌发;长期低温阴雨时,则需要采取人工授粉。然而当前在实际的果园生产管理中,存在环境信息获取不及时、管理措施不当、不能适时采收等情况。将物联网、传感器、图像处理等技术应用于农业,对农业环境下的作物生长信息进行采集和远程处理分析,并结合农艺要求提示管理者进行正确管理,将有利于作物的良性生长。Agricultural fruit remote monitoring is to detect the growth environment information of fruit tree crops in agricultural orchards in real time, and dynamically detect the growth of fruit tree crops. According to research, the pollination and fertilization of lychees during the flowering period directly affects the fruit setting rate of lychees, and the pollination and fertilization of lychees is extremely sensitive to environmental conditions. Higher levels affect fertilization. Therefore, when the temperature in the flowering period is low, artificial regulation is required, and lychee pollen germination is promoted by spraying growth regulators; artificial pollination is required when the temperature is low and rainy for a long time. However, in the current actual orchard production management, there are situations such as untimely acquisition of environmental information, improper management measures, and inability to harvest timely. Applying technologies such as the Internet of Things, sensors, and image processing to agriculture, collecting and remotely processing and analyzing crop growth information in agricultural environments, and prompting managers to perform correct management in combination with agronomic requirements will be beneficial to the healthy growth of crops.
随着农产品不断丰富和人们生活水平的提高,消费者对订购产品的要求越来越高,不仅对订购的最终产品有较高的品质要求,而且对所订购产品的种植管理过程也希望有一定的了解。当前电商平台提供给消费者更多是浏览商品、订购商品和支付的功能,难以满足消费者对果园及果实种植过程的了解。With the continuous enrichment of agricultural products and the improvement of people's living standards, consumers have higher and higher requirements for ordered products. They not only have higher quality requirements for the final products ordered, but also hope to have certain planting management processes for the ordered products. understanding. The current e-commerce platform provides consumers with more functions to browse products, order products and pay, and it is difficult to satisfy consumers' understanding of orchards and fruit planting process.
发明内容SUMMARY OF THE INVENTION
有鉴于此,本发明提供了一种荔枝生长状况全程监控方法、装置、系统、云服务器及存储介质,其可以实现对荔枝生长状况的全程监控,将多源信息融合处理并与农艺要求结合,提供管理策略和采摘策略,同时使用户可以查看荔枝相关信息、虚拟观光的功能。In view of this, the present invention provides a whole-process monitoring method, device, system, cloud server and storage medium for lychee growth conditions, which can realize the whole-process monitoring of lychee growth conditions, integrate multi-source information processing and combine with agronomic requirements, It provides management strategies and picking strategies, and at the same time enables users to view lychee-related information and virtual sightseeing functions.
本发明的第一个目的在于提供一种荔枝生长状况全程监控方法。The first object of the present invention is to provide a whole-process monitoring method for the growth condition of litchi.
本发明的第二个目的在于提供一种荔枝生长状况全程监控装置。The second object of the present invention is to provide a whole-process monitoring device for the growth condition of litchi.
本发明的第三个目的在于提供一种荔枝生长状况全程监控系统。The third object of the present invention is to provide a whole-process monitoring system for the growth condition of litchi.
本发明的第四个目的在于提供一种云服务器。The fourth object of the present invention is to provide a cloud server.
本发明的第五个目的在于提供一种存储介质。A fifth object of the present invention is to provide a storage medium.
本发明的第一个目的可以通过采取如下技术方案达到:The first purpose of the present invention can be achieved by adopting the following technical solutions:
一种荔枝生长状况全程监控方法,应用于云服务器,所述方法包括:A method for monitoring the growth condition of litchi throughout the process, which is applied to a cloud server, and the method includes:
获取实时荔枝图像;Get real-time lychee images;
根据实时荔枝图像,检测荔枝所处的生长时期;According to the real-time lychee image, detect the growth period of the lychee;
当检测到荔枝花期来临时,提示荔枝种植园管理者人工放蜂以促进传粉;When it is detected that the lychee flowering period is coming, prompt the lychee plantation manager to manually release bees to promote pollination;
在花期内,若空气温度小于第一预设值的时间超过设定时间,且超过设定时间后日均空气湿度大于第二预设值,则提示荔枝种植园管理者喷洒生长调节剂和进行人工授粉;During the flowering period, if the time when the air temperature is lower than the first preset value exceeds the preset time, and the average daily air humidity after the preset time exceeds the second preset value, the lychee plantation manager will be prompted to spray growth regulators and carry out artificial pollination;
当检测到荔枝结果后,检测荔枝的成熟程度。When the lychee results are detected, the ripeness of the lychee is detected.
进一步的,所述检测荔枝的成熟程度,具体包括:Further, described detecting the maturity degree of litchi, specifically includes:
利用训练好的荔枝识别模型识别实时荔枝图像中的荔枝;Use the trained lychee recognition model to identify lychees in real-time lychee images;
以识别到的每个目标中心为聚类对象,按密度进行聚类,将聚为一类的目标视为一串荔枝;Taking each identified target center as a clustering object, clustering by density, and treating the targets clustered into one class as a string of lychees;
将一串荔枝中的每个荔枝区域转换至HSV颜色空间,并计算H通道分量;Convert each lychee region in a string of lychees to the HSV color space, and calculate the H channel component;
根据H通道分量,计算整串目标区域红色占比;According to the H channel component, calculate the red ratio of the entire string of target areas;
根据整串目标区域红色占比,估计整串荔枝的成熟程度。According to the proportion of red in the target area of the whole bunch, the maturity of the whole bunch of lychees is estimated.
进一步的,所述目标区域红色占比的计算公式如下:Further, the calculation formula of the red ratio of the target area is as follows:
其中,PR为目标区域红色占比,i为H分量值,Hi为i的像素点个数,n为荔枝个数,s为区域内像素点总个数。Among them, PR is the red ratio of the target area, i is the H component value, H i is the number of pixels in i, n is the number of lychees, and s is the total number of pixels in the area.
进一步的,所述获取实时荔枝图像之前,还包括:Further, before the acquisition of the real-time litchi image, it also includes:
获取荔枝各个生长时期、各种光照下的图像;Obtain images of lychees in various growth periods and under various lighting conditions;
根据荔枝各个生长时期、各种光照下的图像,构建训练集和验证集;According to the images of lychees in various growth periods and under various illuminations, the training set and the validation set are constructed;
将训练集输入目标检测网络进行训练,得到荔枝识别模型;The training set is input into the target detection network for training, and the lychee recognition model is obtained;
将验证集输入荔枝识别模型进行验证,以调整荔枝识别模型的参数。Input the validation set into the lychee recognition model for verification to adjust the parameters of the lychee recognition model.
本发明的第二个目的可以通过采取如下技术方案达到:The second object of the present invention can be achieved by adopting the following technical solutions:
一种荔枝生长状况全程监控装置,应用于云服务器,所述装置包括:A whole-process monitoring device for lychee growth, applied to a cloud server, the device comprising:
获取模块,用于获取实时荔枝图像;The acquisition module is used to acquire real-time lychee images;
第一检测模块,用于根据实时荔枝图像,检测荔枝所处的生长时期;The first detection module is used to detect the growth period of the lychee according to the real-time lychee image;
第一提示模块,用于当检测到荔枝花期来临时,提示荔枝种植园管理者人工放蜂以促进传粉;The first prompt module is used to prompt the litchi plantation manager to manually release bees to promote pollination when the lychee flowering period is detected;
第二提示模块,用于在花期内,若空气温度小于第一预设值的时间超过设定时间,且超过设定时间后日均空气湿度大于第二预设值,则提示荔枝种植园管理者喷洒生长调节剂和进行人工授粉;The second prompting module is used to prompt the management of the lychee plantation if the time when the air temperature is lower than the first preset value exceeds the preset time during the flowering period, and the average daily air humidity after the preset time exceeds the second preset value spraying of growth regulators and artificial pollination;
第二检测模块,用于当检测到荔枝结果后,检测荔枝的成熟程度。The second detection module is used to detect the maturity of the lychee after the lychee result is detected.
本发明的第三个目的可以通过采取如下技术方案达到:The third object of the present invention can be achieved by adopting the following technical solutions:
一种荔枝生长状况全程监控系统,所述系统包括环境数据采集装置、联网摄像头、路由器和云服务器,所述环境数据采集装置和联网摄像头分别与路由器连接,所述路由器与云服务器连接;A whole-process monitoring system for lychee growth conditions, the system comprises an environmental data acquisition device, a networked camera, a router and a cloud server, the environmental data acquisition device and the networked camera are respectively connected to a router, and the router is connected to the cloud server;
所述云服务器,用于执行上述的荔枝生长状况全程监控方法。The cloud server is used for executing the above-mentioned whole-process monitoring method for the growth condition of litchi.
进一步的,所述环境数据采集装置包括处理器芯片、LoRa通信模块、空气温湿度传感器、土壤水分传感器、土壤酸碱度传感器、二氧化碳浓度传感器和光照强度传感器,所述空气温湿度传感器、土壤水分传感器、土壤酸碱度传感器、二氧化碳浓度传感器和光照强度传感器分别通过控制电路与处理器芯片连接,所述处理器芯片通过LoRa通信模块与路由器连接。Further, the environmental data collection device includes a processor chip, a LoRa communication module, an air temperature and humidity sensor, a soil moisture sensor, a soil pH sensor, a carbon dioxide concentration sensor, and a light intensity sensor, and the air temperature and humidity sensor, soil moisture sensor, The soil pH sensor, the carbon dioxide concentration sensor and the light intensity sensor are respectively connected with the processor chip through the control circuit, and the processor chip is connected with the router through the LoRa communication module.
进一步的,所述云服务器中部署有物联网管理平台,所述物联网管理平台以网站的形式为用户提供管理建议、荔枝图像、花后天数、环境数据、荔枝果实数、荔枝串数、成熟程度信息。Further, an Internet of Things management platform is deployed in the cloud server, and the Internet of Things management platform provides users with management advice, lychee images, days after flowering, environmental data, number of lychee fruits, number of lychee strings, and ripeness in the form of a website. degree information.
进一步的,所述云服务器中部署有电商平台,所述电商平台以网站的形式为用户提供商品信息,且电商平台集成有虚拟漫游模块;Further, an e-commerce platform is deployed in the cloud server, the e-commerce platform provides users with commodity information in the form of a website, and the e-commerce platform is integrated with a virtual roaming module;
所述虚拟漫游模块的建立过程包括:通过建模软件对荔枝种植园内的实物进行建模,将建好的模型导入虚拟现实开发软件中;根据实际荔枝种植园的环境,使用虚拟现实开发软件建立虚拟荔枝种植园的三维场景;在建立的虚拟荔枝种植园中添加人物模型,并在人物模型中嵌套摄像头;添加控制脚本,以使用户操纵人物模型在虚拟荔枝种植园中实现虚拟观光。The establishment process of the virtual roaming module includes: modeling the physical objects in the lychee plantation through modeling software, and importing the built model into the virtual reality development software; according to the environment of the actual lychee plantation, using the virtual reality development software Build a three-dimensional scene of a virtual lychee plantation; add a character model in the established virtual lychee plantation, and nest cameras in the character model; add a control script to enable users to manipulate the character model to achieve virtual sightseeing in the virtual lychee plantation.
本发明的第四个目的可以通过采取如下技术方案达到:The fourth object of the present invention can be achieved by adopting the following technical solutions:
一种云服务器,包括处理器以及用于存储处理器可执行程序的存储器,所述处理器执行存储器存储的程序时,实现上述的荔枝生长状况全程监控方法。A cloud server includes a processor and a memory for storing a program executable by the processor, and when the processor executes the program stored in the memory, the above-mentioned method for monitoring the growth condition of litchi throughout the process is realized.
本发明的第五个目的可以通过采取如下技术方案达到:The fifth object of the present invention can be achieved by adopting the following technical solutions:
一种存储介质,存储有程序,其特征在于,所述程序被处理器执行时,实现上述的荔枝生长状况全程监控方法。A storage medium storing a program, characterized in that, when the program is executed by a processor, the above-mentioned method for monitoring the growth condition of litchi throughout the process is realized.
本发明相对于现有技术具有如下的有益效果:The present invention has the following beneficial effects with respect to the prior art:
1、本发明基于物联网,可以实现对荔枝生长状况的全程监控,将检测结果与农艺要求结合,为荔枝种植园管理者提供管理策略;在监控过程中,将花后天数、环境数据、荔枝果实数、荔枝串数、成熟程度等信息进行存储,构建基于时间尺度的关系型数据库,并使用回归方法建立荔枝生长环境因素与成熟速率之间的关系模型,以分析荔枝生长环境因素与成熟速率之间的规律,为荔枝种植园管理者提供采摘策略。1. Based on the Internet of Things, the present invention can realize the whole process monitoring of the growth status of lychees, combine the detection results with agronomic requirements, and provide management strategies for the managers of lychee plantations; The number of fruits, the number of litchi bunches, the degree of maturity and other information are stored, a relational database based on time scale is constructed, and a regression method is used to establish a relationship model between lychee growth environment factors and ripening rate, so as to analyze the lychee growth environment factors and maturity rate. The regularity between them provides picking strategies for lychee plantation managers.
2、本发明在云服务器中部署了电商平台,可以使荔枝作为商品与用户进行交易,用户通过访问电商平台的网页,可以查看荔枝价格、荔枝图像、花后天数、环境数据、荔枝果实数、荔枝串数、成熟程度等信息;并且电商平台集成了虚拟漫游模块,通过虚拟现实技术虚拟化荔枝种植基地,使电商平台具备荔枝种植园虚拟展示和虚拟漫游功能,让用户足不出户,通过互联网浏览荔枝种植园种植环境,获得虚拟农业观光体验,为用户提供了更全面的信息。2. The present invention deploys an e-commerce platform in a cloud server, so that lychees can be used as commodities to trade with users, and users can view lychee prices, lychee images, days after flowering, environmental data, and lychee fruits by visiting the web page of the e-commerce platform. The e-commerce platform integrates a virtual roaming module, and virtualizes the lychee planting base through virtual reality technology, so that the e-commerce platform has the functions of virtual display and virtual roaming of lychee plantations, so that users can Go out, browse the planting environment of lychee plantation through the Internet, get a virtual agricultural sightseeing experience, and provide users with more comprehensive information.
3、本发明在云服务器中部署了物联网管理平台,用户通过访问物联网平台的网页,可以查看管理建议、荔枝图像、花后天数、环境数据、荔枝果实数、荔枝串数、成熟程度等信息。3. The present invention deploys an Internet of Things management platform in the cloud server, and users can view management suggestions, lychee images, days after flowering, environmental data, number of lychee fruits, number of lychee strings, maturity, etc. by accessing the web page of the Internet of Things platform. information.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。In order to explain the embodiments of the present invention or the technical solutions in the prior art more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention, and for those of ordinary skill in the art, other drawings can also be obtained according to the structures shown in these drawings without creative efforts.
图1为本发明实施例1的荔枝生长状况全程监控系统的结构框图。1 is a structural block diagram of a whole-process monitoring system for litchi growth conditions according to Embodiment 1 of the present invention.
图2为本发明实施例1的环境数据采集装置、联网摄像头、路由器和云服务器的关系示意图。FIG. 2 is a schematic diagram of the relationship between an environmental data collection device, a networked camera, a router, and a cloud server according to Embodiment 1 of the present invention.
图3为本发明实施例1的环境数据采集装置的结构框图。FIG. 3 is a structural block diagram of the apparatus for collecting environmental data according to Embodiment 1 of the present invention.
图4为本发明实施例1的云服务器的结构框图。FIG. 4 is a structural block diagram of a cloud server according to Embodiment 1 of the present invention.
图5为本发明实施例1的荔枝生长状况全程监控方法的流程图。Fig. 5 is the flow chart of the whole process monitoring method of the litchi growth condition of the embodiment of the present invention 1.
图6为本发明实施例1的检测荔枝的成熟程度的流程图。FIG. 6 is a flow chart of detecting the maturity of litchi according to Embodiment 1 of the present invention.
图7为本发明实施例1的检测荔枝的成熟程度的示意图。FIG. 7 is a schematic diagram of detecting the maturity degree of litchi in Example 1 of the present invention.
图8为本发明实施例1的建立荔枝识别模型的流程图。FIG. 8 is a flowchart of establishing a litchi identification model according to Embodiment 1 of the present invention.
图9为本发明实施例1的建立虚拟漫游模块的流程图。FIG. 9 is a flowchart of establishing a virtual roaming module according to Embodiment 1 of the present invention.
图10为本发明实施例1的采用虚拟漫游模块操纵人物模型在虚拟荔枝种植园中实现虚拟观光的示意图。10 is a schematic diagram of implementing virtual sightseeing in a virtual lychee plantation by using a virtual roaming module to manipulate a character model according to Embodiment 1 of the present invention.
图11为本发明实施例2的荔枝生长状况全程监控装置的结构框图。FIG. 11 is a structural block diagram of a whole-process monitoring device for litchi growth according to Embodiment 2 of the present invention.
图12为本发明实施例2的第二检测模块的结构框图。FIG. 12 is a structural block diagram of a second detection module according to Embodiment 2 of the present invention.
图13为本发明实施例2的第二获取模块、构建模块、训练模块和调整模块的关系图。FIG. 13 is a relationship diagram of a second acquisition module, a building module, a training module, and an adjustment module in Embodiment 2 of the present invention.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purposes, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments It is a part of the embodiments of the present invention, not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative work are protected by the present invention. scope.
实施例1:Example 1:
如图1和图2所示,本实施例提供了一种荔枝生长状况全程监控系统,该系统基于物联网,包括环境数据采集装置101、联网摄像头102、路由器103和云服务器104,环境数据采集装置101和联网摄像头102分别与路由器103连接,路由器103与云服务器104连接。As shown in FIG. 1 and FIG. 2 , this embodiment provides a whole-process monitoring system for the growth of litchi, which is based on the Internet of Things and includes an environmental
为了将环境数据采集装置101采集的数据通过无线的方式传输给路由器103,并保证通信效果,选用穿透力强、通信距离远的LoRa无线技术;本实施例的环境数据采集装置101布置在荔枝种植园中,且环境数据采集装置101和路由器103带有LoRa通信模块,环境数据采集装置101通过LoRa通信模块按设定时间将数据传输给路由器103。In order to wirelessly transmit the data collected by the environmental
如图3所示,环境数据采集装置101包括处理器芯片1011、LoRa通信模块1012、空气温湿度传感器1013、土壤水分传感器1014、土壤酸碱度(PH)传感器1015、二氧化碳(CO2)浓度传感器1016和光照强度传感器1017,空气温湿度传感器1013、土壤水分传感器1014、土壤酸碱度传感器1015、二氧化碳浓度传感器1016和光照强度传感器1017分别通过控制电路与处理器芯片1012连接,处理器芯片1012通过LoRa通信模块1012与路由器103连接。As shown in FIG. 3 , the environmental
具体地,空气温湿度传感器1012用于采集空气的温度和湿度数据,土壤水分传感器1013用于采集土壤中的含水率,土壤酸碱度传感器1014用于采集土壤的酸碱度值,根据酸碱度值可以获取土壤肥力的状况,二氧化碳浓度传感器1015用于采集空气中的二氧化碳浓度数据,光照强度传感器1016用于采集光照强度值,处理器芯片1012收集这些数据,并通过LoRa通信模块1012按设定时间将这些数据发送给路由器。Specifically, the air temperature and
为了将联网摄像头102采集的荔枝图像数据通过无线的方式传输给路由器103,本实施例的联网摄像头布置在荔枝种植园中,其分辨率为2560×1440,能够接入路由器103提供的WiFi网络传输荔枝图像数据。In order to wirelessly transmit the lychee image data collected by the
本实施例的路由器103采用4G路由器,图2示出了数据采集和传输的过程,其中环境数据采集装置101和联网摄像头102分别通过LoRa通信模块和WiFi连接至路由器103,路由器103再通过4G网络将数据传输给云服务器104。The
如图4所示,所述云服务器104包括通过系统总线1041连接的处理器1042、第一存储器和网络接口1043;其中,处理器1042用于提供计算和控制能力,存储器包括非易失性存储介质1044和内存储器1045,该非易失性存储介质1044存储有操作系统、计算机程序和数据库,该内存储器1045为非易失性存储介质中的操作系统和计算机程序的运行提供环境,将采集的空气温度、空气湿度、土壤含水率、土壤酸碱度值、二氧化碳浓度值、光照强度值、荔枝图像等数据存储在数据库中,计算机程序被处理器1042执行时,执行荔枝生长状况全程监控方法。As shown in FIG. 4 , the
如图5所示,本实施例的荔枝生长状况全程监控方法,包括以下步骤:As shown in Figure 5, the whole process monitoring method of litchi growth condition of the present embodiment comprises the following steps:
S501、获取实时荔枝图像。S501. Acquire a real-time lychee image.
具体地,联网摄像头102采集的实时荔枝图像存储在云服务器104的数据库中,从数据库中通过查找可以获取实时荔枝图像。Specifically, the real-time lychee image collected by the
S502、根据实时荔枝图像,检测荔枝所处的生长时期。S502, according to the real-time lychee image, detect the growth period of the lychee.
S503、当检测到荔枝花期来临时,提示荔枝种植园管理者人工放蜂以促进传粉。S503, when it is detected that the lychee flowering period is approaching, prompt the lychee plantation manager to release bees manually to promote pollination.
S504、在花期内,若符合以下两种情况,则提示荔枝种植园管理者喷洒生长调节剂和进行人工授粉:S504. During the flowering period, if the following two conditions are met, the lychee plantation manager is prompted to spray growth regulators and conduct artificial pollination:
1)空气温度小于第一预设值的时间超过设定时间。1) The time when the air temperature is lower than the first preset value exceeds the set time.
2)超过设定时间后日均空气湿度大于第二预设值。2) After the set time is exceeded, the daily average air humidity is greater than the second preset value.
空气温度数据和空气湿度数据存储在云服务器104的数据库中,从数据库中通过查找可以获取空气温度数据和空气湿度数据,本实施例的设定时间为三日,第一预设值为17℃,第二预设值为85%,若空气温度低于17℃的时间超过三日,且超过三日后日均空气湿度大于85%,则提示荔枝种植园管理者喷洒生长调节剂和进行人工授粉。The air temperature data and air humidity data are stored in the database of the
在步骤S503和S504中,可以通过短信、微信等方式发送给荔枝种植园管理者(通常称为果农)的手机、平板电脑等移动终端,以提示荔枝种植园管理者进行相应的操作,将检测结果与农艺要求结合,为荔枝种植园管理者提供管理策略。In steps S503 and S504, it can be sent to mobile terminals such as mobile phones and tablet computers of lychee plantation managers (usually referred to as fruit farmers) by means of text messages, WeChat, etc., to prompt the lychee plantation managers to perform corresponding operations and detect The results were combined with agronomic requirements to provide management strategies for litchi plantation managers.
在步骤S504之后,还可包括:当检测到谢花后,记录花后天数,以便用户日后进行查看。After step S504 , the method may further include: when the withered flowers are detected, recording the number of days after the flowers so that the user can check them in the future.
S505、当检测到荔枝结果后,检测荔枝的成熟程度。S505, after detecting the lychee result, detect the maturity degree of the lychee.
如图6和图7所示,检测荔枝的成熟程度,具体包括:As shown in Figure 6 and Figure 7, detecting the maturity of lychees includes:
S5051、利用训练好的荔枝识别模型识别实时荔枝图像中的荔枝。S5051 , using the trained lychee recognition model to recognize lychees in real-time lychee images.
S5052、以识别到的每个目标中心为聚类对象,按密度进行聚类,将聚为一类的目标视为一串荔枝;本实施例的按密度进行聚类使用DBSCAN方法进行聚类。S5052 , using each identified target center as a clustering object, perform clustering according to density, and regard the targets clustered into one category as a string of lychees; the clustering according to density in this embodiment uses the DBSCAN method to perform clustering.
S5053、将一串荔枝中的每个荔枝区域转换至HSV颜色空间,并计算H通道分量。S5053. Convert each lychee region in a string of lychees to the HSV color space, and calculate the H channel component.
S5054、根据H通道分量,计算整串目标区域红色占比。S5054. Calculate the red ratio of the entire string of target areas according to the H channel component.
假设i为H分量值,Hi为i的像素点个数,n为荔枝个数,s为区域内像素点总个数,则目标区域红色占比PR的公式如下:Assuming that i is the value of the H component, H i is the number of pixels in i, n is the number of lychees, and s is the total number of pixels in the area, the formula for the proportion of red in the target area P R is as follows:
S5055、根据整串目标区域红色占比,估计整串荔枝的成熟程度。S5055. Estimate the maturity of the whole bunch of lychees according to the proportion of red in the whole bunch of target areas.
以糯米糍荔枝成熟过程的颜色变化特征为例,计算得到的目标区域红色占比PR在25%以下估计判断为七成熟,25~50%估计判断为八成熟,50%~80%估计判断为九成熟,80%以上估计判断为完全成熟。Taking the color change characteristics of glutinous rice cakes and lychees during the ripening process as an example, the calculated proportion of red in the target area P R is less than 25% and is estimated to be seven mature, 25-50% is estimated to be eight-ripe, and 50%-80% is estimated to be judged. As nine mature, more than 80% of the estimates are judged to be fully mature.
为了得到训练好的荔枝识别模型,如图8所示,本实施例的荔枝生长状况全程监控方法在步骤S501之前,还包括:In order to obtain the trained litchi identification model, as shown in Figure 8, the method for monitoring the whole process of the litchi growth condition of the present embodiment, before step S501, further includes:
S801、获取荔枝各个生长时期、各种光照下的图像。S801 , acquiring images of lychees in various growth periods and under various lighting conditions.
荔枝各个生长时期、各种光照下的图像可以预先通过联网摄像头采集,将这些图像数据存储在云服务器104的数据库中,从数据库中通过查找可以获取这些图像数据。Images of lychees in various growth periods and under various illuminations can be collected in advance through networked cameras, and these image data are stored in the database of the
S802、根据荔枝各个生长时期、各种光照下的图像,构建训练集和验证集。S802 , constructing a training set and a validation set according to images of lychees in various growth periods and under various lighting conditions.
S803、将训练集输入目标检测网络进行训练,得到荔枝识别模型;本实施例的目标检测网络为YoloV3目标检测网络。S803, input the training set into the target detection network for training to obtain a lychee recognition model; the target detection network in this embodiment is the YoloV3 target detection network.
S804、将验证集输入荔枝识别模型进行验证,以调整荔枝识别模型的参数。S804, input the verification set into the lychee recognition model for verification, so as to adjust the parameters of the lychee recognition model.
应当注意,尽管在附图中以特定顺序描述了上述的方法操作,但是这并非要求或者暗示必须按照该特定顺序来执行这些操作,或是必须执行全部所示的操作才能实现期望的结果。相反,描绘的步骤可以改变执行顺序。附加地或备选地,可以省略某些步骤,将多个步骤合并为一个步骤执行,和/或将一个步骤分解为多个步骤执行。It should be noted that although the above-described method operations are depicted in a particular order in the figures, this does not require or imply that the operations must be performed in the particular order, or that all illustrated operations must be performed to achieve desirable results. Conversely, the depicted steps may change the order of execution. Additionally or alternatively, certain steps may be omitted, multiple steps may be combined to be performed as one step, and/or one step may be decomposed into multiple steps to be performed.
本实施例将上述的花后天数、环境数据、荔枝果实数、荔枝串数、成熟程度等信息进行存储,构建基于时间尺度的关系型数据库,并使用回归方法建立荔枝生长环境因素与成熟速率之间的关系模型,以分析荔枝生长环境因素与成熟速率之间的规律,为荔枝种植园管理者提供采摘策略。In this embodiment, the above-mentioned information such as the number of days after flowering, environmental data, the number of litchi fruits, the number of litchi bunches, and the degree of maturity is stored, a relational database based on time scale is constructed, and a regression method is used to establish the relationship between litchi growth environmental factors and ripening rates. The relationship model between lychees was analyzed to analyze the law between lychee growth environment factors and ripening rate, and to provide picking strategies for lychee plantation managers.
为了方便用户访问,本实施例的荔枝生长状况全程监控系统在云服务器104中还部署有物联网管理平台105,物联网管理平台105以网站的形式为用户提供管理建议、荔枝图像、花后天数、环境数据、荔枝果实数、荔枝串数、成熟程度等信息,即用户通过访问物联网平台105的网页,可以查看管理建议、荔枝图像、花后天数、环境数据、荔枝果实数、荔枝串数、成熟程度等信息。In order to facilitate user access, the whole-process monitoring system for lychee growth in this embodiment is further deployed with an
为了使荔枝作为商品与用户进行交易,本实施例的荔枝生长状况全程监控系统在云服务器中还部署有电商平台106,该电商平台106以网站的形式为用户提供商品信息,商品信息包括荔枝价格、荔枝图像、花后天数、环境数据、荔枝果实数、荔枝串数、成熟程度等信息,用户通过访问电商平台106的网页,可以查看这些商品信息,该电商平台106集成有虚拟漫游模块,用户可以登录电商平台106加载使用该虚拟漫游模块。In order to make lychees trade with users as commodities, the whole-process monitoring system for the growth of lychees in this embodiment is further deployed with an
虚拟漫游模块1061的建立如图9所示,包括以下步骤:The establishment of the virtual roaming module 1061 is shown in Figure 9 and includes the following steps:
S901、通过建模软件对荔枝树、果实、围栏等荔枝种植园内的实物进行建模,将建好的模型导入虚拟现实开发软件中;本实施例的建模软件采用3DS MAX,虚拟现实开发软件采用unity3D。S901. Model the physical objects in the lychee plantation, such as lychee trees, fruits, fences, etc., through modeling software, and import the built model into the virtual reality development software; The software uses unity3D.
S902、根据实际荔枝种植园的环境,使用虚拟现实开发软件建立虚拟荔枝种植园的三维场景。S902, according to the actual environment of the lychee plantation, use virtual reality development software to establish a three-dimensional scene of the virtual lychee plantation.
S903、在建立的虚拟荔枝种植园中添加人物模型,并在人物模型中嵌套摄像头。S903, adding a character model to the established virtual lychee plantation, and nesting a camera in the character model.
S904、添加控制脚本,以使用户操纵人物模型在虚拟荔枝种植园中实现虚拟观光,如图10所示。S904 , adding a control script to enable the user to manipulate the character model to realize virtual sightseeing in the virtual lychee plantation, as shown in FIG. 10 .
实施例2:Example 2:
如图11所示,本实施例提供了一种荔枝生长状况全程监控装置,该装置应用于云服务器,包括第一获取模块1101、第一检测模块1102、第一提示模块1103、第二提示模块1104和第二检测模块1105,各个模块的具体功能如下:As shown in FIG. 11 , this embodiment provides a whole-process monitoring device for litchi growth. The device is applied to a cloud server and includes a
所述第一获取模块1101,用于获取实时荔枝图像。The
所述第一检测模块1102,用于根据实时荔枝图像,检测荔枝所处的生长时期。The
所述第一提示模块1103,用于当检测到荔枝花期来临时,提示荔枝种植园管理者人工放蜂以促进传粉。The
所述第二提示模块1104,用于在花期内,若空气温度小于第一预设值的时间超过设定时间,且超过设定时间后日均空气湿度大于第二预设值,则提示荔枝种植园管理者喷洒生长调节剂和进行人工授粉。The
所述第二检测模块1105,用于当检测到荔枝结果后,检测荔枝的成熟程度。The
进一步地,如图12所示,第二检测模块1105具体包括:Further, as shown in FIG. 12 , the
识别单元11051,用于利用训练好的荔枝识别模型识别实时荔枝图像中的荔枝。The
聚类单元11052,用于以识别到的每个目标中心为聚类对象,按密度进行聚类,将聚为一类的目标视为一串荔枝。The
第一计算单元11053,用于将一串荔枝中的每个荔枝区域转换至HSV颜色空间,并计算H通道分量。The
第二计算单元11054,用于根据H通道分量,计算整串目标区域红色占比。The
估计单元11055,用于根据整串目标区域红色占比,估计整串荔枝的成熟程度。The
进一步地,如图13所示,所述第一获取模块1101之前,还包括:Further, as shown in FIG. 13 , before the
第二获取模块1301,用于获取荔枝各个生长时期、各种光照下的图像。The
构建模块1302,用于根据荔枝各个生长时期、各种光照下的图像,构建训练集和验证集。The
训练模块1303,用于将训练集输入目标检测网络进行训练,得到荔枝识别模型。The
调整模块1304,用于将验证集输入荔枝识别模型进行验证,以调整荔枝识别模型的参数。The
本实施例中各个模块的具体实现可以参见上述实施例1,在此不再一一赘述。需要说明的是,本实施例提供的装置仅以上述各功能模块的划分进行举例说明,在实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。For the specific implementation of each module in this embodiment, reference may be made to the foregoing Embodiment 1, and details are not repeated here. It should be noted that the device provided in this embodiment is only illustrated by the division of the above-mentioned functional modules. In practical applications, the above-mentioned function allocation may be completed by different functional modules as required, that is, the internal structure is divided into different functional modules. Function modules to complete all or part of the functions described above.
可以理解,本实施例的装置中所使用的术语“第一”、“第二”等可用于描述各种单元,但这些单元不受这些术语限制。这些术语仅用于将第一个模块与另一个模块区分。举例来说,在不脱离本发明的范围的情况下,可以将第一提示模块称为第二提示模块,且类似地,可将第二提示模块称为第一提示模块,第一提示模块和第二提示模块两者都是提示模块,但其不是同一提示模块。It can be understood that the terms "first", "second", etc. used in the apparatus of this embodiment can be used to describe various units, but these units are not limited by these terms. These terms are only used to distinguish the first module from another. For example, without departing from the scope of the present invention, a first prompting module may be referred to as a second prompting module, and similarly, a second prompting module may be referred to as a first prompting module, the first prompting module and The second prompt module is both a prompt module, but it is not the same prompt module.
实施例3:Example 3:
本实施例提供了一种存储介质,该存储介质为计算机可读存储介质,其存储有计算机程序,所述程序被处理器执行时,处理器执行存储器存储的计算机程序时,实现上述实施例1的荔枝生长状况全程监控方法,如下:This embodiment provides a storage medium, which is a computer-readable storage medium, and stores a computer program. When the program is executed by a processor, when the processor executes the computer program stored in the memory, the above-mentioned Embodiment 1 is implemented. The whole process monitoring method of lychee growth status is as follows:
获取实时荔枝图像;Get real-time lychee images;
根据实时荔枝图像,检测荔枝所处的生长时期;According to the real-time lychee image, detect the growth period of the lychee;
当检测到荔枝花期来临时,提示荔枝种植园管理者人工放蜂以促进传粉;When it is detected that the lychee flowering period is coming, prompt the lychee plantation manager to manually release bees to promote pollination;
在花期内,若空气温度小于第一预设值的时间超过设定时间,且超过设定时间后日均空气湿度大于第二预设值,则提示荔枝种植园管理者喷洒生长调节剂和进行人工授粉;During the flowering period, if the time when the air temperature is lower than the first preset value exceeds the preset time, and the average daily air humidity after the preset time exceeds the second preset value, the lychee plantation manager will be prompted to spray growth regulators and carry out artificial pollination;
当检测到荔枝结果后,检测荔枝的成熟程度。When the lychee results are detected, the ripeness of the lychee is detected.
本实施例中的存储介质可以是磁盘、光盘、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、U盘、移动硬盘等介质。The storage medium in this embodiment may be a magnetic disk, an optical disk, a computer memory, a read-only memory (ROM, Read-Only Memory), a random access memory (RAM, Random Access Memory), a U disk, a removable hard disk, and other media.
综上所述,本发明基于物联网,可以实现对荔枝生长状况的全程监控,将检测结果与农艺要求结合,为荔枝种植园管理者提供管理策略;在监控过程中,将花后天数、环境数据、荔枝果实数、荔枝串数、成熟程度等信息进行存储,构建基于时间尺度的关系型数据库,并使用回归方法建立荔枝生长环境因素与成熟速率之间的关系模型,以分析荔枝生长环境因素与成熟速率之间的规律,为荔枝种植园管理者提供采摘策略。To sum up, based on the Internet of Things, the present invention can realize the whole-process monitoring of the growth status of lychees, and combine the detection results with agronomic requirements to provide management strategies for the managers of lychee plantations; The data, the number of lychee fruits, the number of lychee bunches, the degree of maturity and other information are stored, a relational database based on time scale is constructed, and a regression method is used to establish a relationship model between lychee growth environment factors and ripening rate, so as to analyze the lychee growth environment factors The regularity between the rate of ripening and ripening provides picking strategies for lychee plantation managers.
以上所述,仅为本发明专利较佳的实施例,但本发明专利的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明专利所公开的范围内,根据本发明专利的技术方案及其发明构思加以等同替换或改变,都属于本发明专利的保护范围。The above is only a preferred embodiment of the patent of the present invention, but the protection scope of the patent of the present invention is not limited to this. The technical solution and the inventive concept of the invention are equivalently replaced or changed, all belong to the protection scope of the patent of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910644269.6A CN110458032B (en) | 2019-07-17 | 2019-07-17 | Whole-process litchi growth condition monitoring method and system, cloud server and storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910644269.6A CN110458032B (en) | 2019-07-17 | 2019-07-17 | Whole-process litchi growth condition monitoring method and system, cloud server and storage medium |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110458032A CN110458032A (en) | 2019-11-15 |
CN110458032B true CN110458032B (en) | 2022-06-14 |
Family
ID=68481313
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910644269.6A Active CN110458032B (en) | 2019-07-17 | 2019-07-17 | Whole-process litchi growth condition monitoring method and system, cloud server and storage medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110458032B (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111026208A (en) * | 2019-12-30 | 2020-04-17 | 滁州联润生态农业发展有限公司 | Comprehensive management operating system for nursery stock cultivation garden |
CN111160250A (en) * | 2019-12-30 | 2020-05-15 | 安徽易刚信息技术有限公司 | Blueberry growing period detection method and device based on artificial neural network |
CN111354466B (en) * | 2020-02-27 | 2023-08-01 | 新希望六和股份有限公司 | Method, device, computer equipment and storage medium for determining semen standard value |
CN111487247A (en) * | 2020-04-28 | 2020-08-04 | 前海国兴(深圳)高科技有限公司 | Fruit maturity AI identification system |
CN113342036A (en) * | 2021-06-02 | 2021-09-03 | 华南农业大学 | Accurate management and control system and method for crops |
CN113483808A (en) * | 2021-06-10 | 2021-10-08 | 暨南大学 | Farmland monitoring system and monitoring method based on LoRa and Yolov3 |
CN113920474B (en) * | 2021-10-28 | 2024-04-30 | 成都信息工程大学 | Internet of things system and method for intelligently supervising citrus planting situation |
CN114612858A (en) * | 2022-02-25 | 2022-06-10 | 华南农业大学 | Litchi growth environment data monitoring device and analysis method |
CN114755375A (en) * | 2022-03-30 | 2022-07-15 | 四川瑞象农业科技发展有限公司 | Internet-based citrus planting supervision platform |
CN115100533A (en) * | 2022-08-04 | 2022-09-23 | 联通(广东)产业互联网有限公司 | Training and using method of litchi maturity recognition model |
CN116994007B (en) * | 2023-09-26 | 2024-03-19 | 支付宝(杭州)信息技术有限公司 | Commodity texture detection processing method and device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104077725A (en) * | 2014-07-14 | 2014-10-01 | 内蒙古德辰信息网络科技有限责任公司 | Potato planting Internet-of-things monitoring, control and information service cloud platform integrated system |
ES2537826A1 (en) * | 2013-10-07 | 2015-06-12 | Universidad De Sevilla | Automatic detection and identification system of maturity phases of Habanero Chile and similar fruits |
CN104904570A (en) * | 2015-06-08 | 2015-09-16 | 华南农业大学 | Wireless sensor network based water-saving litchi orchard irrigation control system and method |
CN107316037A (en) * | 2017-03-27 | 2017-11-03 | 南京晓庄学院 | A kind of fruit and vegetable recognition preprocess method of view-based access control model subject detection |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9016193B2 (en) * | 2012-04-16 | 2015-04-28 | Eugenio Minvielle | Logistic transport system for nutritional substances |
CN109470299A (en) * | 2018-10-19 | 2019-03-15 | 江苏大学 | A system and method for monitoring crop growth information based on the Internet of Things |
-
2019
- 2019-07-17 CN CN201910644269.6A patent/CN110458032B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2537826A1 (en) * | 2013-10-07 | 2015-06-12 | Universidad De Sevilla | Automatic detection and identification system of maturity phases of Habanero Chile and similar fruits |
CN104077725A (en) * | 2014-07-14 | 2014-10-01 | 内蒙古德辰信息网络科技有限责任公司 | Potato planting Internet-of-things monitoring, control and information service cloud platform integrated system |
CN104904570A (en) * | 2015-06-08 | 2015-09-16 | 华南农业大学 | Wireless sensor network based water-saving litchi orchard irrigation control system and method |
CN107316037A (en) * | 2017-03-27 | 2017-11-03 | 南京晓庄学院 | A kind of fruit and vegetable recognition preprocess method of view-based access control model subject detection |
Non-Patent Citations (2)
Title |
---|
Extraction of Litchi Stem Based on Computer Vision under Natural Scene;Jizhong Deng et al.;《2011 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring》;20110411;第832-835页 * |
基于Retinex图像增强的不同光照条件下的成熟荔枝识别;熊俊涛 等;《农业工程学报》;20130630;第170-178页 * |
Also Published As
Publication number | Publication date |
---|---|
CN110458032A (en) | 2019-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110458032B (en) | Whole-process litchi growth condition monitoring method and system, cloud server and storage medium | |
Di Gennaro et al. | A low-cost and unsupervised image recognition methodology for yield estimation in a vineyard | |
US10028452B2 (en) | Horticultural monitoring system | |
JP6753936B2 (en) | Information processing equipment and information processing system | |
CN107463958A (en) | Insect identifies method for early warning and system | |
CN111767802A (en) | Method and device for detecting abnormal state of object | |
CN110321774B (en) | Crop disaster situation evaluation method, device, equipment and computer readable storage medium | |
CN111062358A (en) | Unmanned aerial vehicle intelligent farmland information acquisition and monitoring system and method based on block chain | |
WO2020218157A1 (en) | Prediction system, prediction method, and prediction program | |
CN113207511A (en) | Pesticide application method and system based on pesticide resistance monitoring and readable storage medium | |
WO2023219919A1 (en) | Machine learning methods and systems for characterizing corn growth efficiency | |
CN118427561A (en) | AI-based plant growth condition monitoring method, apparatus, equipment and medium | |
Magro et al. | Computational models in Precision Fruit Growing: reviewing the impact of temporal variability on perennial crop yield assessment | |
CN118839821A (en) | Crop growth analysis method and system based on machine vision | |
CN119151691A (en) | Planting industry insurance assessment method, planting industry insurance assessment device, computer equipment and storage medium | |
CN119229292A (en) | Crop monitoring methods and related equipment | |
Saha et al. | A crop-monitoring system using wireless sensor networking | |
Taylor et al. | Machine-Learning Methods to Identify Key Predictors of Site-Specific Vineyard Yield and Vine Size | |
Vasanthi | Crop growth monitoring and leaf area index estimation using wireless sensor network and CNN | |
CN114661932A (en) | Information processing method, storage medium, and electronic device | |
CN114663761A (en) | Crop growth condition determining method, device, equipment and storage medium | |
Negrete | Artificial vision in mexican agriculture for identification of diseases, pests and invasive plants | |
Wolter-Salas et al. | WS-YOLO: An Agronomical and Computer Vision-Based Framework to Detect Drought Stress in Lettuce Seedlings Using IR Imaging and YOLOv8 | |
Lazebnik et al. | Economical–epidemiological analysis of the coffee trees rust pandemic | |
CN112164041A (en) | Automatic diagnosis and treatment system and method of Huanglongbing disease based on multi-scale deep neural network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |