CN110437331A - Method for improving inclusion body protein renaturation of smooth turtle shell serine protease inhibitor - Google Patents
Method for improving inclusion body protein renaturation of smooth turtle shell serine protease inhibitor Download PDFInfo
- Publication number
- CN110437331A CN110437331A CN201910696088.8A CN201910696088A CN110437331A CN 110437331 A CN110437331 A CN 110437331A CN 201910696088 A CN201910696088 A CN 201910696088A CN 110437331 A CN110437331 A CN 110437331A
- Authority
- CN
- China
- Prior art keywords
- apserpin
- protein
- trxa
- renaturation
- activity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 66
- 102000004169 proteins and genes Human genes 0.000 title claims abstract description 65
- 238000004153 renaturation Methods 0.000 title claims abstract description 60
- 210000003000 inclusion body Anatomy 0.000 title claims abstract description 41
- 238000000034 method Methods 0.000 title claims abstract description 40
- 241000270666 Testudines Species 0.000 title claims abstract description 14
- 239000003001 serine protease inhibitor Substances 0.000 title claims abstract description 14
- 229940122055 Serine protease inhibitor Drugs 0.000 title description 4
- 101710102218 Serine protease inhibitor Proteins 0.000 title description 4
- 230000000694 effects Effects 0.000 claims abstract description 33
- 102000037865 fusion proteins Human genes 0.000 claims abstract description 29
- 108020001507 fusion proteins Proteins 0.000 claims abstract description 29
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims abstract description 20
- 239000004202 carbamide Substances 0.000 claims abstract description 20
- 229960000789 guanidine hydrochloride Drugs 0.000 claims abstract description 15
- PJJJBBJSCAKJQF-UHFFFAOYSA-N guanidinium chloride Chemical compound [Cl-].NC(N)=[NH2+] PJJJBBJSCAKJQF-UHFFFAOYSA-N 0.000 claims abstract description 15
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 claims abstract description 13
- 239000000137 peptide hydrolase inhibitor Substances 0.000 claims abstract description 13
- PSFABYLDRXJYID-VKHMYHEASA-N N-Methylserine Chemical compound CN[C@@H](CO)C(O)=O PSFABYLDRXJYID-VKHMYHEASA-N 0.000 claims abstract description 8
- 229940078547 methylserine Drugs 0.000 claims abstract description 8
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 claims description 31
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 24
- 239000000872 buffer Substances 0.000 claims description 20
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 claims description 15
- 239000002244 precipitate Substances 0.000 claims description 15
- 239000011780 sodium chloride Substances 0.000 claims description 12
- 241000894006 Bacteria Species 0.000 claims description 10
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 claims description 10
- ODKSFYDXXFIFQN-BYPYZUCNSA-N L-arginine Chemical compound OC(=O)[C@@H](N)CCCN=C(N)N ODKSFYDXXFIFQN-BYPYZUCNSA-N 0.000 claims description 9
- 238000002156 mixing Methods 0.000 claims description 9
- 238000005406 washing Methods 0.000 claims description 8
- 229940124280 l-arginine Drugs 0.000 claims description 7
- 239000008363 phosphate buffer Substances 0.000 claims description 6
- 238000002360 preparation method Methods 0.000 claims description 6
- 241001459547 Apalone mutica Species 0.000 claims description 4
- 241001198387 Escherichia coli BL21(DE3) Species 0.000 claims description 4
- 241000222126 [Candida] glabrata Species 0.000 claims description 4
- 230000002934 lysing effect Effects 0.000 claims description 4
- 230000002572 peristaltic effect Effects 0.000 claims description 4
- 239000013612 plasmid Substances 0.000 claims description 4
- 239000003398 denaturant Substances 0.000 claims 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 abstract description 32
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 abstract description 32
- 230000002401 inhibitory effect Effects 0.000 abstract description 16
- 230000008569 process Effects 0.000 abstract description 7
- 102000012479 Serine Proteases Human genes 0.000 abstract description 4
- 108010022999 Serine Proteases Proteins 0.000 abstract description 4
- 239000007788 liquid Substances 0.000 abstract description 4
- 241001482311 Trionychidae Species 0.000 abstract description 3
- 238000011160 research Methods 0.000 abstract description 2
- 235000018102 proteins Nutrition 0.000 description 49
- 239000000243 solution Substances 0.000 description 35
- 102000004142 Trypsin Human genes 0.000 description 20
- 108090000631 Trypsin Proteins 0.000 description 20
- 239000012588 trypsin Substances 0.000 description 20
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 18
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 15
- 230000014509 gene expression Effects 0.000 description 13
- 238000000502 dialysis Methods 0.000 description 9
- 108010053070 Glutathione Disulfide Proteins 0.000 description 8
- 238000010790 dilution Methods 0.000 description 8
- 239000012895 dilution Substances 0.000 description 8
- YPZRWBKMTBYPTK-BJDJZHNGSA-N glutathione disulfide Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@H](C(=O)NCC(O)=O)CSSC[C@@H](C(=O)NCC(O)=O)NC(=O)CC[C@H](N)C(O)=O YPZRWBKMTBYPTK-BJDJZHNGSA-N 0.000 description 6
- 238000011534 incubation Methods 0.000 description 6
- 108010024636 Glutathione Proteins 0.000 description 5
- 229960003180 glutathione Drugs 0.000 description 5
- 230000006698 induction Effects 0.000 description 5
- 239000003112 inhibitor Substances 0.000 description 5
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 5
- 238000002525 ultrasonication Methods 0.000 description 5
- 241000238631 Hexapoda Species 0.000 description 4
- -1 benzoyl-L-arginyl-p-nitroaniline Chemical compound 0.000 description 4
- 210000004027 cell Anatomy 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 241000588724 Escherichia coli Species 0.000 description 3
- 238000002835 absorbance Methods 0.000 description 3
- 230000004071 biological effect Effects 0.000 description 3
- 230000008260 defense mechanism Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 230000003832 immune regulation Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- YPZRWBKMTBYPTK-UHFFFAOYSA-N oxidized gamma-L-glutamyl-L-cysteinylglycine Natural products OC(=O)C(N)CCC(=O)NC(C(=O)NCC(O)=O)CSSCC(C(=O)NCC(O)=O)NC(=O)CCC(N)C(O)=O YPZRWBKMTBYPTK-UHFFFAOYSA-N 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- TYMLOMAKGOJONV-UHFFFAOYSA-N 4-nitroaniline Chemical compound NC1=CC=C([N+]([O-])=O)C=C1 TYMLOMAKGOJONV-UHFFFAOYSA-N 0.000 description 2
- 239000004475 Arginine Substances 0.000 description 2
- 229930064664 L-arginine Natural products 0.000 description 2
- 235000014852 L-arginine Nutrition 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 229960003121 arginine Drugs 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000004925 denaturation Methods 0.000 description 2
- 230000036425 denaturation Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 239000003599 detergent Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 239000012460 protein solution Substances 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 239000002753 trypsin inhibitor Substances 0.000 description 2
- 238000001262 western blot Methods 0.000 description 2
- 241000889909 Anatolica Species 0.000 description 1
- 241000411134 Anatolica polita borealis Species 0.000 description 1
- 102000044503 Antimicrobial Peptides Human genes 0.000 description 1
- 108700042778 Antimicrobial Peptides Proteins 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 238000009010 Bradford assay Methods 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 241000254173 Coleoptera Species 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 239000006180 TBST buffer Substances 0.000 description 1
- 229940122618 Trypsin inhibitor Drugs 0.000 description 1
- 101710162629 Trypsin inhibitor Proteins 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000023555 blood coagulation Effects 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 102000038379 digestive enzymes Human genes 0.000 description 1
- 108091007734 digestive enzymes Proteins 0.000 description 1
- VHJLVAABSRFDPM-QWWZWVQMSA-N dithiothreitol Chemical compound SC[C@@H](O)[C@H](O)CS VHJLVAABSRFDPM-QWWZWVQMSA-N 0.000 description 1
- 230000003828 downregulation Effects 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010195 expression analysis Methods 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000009456 molecular mechanism Effects 0.000 description 1
- VBEGHXKAFSLLGE-UHFFFAOYSA-N n-phenylnitramide Chemical compound [O-][N+](=O)NC1=CC=CC=C1 VBEGHXKAFSLLGE-UHFFFAOYSA-N 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000008055 phosphate buffer solution Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 108010069727 pro-phenoloxidase Proteins 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000009465 prokaryotic expression Effects 0.000 description 1
- 230000004952 protein activity Effects 0.000 description 1
- 239000012474 protein marker Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K1/00—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
- C07K1/107—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides
- C07K1/113—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides without change of the primary structure
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/81—Protease inhibitors
- C07K14/8107—Endopeptidase (E.C. 3.4.21-99) inhibitors
- C07K14/811—Serine protease (E.C. 3.4.21) inhibitors
- C07K14/8135—Kazal type inhibitors, e.g. pancreatic secretory inhibitor, ovomucoid
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/70—Vectors or expression systems specially adapted for E. coli
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Molecular Biology (AREA)
- Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biotechnology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Gastroenterology & Hepatology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Microbiology (AREA)
- General Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Peptides Or Proteins (AREA)
Abstract
本发明旨在提供一种光滑鳖甲丝氨酸蛋白酶抑制剂融合蛋白TrxA‑ApSerpin‑FA72包涵体蛋白复性及活性的方法。本发明采用在变性液中添加尿素,并使用盐酸胍稀释复性的方法对光滑鳖甲丝氨酸蛋白酶抑制剂融合蛋白TrxA‑ApSerpin‑FA72包涵体蛋白进行活化,在整个蛋白复性过程控制蛋白浓度在1‑10μg/mL,获得的重组蛋白TrxA‑ApSerpin‑FA72在pH=7~9,60℃对丝氨酸蛋白酶的抑制活性高达95%以上,能够有效获得具有活性的重组蛋白TrxA‑ApSerpin‑FA72,为后续进一步研究光滑鳖甲丝氨酸蛋白酶抑制剂的功能奠定基础。
The present invention aims to provide a method for the renaturation and activity of the fusion protein TrxA -ApSerpin- FA72 inclusion body protein of soft-shelled turtle methyl-serine protease inhibitor. The present invention adopts the method of adding urea in the denaturing liquid, and using guanidine hydrochloride to dilute and renature to activate the fusion protein TrxA -ApSerpin- FA72 inclusion body protein of the smooth turtle methyl-serine protease inhibitor, and control the protein concentration in the whole protein renaturation process. 1-10μg/mL, the obtained recombinant protein TrxA- ApSerpin -FA72 has an inhibitory activity of more than 95% on serine protease at pH=7~9 and 60°C, and can effectively obtain an active recombinant protein TrxA -ApSerpin- FA72, which is Subsequent further research on the function of the smooth turtle methserine protease inhibitor lays the foundation.
Description
发明领域Field of Invention
本发明属于活性蛋白的制备技术领域,具体的,本发明涉及一种显著提高光滑鳖甲丝氨酸蛋白酶抑制剂包涵体蛋白复性及活性的方法的技术领域。The invention belongs to the technical field of preparation of active proteins, and in particular, the invention relates to the technical field of a method for significantly improving the renaturation and activity of the inclusion body protein of the methyserine protease inhibitor of smooth turtle.
背景技术Background technique
丝氨酸蛋白酶抑制剂一般由约400个氨基酸残基组成的单链的蛋白质,蛋白质的中心由9个α螺旋包围,并且组成了3个β折叠,同时其活性反应中心环(RCL)一般远离丝氨酸蛋白酶抑制剂的中心,在抑制剂的羧基末端约30-40个残基的位置。光滑鳖甲丝氨酸蛋白酶抑制剂ApSerpin-FA72是丝氨酸蛋白酶抑制剂超家族的成员,Kazal型蛋白酶抑制剂,参与丝氨酸蛋白酶水解级联作用的负调控。丝氨酸蛋白酶抑制剂在酚氧化酶原的激活与抗菌肽的表达也起着负调控作用,还具有抑制昆虫的消化酶作用,调节炎症与凝血等作用。Serine protease inhibitors are generally single-chain proteins composed of about 400 amino acid residues. The center of the protein is surrounded by 9 α helices and constitutes 3 β sheets. At the same time, its active reaction center loop (RCL) is generally far away from serine proteases. The center of the inhibitor is about 30-40 residues from the carboxyl terminus of the inhibitor. ApSerpin-FA72 is a member of the serine protease inhibitor superfamily, a Kazal-type protease inhibitor, which is involved in the negative regulation of serine protease hydrolysis cascades. Serine protease inhibitors also play a negative regulatory role in the activation of prophenoloxidase and the expression of antimicrobial peptides. They also inhibit the digestive enzymes of insects and regulate inflammation and blood coagulation.
新疆地处欧亚大陆腹地,气候干旱,其中鞘翅目(Coleoptera)昆虫是最具有代表性的一类昆虫,光滑鳖甲Anatolicapolitaborealis隶属于拟步甲科(Tenebrionodae)鳖甲族(Tenyriini)鳖甲属Anatolica是一类广泛分布的荒漠昆虫,光滑鳖甲可能存在独特的免疫调控防御机制。其中丝氨酸蛋白酶抑制剂可能在其独特免疫调控防御机制过程中起关键作用。Xinjiang is located in the hinterland of the Eurasian continent with arid climate. Among them, Coleoptera insects are the most representative class of insects. Anatolicapolitaborealis belongs to the Tenebrionodae family Tenyriini. Anatolica is a widely distributed desert insect, and the smooth soft-shelled turtle may have a unique immune regulation defense mechanism. Among them, serine protease inhibitors may play a key role in its unique immune regulation defense mechanism.
在基因工程发展的过程中,大肠杆菌作为原核表达系统,外源基因在大肠杆菌中高表达时,会形成高密度、不溶性蛋白颗粒,同时也不具有生物学活性,需要进行复性后才可以恢复生物学活性。因此,蛋白以包涵体的形式表达时,包涵体的复性是生产蛋白的关键技术,不同的包涵体使用不同的去污剂与变性剂进行处理,经洗涤、溶解、复性得到有生物活性的蛋白。In the process of genetic engineering development, E. coli is used as a prokaryotic expression system. When exogenous genes are highly expressed in E. coli, high-density, insoluble protein particles will be formed, and at the same time, they will not have biological activity. biological activity. Therefore, when the protein is expressed in the form of inclusion bodies, the renaturation of the inclusion bodies is the key technology for protein production. Different inclusion bodies are treated with different detergents and denaturing agents, and they are washed, dissolved and renatured to obtain biological activity. protein.
目前,已有专利CN109251936A中已经披露了一种光滑鳖甲丝氨酸蛋白酶抑制剂融合蛋白TrxA-ApSerpin-FA72的制备方法。但构建的工程菌株pET32a-ApSerpin-FA72/BL21,经诱导在大肠杆菌内正常表达,由于蛋白表达量过高,融合蛋白主要以包涵体形式存在,经破碎表达在菌体上清中目的蛋白远远小于包涵体蛋白,因此,为了获得大量的有活性的高纯度丝氨酸蛋白酶抑制剂,本发明提供了一种提高光滑鳖甲丝氨酸蛋白酶抑制剂融合蛋白TrxA-ApSerpin-FA72包涵体蛋白复性及活性的方法。为后续为进一步研究光滑鳖甲丝氨酸蛋白酶抑制剂的功能奠定基础。At present, the existing patent CN109251936A has disclosed a preparation method of the fusion protein TrxA-ApSerpin-FA72 of the smooth turtle methaserine protease inhibitor. However, the constructed engineering strain pET32a-ApSerpin-FA72/BL21 was induced to express normally in Escherichia coli. Due to the high protein expression, the fusion protein mainly existed in the form of inclusion bodies. It is much smaller than the inclusion body protein. Therefore, in order to obtain a large amount of active high-purity serine protease inhibitor, the present invention provides a method for improving the renaturation and activity of the fusion protein TrxA-ApSerpin-FA72 inclusion body protein. Methods. It lays the foundation for the further study of the function of the smooth turtle methserine protease inhibitor.
发明内容SUMMARY OF THE INVENTION
针对现有技术中制备的光滑鳖甲丝氨酸蛋白酶抑制剂纯度低,活性弱的技术问题,本发明旨在于提供一种显著提高光滑鳖甲丝氨酸蛋白酶抑制剂融合蛋白TrxA-ApSerpin-FA72包涵体蛋白复性及活性的方法。本发明通过提供提高光滑鳖甲丝氨酸蛋白酶抑制剂融合蛋白TrxA-ApSerpin-FA72包涵体蛋白复性及活性方法能够使诱导表达的高浓度包涵体融合蛋白有效富集,处理后显著提高了蛋白活性,解决了当前重组蛋白TrxA-ApSerpin-FA72的获取主要为无活性的包涵体蛋白,且尚无相关显著提高重组蛋白TrxA-ApSerpin-FA72包涵体蛋白活性的复性方法报道的技术难点,为后续为进一步研究光滑鳖甲丝氨酸蛋白酶抑制剂的功能奠定基础,对其分子机制的研究为荒漠昆虫独特的免疫调控防御机制提供依据。Aiming at the technical problems of low purity and weak activity of the T. glabrata meth serine protease inhibitor prepared in the prior art, the present invention aims to provide a fusion protein TrxA-ApSerpin-FA72 inclusion body protein that significantly improves the complexation of the T. glabrata methaserine protease inhibitor fusion protein. methods of sexuality and activity. The invention provides a method for improving the renaturation and activity of the inclusion body protein of the fusion protein TrxA-ApSerpin-FA72 of the smooth turtle methaserine protease inhibitor, which can effectively enrich the high-concentration inclusion body fusion protein induced and expressed, and the protein activity is significantly improved after the treatment. It solves the technical difficulties reported by the current recombinant protein TrxA-ApSerpin-FA72, which is mainly an inactive inclusion body protein, and there is no related renaturation method that significantly improves the activity of the recombinant protein TrxA-ApSerpin-FA72 inclusion body protein. Further research on the function of the smooth turtle methase inhibitor will lay the foundation, and the study of its molecular mechanism will provide the basis for the unique immune regulation and defense mechanism of desert insects.
本发明提供一种显著提高光滑鳖甲丝氨酸蛋白酶抑制剂融合蛋白TrxA-ApSerpin-FA72包涵体蛋白复性及活性的方法,其具体方法步骤如下:The present invention provides a method for significantly improving the renaturation and activity of the fusion protein TrxA-ApSerpin-FA72 inclusion body protein of the soft-shelled turtle methyl-serine protease inhibitor. The specific method steps are as follows:
(1)将重组质粒pET32a-ApSerpin-FA72转化至大肠杆菌株BL21(DE3)中,筛选阳性单克隆进行培养,37℃、220r/min过夜培养,次日按1:100接菌于LB培养基中(Amp+)培养4h,菌体OD值为0.6,加入不同终浓度IPTG,32℃,180r/min条件下诱导4h,8000×g离心10min收集沉淀,用磷酸缓冲液将菌体重悬后;(1) Transform the recombinant plasmid pET32a-ApSerpin-FA72 into Escherichia coli strain BL21 (DE3), screen positive single clones and cultivate them overnight at 37°C at 220 r/min, and inoculate them in LB medium at 1:100 the next day Medium (Amp + ) was cultured for 4h, the OD value of the bacteria was 0.6, added with different final concentrations of IPTG, induced at 32°C, 180r/min for 4h, centrifuged at 8000 × g for 10min to collect the precipitate, and resuspended the bacteria with phosphate buffer;
(2)用制备的Tris-HCl缓冲液洗涤沉淀,超声破碎2min将溶液中的沉淀充分溶解,8000×g离心10min,重复三次后用Tris-HCl缓冲液将残留在菌体上的洗涤液洗净;(2) Wash the precipitate with the prepared Tris-HCl buffer, fully dissolve the precipitate in the solution by ultrasonication for 2 min, centrifuge at 8000 × g for 10 min, repeat three times and wash the washing liquid remaining on the cells with Tris-HCl buffer net;
(3)包涵体在变性液4℃下充分溶解1h,8000×g离心15min,在18h内将复性缓冲液用蠕动泵缓慢加入溶解液中,并用磁力搅拌器缓慢搅拌。(3) The inclusion bodies were fully dissolved in the denaturing solution at 4°C for 1 h, centrifuged at 8000 × g for 15 min, and the renaturing buffer was slowly added to the lysing solution with a peristaltic pump within 18 h, and slowly stirred with a magnetic stirrer.
优选的,IPTG浓度为0.4mmol/L。Preferably, the IPTG concentration is 0.4 mmol/L.
优选的,磷酸缓冲液为137mmol/L NaCl,2.7mmol/L KCl,10mmol/LNa2HPO4,2mmol/LKH2PO4混合制得。Preferably, the phosphate buffer is prepared by mixing 137 mmol/L NaCl, 2.7 mmol/L KCl, 10 mmol/L Na 2 HPO 4 and 2 mmol/L KH 2 PO 4 .
优选的,制备的Tris-HCl缓冲液为2mol/L尿素,50mmol/L Tris-HCl,100mmol/LNaCl,0.1mmol/L DTT,0.1mmol/L EDTA混合制得。Preferably, the prepared Tris-HCl buffer is prepared by mixing 2mol/L urea, 50mmol/L Tris-HCl, 100mmol/LNaCl, 0.1mmol/L DTT, and 0.1mmol/L EDTA.
优选的,变性液为50mmol/L Tris-HCl,100mmol/L NaCl,0.1mmol/L DTT,0.1mmol/L EDTA,6mol/L盐酸胍,0.4mol/L L-Arg混合制得,pH=8.0。Preferably, the denaturing solution is prepared by mixing 50mmol/L Tris-HCl, 100mmol/L NaCl, 0.1mmol/L DTT, 0.1mmol/L EDTA, 6mol/L guanidine hydrochloride, 0.4mol/L L-Arg, pH=8.0 .
优选的,复性缓冲液为50mmol/L Tris-HCl,100mmol/L NaCl,0.1mmol/L DTT,0.1mmol/L EDTA,混合制得。Preferably, the renaturation buffer is 50 mmol/L Tris-HCl, 100 mmol/L NaCl, 0.1 mmol/L DTT, and 0.1 mmol/L EDTA, prepared by mixing.
本发明中所使用的菌株pET32a-ApSerpin-FA72/BL21已在现有技术中披露,已有专利CN109251936A中也已经披露了一种光滑鳖甲丝氨酸蛋白酶抑制剂融合蛋白TrxA-ApSerpin-FA72的制备方法,构建的工程菌株pET32a-ApSerpin-FA72/BL21已成为公知菌种。The strain pET32a-ApSerpin-FA72/BL21 used in the present invention has been disclosed in the prior art, and the existing patent CN109251936A has also disclosed a preparation method of the fusion protein TrxA-ApSerpin-FA72 of the smooth turtle methylserine protease inhibitor , the constructed engineering strain pET32a-ApSerpin-FA72/BL21 has become a well-known strain.
通过实施本发明的技术方案,可以达到以下有益效果:By implementing the technical scheme of the present invention, the following beneficial effects can be achieved:
通过提供一种显著提高光滑鳖甲丝氨酸蛋白酶抑制剂融合蛋白TrxA-ApSerpin-FA72包涵体蛋白复性及活性的方法。通过采用在变性液中添加尿素,并使用盐酸胍稀释复性的方法对光滑鳖甲丝氨酸蛋白酶抑制剂融合蛋白TrxA-ApSerpin-FA72包涵体蛋白进行活化,在整个蛋白复性过程控制蛋白浓度在1-10μg/mL,获得的重组蛋白TrxA-ApSerpin-FA72在pH=7~9,60℃对丝氨酸蛋白酶的抑制活性高达95%以上,能够有效获得处理后获得了具有活性的重组蛋白TrxA-ApSerpin-FA72蛋白,解决了当前重组蛋白TrxA-ApSerpin-FA72的获取主要为无活性的包涵体蛋白,且尚无相关显著提高重组蛋白TrxA-ApSerpin-FA72包涵体蛋白活性的复性方法报道的技术难点,为后续为进一步研究光滑鳖甲丝氨酸蛋白酶抑制剂的功能奠定基础。The invention provides a method for significantly improving the renaturation and activity of the fusion protein TrxA-ApSerpin-FA72 inclusion body protein of the smooth turtle methaserine protease inhibitor. By adding urea to the denaturing solution and using guanidine hydrochloride to dilute and renature the fusion protein TrxA-ApSerpin-FA72 inclusion body protein, the protein concentration of the protein was controlled at 1 during the whole protein renaturation process. -10μg/mL, the obtained recombinant protein TrxA-ApSerpin-FA72 has an inhibitory activity of more than 95% on serine protease at pH=7~9 and 60℃, which can effectively obtain the active recombinant protein TrxA-ApSerpin- The FA72 protein solves the technical difficulties that the current acquisition of the recombinant protein TrxA-ApSerpin-FA72 is mainly an inactive inclusion body protein, and there is no relevant report on the renaturation method that significantly improves the activity of the inclusion body protein of the recombinant protein TrxA-ApSerpin-FA72, It lays the foundation for the further study of the function of the smooth turtle methserine protease inhibitor.
附图说明Description of drawings
图1所示为重组蛋白TrxA-ApSerpin-FA72表达鉴定及其表达形式分析图。Figure 1 shows the expression identification of recombinant protein TrxA-ApSerpin-FA72 and its expression analysis.
图中,A为重组蛋白表达鉴定图,其中M为标准分子量蛋白,1为pET-32a-ApSerpin-FA72/BL21诱导前,2为pET-32a-ApSerpin-FA72/BL21诱导后;B为32℃、0.6mmol/L IPTG条件下诱导的蛋白表达形式分析重组蛋白表达形式鉴定图,其中1为超声破碎后离心上清中重组蛋白,2为超声破碎后离心沉淀中重组蛋白;C为TrxA-ApSerpin-FA72的Westernblot鉴定图,其中M为标准分子量蛋白,1为IPTG条件下诱导的重组蛋白TrxA-ApSerpin-FA72。In the figure, A is the recombinant protein expression identification map, where M is the standard molecular weight protein, 1 is before pET-32a-ApSerpin-FA72/BL21 induction, 2 is after pET-32a-ApSerpin-FA72/BL21 induction; B is 32℃ , 0.6mmol/L IPTG induced protein expression form analysis recombinant protein expression form identification chart, in which 1 is the recombinant protein in the centrifuged supernatant after ultrasonication, 2 is the recombinant protein in the centrifugal precipitation after ultrasonication; C is TrxA-ApSerpin - Western blot identification chart of FA72, where M is the standard molecular weight protein, and 1 is the recombinant protein TrxA-ApSerpin-FA72 induced under IPTG conditions.
图2所示为重组蛋白TrxA-ApSerpin-FA72表达优化结果图。Fig. 2 shows the result of expression optimization of recombinant protein TrxA-ApSerpin-FA72.
图中,1为pET-32a-ApSerpin-FA72/BL21诱导前处理组,2-6为pET-32a-ApSerpin-FA72/BL21诱导后处理组,处理方法分别为0.2mmol/L IPTG、0.4mmol/L IPTG、0.6mmol/LIPTG、0.8mmol/L IPTG、1mmol/L IPTG。In the figure, 1 is the pET-32a-ApSerpin-FA72/BL21 pre-treatment group, 2-6 are the pET-32a-ApSerpin-FA72/BL21 post-treatment groups, the treatment methods are 0.2 mmol/L IPTG, 0.4 mmol/L, respectively. L IPTG, 0.6 mmol/LIPTG, 0.8 mmol/L IPTG, 1 mmol/L IPTG.
图3显示为重组蛋白TrxA-ApSerpin-FA72包涵体的纯化结果图。Figure 3 shows the result of purification of recombinant protein TrxA-ApSerpin-FA72 inclusion bodies.
图中,M为标准分子量蛋白,1为pET-32a-ApSerpin-FA72/BL21诱后,2-3为含1%TritonX-100Tris-HCl洗涤液,4-5为含2%TritonX-100Tris-HCl洗涤液,6-7为2mol/L尿素洗涤液,8为纯化的包涵体。In the figure, M is the standard molecular weight protein, 1 is pET-32a-ApSerpin-FA72/BL21 after induction, 2-3 is washing solution containing 1% TritonX-100Tris-HCl, 4-5 is containing 2% TritonX-100Tris-HCl Washing solution, 6-7 is 2mol/L urea washing solution, 8 is purified inclusion body.
图4显示为重组蛋白TrxA-ApSerpin-FA72包涵体复性条件筛选结果图。Figure 4 shows the results of screening the renaturation conditions of the recombinant protein TrxA-ApSerpin-FA72 inclusion bodies.
图中,A为Tris-HCl复性液,5%甘油处理组,B为Tris-HCl复性液0.4mol/LL-精氨酸处理组,C为Tris-HCl复性液,0.9mmol/L还原型谷胱甘肽,0.2mmol/L氧化型谷胱甘肽处理组,D为Tris-HCl复性液,5%Glycerol,0.4mol/L L-精氨酸,0.9mmol/L还原型谷胱甘肽,0.2mmol/L氧化型谷胱甘肽处理组。In the figure, A is Tris-HCl renaturation solution, 5% glycerol treatment group, B is Tris-HCl renaturation solution 0.4mol/LL-arginine treatment group, C is Tris-HCl renaturation solution, 0.9mmol/L Reduced glutathione, 0.2mmol/L oxidized glutathione treatment group, D is Tris-HCl renaturation solution, 5% Glycerol, 0.4mol/L L-arginine, 0.9mmol/L reduced glutathione GSH, 0.2mmol/L oxidized glutathione treatment group.
图5显示为重组蛋白TrxA-ApSerpin-FA72包涵体复性条件SDS-PAGE检测结果图。Figure 5 shows the results of SDS-PAGE detection of recombinant protein TrxA-ApSerpin-FA72 inclusion bodies under renaturation conditions.
图中,M为标准分子量蛋白,1为Tris-HCl复性液5%Glycerol及0.4mol/L L-精氨酸及0.9mmol/L还原型谷胱甘肽及0.2mmol/L氧化型谷胱甘肽处理组,2为Tris-HCl复性液及0.9mmol/L还原型谷胱甘肽及0.2mmol/L氧化型谷胱甘肽处理组,3为Tris-HCl复性液0.4mol/LL-精氨酸处理组,4为Tris-HCl复性液及5%甘油处理组。In the figure, M is the standard molecular weight protein, 1 is Tris-HCl renaturation solution 5% Glycerol and 0.4mol/L L-arginine and 0.9mmol/L reduced glutathione and 0.2mmol/L oxidized glutathione Glutathione treatment group, 2 is Tris-HCl renaturing solution and 0.9mmol/L reduced glutathione and 0.2 mmol/L oxidized glutathione treatment group, 3 is Tris-HCl renaturing solution 0.4mol/LL -Arginine treatment group, 4 is Tris-HCl renaturation solution and 5% glycerol treatment group.
图6显示为胰蛋白酶与复性的蛋白孵育后的活性测定结果图。图中,A为对照组胰蛋白酶与复性液孵育处理组,B为盐酸胍稀释复性蛋白组,C为盐酸胍透析复性蛋白组,D为尿素稀释复性蛋白组,E为尿素透析复性蛋白组,F为2mol/L尿素洗涤液稀释复性蛋白组。Figure 6 is a graph showing the results of the activity assay of trypsin after incubation with the renatured protein. In the figure, A is the control group of trypsin and renaturation solution incubation, B is the guanidine hydrochloride dilution and renaturation protein group, C is the guanidine hydrochloride dialysis renaturation protein group, D is the urea dilution and renaturation protein group, and E is the urea dialysis Refolding protein group, F is the renaturing protein group diluted with 2mol/L urea washing solution.
图7显示为胰蛋白酶与不同浓度TrxA-ApSerpin-FA72孵育结果图。Figure 7 shows the results of incubation of trypsin with different concentrations of TrxA-ApSerpin-FA72.
图8显示为pH对TrxA-ApSerpin-FA72活性的影响结果图。Figure 8 is a graph showing the effect of pH on the activity of TrxA-ApSerpin-FA72.
图9显示为温度对TrxA-ApSerpin-FA72活性的影响结果图。Figure 9 is a graph showing the effect of temperature on the activity of TrxA-ApSerpin-FA72.
具体实施方式Detailed ways
下面,举实施例说明本发明,但是,本发明并不限于下述的实施例。Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to the following examples.
本发明中材料有:蛋白Marker(26614)、还原型谷胱甘肽GSH、氧化型谷胱甘肽GSSG、盐酸胍、二硫苏糖醇DTT、L-Arg购于鹏世达实验有限公司;尿素购自上海生工生物工程公司;胰蛋白酶(T1426)、苯甲酰-L-精氨酰-对硝基苯胺(B4875)购于四川辰马公司;蛋白电泳仪为Bio-Rad公司产品,其余试剂为国产分析纯。所述试剂、材料均可通过公共渠道购买,工艺中所采用的设备和仪器均为本领域常见的设备。The materials in the present invention are: protein Marker (26614), reduced glutathione GSH, oxidized glutathione GSSG, guanidine hydrochloride, dithiothreitol DTT, L-Arg purchased from Peng Shida Experiment Co., Ltd.; Urea was purchased from Shanghai Sangon Bioengineering Company; trypsin (T1426) and benzoyl-L-arginyl-p-nitroaniline (B4875) were purchased from Sichuan Chenma Company; protein electrophoresis instrument was a product of Bio-Rad Company, The rest of the reagents are of domestic analytical grade. The reagents and materials can be purchased through public channels, and the equipment and instruments used in the process are common equipment in the art.
本发明中所使用的菌株pET32a-ApSerpin-FA72/BL21已在现有技术中披露,在已有专利CN109251936A中也已经披露了一种光滑鳖甲丝氨酸蛋白酶抑制剂融合蛋白TrxA-ApSerpin-FA72的制备方法,构建的工程菌株pET32a-ApSerpin-FA72/BL21已成为公知菌种。The strain pET32a-ApSerpin-FA72/BL21 used in the present invention has been disclosed in the prior art, and the existing patent CN109251936A has also disclosed the preparation of a fusion protein TrxA-ApSerpin-FA72 of a smooth turtle methaserine protease inhibitor Methods, the constructed engineering strain pET32a-ApSerpin-FA72/BL21 has become a well-known strain.
本发明中选用的所有材料、试剂和仪器都为本领域熟知的,但不限制本发明的实施,其他本领域熟知的一些试剂和设备都可适用于本发明以下实施方式的实施。All materials, reagents and instruments selected in the present invention are well known in the art, but do not limit the implementation of the present invention, and some other reagents and equipment well known in the art are applicable to the implementation of the following embodiments of the present invention.
以下实施例进一步说明本发明的内容,但不应理解为对本发明的限制。在不背离本发明精神和实质的情况下,对本发明方法、步骤或条件所作的修改或替换,均属于本发明的范围。The following examples further illustrate the content of the present invention, but should not be construed as limiting the present invention. Modifications or substitutions made to the methods, steps or conditions of the present invention without departing from the spirit and essence of the present invention all belong to the scope of the present invention.
实施例一:一种显著提高光滑鳖甲丝氨酸蛋白酶抑制剂融合蛋白TrxA-ApSerpin-FA72包涵体蛋白复性及活性的方法Example 1: A method for significantly improving the renaturation and activity of the fusion protein TrxA-ApSerpin-FA72 inclusion body protein of T. glabrata
提高光滑鳖甲丝氨酸蛋白酶抑制剂融合蛋白TrxA-ApSerpin-FA72包涵体蛋白复性及活性的方法,其具体方法步骤如下:The method for improving the renaturation and activity of the fusion protein TrxA-ApSerpin-FA72 inclusion body protein of the soft-shelled turtle methyl-serine protease inhibitor, the specific method steps are as follows:
(2)将重组质粒pET32a-ApSerpin-FA72转化至大肠杆菌株BL21(DE3)中,筛选阳性单克隆进行培养,37℃、220r/min过夜培养,次日按1:100接菌于LB培养基中(Amp+)培养4h,菌体OD值为0.6,加入不同终浓度IPTG,32℃,180r/min条件下诱导4h,8000×g离心10min收集沉淀,用磷酸缓冲液将菌体重悬后;(2) Transform the recombinant plasmid pET32a-ApSerpin-FA72 into Escherichia coli strain BL21 (DE3), screen positive single clones and culture, overnight at 37°C and 220r/min, and inoculate in LB medium at 1:100 the next day Medium (Amp + ) was cultured for 4h, the OD value of the bacteria was 0.6, added with different final concentrations of IPTG, induced at 32°C, 180r/min for 4h, centrifuged at 8000 × g for 10min to collect the precipitate, and resuspended the bacteria with phosphate buffer;
(2)用制备的Tris-HCl缓冲液洗涤沉淀,超声破碎2min将溶液中的沉淀充分溶解,8000×g离心10min,重复三次后用Tris-HCl缓冲液将残留在菌体上的洗涤液洗净;(2) Wash the precipitate with the prepared Tris-HCl buffer, fully dissolve the precipitate in the solution by ultrasonication for 2 min, centrifuge at 8000 × g for 10 min, repeat three times and wash the washing liquid remaining on the cells with Tris-HCl buffer net;
(3)包涵体在变性液4℃下充分溶解1h,8000×g离心15min,在18h内将复性缓冲液用蠕动泵缓慢加入溶解液中,并用磁力搅拌器缓慢搅拌。(3) The inclusion bodies were fully dissolved in the denaturing solution at 4°C for 1 h, centrifuged at 8000 × g for 15 min, and the renaturing buffer was slowly added to the lysing solution with a peristaltic pump within 18 h, and slowly stirred with a magnetic stirrer.
所述的,磷酸缓冲液为137mmol/L NaCl,2.7mmol/L KCl,10mmol/LNa2HPO4,2mmol/LKH2PO4混合制得。The phosphate buffer solution is prepared by mixing 137 mmol/L NaCl, 2.7 mmol/L KCl, 10 mmol/L Na 2 HPO 4 and 2 mmol/L KH 2 PO 4 .
所述的,制备的Tris-HCl缓冲液为2mol/L尿素,50mmol/L Tris-HCl,100mmol/LNaCl,0.1mmol/LDTT,0.1mmol/L EDTA混合制得。Said, the prepared Tris-HCl buffer is prepared by mixing 2mol/L urea, 50mmol/L Tris-HCl, 100mmol/LNaCl, 0.1mmol/LDTT, and 0.1mmol/L EDTA.
所述的,变性液为50mmol/L Tris-HCl,100mmol/L NaCl,0.1mmol/L DTT,0.1mmol/L EDTA,6mol/L盐酸胍,0.4mol/L L-Arg混合制得,pH=8.0。Described, denaturation solution is 50mmol/L Tris-HCl, 100mmol/L NaCl, 0.1mmol/L DTT, 0.1mmol/L EDTA, 6mol/L guanidine hydrochloride, 0.4mol/L L-Arg mixes and makes, pH= 8.0.
所述的,复性缓冲液为50mmol/L Tris-HCl,100mmol/L NaCl,0.1mmol/LDTT,0.1mmol/LEDTA,混合制得。The renaturation buffer is 50 mmol/L Tris-HCl, 100 mmol/L NaCl, 0.1 mmol/LDTT, 0.1 mmol/LEDTA, and is prepared by mixing.
实施例二:TrxA-ApSerpin-FA72融合蛋白的表达及表达形式的鉴定Example 2: Expression of TrxA-ApSerpin-FA72 fusion protein and identification of expression form
基于实施例一,将实验室已构建的重组质粒pET32a-ApSerpin-FA72转化至大肠杆菌株BL21(DE3)中,筛选阳性单克隆,37℃、220r/min过夜培养,次日按1:100接菌于LB培养基中(Amp+)培养4h,菌体OD值为0.6,加入不同终浓度IPTG,32℃,180r/min条件下诱导4h,8000×g离心10min收集沉淀,用磷酸缓冲液将菌体重悬后,超声破碎,收集沉淀及上清,12%SDS-PAGE检测融合蛋白表达形式及比较不同浓度IPTG诱导的蛋白。诱导结果如附图1所示,pET32a-ApSerpin-FA72/BL21在IPTG诱导表达后,与诱导前相比,58kD左右出现目标条带如附图1中A箭头所示。将菌液超声破碎,离心得到沉淀和上清,在12%SDS-PAGE中分析重组蛋白表达形式,将获得的融合蛋白进行12%SDS-PAGE凝胶电泳,结束后取出凝胶,切下目的条带凝胶,经过转膜封闭后,按照1:5000用封闭液稀释羊抗人IgGFc(HRP)抗体,将转膜放入其中,室温孵育2h取出后用TBST溶液洗涤3次,每次洗10min。显色照相。结果如附图1中B显示重组蛋白TrxA-ApSerpin-FA72主要以包涵体的形式存在。经Westernblotting分析如附图1中C所示,发现该重组蛋白被His标签抗体识别有特异性条带,表明表达蛋白是目的蛋白,在最佳诱导温度32℃下,筛选不同IPTG诱导浓度如附图2所示,在IPTG为0.4mmol/L蛋白表达量最高。Based on Example 1, the recombinant plasmid pET32a-ApSerpin-FA72 constructed in the laboratory was transformed into Escherichia coli strain BL21 (DE3), and positive single clones were screened, and cultured overnight at 37°C and 220 r/min, followed by 1:100 the next day. The bacteria were cultured in LB medium (Amp + ) for 4 hours, the OD value of the bacteria was 0.6, added with different final concentrations of IPTG, induced for 4 hours at 32 °C, 180 r/min, and centrifuged at 8000 × g for 10 min to collect the precipitate, and phosphate buffer was used. After the bacteria were resuspended, sonicated, the precipitate and supernatant were collected, and 12% SDS-PAGE was used to detect the expression of fusion protein and compare the protein induced by different concentrations of IPTG. The induction results are shown in FIG. 1 . After IPTG-induced expression of pET32a-ApSerpin-FA72/BL21, compared with before induction, a target band appeared at about 58 kD, as shown by the arrow A in FIG. 1 . The bacterial solution was ultrasonically broken, centrifuged to obtain the precipitate and supernatant, and the expression form of the recombinant protein was analyzed in 12% SDS-PAGE, and the obtained fusion protein was subjected to 12% SDS-PAGE gel electrophoresis. The band gel was blocked by transfer membrane, diluted goat anti-human IgGFc (HRP) antibody with blocking solution according to 1:5000, put the transfer membrane in it, incubated for 2h at room temperature, took out and washed 3 times with TBST solution, each wash 10min. Color photography. The results are shown in Fig. 1, B, showing that the recombinant protein TrxA-ApSerpin-FA72 mainly exists in the form of inclusion bodies. After Western blotting analysis, as shown in C in Figure 1, it was found that the recombinant protein was recognized by His-tag antibody with a specific band, indicating that the expressed protein was the target protein. As shown in Figure 2, the protein expression level was the highest in IPTG at 0.4 mmol/L.
实施例三:TrxA-ApSerpin-FA72融合蛋白的包涵体的分离和纯化Example 3: Isolation and purification of inclusion bodies of TrxA-ApSerpin-FA72 fusion protein
基于实施例一及实施例二中的制备方法,用含1%﹑2%TritonX-100与2mol/L尿素的Tris-HCl缓冲液洗涤沉淀,超声破碎2min将溶液中的沉淀充分溶解,8000×g离心10min,重复三次后用Tris-HCl缓冲液将残留在菌体上的洗涤液洗净。不同浓度成分的洗涤剂去除沉淀中的非目的条带,最终菌体释放得到大量较纯的包涵体,结果如附图3所示,使用2mol/L尿素的Tris-HCl缓冲液洗涤沉淀获得的TrxA-ApSerpin-FA72融合蛋白的包涵体显著高于其它缓冲液处理组。Based on the preparation methods in Example 1 and Example 2, the precipitate was washed with Tris-HCl buffer solution containing 1%, 2% TritonX-100 and 2mol/L urea, and the precipitate in the solution was fully dissolved by ultrasonication for 2 min, 8000× g centrifugation for 10 min, and after repeating three times, the washing solution remaining on the cells was washed with Tris-HCl buffer. Detergents with different concentrations of ingredients removed the non-target bands in the precipitate, and finally the bacterial cells were released to obtain a large number of relatively pure inclusion bodies. The inclusion bodies of TrxA-ApSerpin-FA72 fusion protein were significantly higher than those of other buffer-treated groups.
实施例四:重组蛋白TrxA-ApSerpin-FA72复性条件的筛选Example 4: Screening of renaturation conditions for recombinant protein TrxA-ApSerpin-FA72
基于上述系列实施例,包涵体在变性液,4℃下充分溶解1h,8000×g离心15min,在18h内将不同的复性缓冲液处理组用蠕动泵缓慢加入溶解液中,并用磁力搅拌器缓慢搅拌,不同处理组复性缓冲液中除含有50mmol/L Tris-HCl,100mmol/L NaCl,0.1mmol/L DTT,0.1mmol/L EDTA外,还分别含有0.4mol/L L-Arg,0.9mmol/L GSH、0.2mmol/L GSSG,5%甘油,检测各处理组OD320处的吸光度是光散射的量度,不可溶的蛋白在OD320有吸收峰,可溶性蛋白质在320nm处无吸收峰,评估相同变性蛋白液在不同组分复性液中进行复性的效率,以不含包涵体的变性液为对照,矫正浊度。测量2h、14h、26h的吸光光度的变化,筛选出最优的复性条件。如附图4所示,加入氧化还原系统(50mmol/L Tris-HCl,100mmol/L NaCl,0.1mmol/L DTT,0.1mmol/L EDTA,0.9mmol/L GSH,0.2mmol/L GSSG)的OD320增长最快,在整个复性过程中,含有L-Arg的复性液OD320增长缓慢,蛋白质在320nm处不会吸收,数值较低,由此在复性过程中三种不同物质的作用L-Arg>甘油>氧化还原系统(GSH,GSSG),根据SDS-PAGE验证复性蛋白参见附图5,结果与附图4一致。Based on the above series of examples, the inclusion bodies were fully dissolved in the denaturing solution at 4°C for 1 h, centrifuged at 8000 × g for 15 min, and the different renaturing buffer treatment groups were slowly added to the lysing solution with a peristaltic pump within 18 h, and a magnetic stirrer was used. Stir slowly, in addition to 50mmol/L Tris-HCl, 100mmol/L NaCl, 0.1mmol/L DTT, 0.1mmol/L EDTA, the renaturation buffers of different treatment groups also contain 0.4mol/L L-Arg, 0.9 mmol/L GSH, 0.2 mmol/L GSSG, 5% glycerol, the absorbance at OD320 of each treatment group was detected as a measure of light scattering, insoluble proteins had absorption peaks at OD320 , and soluble proteins had no absorption peaks at 320nm. The renaturation efficiency of the same denatured protein solution in the renaturation solution of different components, the denaturation solution without inclusion bodies was used as the control, and the turbidity was corrected. Measure the changes of absorbance at 2h, 14h and 26h, and screen out the optimal renaturation conditions. As shown in accompanying drawing 4, add the OD of redox system (50mmol/L Tris-HCl, 100mmol/L NaCl, 0.1mmol/L DTT, 0.1mmol/L EDTA, 0.9mmol/L GSH, 0.2mmol/L GSSG) 320 grows the fastest. During the whole renaturation process, the OD 320 of the renaturing solution containing L-Arg grows slowly, the protein does not absorb at 320nm, and the value is low, so the effect of three different substances in the renaturation process L-Arg>glycerol>redox system (GSH, GSSG). The renatured protein was verified by SDS-PAGE, see Figure 5, and the results were consistent with Figure 4.
实施例五:重组蛋白TrxA-ApSerpin-FA72含量的测定Example 5: Determination of the content of recombinant protein TrxA-ApSerpin-FA72
基于上述实施例,通过Bradford法,以牛血清蛋白作1mg/mL为标准,将蛋白稀释0、0.1、0.3、0.5、0.7、1.0mg/mL不同浓度梯度制作标准曲线测定蛋白浓度,蛋白浓度在1-10μg/mL。Based on the above example, by Bradford method, with bovine serum albumin as the standard of 1 mg/mL, the protein was diluted with different concentration gradients of 0, 0.1, 0.3, 0.5, 0.7, 1.0 mg/mL to make a standard curve to measure the protein concentration. 1-10 μg/mL.
实施例六:重组蛋白TrxA-ApSerpin-FA72的活性检测Example 6: Activity detection of recombinant protein TrxA-ApSerpin-FA72
基于上述实施例,测定TrxA-ApSerpin-FA72活性,即测定对胰蛋白酶的抑制活性,根据Sigma公司的实验方法与TangY、NegiP、JohnsonET等人报道的方法,将胰蛋白酶溶于0.1mmol/LHCl中浓度为0.2mg/mL,苯甲酰-L-精氨酰-对硝基苯胺(B4875)溶于缓冲液50mmol/L Tris-HCl,l20mmol/L CaCl2,100mmol/L NaCl,pH=8.0中,取50μL酶溶液与50μL不同浓度的丝氨酸蛋白酶抑制剂在37℃下孵育30min,加入100μL B4875(1mg/mL)。酶标仪连续15min检测OD405吸光度的变化,定义硝基苯胺的活性单位:在OD405变化了0.01为一个活性单位。Based on the above example, the activity of TrxA-ApSerpin-FA72 was determined, that is, the inhibitory activity to trypsin was determined. According to the experimental method of Sigma Company and the According to the method reported by TangY, NegiP, JohnsonET and others, trypsin was dissolved in 0.1mmol/L HCl at a concentration of 0.2mg/mL, and benzoyl-L-arginyl-p-nitroaniline (B4875) was dissolved in buffer 50mmol /L Tris-HCl, 120mmol/L CaCl 2 , 100mmol/L NaCl, pH=8.0, take 50μL of enzyme solution and 50μL of different concentrations of serine protease inhibitors and incubate at 37°C for 30min, add 100μL of B4875 (1mg/mL) . The microplate reader continuously detects the change of OD 405 absorbance for 15 minutes, and defines the activity unit of nitroaniline: a change of 0.01 in OD 405 is an activity unit.
实施例七:重组蛋白TrxA-ApSerpin-FA72复性方法的比较Example 7: Comparison of renaturation methods for recombinant protein TrxA-ApSerpin-FA72
根据上述系列实施例,根据复性方法和变性液组成,进行不同的复性过程,盐酸胍稀释复性、盐酸胍透析复性、尿素的稀释复性、尿素的透析复性(其中2mol/L尿素洗脱液进行尿素的透析复性),测定不同条件复性蛋白对胰蛋白酶抑制活性与对胰蛋白抑制的IC50。检测结果如表1所示,比较尿素透析复性、尿素稀释复性、盐酸胍的透析复性、盐酸胍稀释复性,相同浓度的变性蛋白溶液经过不同方法复性后,得到的可溶性蛋白量不同,相同体积下,盐酸胍稀释复性的可溶性蛋白浓度明显低于其他复性方法。如附图6所示,不同蛋白与胰蛋白酶孵育30min后,相同的时间内OD405增加量小,对硝基苯胺的生成量越少,抑制活性越强,结果表明盐酸胍稀释复性的重组蛋白TrxA-ApSerpin-FA72对胰蛋白酶具有较强的抑制效果。According to the above-mentioned series of embodiments, according to the renaturation method and the denaturing liquid composition, different renaturation processes are carried out, guanidine hydrochloride dilution renaturation, guanidine hydrochloride dialysis renaturation, urea dilution renaturation, urea dialysis renaturation (wherein 2mol/L The urea eluate was subjected to dialysis renaturation of urea), and the inhibitory activity of trypsin and the IC 50 of trypsin inhibition by different conditions of renatured proteins were determined. The test results are shown in Table 1. Comparing the renaturation of urea dialysis, urea dilution renaturation, dialysis renaturation of guanidine hydrochloride, and guanidine hydrochloride dilution renaturation, the denatured protein solution of the same concentration was renatured by different methods, and the amount of soluble protein obtained. However, under the same volume, the soluble protein concentration of guanidine hydrochloride dilution and renaturation was significantly lower than other renaturation methods. As shown in Figure 6, after incubation of different proteins with trypsin for 30 min, the increase in OD 405 was small within the same time period, the less p-nitroaniline was generated, and the stronger the inhibitory activity was. The protein TrxA-ApSerpin-FA72 has a strong inhibitory effect on trypsin.
表1:不同复性方法下可溶性蛋白浓度Table 1: Soluble protein concentrations under different renaturation methods
进一步检测复性蛋白TrxA-ApSerpin-FA72对胰蛋白酶的抑制活性,不同浓度的重组蛋白TrxA-ApSerpin-FA72与胰蛋白酶孵育30min后,加入苯甲酰-L-精氨酰-对硝基苯胺,检测TrxA-ApSerpin-FA72对胰蛋白酶的抑制活性。如附图7所示,随着TrxA-ApSerpin-FA72浓度的升高,单位时间内的OD405增加缓慢,对硝基苯胺的生成速率降低。结果表明复性的重组蛋白TrxA-ApSerpin-FA72对胰蛋白酶有抑制效果,且具有浓度依赖性,重组蛋白TrxA-ApSerpin-FA72对胰蛋白酶抑制的IC50为4.8mmol/L。The inhibitory activity of the renatured protein TrxA-ApSerpin-FA72 on trypsin was further detected. After incubation with different concentrations of the recombinant protein TrxA-ApSerpin-FA72 and trypsin for 30 min, benzoyl-L-arginyl-p-nitroanilide was added. The inhibitory activity of TrxA-ApSerpin-FA72 on trypsin was detected. As shown in Fig. 7, as the concentration of TrxA-ApSerpin-FA72 increased, the OD 405 per unit time increased slowly, and the formation rate of p-nitroaniline decreased. The results showed that the renatured recombinant protein TrxA-ApSerpin-FA72 had a concentration-dependent inhibitory effect on trypsin. The IC 50 of recombinant protein TrxA-ApSerpin-FA72 was 4.8mmol/L.
实施例八:TrxA-ApSerpin-FA72融合蛋白最适pHExample 8: Optimum pH of TrxA-ApSerpin-FA72 fusion protein
基于上述系列实施例,研究pH在5~11范围内,TrxA-ApSerpin-FA72对胰蛋白酶活性的影响,实验中测定活性最高的pH值为最佳pH。复性的TrxA-ApSerpin-FA72与胰蛋白酶在不同的pH于30℃中孵育30min,计算最佳pH。检测结果如附图8所示,复性的重组蛋白TrxA-ApSerpin-FA72经过冷冻干燥之后,溶解到不同pH下的溶液中,测定重组蛋白TrxA-ApSerpin-FA72对胰蛋白酶抑制活性,结果表明在pH=7~9之间丝氨酸蛋白酶抑制剂具有较高的抑制活性,在该pH范围之外,抑制剂的稳定性差。Based on the above series of examples, the effect of TrxA-ApSerpin-FA72 on the activity of trypsin in the pH range of 5-11 was studied, and the pH with the highest activity was determined to be the optimal pH in the experiment. The renatured TrxA-ApSerpin-FA72 was incubated with trypsin at different pH at 30°C for 30min, and the optimal pH was calculated. The test results are shown in Figure 8. After the renatured recombinant protein TrxA-ApSerpin-FA72 was freeze-dried, it was dissolved in solutions at different pH, and the inhibitory activity of the recombinant protein TrxA-ApSerpin-FA72 to trypsin was determined. Serine protease inhibitors have high inhibitory activity between pH=7-9, and the stability of inhibitors is poor outside this pH range.
实施例九:重组蛋白TrxA-ApSerpin-FA72的热稳定性Example 9: Thermostability of recombinant protein TrxA-ApSerpin-FA72
基于上述系列实施例,研究温度对胰蛋白酶抑制作用,在20℃~70℃不同温度下检测TrxA-ApSerpin-FA72的抑制活力,胰蛋白酶与抑制剂孵育30min和2h两组实验,具有最高抑制活性的温度定为胰蛋白酶抑制剂的最佳温度。测定结果如附图9所示,重组蛋白TrxA-ApSerpin-FA72对胰蛋白酶抑制活性在温度20~70℃范围内,TrxA-ApSerpin-FA72与胰蛋白酶在不同的孵育时间,有相同的结果,胰蛋白酶在30℃以上时,随着温度的上升,TrxA-ApSerpin-FA72的相对残余活力升高且在60℃达到最高,之后活性显著降低且在70℃为无抑制活性。Based on the above series of examples, the inhibitory effect of temperature on trypsin was studied. The inhibitory activity of TrxA-ApSerpin-FA72 was detected at different temperatures from 20°C to 70°C. Trypsin was incubated with the inhibitor for 30min and 2h. The two groups of experiments have the highest inhibitory activity. The temperature was set as the optimal temperature for trypsin inhibitor. The assay results are shown in Figure 9. The inhibitory activity of recombinant protein TrxA-ApSerpin-FA72 on trypsin is in the temperature range of 20 to 70 °C. TrxA-ApSerpin-FA72 and trypsin have the same results at different incubation times. When the protease temperature was above 30℃, the relative residual activity of TrxA-ApSerpin-FA72 increased with the increase of temperature and reached the highest at 60℃, after which the activity decreased significantly and showed no inhibitory activity at 70℃.
如上所述,即可较好地实现本发明,上述的实施例仅仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种改变和改进,均应落入本发明确定的保护范围内。As described above, the present invention can be well realized. The above-mentioned embodiments are only to describe the preferred embodiments of the present invention, and do not limit the scope of the present invention. Various changes and improvements made by technical personnel to the technical solutions of the present invention shall fall within the protection scope determined by the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910696088.8A CN110437331B (en) | 2019-07-30 | 2019-07-30 | Method for improving inclusion body protein renaturation of smooth turtle shell serine protease inhibitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910696088.8A CN110437331B (en) | 2019-07-30 | 2019-07-30 | Method for improving inclusion body protein renaturation of smooth turtle shell serine protease inhibitor |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110437331A true CN110437331A (en) | 2019-11-12 |
CN110437331B CN110437331B (en) | 2023-04-07 |
Family
ID=68432302
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910696088.8A Active CN110437331B (en) | 2019-07-30 | 2019-07-30 | Method for improving inclusion body protein renaturation of smooth turtle shell serine protease inhibitor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110437331B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109251936A (en) * | 2018-09-20 | 2019-01-22 | 四川理工学院 | A kind of smooth turtle shell serpin fusion albumen and preparation and application |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106636024A (en) * | 2016-09-30 | 2017-05-10 | 苏州埃德蒙生物技术有限公司 | Purified renaturation method of L-aspartic acid oxidase inclusion bodies |
CN109251936A (en) * | 2018-09-20 | 2019-01-22 | 四川理工学院 | A kind of smooth turtle shell serpin fusion albumen and preparation and application |
CN109942668A (en) * | 2019-03-27 | 2019-06-28 | 安徽环球基因科技有限公司 | A kind of method of inclusion body protein dilution dialysis renaturation |
-
2019
- 2019-07-30 CN CN201910696088.8A patent/CN110437331B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106636024A (en) * | 2016-09-30 | 2017-05-10 | 苏州埃德蒙生物技术有限公司 | Purified renaturation method of L-aspartic acid oxidase inclusion bodies |
CN109251936A (en) * | 2018-09-20 | 2019-01-22 | 四川理工学院 | A kind of smooth turtle shell serpin fusion albumen and preparation and application |
CN109942668A (en) * | 2019-03-27 | 2019-06-28 | 安徽环球基因科技有限公司 | A kind of method of inclusion body protein dilution dialysis renaturation |
Non-Patent Citations (2)
Title |
---|
GUOWEI XIAO ET AL.: "Suppression of breast cancer growth and metastasis by a serpin myoepithelium-derived serine proteinase inhibitor expressed in the mammary myoepithelial cells", 《PNAS》 * |
郭新昆等: "赖脯胰岛素的稀释复性工艺", 《中国医药工业杂志》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109251936A (en) * | 2018-09-20 | 2019-01-22 | 四川理工学院 | A kind of smooth turtle shell serpin fusion albumen and preparation and application |
CN109251936B (en) * | 2018-09-20 | 2021-09-10 | 四川理工学院 | Smooth turtle shell serine protease inhibitor fusion protein and preparation and application thereof |
Also Published As
Publication number | Publication date |
---|---|
CN110437331B (en) | 2023-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kawata et al. | Amino‐acid sequence of ribonuclease T2 from Aspergillus oryzae | |
Zuo et al. | Enhanced expression and purification of membrane proteins by SUMO fusion in Escherichia coli | |
CA2915253C (en) | Bacterial hyaluronidase and process for its production | |
Barnase et al. | Production and purification of the extracellular ribonuclease of Bacillus amyloliquefaciens (barnase) and its intracellular inhibitor (barstar) | |
CN106434699A (en) | SUMO and SUMO protease encoding gene and application thereof | |
CN114703117B (en) | Recombinant bacillus subtilis, construction method thereof and recombinant collagenase | |
CN110437331B (en) | Method for improving inclusion body protein renaturation of smooth turtle shell serine protease inhibitor | |
CN108179149B (en) | S100B mutant and application thereof | |
US20220162619A1 (en) | Preparation of wheat cysteine protease triticain-alpha produced in soluble form and method of producing same | |
CN110862978B (en) | Preparation method of recombinant halophilic archaea protease | |
Aitken et al. | Amino and carboxy terminal sequences of the DNA-binding protein HU from the Cyanobacterium Synechocystis PCC 6701 (ATCC 27170) | |
RU2603054C2 (en) | Method of wheat cysteine protease proteins family (triticum aestivum) producing and preparation of tritikaie-alpha protein, obtained using said method | |
CN116376885A (en) | Clostridium perfringens phage CPS2 lyase mutant and its application | |
CN113583107B (en) | CRIg functional region protein variants and uses thereof | |
CN116574716A (en) | Method for efficiently expressing TMPRSS by prokaryotes | |
CN115181166A (en) | Soluble expression method of O-type foot-and-mouth disease virus VP1 protein | |
Yada et al. | An arginine specific protease from Spirulina platensis | |
CN112481236A (en) | Recombinant protein INP-AidH and preparation method and application thereof | |
CN116622683B (en) | A specific bacillus lysing enzyme and its preparation method and use | |
CN115851787B (en) | Gene producing leucine aminopeptidase, Bacillus subtilis, construction method and application | |
Inokuchi et al. | Isolation of pepsinogen A from gastric mucosa of bullfrog, Rana catesbeiana | |
CN114657196B (en) | Porcine trypsinogen mutant and expression thereof in pichia pastoris | |
Krachmarova et al. | Production of Functional Recombinant Human Interferon-gamma by RTX CPD-fusion Technology | |
CN118240004A (en) | Novel inhibitory peptide mixture of bacillus alkaline protease, preparation and application thereof | |
CN118685388A (en) | A recombinant factor C protein and its preparation method, storage method and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |