[go: up one dir, main page]

CN110423764A - Anther development control gene and its application in brassica plant male sterility - Google Patents

Anther development control gene and its application in brassica plant male sterility Download PDF

Info

Publication number
CN110423764A
CN110423764A CN201910826420.8A CN201910826420A CN110423764A CN 110423764 A CN110423764 A CN 110423764A CN 201910826420 A CN201910826420 A CN 201910826420A CN 110423764 A CN110423764 A CN 110423764A
Authority
CN
China
Prior art keywords
gene
plants
anther
plant
anther development
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910826420.8A
Other languages
Chinese (zh)
Other versions
CN110423764B (en
Inventor
宋莉萍
汪爱华
高长斌
林处发
周国林
王斌才
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Academy of Agricultural Sciences
Original Assignee
Wuhan Academy of Agricultural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Academy of Agricultural Sciences filed Critical Wuhan Academy of Agricultural Sciences
Priority to CN201910826420.8A priority Critical patent/CN110423764B/en
Publication of CN110423764A publication Critical patent/CN110423764A/en
Application granted granted Critical
Publication of CN110423764B publication Critical patent/CN110423764B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8287Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for fertility modification, e.g. apomixis
    • C12N15/8289Male sterility
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2434Glucanases acting on beta-1,4-glucosidic bonds
    • C12N9/244Endo-1,3(4)-beta-glucanase (3.2.1.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01006Endo-1,3(4)-beta-glucanase (3.2.1.6)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

The invention discloses a kind of anther development control gene and its application in brassica plant male sterility, which is in β -1,3- glucanase geneBrA01G6On the basis of eliminate X8 structural domain, early stage anther specific expression promoterAP3Start the expression of the gene, the degradation in advance of callose during anther development can be caused, so that influencing microspore further buds into mature pollen grain, therefore the gene can be used for preparing brassica plant male sterile line.

Description

花药发育控制基因及其在芸薹属植物雄性不育中的应用Genes controlling anther development and their application in male sterility in Brassica plants

技术领域technical field

本发明属于基因工程和植物生物技术领域,具体涉及调控花药发育的基因及其在制备芸薹属植物雄性不育系中的应用。The invention belongs to the field of genetic engineering and plant biotechnology, and specifically relates to a gene regulating anther development and its application in preparing male sterile lines of Brassica plants.

背景技术Background technique

植物在有性繁殖的过程中不能正常产生花粉的遗传现象称为雄性不育。在被子植物中,花药是产生花粉并进行有性生殖的重要器官。1999年Sanders等对拟南芥的花药进行了细胞学切片后将雄蕊原基的萌发到最终花药成熟可以分为两大阶段,细分为14个时期。第一阶段是1-8期,此阶段从雄蕊原基的分化,一直到四分体释放小孢子为止。第二阶段是9-14期,小孢子发育成为成熟花粉粒,最终从花药中释放到胞外。花粉母细胞经减数分裂后形成的四分体被胼胝质壁与花粉母细胞壁包裹着,随后四分体要分离并释放出小孢子的过程涉及胼胝质壁与花粉母细胞壁的降解两个步骤。胼胝质壁主要由β-l,3-葡聚糖组成,在一个特定的时期包裹四分体的胼胝质壁被绒毡层细胞所分泌的胼胝质酶(β-1,3-葡聚糖酶)所降解,降解后的单倍体小孢子释放到花粉囊腔中,进一步发育为成熟的花粉粒。The hereditary phenomenon that plants cannot produce pollen normally during sexual reproduction is called male sterility. In angiosperms, anthers are important organs for pollen production and sexual reproduction. In 1999, Sanders et al. carried out cytological slices on the anthers of Arabidopsis thaliana, and divided the germination of stamen primordia to the final anther maturation into two stages, which were subdivided into 14 stages. The first stage is stage 1-8, this stage is from the differentiation of stamen primordia until the tetrad releases microspores. The second stage is stage 9-14, in which microspores develop into mature pollen grains and are finally released from the anther to the extracellular space. The tetrad formed by pollen mother cell after meiosis is surrounded by callose wall and pollen mother cell wall, and the subsequent process of tetrad separation and release of microspores involves two steps of degradation of callose wall and pollen mother cell wall . The callose wall is mainly composed of β-1,3-glucan, and at a specific time, the callose wall wrapping the tetrad is secreted by the callose enzyme (β-1,3-glucan enzyme), the degraded haploid microspores are released into the anther cavity and further develop into mature pollen grains.

不结球白菜(Brassica campestrisssp.Chinensis Makino),又名小白菜、青菜、鸡毛菜,在东亚地区栽培十分广泛,是一种重要的叶菜类蔬菜。不结球白菜属十字花科芸薹属白菜亚种,是典型的异花授粉作物,杂种优势明显。目前,利用雄性不育系制种是植物杂种优势利用的有效途径,因此对白菜雄性不育系的选育及其应用研究深受育种工作者的重视。Non-heading cabbage (Brassica campestrisssp. Chinensis Makino), also known as Chinese cabbage, green vegetables, and feather vegetables, is widely cultivated in East Asia and is an important leafy vegetable. Non-heading Chinese cabbage belongs to Brassicaceae Brassica subspecies, and is a typical cross-pollination crop with obvious heterosis. At present, the use of male sterile lines for seed production is an effective way to utilize plant heterosis. Therefore, the research on the selection and application of male sterile lines in Chinese cabbage has received great attention from breeders.

β-1,3-葡聚糖酶基因存在着多样性,在不同物种间存在不同的β-1,3-葡聚糖酶基因,尽管是同一物种也包含了不同的β-1,3-葡聚糖酶基因,比如,在拟南芥中就发现了50种不同的β-1,3-葡聚糖酶基因,目前关于该基因的研究,主要集中在抗病与育性方面。TohruTsuchiya等人利用从大豆中分离出的β-1,3-glucanase基因(无CTTP结构域)融合到水稻绒毡层特异表达的Osg6B基因的启动子上转化烟草,发现转基因植株败育,细胞学水平观察到胼胝质提前降解(Tsuchiya T,Toriyama K,Yoshikawa M,Ejiri S,Hinata K.Tapetum-specific expression of the gene for an endo-P-1,3-glucanase causes malesterility in transgenic tobacco.Plant and Cell Physiology,1995,3:487-494)。在水稻中,Osg1基因编码β-1,3-葡聚糖酶,在不同的组织都有不同程度的表达。通过干涉实验对该基因抑制表达后,发现RNAi抑制植株出现雄性不育表型,对其花药发育过程进行分析,发现胼胝质壁的降解推迟,最终出现花粉败育现象(Wan L L,Zha W J,Cheng X Y,Liu C,Lv L,Liu C X,Wang Z Q,Du B,Chen R Z,Zhu L L,He G C.A rice P-1,3-glucanasegene Osgl is required for callose degradation in pollen development.Planta,2011,2:309-323)。β-1,3-葡聚糖酶基因的表达具有时空特异性,提前或推迟表达均会引起胼胝质壁降解异常,出现雄性不育表型。There is diversity in β-1,3-glucanase genes, and there are different β-1,3-glucanase genes among different species, although the same species also contains different β-1,3- Glucanase genes, for example, 50 different β-1,3-glucanase genes have been found in Arabidopsis thaliana, and current research on this gene mainly focuses on disease resistance and fertility. Tohru Tsuchiya et al. used the β-1,3-glucanase gene isolated from soybean (without CTTP domain) to be fused to the promoter of the Osg6B gene specifically expressed in rice tapetum to transform tobacco and found that the transgenic plants were sterile. Cytology Early degradation of callose was observed at the level (Tsuchiya T, Toriyama K, Yoshikawa M, Ejiri S, Hinata K. Tapetum-specific expression of the gene for an endo-P-1,3-glucanase causes malesterility in transgenic tobacco. Plant and Cell Physiology, 1995, 3:487-494). In rice, the Osg1 gene encodes β-1,3-glucanase, which is expressed to varying degrees in different tissues. After suppressing the expression of this gene through interference experiments, it was found that RNAi inhibited the male sterile phenotype of the plants, and the anther development process was analyzed, and it was found that the degradation of the callose wall was delayed, and pollen abortion eventually occurred (Wan L L, Zha W J, Cheng X Y,Liu C,Lv L,Liu C X,Wang Z Q,Du B,Chen R Z,Zhu L L,He G C.A rice P-1,3-glucanasegene Osgl is required for callose degradation in pollen development.Planta,2011,2 :309-323). The expression of β-1,3-glucanase gene has time-space specificity, and early or delayed expression will cause abnormal callose wall degradation and male sterility phenotype.

发明内容Contents of the invention

本发明的目的是提供一种花药发育控制基因,该基因是在β-1,3-葡聚糖酶基因BrA01G6的基础上去除了X8结构域,花药特异表达启动子AP3启动该基因在花药发育早期表达,能够引起花药发育过程中胼胝质提前降解,从而影响小孢子进一步发育成为成熟的花粉粒,因此该基因可用于制备植物(芸薹属)雄性不育系。The object of the present invention is to provide a kind of anther development control gene, this gene removes the X8 structural domain on the basis of β-1,3-glucanase gene BrA01G6, and the anther-specific expression promoter AP3 activates the gene in the early stage of anther development The expression can cause early degradation of callose in the process of anther development, thereby affecting the further development of microspores into mature pollen grains, so the gene can be used to prepare male sterile lines of plants (Brassica).

为了达到上述目的,本发明采取以下技术措施:In order to achieve the above object, the present invention takes the following technical measures:

调控花药发育的基因,其核苷酸序列如SEQ ID NO.1所示,该基因是在β-1,3-葡聚糖酶基因BrA01G6的基础上去除了X8结构域所得,利用花药发育早期表达的AP3启动子驱动该基因表达,可用于制备芸薹属植物雄性不育系,具体方法如下:The gene regulating anther development, its nucleotide sequence is shown in SEQ ID NO.1, the gene is obtained by removing the X8 domain on the basis of the β-1,3-glucanase gene BrA01G6, and expresses in the early stage of anther development The expression of the gene driven by the AP3 promoter can be used to prepare male sterile lines of Brassica plants, and the specific method is as follows:

构建含有AP3启动子和SEQ ID NO.1所述序列的重组表达载体,转化芸薹属植物(优选拟南芥和不结球白菜)获得雄性不育的目的植株T0代,通过连续杂交的方法获得能够稳定遗传的不育株。Construct a recombinant expression vector containing the AP3 promoter and the sequence described in SEQ ID NO.1, transform Brassica plants (preferably Arabidopsis thaliana and non-heading Chinese cabbage) to obtain male sterile target plant T0 generation, through the method of continuous hybridization Obtain sterile plants capable of stable inheritance.

本发明所述的基因在制备雄性不育系时,为了便于对转基因植物进行筛选,对所用植物表达载体进行加工,加入可在植物中表达的编码可产生颜色变化的GUS基因和具有抗性的抗生素标记物如卡那霉素或潮霉素。When the gene of the present invention is used to prepare male sterile lines, in order to facilitate the screening of transgenic plants, the plant expression vectors used are processed, and the GUS genes that can be expressed in plants and can produce color changes and resistant genes are added. Antibiotic markers such as kanamycin or hygromycin.

本发明中所述的表达载体是指现有技术中已知的、能够在植物中进行表达的任何载体,例如适用于构建本发明所述的表达载体包括但不限于,如:PbI101、pCAMBIA2300等。The expression vector described in the present invention refers to any vector known in the prior art that can express in plants, for example, it is suitable for constructing the expression vector described in the present invention, including but not limited to, such as: PbI101, pCAMBIA2300, etc. .

与现有技术相比,本发明具有以下优点:Compared with the prior art, the present invention has the following advantages:

在拟南芥中,β-1,3-葡聚糖酶基因家族包含50个成员,这50个β-1,3-葡聚糖酶基因在结构上具有一定程度的相似性,但又同时存在着差异。它们的共同点是N端都具有一个糖基水解酶家族GH-17功能域,但是,其中部分基因C端有一个识别β-1,3-葡聚糖的糖结合模块X8。为了验证X8结构域是否直接与β-1,3-葡聚糖酶基因功能相关,我们采用了一个特异的早期花药表达的启动子AP3,确保该基因参与到β-1,3-葡聚糖酶降解胼胝质的过程。我们的结果证实BrA01G6基因X8结构域缺失的提前表达会导致转化单株花药内胼胝质提前降解,胼胝质的提前降解直接影响到小孢子外壁的形成,进而导致小孢子无法正常发育成为成熟的花粉粒。而有X8结构域的全基因ORF提前表达载体转化对转化单株胼胝质的降解毫无影响。In Arabidopsis, the β-1,3-glucanase gene family contains 50 members, and these 50 β-1,3-glucanase genes have a certain degree of similarity in structure, but at the same time There are differences. What they have in common is that the N-terminal has a glycosyl hydrolase family GH-17 functional domain, but some of the genes have a sugar-binding module X8 that recognizes β-1,3-glucan at the C-terminal. In order to verify whether the X8 domain is directly related to the function of the β-1,3-glucanase gene, we used a specific promoter expressed in early anthers, AP3, to ensure that the gene is involved in β-1,3-glucan Enzymatic degradation of callose. Our results confirmed that the early expression of the deletion of the X8 domain of the BrA01G6 gene will lead to the early degradation of callose in the anthers of the transformed single plant, and the early degradation of callose directly affects the formation of the outer wall of the microspores, which in turn leads to the failure of the microspores to develop into mature pollen. grain. However, the transformation of the full-gene ORF expression vector with X8 domain in advance had no effect on the degradation of callose of the transformed single plant.

附图说明Description of drawings

图1:拟南芥T0代转化植株的花蕾GUS染色结果,启动子分析载体pBI-GUS转化的T0代转化植株中,只有较大的快要开花的花蕾及花中可看到明显的GUS着色信号。图1中的(A)图为转化单株花序的GUS染色,(B)图为花药发育第9期,(C)图为花药发育第10期,(D)图为花药发育第11期。Figure 1: GUS staining results of flower buds of Arabidopsis thaliana T 0 generation transformed plants, in the T 0 generation transformed plants transformed with the promoter analysis vector pBI-GUS, only the larger flower buds and flowers that are about to bloom can see obvious GUS Coloring signals. (A) in Figure 1 shows the GUS staining of the inflorescence of a transformed single plant, (B) shows the ninth stage of anther development, (C) shows the tenth stage of anther development, and (D) shows the eleventh stage of anther development.

图2:BrA01G6基因及去X8结构域转拟南芥所得的转化植株的形态学观察。图2中的(A)图为去X8结构域的拟南芥转化植株结角果的一个侧枝,(B)图为完整BrA01G6基因的拟南芥转化植株结角果的一个侧枝,(C)图为野生型拟南芥转化植株结角果的一个侧枝。Fig. 2: Morphological observation of transformed plants obtained by transfecting Arabidopsis thaliana with BrA01G6 gene and X8 domain. (A) in Fig. 2 is a side branch of the transformed plant of Arabidopsis thaliana without the X8 domain, (B) is a side branch of the transformed plant of Arabidopsis thaliana with the complete BrA01G6 gene, (C) The picture shows a lateral branch of a transformed plant of wild-type Arabidopsis thaliana.

图3:野生型和转化不育单株花粉的扫描电镜观察。图3中的(A)图为野生型拟南芥的开放的花的花药,(B)图为野生型拟南芥的开放的花的花粉粒,(C)和(D)图为野生型拟南芥的花粉外壁结构,(a)图为转化不育株的开放的花的花药,(b)图为转化不育株的开放的花的花粉粒,(c)和(d)图为转化不育株的花粉外壁结构。Figure 3: Scanning electron microscope observation of pollen of wild-type and transformed sterile single plants. (A) in Figure 3 is the anther of the open flower of wild-type Arabidopsis, (B) is the pollen grain of the open flower of wild-type Arabidopsis, (C) and (D) are wild-type The pollen exine structure of Arabidopsis, (a) is the anther of the open flower of the transformed sterile plant, (b) is the pollen grain of the open flower of the transformed sterile plant, (c) and (d) are Transformation of pollen exine structures of sterile plants.

具体实施方式Detailed ways

以下结合具体实施例,进一步定义本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件如《分子克隆:实验室指南》(New York:Cold Spring Harbor Laboratory,1989)中所述的条件,或者按照生产商提供的操作手册中建议的方法。实验材料:Below in conjunction with specific embodiment, further define the present invention. It should be understood that these examples are only used to illustrate the present invention and are not intended to limit the scope of the present invention. For the experimental methods that do not indicate specific conditions in the following examples, generally follow conventional conditions such as the conditions described in "Molecular Cloning: A Laboratory Guide" (New York: Cold Spring Harbor Laboratory, 1989), or according to the operation provided by the manufacturer method suggested in the manual. Experimental Materials:

本实验所用材料“贺B矮”是在武汉市农业科学院北部园区发现的,保存于武汉市农业科学院北部园区,申请人从申请日起二十年内向公众发放该生物材料用以验证试验。The material "He B'ai" used in this experiment was discovered in the northern park of Wuhan Academy of Agricultural Sciences and preserved in the northern park of Wuhan Academy of Agricultural Sciences. The applicant distributed the biological material to the public within 20 years from the date of application for verification tests.

实施例1:不结球白菜β-1,3-葡聚糖酶基因BrA01G6的制备Example 1: Preparation of non-heading Chinese cabbage β-1,3-glucanase gene BrA01G6

(a)RNA的提取(a) Extraction of RNA

取不结球白菜“贺B矮”的整个花蕾为材料,根据Trizol提取试剂盒的要求进行RNA的提取,用蛋白检测仪(DU 650BECKMAN,USA)分别检测RNA在260nm和280nm下的吸光值,结合1%(质量体积比)琼脂糖凝胶电泳鉴定RNA的纯度和浓度。The whole flower bud of non-heading Chinese cabbage "He Bai" was taken as the material, and the RNA was extracted according to the requirements of the Trizol extraction kit, and the absorbance values of the RNA at 260nm and 280nm were respectively detected with a protein detector (DU 650BECKMAN, USA). Combined with 1% (mass volume ratio) agarose gel electrophoresis to identify the purity and concentration of RNA.

(b)cDNA的合成(b) Synthesis of cDNA

以上述获取的RNA为模板,按下列方案进行反转录:2μg RNA中加入DNAase1μl,DNAase Buffer+MgCl2 1μl,DEPC H2O至10μl,37℃30分钟;立即置于冰上,加入1μl的EDTA,65℃10分钟;加1μl Oligo(dT),65℃,5分钟,然后立即置于冰上5分钟,短暂离心,加入5×M-MLV Buffer 4μl,dNTP(10mmol/L)2μl,RNase Inhibitor 1μl,RTase 1μl,42℃,60min;70℃,5min,得到的cDNA分装后于-80℃冰箱中保存备用。Using the RNA obtained above as a template, carry out reverse transcription according to the following scheme: add 1 μl of DNAase to 2 μg of RNA, 1 μl of DNAase Buffer+MgCl 2 , make DEPC H 2 O to 10 μl, and keep at 37°C for 30 minutes; immediately put it on ice, and add 1 μl of EDTA, 65°C for 10 minutes; add 1 μl Oligo(dT), 65°C, 5 minutes, then immediately place on ice for 5 minutes, briefly centrifuge, add 5×M-MLV Buffer 4 μl, dNTP (10mmol/L) 2 μl, RNase Inhibitor 1μl, RTase 1μl, 42°C, 60min; 70°C, 5min, the obtained cDNA was aliquoted and stored in a -80°C refrigerator for later use.

(c)BrA01G6基因的扩增(c) Amplification of BrA01G6 gene

BrA01G6基因的完整CDS序列(SEQ ID NO.2)及去掉X8结构域的CDS序列(SEQ IDNO.1),均含有完整的ORF阅读框及起始密码子ATG。根据上述分析所得的CDS序列设计引物,以不结球白菜“贺B矮”的cDNA为模板,完整的CDS引物命名为(F1和R1),去掉X8结构域的引物命名为(F2和R2),F1为正向引物5'-ATGGCTTTTTTTGCTCTGTTCAT-3',R1为反向引物5'-TTACAGGGTAACGCT AGGGAACT-3',F2为正向引物5'-ATGGCTTTTTTTGCTCTGTTCATTTT-3',R2为反向引物5'-TTACAGGGTAACGCTAGGCCACACGT-3',采用热启动高保真长片段聚合酶PhusionHigh-Fidelity DNA Polymerase(Thermo Scientific,http://www.thermoscientificbio.com)进行PCR扩增。PCR扩增体系如下:The complete CDS sequence (SEQ ID NO.2) of the BrA01G6 gene and the CDS sequence (SEQ ID NO.1) without the X8 domain both contain the complete ORF reading frame and the initiation codon ATG. Primers were designed according to the CDS sequence obtained from the above analysis, using the cDNA of non-heading Chinese cabbage "He Bai" as a template, the complete CDS primers were named (F1 and R1), and the primers without the X8 domain were named (F2 and R2) , F1 is forward primer 5'-ATGGCTTTTTTTGCTCTGTTCAT-3', R1 is reverse primer 5'-TTACAGGGTAACGCT AGGGAACT-3', F2 is forward primer 5'-ATGGCTTTTTTTGCTCTGTTCATTTT-3', R2 is reverse primer 5'-TTACAGGGTAACGCTAGGCCACACGT -3', using hot-start high-fidelity long fragment polymerase PhusionHigh-Fidelity DNA Polymerase (Thermo Scientific, http://www.thermoscientificbio.com) for PCR amplification. The PCR amplification system is as follows:

PCR扩增程序:98℃总变性1min;98℃变性10sec,55℃退火15sec,72℃延伸4min,34个循环;72℃总延伸10min。扩增后产物通过琼脂糖凝胶电泳检测后,产物挖胶回收使用天根(北京)生物科技有限公司(http://www.tiangen.com/)的琼脂糖凝胶回收试剂盒(按该试剂盒说明书操作),产物纯化后进行加A处理:10×buffer,1μl;25mmol/LMgCl2,0.8μl;10mmol/L dNTP,0.2μl;Taq酶,0.1μl;回收产物,7.9μl,于PCR仪中72℃,30min,然后取其中的2μl连接到pMD18-T载体中(购自大连宝生物工程有限公司),进行测序。分析结果显示,获得BrA01G6的CDS序列,其序列如序列表SEQ ID NO.2所示,而无X8结构域的CD S序列如SEQID NO.1所示。PCR amplification program: total denaturation at 98°C for 1 min; denaturation at 98°C for 10 sec, annealing at 55°C for 15 sec, extension at 72°C for 4 min, 34 cycles; total extension at 72°C for 10 min. After the amplified product was detected by agarose gel electrophoresis, the product was excavated and recovered using the agarose gel recovery kit of Tiangen (Beijing) Biotechnology Co., Ltd. (http://www.tiangen.com/) (according to the kit instructions), the product was purified and treated with A: 10×buffer, 1μl; 25mmol/LMgCl 2 , 0.8μl; 10mmol/L dNTP, 0.2μl; Taq enzyme, 0.1μl; recovered product, 7.9μl, in PCR In the instrument at 72°C for 30 min, 2 μl of it was connected to the pMD18-T vector (purchased from Dalian Bao Biological Engineering Co., Ltd.) for sequencing. The analysis results showed that the CDS sequence of BrA01G6 was obtained, and its sequence was shown in SEQ ID NO.2 in the sequence table, while the CDS sequence without X8 domain was shown in SEQ ID NO.1.

实施例2:BrA01G6的启动子分析Example 2: Promoter Analysis of BrA01G6

(a)启动子序列扩增:本实施例中通过设计引物扩增BrA01G6的上游非编码区段1160bp作为该基因的启动子区段(简称启动子),正向引物为5'-TAATTGAGAGAAGGAGACAGCCACA-3',反向引物为5'-CAAAATGTTGTTGATAGGAGA GGGA-3',以HindIII、BamHI为正、反向左右引物的酶切位点,提取“贺B矮”的叶片DNA为模板,采用热启动高保真长片段聚合酶Phusion High-Fidelity D NA Polymerase(Thermo Scientific,http://www.thermoscientificbio.com)进行P CR扩增。其PCR扩增体系和产物回收与上述步骤一致。回收产物直接用ferme ntas(Thermo Scientific,http://www.thermoscientificbio.com)的快速限制性内切酶进行双酶切,双酶切体系如下:(a) Promoter sequence amplification: In this example, the upstream non-coding segment 1160 bp of BrA01G6 was amplified by designing primers as the promoter segment of the gene (promoter for short), and the forward primer was 5'-TAATTGAGAGAAGGAGACAGCCACA-3 ', the reverse primer is 5'-CAAAATGTTGTTGATAGGAGA GGGA-3', with HindIII and BamHI as the restriction sites of the forward and reverse primers, the leaf DNA of "He Bai" was extracted as a template, and the hot start high-fidelity long Fragment polymerase Phusion High-Fidelity DNA Polymerase (Thermo Scientific, http://www.thermoscientificbio.com) was used for PCR amplification. Its PCR amplification system and product recovery are consistent with the above steps. The recovered product was directly double-digested with the fast restriction endonuclease of fermentas (Thermo Scientific, http://www.thermoscientificbio.com), and the double-digestion system was as follows:

酶切反应在37℃水浴锅进行,时间为2h。酶切产物用北京天根(北京)生物科技有限公司(http://www.tiangen.com/)的DNA纯化试剂盒回收。转化载体与候选基因扩增片段的酶切回收产物连接后转化大肠杆菌DH5ɑ(购自宝生物工程大连有限TAKARA公司),筛选阳性克隆后提质粒酶切鉴定,每个反应选取3个阳性克隆送样测序。经测序无误后提取质粒转化农杆菌菌株GV1301(陈苇等,2006),挑选阳性克隆于-70℃超低温保存。The enzyme digestion reaction was carried out in a water bath at 37°C for 2 hours. The digested product was recovered with a DNA purification kit from Beijing Tiangen (Beijing) Biotechnology Co., Ltd. (http://www.tiangen.com/). The transformation vector was ligated with the enzyme-digested recovery product of the amplified fragment of the candidate gene and then transformed into Escherichia coli DH5ɑ (purchased from Takara Bioengineering Dalian Co., Ltd. TAKARA Co., Ltd.). sample sequencing. After the sequencing was correct, the plasmid was extracted and transformed into Agrobacterium strain GV1301 (Chen Wei et al., 2006), and positive clones were selected and stored at -70°C at ultra-low temperature.

(b)构建启动子分析载体:用常规农杆菌沾花的方法转化拟南芥野生型植株。在含25mg/L卡那霉素的1/2MS培养基(1/2MS培养基:Murashige&Skoog基本培养基(简称MS,MS培养基或简称MS基本培养基,三者同义)2.2g/L;蔗糖(Sucrose)10g/L;琼脂粉(Agarose)6g/L;用超纯水(ddH2O)定容至1L;调pH至5.8-5.9)上筛选转化拟南芥植株的种子,抗性植株的形态特征为根伸长,植株较大,子叶和真叶的颜色为鲜绿色;非抗性植株的形态特征为根不能伸长,植株矮小,子叶黄化。将筛选的抗性植株长到3-5片真叶后移植到营养土中,共得到20株抗性植株。提取拟南芥抗性植株的阳性植株叶片总DNA(Ste wart et al.,1993),用pbI101(Jefferson et al.,1987)载体上的序列设计引物为NP-F和NP-R,通过PCR进一步鉴定转化植株。(b) Construction of a promoter analysis vector: the wild-type plants of Arabidopsis thaliana were transformed by conventional Agrobacterium staining method. In 1/2MS medium containing 25mg/L kanamycin (1/2MS medium: Murashige&Skoog basic medium (MS for short, MS medium or MS basic medium for short, the three are synonymous) 2.2g/L; Sucrose (Sucrose) 10g/L; agar powder (Agarose) 6g/L; use ultrapure water (ddH 2 O) to make the volume to 1L; adjust the pH to 5.8-5.9) to screen the seeds of transformed Arabidopsis plants, resistance The morphological characteristics of the plants are that the roots are elongated, the plants are larger, and the color of the cotyledon and true leaves is bright green; the morphological characteristics of the non-resistant plants are that the roots cannot be elongated, the plants are short, and the cotyledons are yellow. After the screened resistant plants grew to 3-5 true leaves, they were transplanted into nutrient soil, and a total of 20 resistant plants were obtained. Extract the total DNA of positive plant leaves of Arabidopsis resistant plants (Stewart et al., 1993), use the sequence on the pbI101 (Jefferson et al., 1987) vector to design primers as NP-F and NP-R, and pass PCR Transformed plants were further identified.

引物NP-F和NP-R的DNA序列如下所示:The DNA sequences of primers NP-F and NP-R are as follows:

NP-F(正向引物):5'-GCCACAGTCGATGAATCCAG-3';NP-F (forward primer): 5'-GCCACAGTCGATGAATCCAG-3';

NP-R(反向引物):5'-ATGGTGGAGCACGACACTCT-3'。NP-R (reverse primer): 5'-ATGGTGGAGCACGACACTCT-3'.

(c)GUS染色:获得的T0代阳性转基因植株各个时期的花蕾分别进行GUS染色。需要准备的试剂:(c) GUS staining: the flower buds of the obtained T0 generation positive transgenic plants at different stages were subjected to GUS staining. Reagents to be prepared:

(1)20mM X-gluc:称取100mg X-gluc,加入9.58ml DMSO;(1) 20mM X-gluc: Weigh 100mg X-gluc, add 9.58ml DMSO;

(2)50mM磷酸缓冲液(PH=7.0):(2) 50mM phosphate buffer (PH=7.0):

溶液A:称取3.12g NaH2PO4·2H2O,溶解于100ml灭菌的ddH2O;Solution A: Weigh 3.12g NaH 2 PO 4 2H 2 O, dissolve in 100ml sterilized ddH 2 O;

溶液B:称取7.17g Na2HPO4·12H2O,溶解于100ml灭菌的ddH2O;Solution B: Weigh 7.17g Na 2 HPO 4 ·12H 2 O, dissolve in 100ml sterilized ddH 2 O;

(3)试剂Ⅰ:(3) Reagent I:

(4)试剂Ⅱ:(4) Reagent II:

取19ml的试剂Ⅰ,加入1ml的20mM X-gluc,混合即配成试剂Ⅱ。Take 19ml of reagent I, add 1ml of 20mM X-gluc, and mix to form reagent II.

染色步骤:Dyeing steps:

取样、固定:用镊子将组织材料取下,放入盛有90%丙酮的50ml离心管中,冰上放置20—30min;Sampling and fixation: Remove the tissue material with tweezers, put it into a 50ml centrifuge tube filled with 90% acetone, and place it on ice for 20-30min;

润洗:将试管中丙酮倒干净,然后用试剂Ⅰ润洗,4℃,30min,重复1次;Rinse: Pour out the acetone in the test tube, then rinse with reagent Ⅰ, 4°C, 30min, repeat once;

染色:倒掉试剂Ⅰ,将样品放入试剂Ⅱ中,用真空泵抽真空,10min,然后放置于37℃恒温箱,染色过夜;Staining: Pour off the reagent Ⅰ, put the sample into the reagent Ⅱ, evacuate it with a vacuum pump for 10 minutes, then place it in a 37°C incubator, and dye it overnight;

脱色:将试剂Ⅱ倒出,向试管中加入70%乙醇脱色。中间至少更换3次70%乙醇。为了加快脱色,可以将试管放入37℃恒温箱。Decolorization: pour out the reagent II, add 70% ethanol to the test tube for decolorization. The 70% ethanol was replaced at least three times in the middle. In order to speed up decolorization, the test tube can be placed in a 37°C incubator.

(d)GUS染色切片分析(d) GUS stained section analysis

取GUS染色的及野生植株不同发育时期的花蕾,于FAA固定液(甲醛:冰乙酸:50%乙醇=5:5:90)中固定16h,经梯度酒精脱水后于树脂预渗透液中静置1-2h,再于树脂渗透液中静置1-2h,后于包埋板中聚合,37℃恒温箱中烘4天左右。超薄切片机上横切花药,切片厚度为1μm,切片用甲苯胺蓝片染色,水洗晾干后即可观察。树脂包埋半薄切片技术如下:Take GUS-stained flower buds and wild plants at different development stages, fix them in FAA fixative solution (formaldehyde: glacial acetic acid: 50% ethanol = 5:5:90) for 16 hours, dehydrate them with graded alcohol, and then put them in the resin pre-infiltration solution 1-2h, then stand still in the resin permeate solution for 1-2h, then polymerize in the embedding plate, and bake in a constant temperature oven at 37°C for about 4 days. The anthers were cross-cut on an ultramicrotome with a thickness of 1 μm, stained with toluidine blue slices, washed with water and dried for observation. Resin-embedded semi-thin sectioning techniques are as follows:

(1)固定:取突变型及野生型不同长度(0.5cm至24cm)的穗子,于50%FAA固定液(甲醛:冰乙酸:50%乙醇=5:5:90)中固定,用真空泵缓慢抽气(抽气过程持续10min),在近真空状态放置15min后,缓慢放气(放气过程持续10min),可观察到有空气小泡冒出,样品沉到瓶底;换新的FAA固定液,室温放置16-24h;定完后转至70%乙醇中保存(用剪刀将颖花从小穗上剪下,并根据颖花大小分别保存);(1) Fixation: take mutant and wild-type tassels of different lengths (0.5cm to 24cm), fix them in 50% FAA fixative solution (formaldehyde: glacial acetic acid: 50% ethanol = 5:5:90), and slowly fix them with a vacuum pump. Pump air (the pumping process lasts for 10 minutes), place it in a near-vacuum state for 15 minutes, and then slowly deflate (the deflation process lasts for 10 minutes), and it can be observed that there are air bubbles coming out, and the sample sinks to the bottom of the bottle; replace it with a new FAA to fix it. solution, placed at room temperature for 16-24h; after settling, transfer to 70% ethanol for storage (cut the spikelets from the spikelets with scissors, and store them respectively according to the size of the spikelets);

(2)梯度酒精脱水:梯度分别为:50%乙醇(植物组织应该沉在瓶底,说明抽气是充分的),50%乙醇,60%乙醇,70%乙醇,85%乙醇,95%乙醇,100%乙醇,100%乙醇,室温下每级60min;(2) Gradient alcohol dehydration: gradients are: 50% ethanol (the plant tissue should sink at the bottom of the bottle, indicating that the pumping is sufficient), 50% ethanol, 60% ethanol, 70% ethanol, 85% ethanol, 95% ethanol , 100% ethanol, 100% ethanol, 60min for each level at room temperature;

(3)预渗透(1h-2h);(3) Pre-infiltration (1h-2h);

(4)渗透(1h-2h);(4) Penetration (1h-2h);

(5)聚合:此步骤要求动作迅速,先用1.5mL离心管或其他包埋容器分装好样品,然后计算用量配制聚合药品后立即聚合(注意要加满聚合液,完全覆盖样品,防止挥发),室温2h待稍微凝固后,再放入37℃温箱聚合3d-4d,好的聚合液一般应在5min内操作完毕;(5) Polymerization: This step requires quick action. First, use a 1.5mL centrifuge tube or other embedding container to pack the sample, then calculate the dosage to prepare the polymerization drug and then polymerize immediately (note that the polymerization solution must be filled up to completely cover the sample to prevent volatilization. ), after 2 hours at room temperature, wait for a little solidification, and then put it into a 37°C incubator for 3d-4d polymerization. A good polymerization solution should generally be completed within 5min;

(6)载玻片上滴一滴蒸馏水,切片后捞取切片材料至载玻片上展片;片后即可于显微镜下观察,照相;(6) Drop a drop of distilled water on the glass slide, and after slicing, take the sliced material and spread it on the glass slide; after the slice, it can be observed under a microscope and photographed;

试剂及配方:Reagents and formulations:

树脂:Hereaus Kulzer Technovit 7100Resin,包括base liquid Technovit7100,硬化剂I(粉末),硬化剂II(40mL,放在4℃会凝固,室温保存)。Resin: Hereaus Kulzer Technovit 7100Resin, including base liquid Technovit7100, hardener I (powder), hardener II (40mL, will solidify at 4°C, store at room temperature).

预渗透液:等体积95%或无水酒精与base liquid Technovit 7100混匀,4℃保存。Pre-permeation solution: mix equal volume of 95% or absolute alcohol with base liquid Technovit 7100, store at 4°C.

渗透液:1g induritore I(硬化剂I,即一包)溶于100mL base liquidTechnovit7100,搅拌混匀,4℃保存。Penetration solution: 1g induritore I (hardening agent I, ie one package) was dissolved in 100mL base liquid Technovit7100, stirred and mixed, and stored at 4°C.

聚合液:现配现用,1mL硬化剂II加入15mL渗透液中混匀即可包埋样品。配好的聚合液一般应在5min内操作完毕。Polymerization solution: Ready to use, add 1mL Hardener II to 15mL penetrating solution and mix well to embed the sample. The prepared polymer solution should generally be completed within 5 minutes.

启动子分析结果显示花蕾中可观察到GUS着色信号,GUS颜色由内而外逐渐变浅,较大的花蕾没有表达(如图1A)。对GUS染色照相后的花蕾进行半薄切片,能清楚的看见GUS在花药的小孢子和绒毡层中表达,在第9期(如图1B)和第10期(如图1C)染色较深,而到第11期(如图1D)时,染色很浅。因此,BrA01G6是在花药的中后期表达的。The results of promoter analysis showed that GUS coloring signals could be observed in flower buds, and the color of GUS gradually became lighter from the inside to the outside, and the larger flower buds did not express (Figure 1A). Semi-thin sections of the flower buds after GUS staining and photography showed that GUS was clearly expressed in the microspores and tapetum of the anthers, and the staining was darker at the 9th stage (as shown in Figure 1B) and the 10th stage (as shown in Figure 1C) , and to the 11th stage (as shown in Figure 1D), the staining is very light. Therefore, BrA01G6 is expressed in the middle and late anthers.

实施例3:BrA01G6基因在制备拟南芥雄性不育株中的应用Example 3: Application of the BrA01G6 gene in the preparation of Arabidopsis male sterile plants

1、BrA01G6转化载体的构建1. Construction of BrA01G6 transformation vector

本发明中采用花药特异表达启动子AP3(如SEQ ID NO.3所示),其所用的引物序列为:AP3-pro(F)正向引物5'-CAGTAACTGTGGCCAACTTAG-3',AP3-pro(R)反向引物为5'-ATTCTTCTCTCTTTGTTTAATC-3',用HindIII和PstI分别作为正、反向引物的限制性内切酶位点,采用热启动高保真长片段聚合酶Phusion High-Fidelity DNA Polymerase进行PCR扩增(扩增体系如上的本实施例所述),扩增片段用胶回收试剂盒(购自上海生工生物工程有限公司)回收,用HindIII和PstI双酶切回收867bp的片段,连接到经HindIII和PstI双酶切的表达载体pCAMBIA2300(华中农业大学作物遗传改良国家重点实验室涂金星教授惠赠)上,连接产物转化大肠杆菌菌株DH5ɑ,在含有50μg/ml潮霉素的LB培养基上筛选转化子,挑选单菌落提取质粒,并用通过测序检测该核苷酸序列完全正确;根据目标基因的序列信息,分析酶切位点,结合载体的多克隆位点设计引物,以cDNA为模板分别进行PCR扩增BrA01G6基因及去掉X8结构域的部分序列。扩增BrA01G6引物F1为正向引物5'-ATGGCTTTTTTTGCTCTGTTCAT-3',R1为反向引物5'-TTACAGGGTAACGCTAGGGAACT-3',采用热启动高保真长片段聚合酶Phusion High-Fidelity DNA Polymerase进行PCR扩增,产物用胶回收试剂盒(天根(北京)生物科技有限公司)回收,用PstI和KpnI双酶切回收得到1431bp长的片段,而扩增无X8结构域序列的引物,F2为正向引物5'-ATGGCTTTTTTTGCTCTG TTCATTTT-3',R2为反向引物5'-TTACAGGGTAACGCTAGGCCACACGT-3',都以PstI和KpnI作为酶切位点,同样采用热启动高保真长片段聚合酶进行PCR扩增,回收,用PstI和KpnI双酶切回收得到1179bp长的片段,连接到经PstI和KpnI酶切的含有Ap3启动子的表达载体pCAMBIA2300上,然后将连接产物转化大肠杆菌菌株DH5α,在含有50μg/ml潮霉素的LB培养基上筛选转化子,挑选单菌落提取质粒,通过测序检测证明该核苷酸序列完全正确,并将构建正确的重组质粒载体导入农杆菌菌株GV1301,挑选阳性单克隆于-80℃冰箱保存。In the present invention, the anther-specific expression promoter AP3 (as shown in SEQ ID NO.3) is adopted, and the primer sequence used is: AP3-pro(F) forward primer 5'-CAGTAACTGTGGCCAACTTAG-3', AP3-pro(R ) The reverse primer is 5'-ATTCTTCTCTCTTTGTTTAATC-3', HindIII and PstI are used as the restriction endonuclease sites of the forward and reverse primers respectively, and the hot-start high-fidelity long-fragment polymerase Phusion High-Fidelity DNA Polymerase is used for PCR Amplify (the amplification system is as described in the present embodiment above), the amplified fragment is reclaimed with a gel recovery kit (purchased from Shanghai Sangon Bioengineering Co., Ltd.), and the fragment of 867bp is recovered by double enzyme digestion with HindIII and PstI, and connected to On the expression vector pCAMBIA2300 (gifted by Professor Tu Jinxing, State Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University) digested by HindIII and PstI, the ligated product was transformed into Escherichia coli strain DH5ɑ, on LB medium containing 50 μg/ml hygromycin Screen transformants, select a single colony to extract the plasmid, and use sequencing to detect that the nucleotide sequence is completely correct; analyze the restriction site according to the sequence information of the target gene, design primers combined with the multiple cloning site of the vector, and use cDNA as a template to separate Perform PCR to amplify the BrA01G6 gene and remove part of the sequence of the X8 domain. Amplify BrA01G6 primer F1 is the forward primer 5'-ATGGCTTTTTTTGCTCTGTTCAT-3', R1 is the reverse primer 5'-TTACAGGGTAACGCTAGGGAACT-3', using hot start high-fidelity long fragment polymerase Phusion High-Fidelity DNA Polymerase for PCR amplification, The product was recovered with a gel recovery kit (Tiangen (Beijing) Biotechnology Co., Ltd.), and recovered with PstI and KpnI double enzyme digestion to obtain a 1431bp long fragment, and the primer without the X8 domain sequence was amplified, and F2 was the forward primer 5 '-ATGGCTTTTTTTGCTCTGTTCATTTT-3', R2 is the reverse primer 5'-TTACAGGGTAACGCTAGGCCACACGT-3', both of which use PstI and KpnI as restriction sites, and use hot-start high-fidelity long-fragment polymerase for PCR amplification, recovery, and PstI and KpnI double enzyme digestion recovered a 1179bp long fragment, which was connected to the expression vector pCAMBIA2300 containing the Ap3 promoter digested by PstI and KpnI, and then the ligated product was transformed into E. Transformants were screened on the LB medium, and a single colony was selected to extract the plasmid, and the nucleotide sequence was proved to be completely correct by sequencing, and the correctly constructed recombinant plasmid vector was introduced into the Agrobacterium strain GV1301, and the positive single clone was selected and stored in a -80°C refrigerator save.

2、拟南芥转化2. Arabidopsis transformation

将上步获得的农杆菌菌株侵染野生型拟南芥花序(按常规方法),将收获的种子在含25mg/ml卡那霉素的1/2MS培养基上进行筛选,12天之后,抗性植株会逐渐长高,根会伸长,而非抗性植株比较矮小,后期会慢慢变黄,将抗性植株移栽到营养土中进行生长,观察其表型(图2),其中野生型的角果生长正常,但完整的BrA01G6基因转化株的角果有些比较短小,有些能够伸长;去X8结构域的转化株角果都非常短小。将其花放在显微镜下观察发现,野生型的和完整的BrA01G6基因转化株雄蕊上有花粉溢出,并沾染到柱头上,而去X8结构域的转化株的雄蕊上没有花粉出现,呈现完全不育。The Agrobacterium bacterial strain obtained in the previous step is used to infect wild-type Arabidopsis inflorescences (according to conventional methods), and the harvested seeds are screened on the 1/2MS medium containing 25mg/ml kanamycin. After 12 days, the anti- The resistant plants will gradually grow taller and their roots will elongate, while the non-resistant plants will be shorter and will gradually turn yellow in the later stage. The resistant plants will be transplanted into nutrient soil for growth, and their phenotypes will be observed (Figure 2). The wild-type siliques grew normally, but the siliques of the complete BrA01G6 gene transformants were short and some could elongate; the siliques of the transformants without the X8 domain were all very short. The flowers were observed under a microscope, and it was found that the stamens of the wild-type and complete BrA01G6 gene transformants had pollen overflowing and stained the stigma, while the stamens of the transformants without the X8 domain had no pollen, showing a completely different appearance. education.

3、扫描电镜观察3. Scanning electron microscope observation

开花期选取转化的不育株及野生植株成熟花药于2.5%戊二醛中固定24h(4℃),经梯度酒精脱水(30%→50%→70%→85%→95%→100%→100%,每级10min)后,再经过中间液代换(先用醋酸异戊酯:乙醇=1:1的混合液浸泡10min,再用纯醋酸异戊酯浸泡10min,适当摇动),之后样品再经过临界点干燥、粘样、喷金,然后使用扫描电子显微镜(S570,Hitachi,Tokyo,Japan)进行显微观察照相,结果如图3所示,正常花粉粒表面有规则的网状结构,而转化的不育株花粉粒表面有瘤状突起,不是规则的网状结构。The mature anthers of transformed sterile plants and wild plants were selected at the flowering stage, fixed in 2.5% glutaraldehyde for 24 hours (4°C), and dehydrated through gradient alcohol (30% → 50% → 70% → 85% → 95% → 100% → 100%, 10 minutes per level), and then through the intermediate solution replacement (first soaked in a mixture of isoamyl acetate: ethanol = 1:1 for 10 minutes, then soaked in pure isoamyl acetate for 10 minutes, shake properly), and then the sample After critical point drying, sticking, and gold spraying, and then using a scanning electron microscope (S570, Hitachi, Tokyo, Japan) for microscopic observation and photography, the results are shown in Figure 3, and the surface of normal pollen grains has a regular network structure. However, the pollen grains of the transformed sterile plants had tumor-like protrusions on the surface, not a regular net-like structure.

小结summary

X8结构域主要负责与糖结合,是一段含有一个苯丙氨酸和六个半胱氨酸的保守序列,是发挥β-1,3-葡聚糖酶活性必不可少的。对BrA01G6基因全ORF和缺失X8结构域的部分ORF,构建提前表达载体,结果发现,缺失X8结构域的BrA01G6在花药特异表达启动子AP3的启动下提前表达会出现败育表型,细胞学观察发现其胼胝质出现提前降解,进而影响了小孢子外壁的形成,导致小孢子无法形成正常成熟的花粉粒。The X8 domain is mainly responsible for binding sugars. It is a conserved sequence containing one phenylalanine and six cysteines, which is essential for the activity of β-1,3-glucanase. An early expression vector was constructed for the entire ORF of the BrA01G6 gene and a part of the ORF missing the X8 domain. It was found that the early expression of BrA01G6 with the deletion of the X8 domain under the activation of the anther-specific expression promoter AP3 would lead to abortion phenotype. Cytological observation It was found that the callose was degraded in advance, which affected the formation of the outer wall of the microspores, resulting in the inability of the microspores to form normally mature pollen grains.

序列表sequence listing

<110> 武汉市农业科学院<110> Wuhan Academy of Agricultural Sciences

<120> 花药发育控制基因及其在芸薹属植物雄性不育中的应用<120> Genes controlling anther development and their application in male sterility in Brassica plants

<160> 3<160> 3

<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0

<210> 1<210> 1

<211> 1179<211> 1179

<212> DNA<212>DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence (Artificial Sequence)

<400> 1<400> 1

atggcttttt ttgctctgtt cattttcact ctcgttgccc tttcaagttc atgtagctac 60atggcttttt ttgctctgtt cattttcact ctcgttgccc tttcaagttc atgtagctac 60

gcaattggtc cacagaacaa caaaacattg ttatcacttg caagcaggat tggtatcaac 120gcaattggtc cacagaacaa caaaacattg ttatcacttg caagcaggat tggtatcaac 120

tacggaagat taggtaacaa tctcccatct ccttaccaat caatcaacct cgtcaaatcc 180tacggaagat taggtaacaa tctcccatct ccttaccaat caatcaacct cgtcaaatcc 180

attaaagcag gccacgttaa gctttacgac gccgatcaag aaaccctaat gctcctctct 240attaaagcag gccacgttaa gctttacgac gccgatcaag aaaccctaat gctcctctct 240

cagaccaatc tctacgtcac aatcatggtc cctaacaacc aaatcatttc catcggtgcc 300cagaccaatc tctacgtcac aatcatggtc cctaacaacc aaatcatttc catcggtgcc 300

gaccaagcag ccgcagacaa ctgggtcaac accaacgtcc ttcctcacta cccacaaaca 360gaccaagcag ccgcagacaa ctgggtcaac accaacgtcc ttcctcacta cccacaaaca 360

agaatccggt tcgtccttgt cggaaacgaa attctcagct acaactccga ccaagacaag 420agaatccggt tcgtccttgt cggaaacgaa attctcagct acaactccga ccaagacaag 420

caaatatggg cgaaccttgt cccggccatg cgtaagatcg tgaactctct tagagcaaga 480caaatatggg cgaaccttgt cccggccatg cgtaagatcg tgaactctct tagagcaaga 480

ggcattcaca acatcaaagt cggaacacca ctcgccatgg atgttctccg gtcgagtttt 540ggcattcaca acatcaaagt cggaacacca ctcgccatgg atgttctccg gtcgagtttt 540

cctccgtcca atggaacatt ccgggaagaa gtcgccgctc cggtgatgtt accgttgctg 600cctccgtcca atggaacatt ccgggaagaa gtcgccgctc cggtgatgtt accgttgctg 600

aagtttctca acggaacaaa ctctttcttc ttccttgatg tctaccctta cttcccttgg 660aagtttctca acggaacaaa ctctttcttc ttccttgatg tctaccctta cttcccttgg 660

tccactgatc cggttaacaa ccatttggat ttcgctctgt tcgaatcgaa ttcaacttat 720tccactgatc cggttaacaa ccatttggat ttcgctctgt tcgaatcgaa ttcaacttat 720

accgatcccc aaaccggttt ggtttacacc aatctattag accagatgct cgattcggtt 780accgatcccc aaaccggttt ggtttacacc aatctattag accagatgct cgattcggtt 780

atcttcgcga tgaccaagct cggctacccc aacgtccgtc ttgcaatctc tgaaaccggg 840atcttcgcga tgaccaagct cggctacccc aacgtccgtc ttgcaatctc tgaaaccggg 840

tggcctaact ccggtgatat cgacgaaacc ggagccaaca ttttcaatgc cgcaacttat 900tggcctaact ccggtgatat cgacgaaacc ggagccaaca ttttcaatgc cgcaacttat 900

aaccggaatt tgatcaagaa gatgactgct aacccgccac tcggtacacc agctagacgc 960aaccggaatt tgatcaagaa gatgactgct aacccgccac tcggtacacc agctagacgc 960

ggttcaccaa taccgacgtt tttgttctca ttattcaatg aaaaccggaa acccggttca 1020ggttcaccaa taccgacgtt tttgttctca ttattcaatg aaaaccggaa acccggttca 1020

ggaacagaga ggcattgggg aattttgaat cctgacggta cacagatcta cgatattgat 1080ggaacagaga ggcattgggg aattttgaat cctgacggta cacagatcta cgatattgat 1080

ttgagtggga caagaccggt ttctagtctt ggttcgttgc ctaaaccaaa taacaatgtt 1140ttgagtggga caagaccggt ttctagtctt ggttcgttgc ctaaaccaaa taacaatgtt 1140

ccgttcaagg gcaacgtgtg gcctagcgtt accctgtaa 1179ccgttcaagg gcaacgtgtg gcctagcgtt accctgtaa 1179

<210> 2<210> 2

<211> 1431<211> 1431

<212> DNA<212>DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence (Artificial Sequence)

<400> 2<400> 2

atggcttttt ttgctctgtt cattttcact ctcgttgccc tttcaagttc atgtagctac 60atggcttttt ttgctctgtt cattttcact ctcgttgccc tttcaagttc atgtagctac 60

gcaattggtc cacagaacaa caaaacattg ttatcacttg caagcaggat tggtatcaac 120gcaattggtc cacagaacaa caaaacattg ttatcacttg caagcaggat tggtatcaac 120

tacggaagat taggtaacaa tctcccatct ccttaccaat caatcaacct cgtcaaatcc 180tacggaagat taggtaacaa tctcccatct ccttaccaat caatcaacct cgtcaaatcc 180

attaaagcag gccacgttaa gctttacgac gccgatcaag aaaccctaat gctcctctct 240attaaagcag gccacgttaa gctttacgac gccgatcaag aaaccctaat gctcctctct 240

cagaccaatc tctacgtcac aatcatggtc cctaacaacc aaatcatttc catcggtgcc 300cagaccaatc tctacgtcac aatcatggtc cctaacaacc aaatcatttc catcggtgcc 300

gaccaagcag ccgcagacaa ctgggtcaac accaacgtcc ttcctcacta cccacaaaca 360gaccaagcag ccgcagacaa ctgggtcaac accaacgtcc ttcctcacta cccacaaaca 360

agaatccggt tcgtccttgt cggaaacgaa attctcagct acaactccga ccaagacaag 420agaatccggt tcgtccttgt cggaaacgaa attctcagct acaactccga ccaagacaag 420

caaatatggg cgaaccttgt cccggccatg cgtaagatcg tgaactctct tagagcaaga 480caaatatggg cgaaccttgt cccggccatg cgtaagatcg tgaactctct tagagcaaga 480

ggcattcaca acatcaaagt cggaacacca ctcgccatgg atgttctccg gtcgagtttt 540ggcattcaca acatcaaagt cggaacacca ctcgccatgg atgttctccg gtcgagtttt 540

cctccgtcca atggaacatt ccgggaagaa gtcgccgctc cggtgatgtt accgttgctg 600cctccgtcca atggaacatt ccgggaagaa gtcgccgctc cggtgatgtt accgttgctg 600

aagtttctca acggaacaaa ctctttcttc ttccttgatg tctaccctta cttcccttgg 660aagtttctca acggaacaaa ctctttcttc ttccttgatg tctaccctta cttcccttgg 660

tccactgatc cggttaacaa ccatttggat ttcgctctgt tcgaatcgaa ttcaacttat 720tccactgatc cggttaacaa ccatttggat ttcgctctgt tcgaatcgaa ttcaacttat 720

accgatcccc aaaccggttt ggtttacacc aatctattag accagatgct cgattcggtt 780accgatcccc aaaccggttt ggtttacacc aatctattag accagatgct cgattcggtt 780

atcttcgcga tgaccaagct cggctacccc aacgtccgtc ttgcaatctc tgaaaccggg 840atcttcgcga tgaccaagct cggctacccc aacgtccgtc ttgcaatctc tgaaaccggg 840

tggcctaact ccggtgatat cgacgaaacc ggagccaaca ttttcaatgc cgcaacttat 900tggcctaact ccggtgatat cgacgaaacc ggagccaaca ttttcaatgc cgcaacttat 900

aaccggaatt tgatcaagaa gatgactgct aacccgccac tcggtacacc agctagacgc 960aaccggaatt tgatcaagaa gatgactgct aacccgccac tcggtacacc agctagacgc 960

ggttcaccaa taccgacgtt tttgttctca ttattcaatg aaaaccggaa acccggttca 1020ggttcaccaa taccgacgtt tttgttctca ttattcaatg aaaaccggaa acccggttca 1020

ggaacagaga ggcattgggg aattttgaat cctgacggta cacagatcta cgatattgat 1080ggaacagaga ggcattgggg aattttgaat cctgacggta cacagatcta cgatattgat 1080

ttgagtggga caagaccggt ttctagtctt ggttcgttgc ctaaaccaaa taacaatgtt 1140ttgagtggga caagaccggt ttctagtctt ggttcgttgc ctaaaccaaa taacaatgtt 1140

ccgttcaagg gcaacgtgtg gtgtgtggcg gtagaaggag ctaacgagac ggagttaggg 1200ccgttcaagg gcaacgtgtg gtgtgtggcg gtagaaggag ctaacgagac ggagttaggg 1200

caggcgcttg actttgcttg tggaagaagc aatgccacat gtgcagcttt ggcaccggga 1260caggcgcttg actttgcttg tggaagaagc aatgccacat gtgcagcttt ggcaccggga 1260

agagagtgtt acgcaccagt ttcggttact tggcacgcaa gctatgcatt tagctcgtac 1320agagagtgtt acgcaccagt ttcggttact tggcacgcaa gctatgcatt tagctcgtac 1320

tgggctcagt tccggaacca aagctcccag tgctacttca acggcttggc gcgtgagacc 1380tgggctcagt tccggaacca aagctcccag tgctacttca acggcttggc gcgtgagacc 1380

acgaccaacc caggaaatga acaatgcaag ttccctagcg ttaccctgta a 1431acgaccaacc caggaaatga acaatgcaag ttccctagcg ttaccctgta a 1431

<210> 3<210> 3

<211> 867<211> 867

<212> DNA<212>DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence (Artificial Sequence)

<400> 3<400> 3

cagtaactgt ggccaactta gttttgaaac aacactaact ggtcgaagca aaaagaaaaa 60cagtaactgt ggccaactta gttttgaaac aacactaact ggtcgaagca aaaagaaaaa 60

agagtttcat catatatctg atttgatgga ctgtttggag ttaggaccaa acattatcta 120agagtttcat catatatctg atttgatgga ctgtttggag ttaggaccaa aattatcta 120

caaacaaaga cttttctcct aacttgtgat tccttcttaa accctagggg taatattcta 180caaacaaaga cttttctcct aacttgtgat tccttcttaa accctagggg taatattcta 180

ttttccaagg atctttagtt aaaggcaaat ccgggaaatt attgtaatca tttggggaaa 240ttttccaagg atctttagtt aaaggcaaat ccgggaaatt attgtaatca tttggggaaa 240

catataaaag atttgagtta gatggaagtg acgattaatc caaacatata tatctctttc 300catataaaag atttgagtta gatggaagtg acgattaatc caaacatata tatctctttc 300

ttcttatttc ccaaattaac agacaaaagt agaatattgg cttttaacac caatataaaa 360ttcttatttc ccaaattaac agacaaaagt agaatattgg cttttaacac caatataaaa 360

acttgcttca cacctaaaca cttttgttta ctttagggta agtgcaaaaa gccaaccaaa 420acttgcttca cacctaaaca cttttgttta ctttagggta agtgcaaaaa gccaaccaaa 420

tccacctgca ctgatttgac gtttacaaac gccgttaagt ttgtcaccgt ctaaacaaaa 480tccacctgca ctgatttgac gtttacaaac gccgttaagt ttgtcaccgt ctaaacaaaa 480

acaaagtaga agctaacgga gctccgttaa taaattgacg aaaagcaaac caagttttta 540acaaagtaga agctaacgga gctccgttaa taaattgacg aaaagcaaac caagttttta 540

gctttggtcc ccctctttta ccaagtgaca attgatttaa gcagtgtctt gtaattatac 600gctttggtcc ccctctttta ccaagtgaca attgatttaa gcagtgtctt gtaattatac 600

aaccatcgat gtccgttgat ttaaacagtg tcttgtaatt aaaaaaatca gtttacataa 660aaccatcgat gtccgttgat ttaaacagtg tcttgtaatt aaaaaaatca gtttacataa 660

atggaaaatt tatcacttag ttttcatcaa cttctgaact tacctttcat ggattaggca 720atggaaaatt tatcacttag ttttcatcaa cttctgaact tacctttcat ggattaggca 720

atactttcca tttttagtaa ctcaagtgga ccctttactt cttcaactcc atctctctct 780atactttcca tttttagtaa ctcaagtgga ccctttactt cttcaactcc atctctctct 780

ttctatttca cttctttctt ctcattatat ctcttgtcct ctccaccaaa tctcttcaac 840ttctatttca cttctttctt ctcattatat ctcttgtcct ctccaccaaa tctcttcaac 840

aaaaagatta aacaaagaga gaagaat 867aaaaagatta aacaaagaga gaagaat 867

Claims (4)

1.调控花药发育的基因,其特征在于,所述基因的核苷酸序列如SEQ ID NO.1所示。1. A gene regulating anther development, characterized in that the nucleotide sequence of said gene is shown in SEQ ID NO.1. 2.权利要求1所述的基因在制备芸薹属植物雄性不育系中的应用,其特征在于,利用花药发育早期表达的AP3启动子驱动该基因表达。2. The application of the gene according to claim 1 in the preparation of male sterile lines of Brassica plants, characterized in that the expression of the gene is driven by the AP3 promoter expressed in the early stages of anther development. 3.权利要求1所述的基因制备芸薹属植物雄性不育系的方法,其特征在于,构建含有AP3启动子和SEQ ID NO.1所述序列的重组表达载体,转化芸薹属植物获得雄性不育的目的植株T0代,通过连续杂交的方法获得能够稳定遗传的不育株。3. the method for the gene preparation of Brassica plant male sterile line according to claim 1, is characterized in that, constructs the recombinant expression vector that contains AP3 promotor and sequence described in SEQ ID NO.1, transforms Brassica plant and obtains In the T0 generation of the male sterile target plant, a sterile plant that can be stably inherited is obtained by continuous crossing. 4.根据权利要求1所述的方法,其特征在于,所述的芸薹属植物为拟南芥和不结球白菜。4. The method according to claim 1, characterized in that, the Brassica plants are Arabidopsis thaliana and non-heading Chinese cabbage.
CN201910826420.8A 2019-09-02 2019-09-02 Anther development control gene and its application in male sterility of Brassica Active CN110423764B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910826420.8A CN110423764B (en) 2019-09-02 2019-09-02 Anther development control gene and its application in male sterility of Brassica

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910826420.8A CN110423764B (en) 2019-09-02 2019-09-02 Anther development control gene and its application in male sterility of Brassica

Publications (2)

Publication Number Publication Date
CN110423764A true CN110423764A (en) 2019-11-08
CN110423764B CN110423764B (en) 2021-06-29

Family

ID=68418613

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910826420.8A Active CN110423764B (en) 2019-09-02 2019-09-02 Anther development control gene and its application in male sterility of Brassica

Country Status (1)

Country Link
CN (1) CN110423764B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT906436E (en) * 1996-04-11 2008-12-03 Gene Shears Pty Ltd USE OF DNA SEQUENCES FOR MALE STERILITY IN TRANSGENIC PLANTS
CN102257143A (en) * 2008-11-28 2011-11-23 科学及工业研究委员会 Method for producing male sterile plants
CN104531755A (en) * 2014-12-19 2015-04-22 西南大学 Application of gene for interfering expression of LCYB and LCYE and simultaneously ectopically expressing TT8 in preparation of brassica plant having red petals
WO2018100590A1 (en) * 2016-12-02 2018-06-07 International Crops Research Institute For The Semi-Arid Tropics (Icrisat) Cytoplasmic male sterility gene orf147 of pigeonpea, and uses thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT906436E (en) * 1996-04-11 2008-12-03 Gene Shears Pty Ltd USE OF DNA SEQUENCES FOR MALE STERILITY IN TRANSGENIC PLANTS
CN102257143A (en) * 2008-11-28 2011-11-23 科学及工业研究委员会 Method for producing male sterile plants
CN104531755A (en) * 2014-12-19 2015-04-22 西南大学 Application of gene for interfering expression of LCYB and LCYE and simultaneously ectopically expressing TT8 in preparation of brassica plant having red petals
WO2018100590A1 (en) * 2016-12-02 2018-06-07 International Crops Research Institute For The Semi-Arid Tropics (Icrisat) Cytoplasmic male sterility gene orf147 of pigeonpea, and uses thereof

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
GENBANK: ""PREDICTED: Brassica rapa probable glucan endo-1,3-beta-glucosidase A6 (LOC103832133), mRNA,ACCESSION: XM_009108096"", 《GENBANK》 *
KRYSTYNA WINIARCZYK ET AL.: ""Characterization of callase (β-1,3-D-glucanase) activity during microsporogenesis in the sterile anthers of Allium sativum L. and the fertile anthers of A. atropurpureum"", 《SEX PLANT REPROD》 *
刘标等: "《抗虫转基因植物环境风险评价和监测》", 31 December 2014, 中国环境科学出版社 *
廖晓芬: ""拟南芥花药特异表达的β-1,3-葡聚糖酶基因功能分析"", 《中国优秀硕士学位论文全文数据库 基础科学辑》 *
范丙友等: ""Col 生态型拟南芥AP3 基因启动子克隆及植物表达载体构建"", 《基因组学与应用生物学》 *

Also Published As

Publication number Publication date
CN110423764B (en) 2021-06-29

Similar Documents

Publication Publication Date Title
EP0513884A1 (en) Male-sterile plants, methods for obtaining male-sterile plants and recombinant DNA for use therein
US11124797B1 (en) Wheat male-sterility gene WMS and its anther-specific expression promoter and uses thereof
US7151170B1 (en) Use of the BNM3 transcriptional activator to control plant embryogenesis and regeneration processes
Tanaka et al. Overexpression of Arabidopsis FT gene in apple leads to perpetual flowering
CN105039353B (en) A kind of capsicum pollens development related gene CaMS1 and its application
CN107236744A (en) The separation and application of the early real trifoliate orange PtAGL24 genes of controllable plant early blossoming
CN110777152B (en) Transcription factor EjBZR1 for inhibiting fruit cell expansion and application thereof
CN104561061B (en) A kind of cabbage type rape fertility correlation BnCP20 genes and its application
US20070250945A1 (en) Usage of Mad-Box Genes in Fruit &amp; Seed Development by Regulating Active Gibberellin Synthesis
CN112522283A (en) Pollen development related gene and application thereof
CN105132435B (en) Cabbage type rape BnCP13 genes are preparing male sterility line of plants application
Qin et al. Co-suppression of Si401, a maize pollen specific Zm401 homologous gene, results in aberrant anther development in foxtail millet
CN110423764B (en) Anther development control gene and its application in male sterility of Brassica
US7741534B2 (en) Cytokinin oxidase promoter from maize
Wiktorek-Smagur et al. Flower bud dipping or vacuum infiltration—two methods of Arabidopsis thaliana transformation
CN101250532B (en) Butterfly orchid PhAGCu gene coded sequence and uses thereof
US20060041959A1 (en) Control of plant growth and developmental process
Zhang et al. Molecular cloning and expression of the male sterility-related CtYABBY1 gene in flowering Chinese cabbage (Brassica campestris L. ssp chinensis var. parachinensis)
CN103088036B (en) Soybean gmmads2 gene and application thereof
CN107058327B (en) A kind of Oil Rape Tissue specificity promoter is in regulation target gene specifically expressed application in plant anther
Li et al. RD29A promoter constitutively drives a rice Hd3a expression to promote early-flowering in Saussurea involucrate Kar. et Kir. ex Maxim
Liu et al. Raffinose family oligosaccharide hydrolysis by alkaline α-galactosidase CsAGA2 controls seed development in cucumber
WO2002078427A2 (en) Specification of meiocyte and tapetal cell layers in plants
CN106906212A (en) One sesame anther specific expression promoter PSicwinv1 and its application
CN105463012B (en) Expression vector and its application with cucumber CsMADS09 gene

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant