CN110416528A - A kind of potassium ion battery - Google Patents
A kind of potassium ion battery Download PDFInfo
- Publication number
- CN110416528A CN110416528A CN201810393953.7A CN201810393953A CN110416528A CN 110416528 A CN110416528 A CN 110416528A CN 201810393953 A CN201810393953 A CN 201810393953A CN 110416528 A CN110416528 A CN 110416528A
- Authority
- CN
- China
- Prior art keywords
- ion battery
- battery according
- kalium ion
- electrolyte
- potassium ion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910001414 potassium ion Inorganic materials 0.000 title abstract description 32
- NPYPAHLBTDXSSS-UHFFFAOYSA-N Potassium ion Chemical compound [K+] NPYPAHLBTDXSSS-UHFFFAOYSA-N 0.000 title abstract description 30
- 150000001875 compounds Chemical class 0.000 claims abstract description 17
- 239000003792 electrolyte Substances 0.000 claims abstract description 13
- 239000011574 phosphorus Substances 0.000 claims abstract description 12
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 12
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 11
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 14
- 229910052700 potassium Inorganic materials 0.000 claims description 14
- 239000011591 potassium Substances 0.000 claims description 14
- 239000011230 binding agent Substances 0.000 claims description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 7
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 7
- 229910052744 lithium Inorganic materials 0.000 claims description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 6
- -1 Polytetrafluoroethylene Polymers 0.000 claims description 6
- 238000000498 ball milling Methods 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 6
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 claims description 5
- 239000011889 copper foil Substances 0.000 claims description 5
- 229920000058 polyacrylate Polymers 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 3
- 239000000843 powder Substances 0.000 claims description 3
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 2
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 claims description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 claims description 2
- 239000010949 copper Substances 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 239000004814 polyurethane Substances 0.000 claims description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 2
- 238000002360 preparation method Methods 0.000 claims description 2
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 claims description 2
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 claims description 2
- 239000002904 solvent Substances 0.000 claims description 2
- 239000006183 anode active material Substances 0.000 claims 2
- 239000004411 aluminium Substances 0.000 claims 1
- 239000005030 aluminium foil Substances 0.000 claims 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 claims 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 claims 1
- 229910052731 fluorine Inorganic materials 0.000 claims 1
- 239000011737 fluorine Substances 0.000 claims 1
- 238000000227 grinding Methods 0.000 claims 1
- 150000002466 imines Chemical class 0.000 claims 1
- 229920002635 polyurethane Polymers 0.000 claims 1
- 239000007773 negative electrode material Substances 0.000 abstract description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 3
- 229910052799 carbon Inorganic materials 0.000 abstract description 3
- 230000005518 electrochemistry Effects 0.000 abstract description 2
- 239000007774 positive electrode material Substances 0.000 abstract description 2
- 229940037179 potassium ion Drugs 0.000 description 24
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 description 10
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000011056 performance test Methods 0.000 description 3
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000010405 anode material Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 238000007086 side reaction Methods 0.000 description 2
- 229910001415 sodium ion Inorganic materials 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000013590 bulk material Substances 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920003225 polyurethane elastomer Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- MHEBVKPOSBNNAC-UHFFFAOYSA-N potassium;bis(fluorosulfonyl)azanide Chemical compound [K+].FS(=O)(=O)[N-]S(F)(=O)=O MHEBVKPOSBNNAC-UHFFFAOYSA-N 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/054—Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5825—Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
本发明涉及电化学领域,具体涉及一种钾离子电池。本发明提供的钾离子电池,包括正极、负极和电解液;所述正极包括钾离子电池正极材料;所述负极的负极活性材料层为GeP5化合物。该发明解决了现有技术中钾离子电池中的碳基负极材料比容量低,以及单质磷和磷化物电导率低,循环性能差的问题,提供了一种新型的钾离子电池负极材料。
The invention relates to the field of electrochemistry, in particular to a potassium ion battery. The potassium ion battery provided by the invention includes a positive pole, a negative pole and an electrolyte; the positive pole includes a positive electrode material of the potassium ion battery; the negative electrode active material layer of the negative pole is a GeP 5 compound. The invention solves the problems of low specific capacity, low conductivity of elemental phosphorus and phosphide, and poor cycle performance of carbon-based negative electrode materials in potassium ion batteries in the prior art, and provides a new type of negative electrode material for potassium ion batteries.
Description
技术领域technical field
本发明涉及电化学领域,具体涉及一种钾离子电池。The invention relates to the field of electrochemistry, in particular to a potassium ion battery.
背景技术Background technique
随着对电动汽车和大型储能设备需求的日益增加,近年来,锂离子电池在便携式设备和电动汽车中已经占主导地位。但由于锂元素资源有限,因此,拓宽成本效益高的电池代替品逐渐成为趋势。钠和钾因其性质与锂相似且在土壤中储量丰富引起了人们的关注。然而,钠离子电池由于能量密度较低,经常使电池的工作电压不足。在钾离子电池的应用中,碳基负极材料因其优良的循环性能和可逆的储钾能力被广泛应用在钾离子电池负极中。然而,由于其过高的工作电压导致低比容量、低能量密度等因素,其在工业应用方面的仍然存在障碍。磷作为一种负极材料的替代,由于其较高的理论比容量(2594mAh/g)被认为具有非常广泛的运用前景。但是单质磷的电导率低、储钾体积膨胀大,为了克服这些缺点,合金基磷化物例如NiP2,Se4P4,Sn4P3和SnP3,因其化合物的金属特征和协同反应机理等特点被引入到钾离子电池负极材料中,但由于其磷元素含量较低,使以其作为负极的钾离子电池的电容量低及循环性能不佳。With the increasing demand for electric vehicles and large-scale energy storage devices, lithium-ion batteries have dominated portable devices and electric vehicles in recent years. However, due to the limited resources of lithium elements, it is gradually becoming a trend to expand cost-effective battery alternatives. Sodium and potassium have attracted attention because of their similar properties to lithium and their abundance in soil. However, Na-ion batteries often suffer from insufficient operating voltage due to their low energy density. In the application of potassium-ion batteries, carbon-based anode materials are widely used in potassium-ion battery anodes because of their excellent cycle performance and reversible potassium storage capacity. However, there are still obstacles for its industrial application due to factors such as low specific capacity and low energy density due to its excessively high operating voltage. Phosphorus, as a substitute for anode materials, is considered to have a very broad application prospect due to its high theoretical specific capacity (2594mAh/g). However, the conductivity of elemental phosphorus is low and the volume expansion of potassium storage is large. In order to overcome these shortcomings, alloy-based phosphides such as NiP 2 , Se 4 P 4 , Sn 4 P 3 and SnP 3 , because of their metal characteristics and synergistic reaction mechanism and other characteristics have been introduced into the negative electrode material of potassium ion battery, but due to its low phosphorus content, the potassium ion battery using it as the negative electrode has low capacity and poor cycle performance.
发明内容Contents of the invention
有鉴于此,本发明提供了一种钾离子电池,解决了现有技术中钾离子电池中的碳基负极材料由于其过高的工作电压导致比容量与能量密度过低,以及由于合金基磷化物中磷元素过低导致钾离子电池的电容量低及循环性能不佳的技术问题。In view of this, the present invention provides a potassium-ion battery, which solves the problem that the carbon-based negative electrode material in the potassium-ion battery in the prior art is too low in specific capacity and energy density due to its excessively high operating voltage, and that the alloy-based phosphorus The low phosphorus element in the compound leads to the technical problems of low capacity and poor cycle performance of the potassium ion battery.
本发明提供给了一种钾离子电池,包括正极、负极和电解液;The invention provides a potassium ion battery, comprising a positive pole, a negative pole and an electrolyte;
所述正极包括钾离子电池正极材料;The positive electrode includes a potassium ion battery positive electrode material;
所述负极的负极活性材料层为GeP5化合物。The negative electrode active material layer of the negative electrode is a GeP 5 compound.
优选的,所述电解液的电解质为氟磺酰亚胺钾。Preferably, the electrolyte of the electrolytic solution is potassium fluorosulfonimide.
优选的,所述电解液的溶剂包括碳酸乙烯酯和/或碳酸乙二酯。Preferably, the solvent of the electrolyte includes ethylene carbonate and/or ethylene carbonate.
优选的,所述GeP5化合物的制备方法包括将锗粉和磷粉按摩尔比1:5混合进行球磨。Preferably, the preparation method of the GeP 5 compound includes mixing germanium powder and phosphorus powder at a molar ratio of 1:5 and performing ball milling.
优选的,所述球磨的球料比为20:1。Preferably, the ball-to-material ratio of the ball mill is 20:1.
优选的,所述球磨的时间为5~10h。Preferably, the ball milling time is 5-10 hours.
优选的,所述球磨的转速为900~1200r/min。Preferably, the rotational speed of the ball mill is 900-1200r/min.
优选的,所述负极还包括粘结剂和集流体,所述负极活性材料层通过所述粘结剂粘结在所述集流体的表面上。Preferably, the negative electrode further includes a binder and a current collector, and the negative electrode active material layer is bonded on the surface of the current collector through the binder.
优选的,所述粘结剂选自聚偏氟乙烯、聚四氟乙烯、聚丙烯酸锂、聚乙烯醇、羧甲基纤维素钠、聚氨酯或丁苯橡胶。Preferably, the binder is selected from polyvinylidene fluoride, polytetrafluoroethylene, lithium polyacrylate, polyvinyl alcohol, sodium carboxymethyl cellulose, polyurethane or styrene-butadiene rubber.
更优选的,所述粘结剂为聚丙烯酸锂。More preferably, the binder is lithium polyacrylate.
优选的,所述集流体选自铜箔、铝箔、镍箔、铜网、铝网或镍网。Preferably, the current collector is selected from copper foil, aluminum foil, nickel foil, copper mesh, aluminum mesh or nickel mesh.
更优选的,所述集流体为铜箔。More preferably, the current collector is copper foil.
本发明提供了一种钾离子电池,其负极活性材料层为GeP5化合物,由于GeP5中P元素含量较高,每个磷离子(P3-)可以储存3个钾离子(K+),使得GeP5作为钾离子电池负极时能储存更多的钾离子,结合其特殊的层状结构和金属导电性,使其用作钾离子电池负极时,可以显著提高钾离子电池理论比容量和反应活性。此外,由于磷元素具有较强的电负性,使GeP5具有更高的储钾活性,可以进一步提高电池的性能。The invention provides a potassium ion battery, the negative active material layer of which is GeP 5 compound, because the P element content in GeP 5 is relatively high, each phosphorus ion (P 3- ) can store 3 potassium ions (K + ), When GeP 5 is used as the negative electrode of potassium ion battery, it can store more potassium ions. Combined with its special layered structure and metal conductivity, it can significantly improve the theoretical specific capacity and reaction of potassium ion battery when it is used as the negative electrode of potassium ion battery. active. In addition, due to the strong electronegativity of phosphorus, GeP 5 has higher potassium storage activity, which can further improve the performance of the battery.
本发明的实验结果表明,本发明制备的GeP5化合物纯度较高,且作为钾离子电池负极活性材料时,其首次放电容量为1400mAh/g,在500mA/g的大电流密度下循环2000圈后,其储钾容量仍保持在200mAh/g,容量保持率较高,说明该钾离子电池具有良好的储钾性能与循环稳定性。The experimental results of the present invention show that the GeP 5 compound prepared by the present invention has higher purity, and when it is used as the negative electrode active material of a potassium ion battery, its initial discharge capacity is 1400mAh/g, and after 2000 cycles at a high current density of 500mA/g , its potassium storage capacity remains at 200mAh/g, and the capacity retention rate is high, indicating that the potassium ion battery has good potassium storage performance and cycle stability.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the following briefly introduces the drawings that are required in the description of the embodiments or the prior art.
图1为本发明GeP5化合物的X射线衍射图;Fig. 1 is the X-ray diffraction figure of GeP 5 compound of the present invention;
图2为本发明GeP5化合物的扫描电镜图;Fig. 2 is the scanning electron micrograph of GeP 5 compound of the present invention;
图3为本发明GeP5化合物的透射电镜图;Fig. 3 is the transmission electron microscope figure of GeP 5 compound of the present invention;
图4为本发明实施例2的循环性能测试图。Fig. 4 is a cycle performance test diagram of Example 2 of the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例,对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的其他实施例,都属于本发明保护的范围。The technical solutions of the present invention will be clearly and completely described below in conjunction with the embodiments of the present invention. Obviously, the described embodiments are only some of the embodiments of the present invention, not all of them. Based on the embodiments of the present invention, other embodiments obtained by persons of ordinary skill in the art without making creative efforts all belong to the protection scope of the present invention.
本发明提供了一种钾离子电池负极材料,并将其制成负极应用在钾离子电池中,解决了现有技术中由于磷元素过低导致钾离子电池的电容量低及循环性能不佳的技术问题。The invention provides a negative electrode material for a potassium ion battery, which is made into a negative electrode and used in a potassium ion battery, which solves the problem of low capacity and poor cycle performance of the potassium ion battery in the prior art due to too low a phosphorus element technical problem.
为了进一步理解本申请,下面结合实施例对本申请提供的锂离子/钠离子电池负极材料进行具体地描述。In order to further understand the present application, the lithium-ion/sodium-ion battery negative electrode material provided by the present application will be specifically described below in conjunction with examples.
实施例1Example 1
按摩尔比1:5将纯度为99.9%的锗粉和纯度为99.8%的磷粉加入到球磨罐中,采用20:1的球料比,在900~1200r/min的转速下,球磨5-10小时后获得GeP5化合物,图1为GeP5化合物的X射线衍射图,从图中可以看出,其衍射峰与标准卡片(PDF-24-0455)相对应,表明所合成的物质为GeP5且纯度较高。Add germanium powder with a purity of 99.9% and phosphorus powder with a purity of 99.8% to the ball mill tank at a molar ratio of 1:5, using a ball-to-material ratio of 20:1, and at a speed of 900-1200r/min, ball mill for 5- Obtain GeP 5 compound after 10 hours, Fig. 1 is the X-ray diffraction pattern of GeP 5 compound, as can be seen from the figure, its diffraction peak corresponds to standard card (PDF-24-0455), shows that the material synthesized is GeP 5 and higher purity.
图2为GeP5化合物的扫描电镜图,图3为GeP5化合物的透射电镜图,从图2与图3中可以看出合成的GeP5化合物为块体材料,其粒径较小,约为500nm,有利于缓解储钾后体积膨胀所带来的应力,从而防止材料破裂。Figure 2 is a scanning electron microscope image of GeP 5 compound, and Figure 3 is a transmission electron microscope image of GeP 5 compound. It can be seen from Figure 2 and Figure 3 that the synthesized GeP 5 compound is a bulk material with a small particle size of about 500nm, which is beneficial to relieve the stress caused by the volume expansion after potassium storage, thereby preventing the material from cracking.
实施例2Example 2
以聚丙烯酸锂作为粘结剂,导电炭黑作为导电剂,铜箔作为集流体,将制备得到的GeP5化合物作为负极活性材料层,通过聚丙烯酸锂粘结在铜箔的表面上,制得钾离子电池负极。在钾离子电池的电化学性能测试中,将上述钾离子电池负极与金属钾制成GeP5-K扣式电池,并分别以六氟磷酸钾-碳酸乙烯酯/碳酸二乙酯(KPF6-EC/DEC)、双氟磺酰亚胺钾-碳酸乙烯酯/碳酸乙二酯(KFSI-EC/DEC)、六氟磷酸钾-碳酸乙烯酯/碳酸二乙酯/氟代碳酸乙烯酯(KPF6-EC/DEC/FEC)、双氟磺酰亚胺钾-碳酸乙烯酯/碳酸乙二酯/氟代碳酸乙烯酯(KFSI-EC/DEC/FEC)为电解液测试其循环性能。Lithium polyacrylate is used as binder, conductive carbon black is used as conductive agent, copper foil is used as current collector, and the prepared GeP 5 compound is used as negative electrode active material layer, and lithium polyacrylate is bonded on the surface of copper foil to obtain Potassium ion battery negative electrode. In the electrochemical performance test of the potassium ion battery, the negative electrode of the above potassium ion battery and metal potassium were made into a GeP 5 -K button battery, and potassium hexafluorophosphate-ethylene carbonate/diethyl carbonate (KPF 6 - EC/DEC), potassium difluorosulfonimide-ethylene carbonate/ethylene carbonate (KFSI-EC/DEC), potassium hexafluorophosphate-ethylene carbonate/diethyl carbonate/fluoroethylene carbonate (KPF 6 -EC/DEC/FEC), Potassium bisfluorosulfonimide-ethylene carbonate/ethylene carbonate/fluoroethylene carbonate (KFSI-EC/DEC/FEC) was used as the electrolyte to test its cycle performance.
图4为本发明实施例2的循环性能测试图。从图中可以看出,混合有氟代碳酸乙烯酯(FEC)的电解液的电极其首次比容量较低,且在循环800~1000圈后迅速衰减。表明氟代碳酸乙烯酯(FEC)的加入会导致过量氟化物的生成从而造成较大的不可逆容量。而在不加入氟代碳酸乙烯酯FEC的情况下,在电解液六氟磷酸钾-碳酸乙烯酯/碳酸二乙酯(KPF6-EC/DEC)中,其电池在循环200圈后电池的容量出现不稳定的变化,这表明GeP5电极在表面生成不稳定的SEI膜的情况下,循环稳定性变差,从而导致电池发生了过多的副反应,致使电池失活。Fig. 4 is a cycle performance test diagram of Example 2 of the present invention. It can be seen from the figure that the electrode mixed with the electrolyte of fluoroethylene carbonate (FEC) has a low initial specific capacity and decays rapidly after 800-1000 cycles. It shows that the addition of fluoroethylene carbonate (FEC) will lead to the formation of excess fluoride, resulting in a larger irreversible capacity. And in the case of not adding fluoroethylene carbonate FEC, in the electrolyte potassium hexafluorophosphate-ethylene carbonate/diethyl carbonate (KPF 6 -EC/DEC), the battery capacity of the battery after 200 cycles Unstable changes appear, which indicates that the GeP 5 electrode has poor cycle stability when an unstable SEI film is formed on the surface, which leads to excessive side reactions in the battery and deactivation of the battery.
当该钾离子电池以KFSI-EC/DEC为电解液时,首圈充放电在50mA/g的电流密度下进行,其首次放电容量为1400mAh/g,在之后高达500mA/g的电流密度下循环2000圈后,其储钾容量保持在200mAh/g,表明当采用KFSI作为电解质时,可以使电极表面形成均匀的固体电解质界面层,从而抑制副反应发生,这使GeP5化合物作为钾离子电池负极材料使用时具有良好的储钾性能与循环稳定性。When the potassium-ion battery uses KFSI-EC/DEC as the electrolyte, the first cycle of charge and discharge is carried out at a current density of 50mA/g, and its initial discharge capacity is 1400mAh/g, and then it is cycled at a current density of up to 500mA/g After 2000 cycles, its potassium storage capacity remained at 200mAh/g, indicating that when KFSI is used as the electrolyte, a uniform solid electrolyte interface layer can be formed on the electrode surface, thereby inhibiting the occurrence of side reactions, which makes the GeP 5 compound a negative electrode for potassium-ion batteries The material has good potassium storage performance and cycle stability when used.
显然,如上所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。Apparently, the above-described embodiments are only some, not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810393953.7A CN110416528A (en) | 2018-04-27 | 2018-04-27 | A kind of potassium ion battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810393953.7A CN110416528A (en) | 2018-04-27 | 2018-04-27 | A kind of potassium ion battery |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110416528A true CN110416528A (en) | 2019-11-05 |
Family
ID=68346746
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810393953.7A Pending CN110416528A (en) | 2018-04-27 | 2018-04-27 | A kind of potassium ion battery |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110416528A (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015034315A (en) * | 2013-08-08 | 2015-02-19 | 独立行政法人日本原子力研究開発機構 | Apparatus and method for recovery of metal ion |
CN104600299A (en) * | 2015-01-08 | 2015-05-06 | 华中科技大学 | Negative electrode active material for lithium-ion/sodium-ion battery, negative electrode and battery |
CN106374137A (en) * | 2016-09-18 | 2017-02-01 | 电子科技大学 | A kind of organic negative electrode material of potassium ion battery and preparation method thereof |
CN106602020A (en) * | 2016-12-22 | 2017-04-26 | 安泰科技股份有限公司 | Metal phosphide negative electrode material for lithium-ion battery and preparation method of metal phosphide negative electrode material |
CN107732302A (en) * | 2017-10-11 | 2018-02-23 | 西安交通大学 | A kind of nonaqueous electrolytic solution and its preparation method and application |
-
2018
- 2018-04-27 CN CN201810393953.7A patent/CN110416528A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015034315A (en) * | 2013-08-08 | 2015-02-19 | 独立行政法人日本原子力研究開発機構 | Apparatus and method for recovery of metal ion |
CN104600299A (en) * | 2015-01-08 | 2015-05-06 | 华中科技大学 | Negative electrode active material for lithium-ion/sodium-ion battery, negative electrode and battery |
CN106374137A (en) * | 2016-09-18 | 2017-02-01 | 电子科技大学 | A kind of organic negative electrode material of potassium ion battery and preparation method thereof |
CN106602020A (en) * | 2016-12-22 | 2017-04-26 | 安泰科技股份有限公司 | Metal phosphide negative electrode material for lithium-ion battery and preparation method of metal phosphide negative electrode material |
CN107732302A (en) * | 2017-10-11 | 2018-02-23 | 西安交通大学 | A kind of nonaqueous electrolytic solution and its preparation method and application |
Non-Patent Citations (2)
Title |
---|
QING ZHANG ET AL: "Boosting the Potassium Storage Performance of Alloy-Based Anode Materials via Electrolyte Salt Chemistry", 《ADVANCED ENERGY MATERIALS》 * |
柯霖波: "磷化锗作为锂/钠离子电池负极材料的研究", 《中国优秀硕士学位论文全文数据库工程科技II辑》 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Olbasa et al. | High-rate and long-cycle stability with a dendrite-free zinc anode in an aqueous Zn-ion battery using concentrated electrolytes | |
US11342548B2 (en) | Zinc electrodes with high capacity utilizations | |
CN103563136B (en) | Active material for rechargeable battery | |
WO2017020860A1 (en) | Battery, battery set and uninterruptable power source | |
JP2008034368A (en) | Lithium ion storage battery containing contains tio2-b as anode active substance | |
CN104795564B (en) | A kind of positive electrode of Aqueous solution secondary battery, pole piece, secondary cell and purposes | |
WO2016147607A1 (en) | Anode for sodium-ion and potassium-ion batteries | |
CN109428126A (en) | Aqueous electrolyte and aquo-lithium ion secondary cell | |
CN110021788A (en) | Aqueous electrolyte and aquo-lithium ion secondary cell | |
WO2021208299A1 (en) | Aqueous sodium-based mixed ion secondary battery | |
TW201624819A (en) | Li-ion battery and method of preparing a pre-lithiated anode for use in a Li-ion cell | |
US9742027B2 (en) | Anode for sodium-ion and potassium-ion batteries | |
CN106063013A (en) | Battery anode with preloaded metals | |
CN104272517B (en) | Indium stannum binary anode for rechargeable magnesium ion accumulator | |
WO2020072783A1 (en) | Electrochemical plating of additives on metallic electrodes for energy dense batteries | |
JP2023182616A (en) | Non-aqueous solvent electrolyte compositions for energy storage devices | |
Lv et al. | A homogenous mixed coating enabled significant stability and capacity enhancement of iron oxide anodes for aqueous nickel–iron batteries | |
CN110518295A (en) | One kind can fill zinc-base battery | |
CN104054196A (en) | Positive electrode for alkaline storage battery and alkaline storage battery using same | |
CN110391415A (en) | A positive electrode active material and a zinc ion battery comprising the positive electrode active material | |
CN106848254B (en) | Sodium-ion battery negative electrode material, preparation method thereof and sodium-ion battery | |
US12341185B2 (en) | Aqueous zinc lithium-ion battery and method for making same | |
JP2022544975A (en) | Lithium-sulfur secondary battery capsule and lithium-sulfur secondary battery containing the same | |
CN117117105A (en) | Preparation method and application of laminated negative electrode of lithium or sodium metal secondary battery | |
WO2024054984A1 (en) | Fast-charging of hybrid lithium-ion / lithium-metal anodes by nanostructured hard carbon flower host |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information |
Inventor after: Li Wenwu Inventor after: Liu Guoping Inventor after: Li Yanhong Inventor after: Zhang Wenchao Inventor before: Li Wenwu Inventor before: Liu Guoping Inventor before: Li Yanhong Inventor before: Guo Zaiping Inventor before: Zhang Wenchao |
|
CB03 | Change of inventor or designer information | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20191105 |
|
RJ01 | Rejection of invention patent application after publication |