CN110416995B - Non-invasive load decomposition method and device - Google Patents
Non-invasive load decomposition method and device Download PDFInfo
- Publication number
- CN110416995B CN110416995B CN201910390156.8A CN201910390156A CN110416995B CN 110416995 B CN110416995 B CN 110416995B CN 201910390156 A CN201910390156 A CN 201910390156A CN 110416995 B CN110416995 B CN 110416995B
- Authority
- CN
- China
- Prior art keywords
- power
- moment
- value
- objective
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000354 decomposition reaction Methods 0.000 title claims abstract description 81
- 238000000034 method Methods 0.000 title claims abstract description 43
- 238000005457 optimization Methods 0.000 claims abstract description 33
- 238000007781 pre-processing Methods 0.000 claims abstract description 21
- 230000006870 function Effects 0.000 claims description 65
- 230000002159 abnormal effect Effects 0.000 claims description 27
- 238000004422 calculation algorithm Methods 0.000 claims description 27
- 238000004364 calculation method Methods 0.000 claims description 27
- 230000008030 elimination Effects 0.000 claims description 22
- 238000003379 elimination reaction Methods 0.000 claims description 22
- 238000005070 sampling Methods 0.000 claims description 19
- 238000013450 outlier detection Methods 0.000 claims description 2
- 238000012544 monitoring process Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000003909 pattern recognition Methods 0.000 description 4
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 2
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及模式识别技术领域,更具体的说是涉及一种非侵入式负荷分解方法和装置。The present invention relates to the technical field of pattern recognition, and more particularly to a non-invasive load decomposition method and device.
背景技术Background Art
近二十年来,随着中国经济的发展和人民生活水平的大幅提高。每年住宅用电量增长率都在8%左右。而电力需求的增加,会加重对环境的负面影响。这与中国政府努力减少温室气体排放的目标相矛盾。监测得到的家电能耗信息可以帮助决策者和消费者了解住宅能源需求的构成、模式和特点。这对节能减排有重要的作用,所以设计一套能够有效监测负荷的系统尤为重要。In the past two decades, with the development of China's economy and the substantial improvement of people's living standards, the annual growth rate of residential electricity consumption has been around 8%. The increase in electricity demand will increase the negative impact on the environment. This is inconsistent with the Chinese government's efforts to reduce greenhouse gas emissions. The monitored household appliance energy consumption information can help decision makers and consumers understand the composition, pattern and characteristics of residential energy demand. This plays an important role in energy conservation and emission reduction, so it is particularly important to design a system that can effectively monitor the load.
现有的负荷监测方法主要分为侵入式和非侵入式两类方法。侵入式负载监测方法(ILM)要求每个用电设备都需要配备带有通信功能的仪器,这将增加部署和维护测量仪器成本;非侵入式负荷监测方法(NILM)要求仅在电网的用户入口处安装一个测量仪器,通过算法对采集到总用电信息进行分析,从而实现对其下各个用电设备用电状况的监测。对于大规模部署,非侵入式负荷监测系统可以显著降低安装复杂性和减少维护成本。Existing load monitoring methods are mainly divided into two categories: invasive and non-invasive methods. The invasive load monitoring method (ILM) requires that each power-consuming device be equipped with an instrument with communication function, which will increase the cost of deploying and maintaining measuring instruments; the non-invasive load monitoring method (NILM) requires that only one measuring instrument be installed at the user entrance of the power grid, and the total power consumption information collected is analyzed through an algorithm to monitor the power consumption status of each power-consuming device under it. For large-scale deployment, non-invasive load monitoring systems can significantly reduce installation complexity and reduce maintenance costs.
最优化和模式识别是解决负荷分解与识别问题的2种主流方法。基于模式识别的负荷识别算法是通过学习数据库各个用电设备特征确定识别算法的结构和参数,最终实现对负荷的识别。基于模式识别的非侵入式负荷监测系统首先要进行训练,但训练后的分类器只能识别数据集已有的用电设备及相应组合。因此,每当有新设备添加时,都需要对模型进行训练,这会消耗大量的时间和计算资源。并且当用电设备较多时,识别准确率较低。基于最优化的负荷识别算法将负荷识别问题转化为一个最优化问题。使未知用电设备的特征向量和已知用电设备的特征向量之间的差最小,来达到负荷识别的目的。基于最优化的负荷识别方法只需获取单个用电设备的负荷特性,就可以计算出多个用电设备同时运行时的负荷特征,前提是这些负荷特性必须满足特征叠加标准。Optimization and pattern recognition are two mainstream methods for solving the problem of load decomposition and identification. The load identification algorithm based on pattern recognition determines the structure and parameters of the identification algorithm by learning the characteristics of each electrical device in the database, and finally realizes the identification of the load. The non-intrusive load monitoring system based on pattern recognition must first be trained, but the trained classifier can only identify the electrical devices and corresponding combinations that already exist in the data set. Therefore, every time a new device is added, the model needs to be trained, which consumes a lot of time and computing resources. And when there are many electrical devices, the recognition accuracy is low. The load identification algorithm based on optimization converts the load identification problem into an optimization problem. The difference between the feature vector of the unknown electrical device and the feature vector of the known electrical device is minimized to achieve the purpose of load identification. The load identification method based on optimization only needs to obtain the load characteristics of a single electrical device, and can calculate the load characteristics of multiple electrical devices when they are running simultaneously, provided that these load characteristics must meet the feature superposition standard.
最近基于最优化的研究使用1到3个目标函数,即只使用1到3个特征。然而,现有大部分研究将多个目标函数加权成一个。这将导致两个问题:(1)加权参数对数据集敏感;(2)不同目标函数对应加权参数也很难调整。因为负荷特征的误差会严重影响基于优化的方法的精度。如果只使用一个特征作为目标函数,获得的最优解并不是真实电器运行状态;并且如果用电设备有相似或重叠的负荷特征,使用单个负荷特征就很难区分他们,导致负荷分解准确率低。Recent optimization-based research uses 1 to 3 objective functions, that is, only 1 to 3 features. However, most existing studies weight multiple objective functions into one. This will lead to two problems: (1) The weighting parameters are sensitive to the data set; (2) The weighting parameters corresponding to different objective functions are also difficult to adjust. This is because the error in load characteristics will seriously affect the accuracy of optimization-based methods. If only one feature is used as the objective function, the optimal solution obtained is not the actual operating state of the electrical equipment; and if the electrical equipment has similar or overlapping load characteristics, it is difficult to distinguish them using a single load characteristic, resulting in low load decomposition accuracy.
因此,如何提供一种分解准确率高的负荷分解方法是本领域技术人员亟需解决的问题。Therefore, how to provide a load decomposition method with high decomposition accuracy is an urgent problem to be solved by those skilled in the art.
发明内容Summary of the invention
有鉴于此,本发明提供了一种非侵入式负荷分解方法和装置,分解准确率高,结果稳定,有较强的鲁棒性。In view of this, the present invention provides a non-invasive load decomposition method and device, which has high decomposition accuracy, stable results and strong robustness.
为了实现上述目的,本发明采用如下技术方案:In order to achieve the above object, the present invention adopts the following technical solution:
一种非侵入式负荷分解方法,包括如下步骤:A non-invasive load decomposition method comprises the following steps:
获取用电设备操作记录和总线上的电力数据,其中,所述电力数据包括:电流波形;Acquiring operation records of power-consuming equipment and power data on the bus, wherein the power data includes: current waveform;
根据所述用电设备操作记录,对所述电力数据进行预处理筛选出第一电力数据;Preprocessing the power data to select first power data according to the power-consuming equipment operation record;
根据筛选出的第一电力数据确定每个时刻对应的四个电力参数值;Determine four power parameter values corresponding to each moment according to the filtered first power data;
根据所述电力参数值和所述电流波形,建立拥有五个优化目标的多目标非侵入式负荷分解模型;According to the power parameter value and the current waveform, a multi-objective non-intrusive load decomposition model with five optimization objectives is established;
基于所述多目标非侵入式负荷分解模型确定处于总线上正在工作的用电设备类型和相应的工作模式。Based on the multi-objective non-intrusive load decomposition model, the types of electrical equipment working on the bus and the corresponding working modes are determined.
优选的,根据所述用电设备操作记录,对所述电力数据进行预处理筛选出第一电力数据具体包括;Preferably, preprocessing the power data to select the first power data according to the power-consuming equipment operation record specifically includes:
根据所述用电设备操作记录,将电力数据按照各个用电设备操作事件进行划分,得到电力数据划分结果,使得同一区间内的电力数据处于同一设备同一模式下;According to the operation records of the power-consuming equipment, the power data is divided according to the operation events of each power-consuming equipment to obtain a power data division result, so that the power data in the same interval is in the same mode of the same equipment;
对同一区间下的电流和电压进行异常值检测和剔除,得到异常值剔除结果;Perform outlier detection and elimination on the current and voltage in the same interval to obtain an outlier elimination result;
根据所述电力数据划分结果和异常值剔除结果,计算无用电设备工作的区间内电流和电压平均值,同一电路下,将所有有用电设备工作的区间对应的电流值和电压值减去无用电设备工作的区间内电流和电压的平均值,得到第一电力数据。According to the power data division results and abnormal value elimination results, the average current and voltage in the interval where no electrical equipment is working are calculated. Under the same circuit, the average current and voltage in the interval where no electrical equipment is working are subtracted from the current and voltage values corresponding to all intervals where useful electrical equipment is working to obtain the first power data.
优选的,对同一区间下的电流和电压进行异常值检测和剔除的具体方法包括:Preferably, the specific method for detecting and eliminating abnormal values of current and voltage in the same interval includes:
根据公式MAD=median(|Ai-median(A)|),确定中位数绝对偏差,其中,A表示同一区间下电流值或电压值,Ai表示第i时刻对应电流值或电压值,MAD表示中位数绝对偏差;According to the formula MAD=median(|A i -median(A)|), the median absolute deviation is determined, where A represents the current value or voltage value in the same interval, Ai represents the current value or voltage value corresponding to the i-th moment, and MAD represents the median absolute deviation;
判断任意时刻同一区间下电流值或电压值偏离中位数的值是否大于N倍中位数绝对偏差,如果是,则判定此刻电流值或电压值为异常值并剔除该异常值。Determine whether the value of the current value or voltage value in the same interval at any time deviates from the median by more than N times the median absolute deviation. If so, determine that the current value or voltage value at this moment is an abnormal value and remove the abnormal value.
优选的,根据筛选出的第一电力数据确定每个时刻对应的四个电力参数值,具体包括:Preferably, the four power parameter values corresponding to each moment are determined according to the screened first power data, specifically including:
根据公式:S=VI,确定各时刻对应的视在功率,其中,V表示某一时刻的电压值,I表示某一时刻的电流值,S表示视在功率;According to the formula: S = VI, determine the apparent power corresponding to each moment, where V represents the voltage value at a certain moment, I represents the current value at a certain moment, and S represents the apparent power;
根据公式:P=VIcos(φ),确定各时刻对应的有功功率,其中,cos(φ)表示功率因数,P表示有功功率;According to the formula: P = VIcos (φ), determine the active power corresponding to each moment, where cos (φ) represents the power factor and P represents the active power;
根据公式:Q=VIsin(φ),确定各时刻对应的无功功率,其中Q表示无功功率;According to the formula: Q = VIsin (φ), determine the reactive power corresponding to each moment, where Q represents the reactive power;
根据公式:确定各时刻对应的谐波,其中,A(t)表示在t时刻电流值,约束条件是t=0,1,2,…,T-1,T代表在一个电流波形周期内采样点的数量,X(k)是第k次谐波的系数。According to the formula: Determine the harmonics corresponding to each moment, where A(t) represents the current value at moment t, the constraint is t=0, 1, 2, ..., T-1, T represents the number of sampling points in one current waveform cycle, and X(k) is the coefficient of the kth harmonic.
优选的,根据所述电力参数值和所述电流波形,建立拥有五个优化目标的多目标非侵入式负荷分解模型,具体包括:Preferably, according to the power parameter value and the current waveform, a multi-objective non-intrusive load decomposition model with five optimization objectives is established, specifically including:
根据电力参数值和电流波形构建五个优化目标;其中,所述电力参数值包括有功功率,无功功率,视在功率和谐波;具体方法如下:Five optimization objectives are constructed based on power parameter values and current waveforms; wherein the power parameter values include active power, reactive power, apparent power and harmonics; the specific method is as follows:
根据公式:以电流波形为基础构建第一目标函数,其中,Iij(t)表示在t时刻设备i处于j模式下独立运行时的电流值;T代表在一个电流波形周期内采样点的数量,t=0表示电压相位处于特定的时刻,此刻的电压波形正从最大值向最低值变化,N表示设备总数,Mi表示设备i包含的模式总数,I表示未知设备类型的组合电流波形;xij表示用电设备i处于工作模式j,其中i=1,2,…,N,j=1,2,…,Mi;According to the formula: The first objective function is constructed based on the current waveform, where I ij (t) represents the current value when the device i is operating independently in mode j at time t; T represents the number of sampling points in a current waveform cycle, t=0 represents that the voltage phase is at a specific moment, and the voltage waveform at this moment is changing from the maximum value to the minimum value, N represents the total number of devices, Mi represents the total number of modes included in device i, and I represents the combined current waveform of unknown device types; x ij represents that the power device i is in working mode j, where i=1, 2, ..., N, j=1, 2, ..., Mi ;
根据公式:以无功功率为基础构建第二目标函数,其中,Qij表示设备i处于j模式下独立运行时的无功功率,Q代表未知设备类型的无功功率;According to the formula: The second objective function is constructed based on reactive power, where Qij represents the reactive power of device i when it operates independently in mode j, and Q represents the reactive power of an unknown device type;
根据公式:以有功功率为基础构建第三目标函数,其中,Pij表示设备i处于j模式下独立运行时的有功功率,P代表未知设备类型的有功功率;According to the formula: The third objective function is constructed based on active power, where Pij represents the active power of device i when it operates independently in mode j, and P represents the active power of the unknown device type;
根据公式:以视在功率为基础构建第四目标函数,其中,Sij表示设备i处于j模式下独立运行时的视在功率,S代表未知设备类型的视在功率;According to the formula: The fourth objective function is constructed based on the apparent power, where S ij represents the apparent power of device i when it operates independently in mode j, and S represents the apparent power of the unknown device type;
根据公式:以谐波为基础构建第五目标函数,其中,Hij(k)表示设备i处于j模式下独立运行时的谐波,K是最大谐波的次序,H(k)代表未知包含设备类型的谐波;According to the formula: The fifth objective function is constructed based on harmonics, where Hij (k) represents the harmonics of device i when it operates independently in mode j, K is the order of the maximum harmonic, and H(k) represents the harmonics of the unknown containing device type;
根据公式:minimize F(x)=(f1(x),f2(x),f3(x),f4(x),f5(x)),将上述的五个目标函数构建成一个多目标非侵入式负荷分解模型F(x),其中,According to the formula: minimize F(x) = (f 1 (x), f 2 (x), f 3 (x), f 4 (x), f 5 (x)), the above five objective functions are constructed into a multi-objective non-intrusive load decomposition model F(x), where:
表示所求用电设备类型,需要满足约束条件xij∈{0,1}和 represents the type of electrical equipment required, which needs to satisfy the constraints x ij ∈ {0, 1} and
相应的,基于所述多目标非侵入式负荷分解模型确定处于总线上正在工作的用电设备类型和相应的工作模式,具体包括:Accordingly, determining the type of electrical equipment working on the bus and the corresponding working mode based on the multi-objective non-intrusive load decomposition model specifically includes:
采用多目标进化算法求解所述多目标非侵入式负荷分解模型F(x),获得使F(x)中的五个优化目标同时最小时对应的用电设备类型和相应的工作模式;A multi-objective evolutionary algorithm is used to solve the multi-objective non-intrusive load decomposition model F(x) to obtain the corresponding electrical equipment type and corresponding working mode when the five optimization objectives in F(x) are minimized at the same time;
其中,在多目标进化算法里,采用编码和解码方式表示约束条件:编码的每一位表示一种类型的用电设备,其中,0表示此用电设备关闭,k表示此用电设备处于第k工作模式。Among them, in the multi-objective evolutionary algorithm, the constraints are expressed in an encoding and decoding manner: each bit of the code represents a type of electrical equipment, where 0 means that the electrical equipment is turned off, and k means that the electrical equipment is in the kth working mode.
一种非侵入式负荷分解装置,包括:A non-invasive load decomposition device, comprising:
获取模块,用于获取用电设备操作记录和总线上的电力数据,其中,所述电力数据包括:电流波形;An acquisition module is used to acquire operation records of power-consuming equipment and power data on the bus, wherein the power data includes: current waveform;
预处理模块,用于根据所述用电设备操作记录,对所述电力数据进行预处理筛选出第一电力数据;A preprocessing module, configured to preprocess the power data to select first power data according to the operation record of the power-consuming device;
参数计算模块,用于根据筛选出的第一电力数据确定每个时刻对应的四个电力参数值;A parameter calculation module, used to determine four power parameter values corresponding to each moment according to the screened first power data;
模型建立模块,用于根据所述电力参数值和所述电流波形,建立拥有五个优化目标的多目标非侵入式负荷分解模型;A model building module, used for building a multi-objective non-intrusive load decomposition model with five optimization objectives according to the power parameter value and the current waveform;
确定模块,用于基于所述多目标非侵入式负荷分解模型确定处于总线上正在工作的用电设备类型和相应模式。A determination module is used to determine the type and corresponding mode of the electrical equipment working on the bus based on the multi-objective non-intrusive load decomposition model.
优选的,所述预处理模块具体包括:Preferably, the preprocessing module specifically includes:
划分单元,用于根据所述用电设备操作记录,将电力数据按照各个用电设备操作事件进行划分,得到电力数据划分结果,使得同一区间内的电力数据处于同一设备同一模式下;A division unit, configured to divide the power data according to each power-consuming device operation event according to the power-consuming device operation record, and obtain a power data division result so that the power data in the same interval is in the same mode of the same device;
异常值剔除单元,用于对同一区间下的电流和电压进行异常值检测和剔除,得到异常值剔除结果;An outlier elimination unit is used to detect and eliminate outliers of current and voltage in the same interval to obtain an outlier elimination result;
计算单元,用于根据所述电力数据划分结果和异常值剔除结果,计算无用电设备工作的区间内电流和电压平均值,同一电路下,将所有有用电设备工作的区间对应的电流值和电压值减去无用电设备工作的区间内电流和电压的平均值,得到第一电力数据。The calculation unit is used to calculate the average current and voltage in the interval where no electrical equipment is working according to the power data division result and the abnormal value elimination result. Under the same circuit, the average current and voltage in the interval where no electrical equipment is working is subtracted from the current and voltage values corresponding to all intervals where useful electrical equipment is working, so as to obtain the first power data.
优选的,所述异常值剔除单元具体包括:Preferably, the outlier elimination unit specifically includes:
计算子单元,用于根据公式MAD=median(|Ai-median(A)|),确定中位数绝对偏差,其中A表示同一区间下电流值或电压值,Ai表示第i时刻对应电流值或电压值,MAD表示中位数绝对偏差;A calculation subunit, used to determine the median absolute deviation according to the formula MAD=median(|A i -median(A)|), where A represents the current value or voltage value in the same interval, Ai represents the current value or voltage value corresponding to the i-th moment, and MAD represents the median absolute deviation;
剔除子单元,用于判断任意时刻同一区间下电流值或电压值偏离中位数的值是否大于N倍中位数绝对偏差,如果是,则此刻电流值或电压值为异常值并剔除该异常值。The elimination subunit is used to determine whether the value of the current value or voltage value deviating from the median in the same interval at any time is greater than N times the median absolute deviation. If so, the current value or voltage value at this moment is an abnormal value and the abnormal value is eliminated.
优选的,所述参数计算模块具体包括:Preferably, the parameter calculation module specifically includes:
视在功率计算单元,用于根据公式:S=VI,确定各时刻对应的视在功率,其中,V表示某一时刻的电压值,I表示某一时刻的电流值,S表示视在功率;The apparent power calculation unit is used to determine the apparent power corresponding to each moment according to the formula: S=VI, where V represents the voltage value at a certain moment, I represents the current value at a certain moment, and S represents the apparent power;
有功功率计算单元,用于根据公式:P=VIcos(φ),确定各时刻对应的有功功率,其中,cos(φ)表示功率因数,P表示有功功率;An active power calculation unit, used to determine the active power corresponding to each moment according to the formula: P = VIcos (φ), where cos (φ) represents the power factor and P represents the active power;
无功功率计算单元,用于根据公式:Q=VIsin(φ),确定各时刻对应的无功功率,其中,Q表示无功功率;A reactive power calculation unit, used to determine the reactive power corresponding to each moment according to the formula: Q=VIsin(φ), where Q represents the reactive power;
谐波计算单元,用于根据公式:确定各时刻对应的谐波,其中,A(t)表示在t时刻电流值,约束条件是t=0,1,2,…,T-1,T代表在一个电流波形周期内采样点的数量,X(k)是第k次谐波的系数。Harmonic calculation unit, used according to the formula: Determine the harmonics corresponding to each moment, where A(t) represents the current value at moment t, the constraint is t=0, 1, 2, ..., T-1, T represents the number of sampling points in one current waveform cycle, and X(k) is the coefficient of the kth harmonic.
优选的,所述模型建立模块具体包括:Preferably, the model building module specifically includes:
第一目标函数构建单元,用于根据公式:以电流波形为基础构建第一目标函数,其中,Iij(t)表示在t时刻设备i处于j模式下独立运行时的电流值;T代表在一个电流波形周期内采样点的数量,t=0表示电压相位处于特定的时刻,此刻的电压波形正从最大值向最低值变化,N表示设备总数,Mi表示设备i包含的模式总数,I表示未知设备类型的组合电流波形;xij表示用电设备i处于工作模式j,其中i=1,2,…,N,j=1,2,…,Mi;The first objective function building unit is used according to the formula: The first objective function is constructed based on the current waveform, where I ij (t) represents the current value when the device i is operating independently in mode j at time t; T represents the number of sampling points in a current waveform cycle, t=0 represents that the voltage phase is at a specific moment, and the voltage waveform at this moment is changing from the maximum value to the minimum value, N represents the total number of devices, Mi represents the total number of modes included in device i, and I represents the combined current waveform of unknown device types; x ij represents that the power device i is in working mode j, where i=1, 2, ..., N, j=1, 2, ..., Mi ;
第二目标函数构建单元,用于根据公式:以无功功率为基础构建第二目标函数,其中,Qij表示设备i处于j模式下独立运行时的无功功率,Q代表未知设备类型的无功功率;The second objective function building unit is used according to the formula: The second objective function is constructed based on reactive power, where Qij represents the reactive power of device i when it operates independently in mode j, and Q represents the reactive power of an unknown device type;
第三目标函数构建单元,用于根据公式:以有功功率为基础构建第三目标函数,其中,Pij表示设备i处于j模式下独立运行时的有功功率,P代表未知设备类型的有功功率;The third objective function building unit is used according to the formula: The third objective function is constructed based on active power, where Pij represents the active power of device i when it operates independently in mode j, and P represents the active power of the unknown device type;
第四目标函数构建单元,用于根据公式:以视在功率为基础构建第四目标函数,其中,Sij表示设备i处于j模式下独立运行时的视在功率,S代表未知设备类型的视在功率;The fourth objective function building unit is used according to the formula: The fourth objective function is constructed based on the apparent power, where S ij represents the apparent power of device i when it operates independently in mode j, and S represents the apparent power of the unknown device type;
第五目标函数构建单元,用于根据公式:以谐波为基础构建第五目标函数,其中,Hij(k)表示设备i处于j模式下独立运行时的谐波,K是最大谐波的次序,H(k)代表未知包含设备类型的谐波;The fifth objective function building unit is used according to the formula: The fifth objective function is constructed based on harmonics, where Hij (k) represents the harmonics of device i when it operates independently in mode j, K is the order of the maximum harmonic, and H(k) represents the harmonics of the unknown containing device type;
负荷分解模型建立单元,用于根据公式:minimize F(x)=(f1(x),f2(x),f3(x),f4(x),f5(x)),将上述的五个目标函数构建成一个多目标非侵入式负荷分解模型F(x),其中,表示所求用电设备类型,需要满足约束条件xij∈{0,1}和 The load decomposition model building unit is used to construct the above five objective functions into a multi-objective non-intrusive load decomposition model F(x) according to the formula: minimize F(x) = (f 1 (x), f 2 (x), f 3 (x), f 4 (x), f 5 (x)), where: represents the type of electrical equipment required, which needs to satisfy the constraints x ij ∈ {0, 1} and
相应的,所述确定模块具体用于采用多目标进化算法求解所述多目标非侵入式负荷分解模型F(x),获得使F(x)中的五个目标函数同时最小时对应的用电设备类型和相应的工作模式;Accordingly, the determination module is specifically used to solve the multi-objective non-intrusive load decomposition model F(x) by using a multi-objective evolutionary algorithm to obtain the corresponding electrical equipment type and corresponding working mode when the five objective functions in F(x) are simultaneously minimized;
其中,在多目标进化算法里,采用编码和解码方式表示约束条件:编码的每一位表示一种类型的用电设备,其中,0表示此用电设备关闭,k表示此用电设备处于第k工作模式。Among them, in the multi-objective evolutionary algorithm, the constraints are expressed in an encoding and decoding manner: each bit of the code represents a type of electrical equipment, where 0 means that the electrical equipment is turned off, and k means that the electrical equipment is in the kth working mode.
经由上述的技术方案可知,与现有技术相比,本发明公开提供了一种非侵入式负荷分解方法和装置,其中,非侵入式负荷分解方法具体包括获取用电设备操作记录和总线上的电力数据,其中,电力数据包括:电流波形;根据用电设备操作记录,对电力数据进行预处理筛选出第一电力数据;根据筛选出的第一电力数据确定每个时刻对应的四个电力参数值;根据电力参数值和电流波形,建立拥有五个优化目标的多目标非侵入式负荷分解模型;基于多目标非侵入式负荷分解模型确定处于总线上正在工作的用电设备类型和相应模式。本发明提供的非侵入式负荷分解方法,分解准确率高,结果稳定,有较强的鲁棒性。Through the above technical solutions, it can be known that compared with the prior art, the present invention discloses a non-invasive load decomposition method and device, wherein the non-invasive load decomposition method specifically includes obtaining the operation records of the electrical equipment and the power data on the bus, wherein the power data includes: current waveform; according to the operation records of the electrical equipment, pre-processing the power data to filter out the first power data; determining the four power parameter values corresponding to each moment according to the filtered first power data; establishing a multi-objective non-invasive load decomposition model with five optimization objectives according to the power parameter values and the current waveform; determining the type of electrical equipment and the corresponding mode working on the bus based on the multi-objective non-invasive load decomposition model. The non-invasive load decomposition method provided by the present invention has high decomposition accuracy, stable results, and strong robustness.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings required for use in the embodiments or the description of the prior art will be briefly introduced below. Obviously, the drawings described below are only embodiments of the present invention. For ordinary technicians in this field, other drawings can be obtained based on the provided drawings without paying creative work.
图1为本发明提供的一种非侵入式负荷分解方法的流程图;FIG1 is a flow chart of a non-invasive load decomposition method provided by the present invention;
图2为本发明提供的对电力数据进行预处理筛选出第一电力数据的方法流程图;FIG2 is a flow chart of a method for preprocessing power data to select first power data provided by the present invention;
图3为本发明提供的剔除异常值的方法流程图;FIG3 is a flow chart of a method for removing outliers provided by the present invention;
图4为本发明提供的非侵入式负荷分解装置的示意图;FIG4 is a schematic diagram of a non-invasive load decomposition device provided by the present invention;
图5为本发明提供的预处理模块的示意图;FIG5 is a schematic diagram of a preprocessing module provided by the present invention;
图6为本发明提供的异常值剔除单元的示意图;FIG6 is a schematic diagram of an outlier elimination unit provided by the present invention;
图7为本发明提供的对4种用电设备进行采样得到的电流波形和电压波形的示意图;FIG7 is a schematic diagram of current waveforms and voltage waveforms obtained by sampling four types of electrical equipment provided by the present invention;
图8为本发明提供的预处理前的电流电压波形示意图;FIG8 is a schematic diagram of current and voltage waveforms before pretreatment provided by the present invention;
图9为本发明提供的预处理后的电流电压波形示意图。FIG. 9 is a schematic diagram of current and voltage waveforms after preprocessing provided by the present invention.
具体实施方式DETAILED DESCRIPTION
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will be combined with the drawings in the embodiments of the present invention to clearly and completely describe the technical solutions in the embodiments of the present invention. Obviously, the described embodiments are only part of the embodiments of the present invention, not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by ordinary technicians in this field without creative work are within the scope of protection of the present invention.
参见附图1,本发明实施例公开了一种非侵入式负荷分解方法,具体包括如下步骤:Referring to FIG. 1 , an embodiment of the present invention discloses a non-invasive load decomposition method, which specifically includes the following steps:
S1:获取用电设备操作记录和总线上的电力数据,其中,所述电力数据包括:电流、电压、功率因数、电流波形和电压波形;S1: Acquire the operation records of the power-consuming equipment and the power data on the bus, wherein the power data includes: current, voltage, power factor, current waveform and voltage waveform;
S2:根据所述用电设备操作记录,对所述电力数据进行预处理筛选出第一电力数据;S2: Preprocessing the power data to select first power data according to the operation record of the power-consuming device;
S3:根据筛选出的第一电力数据确定每个时刻对应的四个电力参数值;S3: Determine four power parameter values corresponding to each moment according to the screened first power data;
S4:根据所述电力参数值和所述电流波形,建立拥有五个优化目标的多目标非侵入式负荷分解模型;S4: establishing a multi-objective non-intrusive load decomposition model with five optimization objectives according to the power parameter value and the current waveform;
S5:基于所述多目标非侵入式负荷分解模型确定处于总线上正在工作的用电设备类型和相应的工作模式。S5: Determine the type of electrical equipment working on the bus and the corresponding working mode based on the multi-objective non-intrusive load decomposition model.
本发明提供了一种非侵入式负荷分解方法,分解准确率高,结果稳定,具有较强的鲁棒性。The present invention provides a non-invasive load decomposition method with high decomposition accuracy, stable results and strong robustness.
参见附图2,为了进一步优化上述技术方案,步骤S2:根据所述用电设备操作记录,对所述电力数据进行预处理筛选出第一电力数据具体包括:Referring to FIG. 2 , in order to further optimize the above technical solution, step S2: pre-processing the power data to select the first power data according to the operation record of the power-consuming device specifically includes:
S21:根据所述用电设备操作记录,将电力数据按照各个用电设备操作事件进行划分,得到电力数据划分结果,使得同一区间内的电力数据处于同一设备同一模式下;S21: dividing the power data according to the power equipment operation records according to the power equipment operation events to obtain a power data division result so that the power data in the same interval is in the same mode of the same device;
S22:对同一区间下的电流和电压进行异常值检测和剔除,得到异常值剔除结果;S22: Detect and remove abnormal values of current and voltage in the same interval to obtain an abnormal value removal result;
S23:根据所述电力数据划分结果和异常值剔除结果,计算无用电设备工作的区间内电流和电压平均值,同一电路下,将所有有用电设备工作的区间对应的电流值和电压值减去无用电设备工作的区间内电流和电压的平均值,得到第一电力数据。S23: According to the power data division result and the abnormal value elimination result, the average current and voltage in the interval where no electrical equipment is working are calculated. Under the same circuit, the average current and voltage in the interval where no electrical equipment is working are subtracted from the current and voltage values corresponding to all the intervals where useful electrical equipment is working, so as to obtain the first power data.
参见附图3,上述的步骤S22:对同一区间下的电流和电压进行异常值检测和剔除的具体方法进一步包括:Referring to FIG. 3 , the specific method of the above step S22: detecting and eliminating abnormal values of current and voltage in the same interval further includes:
S221:根据公式MAD=median(|Ai-median(A)|),确定中位数绝对偏差,其中,A表示同一区间下电流值或电压值,Ai表示第i时刻对应电流值或电压值,MAD表示中位数绝对偏差;S221: Determine the median absolute deviation according to the formula MAD=median(|A i -median(A)|), where A represents the current value or voltage value in the same interval, Ai represents the current value or voltage value corresponding to the i-th moment, and MAD represents the median absolute deviation;
S222:判断任意时刻同一区间下电流值或电压值偏离中位数的值是否大于N倍中位数绝对偏差,如果是,则判定此刻电流值或电压值为异常值并剔除该异常值。优选的,N=3。S222: Determine whether the value of the current value or voltage value in the same interval at any time deviates from the median by more than N times the median absolute deviation, and if so, determine that the current value or voltage value at this moment is an abnormal value and remove the abnormal value. Preferably, N=3.
为了进一步优化上述技术方案,步骤S3:根据筛选出的第一电力数据确定每个时刻对应的四个电力参数值,具体包括:In order to further optimize the above technical solution, step S3: determining four power parameter values corresponding to each moment according to the screened first power data, specifically including:
根据公式:S=VI,确定各时刻对应的视在功率,其中,V表示某一时刻的电压值,I表示某一时刻的电流值,S表示视在功率;According to the formula: S = VI, determine the apparent power corresponding to each moment, where V represents the voltage value at a certain moment, I represents the current value at a certain moment, and S represents the apparent power;
根据公式:P=VIcos(φ),确定各时刻对应的有功功率,其中,cos(φ)表示功率因数,P表示有功功率;According to the formula: P = VIcos (φ), determine the active power corresponding to each moment, where cos (φ) represents the power factor and P represents the active power;
根据公式:Q=VIsin(φ),确定各时刻对应的无功功率,其中,sin(φ)表示电压和电流之间相位差的正弦φ,无具体物理意义,Q表示无功功率;According to the formula: Q = VIsin (φ), the reactive power corresponding to each moment is determined, where sin (φ) represents the sine φ of the phase difference between voltage and current, which has no specific physical meaning, and Q represents reactive power;
根据公式:确定各时刻对应的谐波,其中,A(t)表示在t时刻电流值,约束条件是t=0,1,2,…,T-1,T代表在一个电流波形周期内(例如:1/50S)采样点的数量,X(k)是第k次谐波的系数。According to the formula: Determine the harmonics corresponding to each moment, where A(t) represents the current value at moment t, the constraints are t=0, 1, 2, ..., T-1, T represents the number of sampling points in one current waveform period (e.g.: 1/50S), and X(k) is the coefficient of the kth harmonic.
这里需要说明的是,并不限定上述四个电力参数值计算的先后顺序,只要计算得到这四个电力参数值即可。It should be noted here that the order of calculating the above four power parameter values is not limited, as long as the four power parameter values are calculated.
为了进一步优化上述技术方案,步骤S4:根据所述电力参数值和所述电流波形,建立拥有五个优化目标的多目标非侵入式负荷分解模型,具体包括:In order to further optimize the above technical solution, step S4: according to the power parameter value and the current waveform, a multi-objective non-intrusive load decomposition model with five optimization objectives is established, specifically including:
根据电力参数值和电流波形构建五个优化目标;其中,所述电力参数值包括有功功率,无功功率,视在功率和谐波;具体方法如下:Five optimization objectives are constructed based on power parameter values and current waveforms; wherein the power parameter values include active power, reactive power, apparent power and harmonics; the specific method is as follows:
根据公式:以电流波形为基础构建第一目标函数,其中,Iij(t)表示在t时刻设备i处于j模式下独立运行时的电流值;T代表在一个电流波形周期(例如:1/50S)内采样点的数量,t=0表示电压相位处于特定的时刻,此刻的电压波形正从最大值向最低值变化,N表示设备总数,Mi表示设备i包含的模式总数,I表示未知设备类型的组合电流波形;xij表示用电设备i处于工作模式j,其中i=1,2,…,N,j=1,2,…,Mi;According to the formula: The first objective function is constructed based on the current waveform, where I ij (t) represents the current value when the device i is operating independently in mode j at time t; T represents the number of sampling points in a current waveform cycle (e.g., 1/50S), t=0 represents the voltage phase at a specific moment, and the voltage waveform at this moment is changing from the maximum value to the minimum value, N represents the total number of devices, Mi represents the total number of modes included in device i, and I represents the combined current waveform of unknown device type; x ij represents that the power device i is in working mode j, where i=1, 2, ..., N, j=1, 2, ..., Mi ;
根据公式:以无功功率为基础构建第二目标函数,其中,Qij表示设备i处于j模式下独立运行时的无功功率,Q代表未知设备类型的无功功率;According to the formula: The second objective function is constructed based on reactive power, where Qij represents the reactive power of device i when it operates independently in mode j, and Q represents the reactive power of an unknown device type;
根据公式:以有功功率为基础构建第三目标函数,其中,Pij表示设备i处于j模式下独立运行时的有功功率,P代表未知设备类型的有功功率;According to the formula: The third objective function is constructed based on active power, where Pij represents the active power of device i when it operates independently in mode j, and P represents the active power of the unknown device type;
根据公式:以视在功率为基础构建第四目标函数,其中,Sij表示设备i处于j模式下独立运行时的视在功率,S代表未知设备类型的视在功率;According to the formula: The fourth objective function is constructed based on the apparent power, where S ij represents the apparent power of device i when it operates independently in mode j, and S represents the apparent power of the unknown device type;
根据公式:以谐波为基础构建第五目标函数,其中,Hij(k)表示设备i处于j模式下独立运行时的谐波,K是最大谐波的次序,H(k)代表未知包含设备类型的谐波。According to the formula: The fifth objective function is constructed based on harmonics, where Hij (k) represents the harmonics when device i operates independently in mode j, K is the order of the maximum harmonic, and H(k) represents the harmonics of the unknown contained device type.
这里需要说明的是,对上述五个目标函数的构建没有先后顺序之分,这里对构建的顺序不做限定,只要在建立多目标侵入式负荷分解模型之前将这五个目标函数都构建好即可。It should be noted here that there is no particular order in constructing the above five objective functions. There is no limitation on the order of construction here, as long as the five objective functions are constructed before establishing the multi-objective intrusive load decomposition model.
根据公式:minimize F(x)=(f1(x),f2(x),f3(x),f4(x),f5(x)),将上述的五个目标函数构建成一个多目标非侵入式负荷分解模型F(x),其中,表示所求用电设备类型,需要满足约束条件xij∈{0,1}和 According to the formula: minimize F(x) = (f 1 (x), f 2 (x), f 3 (x), f 4 (x), f 5 (x)), the above five objective functions are constructed into a multi-objective non-intrusive load decomposition model F(x), where: represents the type of electrical equipment required, which needs to satisfy the constraints x ij ∈ {0, 1} and
相应的,步骤S5:基于所述多目标非侵入式负荷分解模型确定处于总线上正在工作的用电设备类型和相应的工作模式,具体包括:Accordingly, step S5: determining the type of electrical equipment working on the bus and the corresponding working mode based on the multi-objective non-intrusive load decomposition model, specifically includes:
采用多目标进化算法求解所述多目标非侵入式负荷分解模型F(x),获得使F(x)中的五个优化目标同时最小时对应的用电设备类型和相应的工作模式;A multi-objective evolutionary algorithm is used to solve the multi-objective non-intrusive load decomposition model F(x) to obtain the corresponding electrical equipment type and corresponding working mode when the five optimization objectives in F(x) are minimized at the same time;
其中,在多目标进化算法里,采用编码和解码方式表示约束条件:编码的每一位表示一种类型的用电设备,其中,0表示此用电设备关闭,k表示此用电设备处于第k工作模式。Among them, in the multi-objective evolutionary algorithm, the constraints are expressed in an encoding and decoding manner: each bit of the code represents a type of electrical equipment, where 0 means that the electrical equipment is turned off, and k means that the electrical equipment is in the kth working mode.
此外,本发明实施例还公开了一种非侵入式负荷分解装置,参见附图4,该装置包括:In addition, the embodiment of the present invention also discloses a non-invasive load decomposition device, referring to FIG4 , the device comprises:
获取模块1,用于获取用电设备操作记录和总线上的电力数据,其中,所述电力数据包括:电流波形;The acquisition module 1 is used to acquire the operation records of the power-consuming equipment and the power data on the bus, wherein the power data includes: current waveform;
预处理模块2,用于根据所述用电设备操作记录,对所述电力数据进行预处理筛选出第一电力数据;A preprocessing module 2, configured to preprocess the power data and select first power data according to the operation record of the power-consuming device;
参数计算模块3,用于根据筛选出的第一电力数据确定每个时刻对应的四个电力参数值;A
模型建立模块4,用于根据所述电力参数值和所述电流波形,建立拥有五个优化目标的多目标非侵入式负荷分解模型;A model building module 4 is used to build a multi-objective non-intrusive load decomposition model with five optimization objectives according to the power parameter value and the current waveform;
确定模块5,用于基于所述多目标非侵入式负荷分解模型确定处于总线上正在工作的用电设备类型和相应模式。The
为了进一步优化上述技术方案,所述预处理模块2具体包括:In order to further optimize the above technical solution, the preprocessing module 2 specifically includes:
划分单元21,用于根据所述用电设备操作记录,将电力数据按照各个用电设备操作事件进行划分,得到电力数据划分结果,使得同一区间内的电力数据处于同一设备同一模式下;A division unit 21 is used to divide the power data according to each power device operation event according to the power device operation record, and obtain a power data division result so that the power data in the same interval is in the same mode of the same device;
异常值剔除单元22,用于对同一区间下的电流和电压进行异常值检测和剔除,得到异常值剔除结果;The abnormal value elimination unit 22 is used to detect and eliminate abnormal values of the current and voltage in the same interval to obtain an abnormal value elimination result;
计算单元23,用于根据所述电力数据划分结果和异常值剔除结果,计算无用电设备工作的区间内电流和电压平均值,同一电路下,将所有有用电设备工作的区间对应的电流值和电压值减去无用电设备工作的区间内电流和电压的平均值,得到第一电力数据。The calculation unit 23 is used to calculate the average current and voltage in the interval where no electrical equipment is working according to the power data division result and the abnormal value elimination result. Under the same circuit, the average current and voltage in the interval where no electrical equipment is working is subtracted from the current and voltage values corresponding to all intervals where useful electrical equipment is working, so as to obtain the first power data.
这里需要说明的是,同一电路可以理解为同一用电家庭。It should be noted here that the same circuit can be understood as the same electricity-using household.
为了进一步优化上述技术方案,所述异常值剔除单元22具体包括:In order to further optimize the above technical solution, the outlier elimination unit 22 specifically includes:
计算子单元221,用于根据公式MAD=median(|Ai-median(A)|),确定中位数绝对偏差,其中A表示同一区间下电流值或电压值,Ai表示第i时刻对应电流值或电压值,MAD表示中位数绝对偏差;The calculation subunit 221 is used to determine the median absolute deviation according to the formula MAD=median(|A i -median(A)|), where A represents the current value or voltage value in the same interval, Ai represents the current value or voltage value corresponding to the i-th moment, and MAD represents the median absolute deviation;
剔除子单元222,用于判断任意时刻同一区间下电流值或电压值偏离中位数的值是否大于N倍中位数绝对偏差,如果是,则此刻电流值或电压值为异常值并剔除该异常值。优选的,N=3。The elimination subunit 222 is used to determine whether the value of the current value or voltage value deviating from the median in the same interval at any time is greater than N times the median absolute deviation. If so, the current value or voltage value at this moment is an abnormal value and the abnormal value is eliminated. Preferably, N=3.
为了进一步优化上述技术方案,所述参数计算模块3具体包括:In order to further optimize the above technical solution, the
视在功率计算单元,用于根据公式:S=VI,确定各时刻对应的视在功率,其中,V表示某一时刻的电压值,I表示某一时刻的电流值,S表示视在功率;The apparent power calculation unit is used to determine the apparent power corresponding to each moment according to the formula: S=VI, where V represents the voltage value at a certain moment, I represents the current value at a certain moment, and S represents the apparent power;
有功功率计算单元,用于根据公式:P=VIcos(φ),确定各时刻对应的有功功率,其中,cos(φ)表示功率因数,P表示有功功率;An active power calculation unit, used to determine the active power corresponding to each moment according to the formula: P = VIcos (φ), where cos (φ) represents the power factor and P represents the active power;
无功功率计算单元,用于根据公式:Q=VIsin(φ),确定各时刻对应的无功功率,其中,Q表示无功功率;A reactive power calculation unit, used to determine the reactive power corresponding to each moment according to the formula: Q=VIsin(φ), where Q represents the reactive power;
谐波计算单元,用于根据公式:确定各时刻对应的谐波,其中,A(t)表示在t时刻电流值,约束条件是t=0,1,2,…,T-1,T代表在一个电流波形周期内采样点的数量,X(k)是第k次谐波的系数。Harmonic calculation unit, used according to the formula: Determine the harmonics corresponding to each moment, where A(t) represents the current value at moment t, the constraint is t=0, 1, 2, ..., T-1, T represents the number of sampling points in one current waveform cycle, and X(k) is the coefficient of the kth harmonic.
为了进一步优化上述技术方案,所述模型建立模块4具体包括:In order to further optimize the above technical solution, the model building module 4 specifically includes:
第一目标函数构建单元,用于根据公式:以电流波形为基础构建第一目标函数,其中,Iij(t)表示在t时刻设备i处于j模式下独立运行时的电流值;T代表在一个电流波形周期内采样点的数量,t=0表示电压相位处于特定的时刻,此刻的电压波形正从最大值向最低值变化,N表示设备总数,Mi表示设备i包含的模式总数,I表示未知设备类型的组合电流波形;xij表示用电设备i处于工作模式j,其中i=1,2,…,N,j=1,2,…,Mi;The first objective function building unit is used according to the formula: The first objective function is constructed based on the current waveform, where I ij (t) represents the current value when the device i is operating independently in mode j at time t; T represents the number of sampling points in a current waveform cycle, t=0 represents that the voltage phase is at a specific moment, and the voltage waveform at this moment is changing from the maximum value to the minimum value, N represents the total number of devices, Mi represents the total number of modes included in device i, and I represents the combined current waveform of unknown device types; x ij represents that the power device i is in working mode j, where i=1, 2, ..., N, j=1, 2, ..., Mi ;
第二目标函数构建单元,用于根据公式:以无功功率为基础构建第二目标函数,其中,Qij表示设备i处于j模式下独立运行时的无功功率,Q代表未知设备类型的无功功率;The second objective function building unit is used according to the formula: The second objective function is constructed based on reactive power, where Qij represents the reactive power of device i when it operates independently in mode j, and Q represents the reactive power of an unknown device type;
第三目标函数构建单元,用于根据公式:以有功功率为基础构建第三目标函数,其中,Pij表示设备i处于j模式下独立运行时的有功功率,P代表未知设备类型的有功功率;The third objective function building unit is used according to the formula: The third objective function is constructed based on active power, where Pij represents the active power of device i when it operates independently in mode j, and P represents the active power of the unknown device type;
第四目标函数构建单元,用于根据公式:以视在功率为基础构建第四目标函数,其中,Sij表示设备i处于j模式下独立运行时的视在功率,S代表未知设备类型的视在功率;The fourth objective function building unit is used according to the formula: The fourth objective function is constructed based on the apparent power, where S ij represents the apparent power of device i when it operates independently in mode j, and S represents the apparent power of the unknown device type;
第五目标函数构建单元,用于根据公式:以谐波为基础构建第五目标函数,其中,Hij(k)表示设备i处于j模式下独立运行时的谐波,K是最大谐波的次序,H(k)代表未知包含设备类型的谐波。The fifth objective function building unit is used according to the formula: The fifth objective function is constructed based on harmonics, where Hij (k) represents the harmonics when device i operates independently in mode j, K is the order of the maximum harmonic, and H(k) represents the harmonics of the unknown contained device type.
负荷分解模型建立单元,用于根据公式:minimize F(x)=(f1(x),f2(x),f3(x),f4(x),f5(x)),将上述的五个目标函数构建成一个多目标非侵入式负荷分解模型F(x),其中,表示所求用电设备类型,需要满足约束条件xij∈{0,1}和 The load decomposition model building unit is used to construct the above five objective functions into a multi-objective non-intrusive load decomposition model F(x) according to the formula: minimize F(x) = (f 1 (x), f 2 (x), f 3 (x), f 4 (x), f 5 (x)), where: represents the type of electrical equipment required, which needs to satisfy the constraints x ij ∈ {0, 1} and
相应的,所述确定模块5具体用于采用多目标进化算法求解所述多目标非侵入式负荷分解模型F(x),获得使F(x)中的五个目标函数同时最小时对应的用电设备类型和相应的工作模式;Accordingly, the
其中,在多目标进化算法里,采用编码和解码方式表示约束条件:编码的每一位表示一种类型的用电设备,其中,0表示此用电设备关闭,k表示此用电设备处于第k工作模式。Among them, in the multi-objective evolutionary algorithm, the constraints are expressed in an encoding and decoding manner: each bit of the code represents a type of electrical equipment, where 0 means that the electrical equipment is turned off, and k means that the electrical equipment is in the kth working mode.
这里需要说明的是,现有的多目标算法有很多已知的算法,例如:参考向量引导的进化算法(RVEA),但利用多目标进化算法求解所述多目标优化问题还鲜有报道。It should be noted here that there are many known existing multi-objective algorithms, such as the Reference Vector Guided Evolutionary Algorithm (RVEA), but there are few reports on using multi-objective evolutionary algorithms to solve the multi-objective optimization problem.
为了进一步详细论述本发明提供的非侵入式负荷分解方法和装置,以某一家庭241条有效记录的总线电力数据为例,对本发明的技术方案做详细介绍。In order to further discuss in detail the non-intrusive load decomposition method and device provided by the present invention, taking 241 valid records of bus power data of a household as an example, the technical solution of the present invention is introduced in detail.
本发明实施例以电流、电压、功率因数、电流波形和电压波形为基础,求得四个电力参数值,利用得到的电力参数值和电流波形的构建五个优化目标,提出多目标非侵入式负荷分解模型,结合多目标进化算法求解此模型,从而确定处于总线上正在工作的用电设备的类型以及相应的工作模式。The embodiment of the present invention obtains four power parameter values based on current, voltage, power factor, current waveform and voltage waveform, constructs five optimization objectives using the obtained power parameter values and current waveform, proposes a multi-objective non-intrusive load decomposition model, and solves the model in combination with a multi-objective evolutionary algorithm to determine the type of electrical equipment working on the bus and the corresponding working mode.
步骤一,首先获取用电设备操作记录和总线上的电力数据包括电流、电压、功率因数、电流波形和电压波形。并根据所述用电设备操作记录,对所述电力数据进行预处理筛选出合理的数据,最后根据所述筛选出的电力数据,确定每个时刻对应的四个电力参数值。Step 1: First, obtain the operation records of the power consumption equipment and the power data on the bus, including current, voltage, power factor, current waveform and voltage waveform. According to the operation records of the power consumption equipment, pre-process the power data to filter out reasonable data, and finally determine the four power parameter values corresponding to each moment according to the filtered power data.
收集的三个宏观电力参数包括电流、电压和功率因数,上述参数的采样率均为1Hz;获取的微观负荷特征是电流波形和电压波形,上述参数在50Hz系统中的采样率6400Hz,为了降低储存空间,只使用波形每秒钟的前1/50秒,如图7所示。8个电器共16个工作模式被测试,8个电器分别是风扇、热水壶、电视机、白炽灯、打印机、电脑、饮水机和吹风机如表1。数据集A只收集仅有一个电器正在运行的情形;数据集B收集的包含多个电器(少于4个)同时运行的情形。使用数据集A可获得16模态的5维特征向量作为已知负荷数据库;数据集B用于验证我们提出的负荷分解方法。The three macro power parameters collected include current, voltage and power factor, and the sampling rate of the above parameters is 1Hz; the micro load features obtained are current waveform and voltage waveform, and the sampling rate of the above parameters in the 50Hz system is 6400Hz. In order to reduce the storage space, only the first 1/50 second of the waveform is used, as shown in Figure 7. A total of 16 working modes of 8 electrical appliances were tested. The 8 electrical appliances are fans, kettles, TVs, incandescent lamps, printers, computers, water dispensers and hair dryers as shown in Table 1. Dataset A only collects the situation where only one electrical appliance is running; Dataset B collects the situation where multiple electrical appliances (less than 4) are running at the same time. Using Dataset A, a 5-dimensional feature vector of 16 modes can be obtained as a known load database; Dataset B is used to verify the load decomposition method we proposed.
表18种电器共16个模式对应电流、电压和功率因数Table 18 electrical appliances with 16 modes corresponding to current, voltage and power factor
只使用一个负荷特征并不能区分所有用电设备。使用五种负荷特征用于分解负荷包括宏观特征(即有功功率、无功功率和视在功率)和微观特征(即电流波形和谐波)。这些特征的定义如下:Using only one load characteristic cannot distinguish all electrical equipment. Five load characteristics are used to decompose the load, including macro characteristics (i.e. active power, reactive power and apparent power) and micro characteristics (i.e. current waveform and harmonics). The definitions of these characteristics are as follows:
特征叠加准则:提出的负荷分解模型所使用的负荷特征必须满足特征叠加准则。特征叠加准则的详细定义如下:Characteristic superposition criterion: The load characteristics used in the proposed load decomposition model must meet the characteristic superposition criterion. The detailed definition of the characteristic superposition criterion is as follows:
其中,Ψl(t)为在时刻t由K个用电设备同时运行产生特征l的叠加值,表示用电设备a处模式j下产生特征l对应的值;如果在t+Δt时刻用电设备a处于j模态瞬时工作且满足等式1,则表明特征l满足特征叠加准则。如果特征l满足特征叠加准则,则此特征可以用来估计叠加负荷特征即超多个电器同时运行的负荷特征值。Wherein, Ψ l (t) is the superposition value of feature l generated by K electrical devices running simultaneously at time t, Indicates the value corresponding to feature l generated by electrical device a in mode j; if electrical device a is in instantaneous operation in mode j at time t+Δt and satisfies equation 1, it means that feature l satisfies the feature superposition criterion. If feature l satisfies the feature superposition criterion, this feature can be used to estimate the superimposed load feature, that is, the load feature value of multiple electrical appliances running simultaneously.
有功功率、无功功率和视在功率的计算公式如下:The calculation formulas for active power, reactive power and apparent power are as follows:
P=VIcos(φ), (2)P=VIcos(φ), (2)
Q=VIsin(φ), (3)Q=VIsin(φ), (3)
S=VI, (4)S=VI, (4)
式中,V和I分别是电压值和电流值,cosφ是功率因数。上述特征都符合特征叠加准则。Where V and I are voltage and current respectively, and cosφ is the power factor. The above characteristics all meet the characteristic superposition criterion.
电流波形:电流波形是在一个周期内(1/50s)采样128个数据点。因为高采样率,电流波形包含详细的电器特征,但是电压波形是没有明显差异的如图7(b)所示。所以选择电流波形,并且它满足特征叠加准则。Current waveform: The current waveform is sampled with 128 data points in one cycle (1/50s). Due to the high sampling rate, the current waveform contains detailed electrical characteristics, but there is no obvious difference in the voltage waveform as shown in Figure 7(b). Therefore, the current waveform is selected and it meets the feature superposition criterion.
谐波:对电流波形进行快速傅里叶变换获得电流谐波。谐波的直角坐标形式(a+jb)满足特征叠加准则。但是有物理意义极坐标形式A∠θ是不满足特征叠加准则。谐波的直角坐标形式的计算公式如下:Harmonics: Perform fast Fourier transform on the current waveform to obtain current harmonics. The rectangular coordinate form of harmonics (a+jb) meets the characteristic superposition criterion. However, the physically meaningful polar coordinate form A∠θ does not meet the characteristic superposition criterion. The calculation formula for the rectangular coordinate form of harmonics is as follows:
其中,A(t)表示在t时刻电流值;约束条件是t=0,1,2,…,T-1;T代表在一个电流波形周期内(1/50s)采样点的数量;X(k)是第k次谐波的系数。表3是根据电力数据确定的电力参数值,并且这是预处理之前的宏观特征。谐波是在预处理之后再做计算得到。Among them, A(t) represents the current value at time t; the constraint condition is t = 0, 1, 2, ..., T-1; T represents the number of sampling points in one current waveform period (1/50s); X(k) is the coefficient of the kth harmonic. Table 3 shows the power parameter values determined based on the power data, and this is the macroscopic feature before preprocessing. Harmonics are calculated after preprocessing.
表2预处理前8种电器共16个模式对应有功功率、视在功率和无功功率Table 2 Active power, apparent power and reactive power corresponding to 16 modes of 8 electrical appliances before pretreatment
之后会对数据进行预处理包括:(1)利用用电设备操作记录分离用电设备切换事件;(2)同时对电流波形和电压波形进行采样保证每个时刻电压波形的初始相位(从波峰正向波谷变化)都相同,同时还需要让电流波形和电压波形之间有着正确的相位关系;(3)移除离群点保证之后处理的准确率;(4)让有电器运行的负荷特征减去没有电器运行的负荷特征以减少噪声的影响。处理后的部分数据如表3。The data will then be preprocessed, including: (1) using the operation records of electrical equipment to separate the switching events of electrical equipment; (2) sampling the current waveform and voltage waveform at the same time to ensure that the initial phase of the voltage waveform (changing from the positive peak to the trough) is the same at each moment, and at the same time, the current waveform and the voltage waveform must have a correct phase relationship; (3) removing outliers to ensure the accuracy of subsequent processing; (4) subtracting the load characteristics of electrical equipment from the load characteristics of electrical equipment in operation to reduce the impact of noise. Some of the processed data are shown in Table 3.
表3预处理后8种电器共16个模式对应的有功功率、视在功率和无功功率Table 3 Active power, apparent power and reactive power corresponding to 16 modes of 8 electrical appliances after preprocessing
步骤二:根据五个电力参数值,建立拥有五个优化目标的多目标负荷分解模型,最后使用多目标进化算法求解所提出的多目标负荷分解模型,确定当前时刻处于总线上正在运行的用电设备类型和相应模式。Step 2: Based on the five power parameter values, a multi-objective load decomposition model with five optimization objectives is established. Finally, a multi-objective evolutionary algorithm is used to solve the proposed multi-objective load decomposition model to determine the type and corresponding mode of electrical equipment currently running on the bus.
将负荷分解问题转化为最优化问题,每种特征都可以形成一个最优化问题。传统的基于最优化的负荷分解方法是将多个目标函数加权成一个。但由于某些特征之间有高度的正相关性或负相关性,因此并不能将不同的优化问题进行简单地加权;而且加权参数对于不同数据集敏感且很难调整,加权参数对负荷分解精度有着显著影响。为了解决这些缺点,将负荷分解问题转化为多目标优化问题可由下式表示:The load decomposition problem is converted into an optimization problem. Each feature can form an optimization problem. The traditional optimization-based load decomposition method is to weight multiple objective functions into one. However, due to the high positive or negative correlation between some features, different optimization problems cannot be simply weighted; and the weighting parameters are sensitive to different data sets and difficult to adjust. The weighting parameters have a significant impact on the accuracy of load decomposition. In order to solve these shortcomings, the load decomposition problem is converted into a multi-objective optimization problem, which can be expressed as follows:
minimize F(x)=(f1(x),f2(x),f3(x),f4(x),f5(x)),minimize F(x)=(f 1 (x), f 2 (x), f 3 (x), f 4 (x), f 5 (x)),
约束条件为:The constraints are:
xij∈{0,1}, xij∈ {0,1},
其中,F(x)表是必须同时被优化的五维目标函数;xij代表用电设备i处于模式j下的运行状态(0表示关,1表示开),N是数据库中最大用电设备数,Mi代表用电设备i的总模式数。这五个最优化问题使用五个不同负荷特征构建。五个目标函数的计算公式如下:Among them, F(x) table is a five-dimensional objective function that must be optimized simultaneously; xij represents the operating state of electrical equipment i in mode j (0 means off, 1 means on), N is the maximum number of electrical equipment in the database, and Mi represents the total number of modes of electrical equipment i. These five optimization problems are constructed using five different load characteristics. The calculation formulas of the five objective functions are as follows:
Iij(t)表示在t时刻用电设备i处于模式j下独立运行时的电流值;T代表在一个电流波形周期内(1/50s)采样点的数量;t=0表示电压相位处于特定的时刻,此刻的电压波形正从最大值向最低值变化;N表示用电设备总数;Mi表示用电设备i包含的模式总数;I表示未知用电设备类型的电流波形;Qij表示设备i处于j模式下独立运行时的无功功率;Q代表未知用电设备类型的无功功率;Pij表示设备i处于j模式下独立运行时的有功功率;P代表未知用电设备类型的有功功率;Sij表示设备i处于j模式下独立运行时的视在功率;S代表未知用电设备类型的视在功率;Hij(k)表示设备i处于j模式下独立运行时的谐波;K是最大谐波的次序,H(k)代表未知用电设备类型的谐波。I ij (t) represents the current value when the electrical device i is operating independently in mode j at time t; T represents the number of sampling points in one current waveform cycle (1/50s); t=0 represents that the voltage phase is at a specific moment, and the voltage waveform at this moment is changing from the maximum value to the minimum value; N represents the total number of electrical devices; Mi represents the total number of modes included in the electrical device i; I represents the current waveform of an unknown electrical device type; Qij represents the reactive power of the device i when operating independently in mode j; Q represents the reactive power of an unknown electrical device type; Pij represents the active power of the device i when operating independently in mode j; P represents the active power of an unknown electrical device type; Sij represents the apparent power of the device i when operating independently in mode j; S represents the apparent power of an unknown electrical device type; Hij (k) represents the harmonics of the device i when operating independently in mode j; K is the order of the maximum harmonic, and H(k) represents the harmonics of an unknown electrical device type.
使用多目标进化算法求解多目标负荷分解模型来获取各用电设备的工作状态。首先,提出一种新的编码方式解决约束条件xij∈{0,1}和新的编码方式的每一位表示一种类型用电设备,其中,0代表此用电设备关,k表示此用电设备处于第k工作模式。然后,遗传算子(位突变算子和单点交叉算子)被用来生成子代。之后,使用分配目标等级计算目标等级R,和利用多目标进化算法适应值评估用于获取适应值,同时利用这些适应值从同目标等级中筛选出下一代。根据目标等级去筛选子代,然后根据多目标进化算法得到的适应值从同目标等级中做更进一步的筛选,最终满足停止条件输出最终种群。A multi-objective evolutionary algorithm is used to solve the multi-objective load decomposition model to obtain the working status of each electrical equipment. First, a new encoding method is proposed to solve the constraints x ij ∈ {0, 1} and Each bit of the new encoding method represents a type of electrical equipment, where 0 represents that the electrical equipment is off, and k represents that the electrical equipment is in the kth working mode. Then, genetic operators (bit mutation operator and single-point crossover operator) are used to generate offspring. After that, the target level R is calculated using the assigned target level, and the fitness value evaluation using the multi-objective evolutionary algorithm is used to obtain the fitness value, and these fitness values are used to screen the next generation from the same target level. The offspring are screened according to the target level, and then further screened from the same target level according to the fitness value obtained by the multi-objective evolutionary algorithm, and finally the final population is output when the stopping condition is met.
分配目标等级:提出分配目标等级方法去解决用电设备上限的约束。首先计算个体的用电设备数,然后将含有1到U个用电设备数的个体分配到R1。将含有N个用电设备数的个体分配到RN-U+2。Assign target level: A method of assigning target level is proposed to solve the constraint of the upper limit of power consumption equipment. First, the number of power consumption equipment of individuals is calculated, and then individuals with 1 to U power consumption equipment are assigned to R 1 . Individuals with N power consumption equipment are assigned to R N-U+2 .
下面结合具体实例来进一步说明上述技术方案,请参见表4和表5:The above technical solution is further explained below with reference to specific examples, see Table 4 and Table 5:
表4预处理后3种电器共4个模式对应的有功功率、视在功率、无功功率、谐波和电流波形值Table 4 Active power, apparent power, reactive power, harmonics and current waveform values corresponding to 4 modes of 3 electrical appliances after preprocessing
表5总线上分析获取有功功率、视在功率、无功功率、谐波和电流波形值Table 5 Analysis and acquisition of active power, apparent power, reactive power, harmonics and current waveform values on the bus
表4是3种电器共4种模式的对应有功功率、视在功率、无功功率、谐波和电流波形值。表5是在总线上某一时刻测量并经过步骤一处理后获取的有功功率、视在功率、无功功率、谐波和电流波形值。经过多目标进化算法求解,得到使5个目标函数均最优的用电设备类型及相应模式;确定出在此刻热水壶模式1和打印机模式2处于运行状态。Table 4 shows the corresponding active power, apparent power, reactive power, harmonics and current waveform values of 4 modes of 3 kinds of electrical appliances. Table 5 shows the active power, apparent power, reactive power, harmonics and current waveform values measured at a certain moment on the bus and obtained after processing in step 1. After solving the multi-objective evolutionary algorithm, the types of electrical equipment and corresponding modes that make all 5 objective functions optimal are obtained; it is determined that at this moment, kettle mode 1 and printer mode 2 are in operation.
本发明提供的一种基于多目标进化算法在非侵入式负荷监测方法,根据用电设备操作记录对电力数据包括电流、电压、功率因数、电流波形和电压波形进行预处理筛选出合理的数据;根据筛选出的电力数据,确定每个时刻对应的四个电力参数值包括有用功率、无功功率、视在功率和谐波,利用电力参数值和电流波形,建立拥有五个优化目标的多目标非侵入式负荷分解模型,利用多目标进化算法求解多目标负荷分解模型,确定处于总线上正在工作的用电设备类型及相应模式。因此,采用本发明提供的负荷监测方法,分解准确率高,结果稳定,有较强的鲁棒性。The present invention provides a non-intrusive load monitoring method based on a multi-objective evolutionary algorithm. According to the operation records of the power equipment, the power data including current, voltage, power factor, current waveform and voltage waveform are pre-processed to screen out reasonable data; according to the screened power data, the four power parameter values corresponding to each moment are determined, including useful power, reactive power, apparent power and harmonics, and the power parameter values and current waveforms are used to establish a multi-objective non-intrusive load decomposition model with five optimization objectives. The multi-objective evolutionary algorithm is used to solve the multi-objective load decomposition model to determine the type of power equipment working on the bus and the corresponding mode. Therefore, the load monitoring method provided by the present invention has high decomposition accuracy, stable results and strong robustness.
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。In this specification, each embodiment is described in a progressive manner, and each embodiment focuses on the differences from other embodiments. The same or similar parts between the embodiments can be referred to each other. For the device disclosed in the embodiment, since it corresponds to the method disclosed in the embodiment, the description is relatively simple, and the relevant parts can be referred to the method part.
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。The above description of the disclosed embodiments enables one skilled in the art to implement or use the present invention. Various modifications to these embodiments will be apparent to one skilled in the art, and the general principles defined herein may be implemented in other embodiments without departing from the spirit or scope of the present invention. Therefore, the present invention will not be limited to the embodiments shown herein, but rather to the widest scope consistent with the principles and novel features disclosed herein.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910390156.8A CN110416995B (en) | 2019-05-10 | 2019-05-10 | Non-invasive load decomposition method and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910390156.8A CN110416995B (en) | 2019-05-10 | 2019-05-10 | Non-invasive load decomposition method and device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110416995A CN110416995A (en) | 2019-11-05 |
CN110416995B true CN110416995B (en) | 2023-05-05 |
Family
ID=68358167
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910390156.8A Active CN110416995B (en) | 2019-05-10 | 2019-05-10 | Non-invasive load decomposition method and device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110416995B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110979079B (en) * | 2019-12-17 | 2021-06-29 | 深圳华建电力物联技术有限公司 | Method and device for positioning electric vehicle to tail end |
CN111092434B (en) * | 2019-12-25 | 2023-07-04 | 天津大学 | Residential community power load control method and device based on non-invasive electricity consumption data |
CN111091911A (en) * | 2019-12-30 | 2020-05-01 | 重庆同仁至诚智慧医疗科技股份有限公司 | System and method for screening stroke risk |
CN111190067B (en) * | 2020-01-21 | 2021-03-19 | 山东建筑大学 | Method, server and system for monitoring the use of catering disinfection equipment based on the Internet of Things |
CN111934318B (en) * | 2020-08-13 | 2024-02-27 | 彭浩明 | Non-invasive power load decomposition method, apparatus, device and storage medium |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103001230A (en) * | 2012-11-16 | 2013-03-27 | 天津大学 | Non-invasive power load monitoring and decomposing current mode matching method |
CN105186693A (en) * | 2015-09-28 | 2015-12-23 | 南方电网科学研究院有限责任公司 | Non-invasive electrical load identification system and method |
CN105514984A (en) * | 2015-12-07 | 2016-04-20 | 河南许继仪表有限公司 | A plug-and-play non-intrusive load splitting device |
CN107525964A (en) * | 2017-10-23 | 2017-12-29 | 云南电网有限责任公司电力科学研究院 | A kind of recognition methods of non-intrusion type load and device based on fusion decision-making |
CN109492667A (en) * | 2018-10-08 | 2019-03-19 | 国网天津市电力公司电力科学研究院 | A kind of feature selecting discrimination method for non-intrusive electrical load monitoring |
CN109596912A (en) * | 2018-11-21 | 2019-04-09 | 河海大学 | A kind of decomposition method of non-intrusion type power load |
-
2019
- 2019-05-10 CN CN201910390156.8A patent/CN110416995B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103001230A (en) * | 2012-11-16 | 2013-03-27 | 天津大学 | Non-invasive power load monitoring and decomposing current mode matching method |
CN105186693A (en) * | 2015-09-28 | 2015-12-23 | 南方电网科学研究院有限责任公司 | Non-invasive electrical load identification system and method |
CN105514984A (en) * | 2015-12-07 | 2016-04-20 | 河南许继仪表有限公司 | A plug-and-play non-intrusive load splitting device |
CN107525964A (en) * | 2017-10-23 | 2017-12-29 | 云南电网有限责任公司电力科学研究院 | A kind of recognition methods of non-intrusion type load and device based on fusion decision-making |
CN109492667A (en) * | 2018-10-08 | 2019-03-19 | 国网天津市电力公司电力科学研究院 | A kind of feature selecting discrimination method for non-intrusive electrical load monitoring |
CN109596912A (en) * | 2018-11-21 | 2019-04-09 | 河海大学 | A kind of decomposition method of non-intrusion type power load |
Non-Patent Citations (2)
Title |
---|
Load_Signature_StudyPart_II_Disaggregation_Framework_Simulation_and_Applications;Jian Liang等;《Load signature study—part II: disaggregation framework, simulation, and applications》;20101231;第561-562页 * |
非侵入式电力负荷多目标分解框架;杨立余;《电力系统保护与控制》;20200316;第48卷(第6期);第100-107页 * |
Also Published As
Publication number | Publication date |
---|---|
CN110416995A (en) | 2019-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110416995B (en) | Non-invasive load decomposition method and device | |
Lu et al. | A hybrid event detection approach for non-intrusive load monitoring | |
Devlin et al. | Non-intrusive load monitoring and classification of activities of daily living using residential smart meter data | |
Lin et al. | Development of an improved time–frequency analysis-based nonintrusive load monitor for load demand identification | |
CN106093652B (en) | Non-invasive power load monitoring system and method with self-learning function | |
CN106600074B (en) | DFHSMM-based non-invasive power load monitoring method and system | |
CN111242391B (en) | Machine learning model training method and system for power load identification | |
CN110133393B (en) | A power consumption monitoring system and method based on non-intrusive monitoring technology | |
CN109345409B (en) | A comprehensive energy efficiency management method for residential users based on broadband carrier | |
Stankovic et al. | A graph-based signal processing approach for low-rate energy disaggregation | |
CN111564842B (en) | Method for statistical estimation of medium-and-long-term energy consumption in non-invasive electric load monitoring | |
CN106646026A (en) | Non-intrusive household appliance load identification method | |
CN110288113A (en) | A non-intrusive load intelligent identification system | |
WO2014075581A1 (en) | Current-mode matching method for non-invasive power load monitoring and decomposition | |
Schoofs et al. | Annot: Automated electricity data annotation using wireless sensor networks | |
Elafoudi et al. | Power disaggregation of domestic smart meter readings using dynamic time warping | |
Dash et al. | An appliance load disaggregation scheme using automatic state detection enabled enhanced integer programming | |
CN113361831B (en) | Non-invasive load identification electric quantity decomposition method and system based on priority distribution | |
CN112101110A (en) | Non-invasive load identification method for user side of power system | |
CN113193654A (en) | Event-driven non-intrusive power load monitoring method based on transient and steady state combination characteristics | |
WO2021171303A1 (en) | A system and method for energy management of identical appliances using non-intrusive load monitoring technique | |
CN113985098A (en) | A method for improving the accuracy of anti-theft analysis based on real-time metering | |
CN112909923A (en) | Non-invasive household load behavior recognition device based on DTW algorithm | |
CN103018611B (en) | Non-invasive load monitoring method and system based on current decomposition | |
Wu et al. | Nonintrusive on-site load-monitoring method with self-adaption |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |