CN110456639B - MEMS gyroscope self-adaptive driving control method based on historical data parameter identification - Google Patents
MEMS gyroscope self-adaptive driving control method based on historical data parameter identification Download PDFInfo
- Publication number
- CN110456639B CN110456639B CN201910648280.XA CN201910648280A CN110456639B CN 110456639 B CN110456639 B CN 110456639B CN 201910648280 A CN201910648280 A CN 201910648280A CN 110456639 B CN110456639 B CN 110456639B
- Authority
- CN
- China
- Prior art keywords
- dimensionless
- mems
- parameter identification
- historical data
- mems gyroscope
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
- G05B13/042—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Gyroscopes (AREA)
Abstract
本发明涉及一种基于历史数据参数辨识的MEMS陀螺仪自适应驱动控制方法,属于智能化仪器仪表领域。该方法将陀螺仪动力学模型转化为无量纲的动力学线性参数化模型;充分挖掘历史数据信息,定义预测误差,基于预测误差和跟踪误差共同构建参数自适应律,实现参数精确辨识;设计控制器实现陀螺驱动控制。本发明设计的基于历史数据参数辨识的MEMS陀螺仪自适应驱动控制方法可解决参数辨识难以获取真值的问题,获取精确的动力学模型,同时实现陀螺仪驱动控制,进一步改善MEMS陀螺仪性能。
The invention relates to a MEMS gyroscope adaptive drive control method based on historical data parameter identification, and belongs to the field of intelligent instruments. This method transforms the gyroscope dynamic model into a dimensionless dynamic linear parameterization model; fully mines the historical data information, defines the prediction error, and jointly constructs a parameter adaptive law based on the prediction error and tracking error to achieve accurate parameter identification; design control The device realizes the gyro drive control. The MEMS gyroscope adaptive drive control method based on historical data parameter identification designed by the invention can solve the problem that the parameter identification is difficult to obtain the true value, obtain an accurate dynamic model, realize the gyroscope drive control at the same time, and further improve the performance of the MEMS gyroscope.
Description
技术领域technical field
本发明涉及一种MEMS陀螺仪的驱动控制方法,特别是涉及一种基于历史数据参数辨识的MEMS陀螺仪自适应驱动控制方法,属于智能化仪器仪表领域。The invention relates to a driving control method of a MEMS gyroscope, in particular to an adaptive driving control method of a MEMS gyroscope based on historical data parameter identification, belonging to the field of intelligent instruments.
背景技术Background technique
精确的动力学模型是进行MEMS陀螺仪硬件设计、控制系统设计和系统仿真的重要条件,而动力学模型参数辨识是其中的关键技术。《Adaptive nonsingular terminalsliding mode control of MEMS gyroscope based on backstepping design》(JuntaoFei,Weifeng Yan and Yuzheng Yang,《International Journal of Adaptive ControlSignal Processing》,2015)一文中提出了一种基于反步法的MEMS陀螺仪非奇异终端滑模控制方法,同时给出了动力学模型参数辨识结果。然而这种方法所辨识的参数仅能保证稳态收敛,并不能确保最终收敛至参数的真值。Accurate dynamic model is an important condition for MEMS gyroscope hardware design, control system design and system simulation, and the identification of dynamic model parameters is the key technology. "Adaptive nonsingular terminalsliding mode control of MEMS gyroscope based on backstepping design" (JuntaoFei, Weifeng Yan and Yuzheng Yang, "International Journal of Adaptive ControlSignal Processing", 2015) proposes a nonsingular MEMS gyroscope based on backstepping method The terminal sliding mode control method is used, and the parameter identification results of the dynamic model are also given. However, the parameters identified by this method can only guarantee steady-state convergence, and cannot guarantee the final convergence to the true value of the parameters.
发明内容SUMMARY OF THE INVENTION
要解决的技术问题technical problem to be solved
为克服现有技术仅能保证动力学参数收敛,并不一定能收敛到参数真值及角速率难以直接获取的问题,本发明提出一种基于历史数据参数辨识的MEMS陀螺仪自适应驱动控制方法。该方法一方面充分挖掘历史数据信息,定义预测误差,基于预测误差和跟踪误差共同构建参数自适应律,实现参数精确辨识;另一方面基于MEMS陀螺动力学及参数辨识结果,设计控制器实现陀螺驱动控制。In order to overcome the problem that the prior art can only guarantee the convergence of dynamic parameters, but not necessarily to the true value of the parameters and the angular rate, which is difficult to obtain directly, the present invention proposes a MEMS gyroscope adaptive drive control method based on historical data parameter identification. . On the one hand, the method fully mines the historical data information, defines the prediction error, and jointly constructs a parameter adaptive law based on the prediction error and tracking error to achieve accurate parameter identification; drive control.
技术方案Technical solutions
一种基于历史数据参数辨识的MEMS陀螺仪自适应驱动控制方法,其特征在于步骤如下:A MEMS gyroscope adaptive drive control method based on historical data parameter identification is characterized in that the steps are as follows:
步骤1:考虑存在正交误差的MEMS陀螺动力学模型为:Step 1: Consider the MEMS gyroscope dynamics model with quadrature error as:
其中,m为检测质量块的质量;Ωz为陀螺输入角速度,和x*分别为MEMS陀螺仪检测质量块沿驱动轴的加速度、速度和位移,和y*分别为沿检测轴的加速度、速度和位移,和为静电驱动力,cxx和cyy为阻尼系数,kxx和kyy为刚度系数,和为非线性系数,cxy和cyx为阻尼耦合系数,kxy和kyx为刚度耦合系数;上述参数根据振动式硅微机械陀螺参数选取;Among them, m is the quality of the detection mass; Ω z is the input angular velocity of the gyro, and x * are the acceleration, velocity and displacement of the MEMS gyroscope detection mass along the drive axis, respectively, and y * are the acceleration, velocity and displacement along the detection axis, respectively, and is the electrostatic driving force, c xx and c yy are damping coefficients, k xx and k yy are stiffness coefficients, and is the nonlinear coefficient, c xy and c yx are the damping coupling coefficients, k xy and k yx are the stiffness coupling coefficients; the above parameters are selected according to the parameters of the vibrating silicon micromachined gyroscope;
取无量纲化时间t=ωot*,无量纲化位移x=x*/q0,y=y*/q0,其中ω0为参考频率,q0为参考长度,对MEMS陀螺动力学模型进行无量纲化处理,并在等式两边同时除以得到Take the dimensionless time t=ω o t * , the dimensionless displacement x=x * /q 0 , y=y * /q 0 , where ω 0 is the reference frequency, q 0 is the reference length, for the MEMS gyro dynamics The model is dimensionless and divided by both sides of the equation get
其中,和x分别为MEMS陀螺仪检测质量块沿驱动轴的无量纲加速度、无量纲速度和无量纲位移,和y分别为沿检测轴的无量纲加速度、无量纲速度和无量纲位移;in, and x are the dimensionless acceleration, dimensionless velocity and dimensionless displacement of the MEMS gyroscope detection mass along the drive axis, respectively, and y are the dimensionless acceleration, dimensionless velocity and dimensionless displacement along the detection axis, respectively;
重新定义redefine
则式(2)可以改写为The formula (2) can be rewritten as
定义θ1=[x,y]T,则式(3)可写为Define θ 1 =[x,y] T , The formula (3) can be written as
其中,U=[u1,u2]T,F(Φ)=[f1,f2]T, Wherein, U=[u 1 , u 2 ] T , F(Φ)=[f 1 , f 2 ] T ,
定义definition
对F(Φ)进行线性参数化,得到Linear parameterization of F(Φ), we get
F(Φ)=WΦ (5)F(Φ)=WΦ (5)
步骤2:给出MEMS陀螺动力学式(1)的参考轨迹为Step 2: The reference trajectory of the MEMS gyrodynamic equation (1) is given as
其中,和分别为检测质量块沿驱动轴和检测轴的参考振动位移信号,和分别为驱动轴和检测轴振动的参考振幅,ω1和ω2分别为驱动轴和检测轴振动的参考角频率,和分别为驱动轴和检测轴振动的相位;in, and are the reference vibration displacement signals of the proof mass along the drive axis and the detection axis, respectively, and are the reference amplitudes of the vibration of the drive shaft and the detection shaft, respectively, ω 1 and ω 2 are the reference angular frequencies of the vibration of the drive shaft and the detection shaft, respectively, and are the vibration phases of the drive shaft and the detection shaft, respectively;
则无量纲动力学式(4)的参考轨迹为Then the reference trajectory of the dimensionless dynamic equation (4) is
其中, 且待设计参数 in, And the parameters to be designed
定义跟踪误差为The tracking error is defined as
则控制器设计为Then the controller is designed as
U=Un+Upd-Uad (9)U=U n +U pd -U ad (9)
Upd=K1e1+K2e2 (11)U pd =K 1 e 1 +K 2 e 2 (11)
其中,是W的估计值,待设计参数和满足Hurwitz条件;in, is the estimated value of W, the parameters to be designed and Satisfy the Hurwitz condition;
步骤3:定义预测误差Step 3: Define Forecast Error
其中,τd为待设计正常数;in, τ d is the constant to be designed;
给出参数的自适应律为The adaptive law for the given parameters is
其中,等式右边第一项采用当前时刻数据计算,第二项采用τ∈[t-τd,t]区间内历史数据计算,且待设计参数和满足Hurwitz条件;Among them, the first term on the right side of the equation is calculated using the current moment data, the second term is calculated using the historical data in the interval τ∈[t-τ d ,t], and the parameters to be designed and Satisfy the Hurwitz condition;
步骤4:基于参数自适应律式(14)设计控制器式(9)驱动无量纲动力学式(4),并通过量纲转换返回MEMS陀螺动力学模型式(1),实现陀螺驱动控制及动力学参数辨识。Step 4: Design the controller formula (9) based on the parameter adaptive law formula (14) to drive the dimensionless dynamics formula (4), and return to the MEMS gyro dynamics model formula (1) through dimension conversion to realize the gyro drive control and Dynamic parameter identification.
有益效果beneficial effect
本发明提出的一种基于历史数据参数辨识的MEMS陀螺仪自适应驱动控制方法,与现有技术相比的有益效果为:A MEMS gyroscope adaptive drive control method based on historical data parameter identification proposed by the present invention has the following beneficial effects compared with the prior art:
(1)针对参数辨识难以辨识出真值的问题,充分挖掘历史数据信息,定义预测误差,基于预测误差和跟踪误差共同构建参数自适应律,实现参数精确辨识。(1) For the problem that it is difficult to identify the true value of parameter identification, the historical data information is fully mined, the prediction error is defined, and the parameter adaptive law is jointly constructed based on the prediction error and the tracking error to achieve accurate parameter identification.
(2)针对动力学参数难以在线辨识的问题,将动力学改写为线性参数化形式,结合参数更新律设计控制器,同时实现陀螺驱动控制和动力学参数辨识。(2) Aiming at the problem that the dynamic parameters are difficult to be identified online, the dynamics are rewritten into a linear parameterized form, and the controller is designed in combination with the parameter update law, and the gyro drive control and dynamic parameter identification are realized at the same time.
附图说明Description of drawings
图1本发明具体实施流程图1 is a flow chart of the specific implementation of the present invention
具体实施方式Detailed ways
现结合实施例、附图对本发明作进一步描述:The present invention will now be further described in conjunction with the embodiments and accompanying drawings:
本发明公开了一种基于历史数据参数辨识的MEMS陀螺仪自适应驱动控制方法,结合图1,具体设计步骤如下:The invention discloses a MEMS gyroscope adaptive drive control method based on historical data parameter identification. With reference to Fig. 1, the specific design steps are as follows:
(a)考虑存在正交误差的MEMS陀螺动力学模型为:(a) The dynamic model of MEMS gyro considering the existence of quadrature error is:
其中,m为检测质量块的质量,Ωz为陀螺输入角速度,和x*分别为MEMS陀螺仪检测质量块沿驱动轴的加速度、速度和位移,和y*分别为沿检测轴的加速度、速度和位移,和为静电驱动力,cxx和cyy为阻尼系数,kxx和kyy为刚度系数,和为非线性系数,cxy和cyx为阻尼耦合系数,kxy和kyx为刚度耦合系数。根据某型号的振动式硅微机械陀螺,选取陀螺各参数为m=5.7×10-9kg,q0=10-5m,ω0=1kHz,Ωz=5.0rad/s,kxx=80.98N/m,kyy=71.62N/m,kxy=0.05N/m,kyx=0.05N/m,cxx=4.29×10-7Ns/m,cyy=4.29×10-8Ns/m,cxy=4.29×10-8Ns/m,cyx=4.29×10-8Ns/m。Among them, m is the quality of the detection mass, Ω z is the input angular velocity of the gyro, and x* are the acceleration, velocity and displacement of the MEMS gyroscope detection mass along the drive axis, respectively, and y* are the acceleration, velocity and displacement along the detection axis, respectively, and is the electrostatic driving force, c xx and c yy are damping coefficients, k xx and k yy are stiffness coefficients, and are nonlinear coefficients, c xy and c yx are damping coupling coefficients, and k xy and k yx are stiffness coupling coefficients. According to a certain type of vibrating silicon micromachined gyroscope, the parameters of the gyroscope are selected as m=5.7×10 -9 kg, q 0 =10 -5 m, ω 0 =1kHz, Ω z =5.0rad/s, k xx =80.98 N/m, k yy =71.62N/m, k xy =0.05N/m, k yx =0.05N/m, c xx =4.29×10 −7 Ns/m, c yy =4.29×10 −8 Ns/m, c xy =4.29×10 −8 Ns/m, c yx =4.29×10 −8 Ns/m.
取无量纲化时间t=ωot*,无量纲化位移x=x*/q0,y=y*/q0,其中ω0为参考频率,q0为参考长度,对MEMS陀螺动力学模型进行无量纲化处理,得到Take the dimensionless time t=ω o t * , the dimensionless displacement x=x * /q 0 , y=y * /q 0 , where ω 0 is the reference frequency, q 0 is the reference length, for the MEMS gyro dynamics The model is dimensionless, and we get
其中,和x分别为MEMS陀螺仪检测质量块沿驱动轴的无量纲加速度、无量纲速度和无量纲位移,和y分别为沿检测轴的无量纲加速度、无量纲速度和无量纲位移。in, and x are the dimensionless acceleration, dimensionless velocity and dimensionless displacement of the MEMS gyroscope detection mass along the drive axis, respectively, and y are the dimensionless acceleration, dimensionless velocity and dimensionless displacement along the detection axis, respectively.
在式(2)两边同时除以将之简化为Divide both sides of equation (2) by simplify it to
重新定义动力学参数为Redefine the kinetic parameters as
式(3)可以表示为Equation (3) can be expressed as
定义definition
则式(4)可以改写为Equation (4) can be rewritten as
定义θ1=[x,y]T,则式(5)可写为Define θ 1 =[x,y] T , The formula (5) can be written as
其中,U=[u1,u2]T,F(Φ)=[f1,f2]T, Wherein, U=[u 1 , u 2 ] T , F(Φ)=[f 1 , f 2 ] T ,
定义definition
对F(Φ)进行线性参数化,得到Linear parameterization of F(Φ), we get
F(Φ)=WΦ (7)F(Φ)=WΦ (7)
(b)给出MEMS陀螺动力学式(1)的参考轨迹为(b) The reference trajectory of the MEMS gyrodynamic equation (1) is given as
其中,和分别为检测质量块沿驱动轴和检测轴的参考振动位移信号。in, and are the reference vibration displacement signals of the proof mass along the drive axis and the detection axis, respectively.
则无量纲动力学式(6)的参考轨迹为Then the reference trajectory of the dimensionless dynamic equation (6) is
其中,xd=6.2sin(4.71t+π/3),yd=5sin(5.11t-π/6), where x d =6.2sin(4.71t+π/3), y d =5sin(5.11t-π/6),
定义跟踪误差为The tracking error is defined as
则控制器设计为Then the controller is designed as
U=Un+Upd-Uad (11)U=U n +U pd -U ad (11)
Upd=K1e1+K2e2 (13)U pd =K 1 e 1 +K 2 e 2 (13)
其中,是W的估计值, in, is the estimated value of W,
(c)定义预测误差(c) Define prediction error
其中, in,
给出参数的自适应律为The adaptive law for the given parameters is
其中,等式右边第一项采用当前时刻数据计算,第二项采用τ∈[t-τd,t]区间内历史数据计算,且 Among them, the first term on the right side of the equation is calculated using the data at the current moment, and the second term is calculated using the historical data in the interval τ∈[t-τ d ,t], and
(d)基于参数自适应律式(16)设计控制器式(11)驱动无量纲动力学式(6),并通过量纲转换返回MEMS陀螺动力学模型式(1),实现陀螺驱动控制及动力学参数辨识。(d) Design the controller formula (11) based on the parameter adaptive law formula (16) to drive the dimensionless dynamics formula (6), and return to the MEMS gyro dynamics model formula (1) through dimension conversion, so as to realize the gyro drive control and Dynamic parameter identification.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910648280.XA CN110456639B (en) | 2019-07-18 | 2019-07-18 | MEMS gyroscope self-adaptive driving control method based on historical data parameter identification |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910648280.XA CN110456639B (en) | 2019-07-18 | 2019-07-18 | MEMS gyroscope self-adaptive driving control method based on historical data parameter identification |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110456639A CN110456639A (en) | 2019-11-15 |
CN110456639B true CN110456639B (en) | 2022-05-17 |
Family
ID=68481435
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910648280.XA Active CN110456639B (en) | 2019-07-18 | 2019-07-18 | MEMS gyroscope self-adaptive driving control method based on historical data parameter identification |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110456639B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11867509B2 (en) | 2021-03-03 | 2024-01-09 | Invensense, Inc. | Robust method for gyroscope drive amplitude measurement |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103116275A (en) * | 2013-03-01 | 2013-05-22 | 河海大学常州校区 | Robust neural network control system for micro-electro-mechanical system (MEMS) gyroscope based on sliding mode compensation and control method of control system |
CN107132763A (en) * | 2017-05-11 | 2017-09-05 | 北方电子研究院安徽有限公司 | A kind of MEMS gyroscope close-loop driven automatic gain control circuit |
CN107607101A (en) * | 2017-11-05 | 2018-01-19 | 西北工业大学 | MEMS gyro sliding-mode control based on interference observer |
CN108897226A (en) * | 2018-08-20 | 2018-11-27 | 西北工业大学 | The nonsingular sliding-mode control of MEMS gyroscope default capabilities based on interference observer |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9335340B2 (en) * | 2013-07-23 | 2016-05-10 | Freescale Semiconductor, Inc. | MEMS parameter identification using modulated waveforms |
-
2019
- 2019-07-18 CN CN201910648280.XA patent/CN110456639B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103116275A (en) * | 2013-03-01 | 2013-05-22 | 河海大学常州校区 | Robust neural network control system for micro-electro-mechanical system (MEMS) gyroscope based on sliding mode compensation and control method of control system |
CN107132763A (en) * | 2017-05-11 | 2017-09-05 | 北方电子研究院安徽有限公司 | A kind of MEMS gyroscope close-loop driven automatic gain control circuit |
CN107607101A (en) * | 2017-11-05 | 2018-01-19 | 西北工业大学 | MEMS gyro sliding-mode control based on interference observer |
CN108897226A (en) * | 2018-08-20 | 2018-11-27 | 西北工业大学 | The nonsingular sliding-mode control of MEMS gyroscope default capabilities based on interference observer |
Non-Patent Citations (2)
Title |
---|
Sliding mode control of MEMS gyroscopes using composite learning;RUI ZHANG etc.;《Neurocomputing》;20180131;第275卷;第2555-2564页 * |
基于智能控制技术的微惯性器件误差抑制方法研究;张睿;《中国优秀博硕士学位论文全文数据库(硕士)信息科技辑》;20180915(第9期);第I140-78页 * |
Also Published As
Publication number | Publication date |
---|---|
CN110456639A (en) | 2019-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104281056B (en) | The gyroscope Robust Adaptive Control method learnt based on the neutral net upper bound | |
CN102508434B (en) | Adaptive fuzzy sliding mode controller for micro gyroscope | |
CN102636995B (en) | Method for controlling micro gyro based on radial basis function (RBF) neural network sliding mode | |
CN107607101B (en) | MEMS gyro sliding-mode control based on interference observer | |
CN108897226A (en) | The nonsingular sliding-mode control of MEMS gyroscope default capabilities based on interference observer | |
CN102298315A (en) | Adaptive control system based on radial basis function (RBF) neural network sliding mode control for micro-electromechanical system (MEMS) gyroscope | |
CN110389528B (en) | Data-driven MEMS gyroscope driving control method based on disturbance observation | |
CN103279038B (en) | Based on the gyroscope Sliding Mode Adaptive Control method of T-S fuzzy model | |
CN108241299A (en) | Adaptive sliding mode control method for micro gyro with error limitation | |
CN103345155B (en) | The self-adaptation back stepping control system and method for gyroscope | |
CN110456639B (en) | MEMS gyroscope self-adaptive driving control method based on historical data parameter identification | |
CN102681443A (en) | Micro electromechanical system gyroscope fuzzy self-adaptive control system based on fuzzy compensation | |
CN107607102A (en) | MEMS gyro sliding formwork based on interference observer buffets suppressing method | |
CN114326399A (en) | A limited time anti-jamming control method for broadband inertial reference unit | |
CN110389527B (en) | Heterogeneous estimation-based MEMS gyroscope sliding mode control method | |
CN110389530B (en) | Parameter identification and drive control method of MEMS gyroscope based on data screening | |
CN103345154A (en) | Indirect self-adaptive fuzzy sliding-mode control method of micro gyroscope system | |
CN109062048B (en) | Non-singular sliding mode control method for preset performance of MEMS gyroscope based on compound learning | |
CN107870566B (en) | MEMS Gyroscope Fast Startup Method Based on Parallel Estimation Compound Learning | |
CN107608216B (en) | MEMS gyroscope Hybrid Learning control method based on parallel estimation model | |
CN110426952B (en) | High-precision drive control method for interval data learning MEMS gyroscope considering external interference | |
CN110456640B (en) | MEMS gyroscope parameter identification neural network control method based on nonsingular terminal sliding mode design | |
Fei et al. | Robust adaptive control for a MEMS vibratory gyroscope | |
CN110456638B (en) | MEMS gyroscope parameter identification adaptive drive control method based on interval data excitation | |
Yan et al. | Adaptive control of MEMS gyroscope based on global terminal sliding mode controller |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |