CN110415188A - A tone mapping method for HDR images based on multi-scale morphology - Google Patents
A tone mapping method for HDR images based on multi-scale morphology Download PDFInfo
- Publication number
- CN110415188A CN110415188A CN201910622002.7A CN201910622002A CN110415188A CN 110415188 A CN110415188 A CN 110415188A CN 201910622002 A CN201910622002 A CN 201910622002A CN 110415188 A CN110415188 A CN 110415188A
- Authority
- CN
- China
- Prior art keywords
- image
- pyramid
- hdr image
- layer
- detail
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 59
- 238000013507 mapping Methods 0.000 title claims abstract description 34
- 230000009466 transformation Effects 0.000 claims abstract description 55
- 238000005498 polishing Methods 0.000 claims abstract description 44
- 238000007906 compression Methods 0.000 claims abstract description 32
- 230000006835 compression Effects 0.000 claims abstract description 31
- 238000000354 decomposition reaction Methods 0.000 claims abstract description 13
- 238000012937 correction Methods 0.000 claims abstract description 5
- 230000000877 morphologic effect Effects 0.000 claims description 11
- 238000001914 filtration Methods 0.000 claims description 7
- 230000002708 enhancing effect Effects 0.000 claims description 4
- 238000012423 maintenance Methods 0.000 claims 14
- 238000000605 extraction Methods 0.000 claims 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims 2
- 239000010931 gold Substances 0.000 claims 2
- 229910052737 gold Inorganic materials 0.000 claims 2
- 238000005070 sampling Methods 0.000 claims 2
- 238000012545 processing Methods 0.000 abstract description 4
- 125000001475 halogen functional group Chemical group 0.000 description 10
- 238000009499 grossing Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 2
- 230000008447 perception Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 101000648554 Mus musculus Sushi domain-containing protein 6 Proteins 0.000 description 1
- KAATUXNTWXVJKI-UHFFFAOYSA-N cypermethrin Chemical compound CC1(C)C(C=C(Cl)Cl)C1C(=O)OC(C#N)C1=CC=CC(OC=2C=CC=CC=2)=C1 KAATUXNTWXVJKI-UHFFFAOYSA-N 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000023077 detection of light stimulus Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 230000016776 visual perception Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/90—Dynamic range modification of images or parts thereof
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10024—Color image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20016—Hierarchical, coarse-to-fine, multiscale or multiresolution image processing; Pyramid transform
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20172—Image enhancement details
- G06T2207/20208—High dynamic range [HDR] image processing
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Image Processing (AREA)
Abstract
本发明公开了一种基于多尺度形态学的HDR图像色调映射方法,该方法包括:S1,输入待压缩的HDR图像;S2,构造待压缩HDR图像的对数图像;S3,对对数图像进行动态范围压缩多尺度分解,得到第一高斯金字塔和第一拉普拉斯金字塔;S4,采用一维保边界磨光算子提取第一高斯金字塔增强后的细节层,将第一高斯金字塔的细节层逐层加到第一拉普拉斯金字塔对应的层,得到第二拉普拉斯金字塔;S5,对第二拉普拉斯金字塔进行动态范围压缩重构,得到动态范围压缩后的细节增强图像;S6,对细节增强的图像进行指数变换,得到第一LDR图像;S7,对第一LDR图像进行颜色校正,得到待输出的LDR图像。本发明能够实现HDR图像动态范围的有效压缩,且可满足某些实时性应用需求。
The invention discloses a multi-scale morphology-based HDR image tone mapping method, the method comprising: S1, inputting the HDR image to be compressed; S2, constructing the logarithmic image of the HDR image to be compressed; S3, performing the logarithmic image processing on the logarithmic image Dynamic range compression and multi-scale decomposition to obtain the first Gaussian pyramid and the first Laplacian pyramid; S4, using a one-dimensional boundary-preserving polishing operator to extract the enhanced detail layer of the first Gaussian pyramid, and the details of the first Gaussian pyramid Add layer by layer to the layer corresponding to the first Laplacian pyramid to obtain the second Laplacian pyramid; S5, perform dynamic range compression reconstruction on the second Laplacian pyramid, and obtain detail enhancement after dynamic range compression image; S6, performing exponential transformation on the detail-enhanced image to obtain a first LDR image; S7, performing color correction on the first LDR image to obtain an LDR image to be output. The invention can realize effective compression of the dynamic range of the HDR image, and can meet certain real-time application requirements.
Description
技术领域technical field
本发明涉及图像处理技术领域,特别涉及一种基于多尺度形态学的HDR图像色调映射方法。The present invention relates to the technical field of image processing, in particular to a multi-scale morphology-based HDR image tone mapping method.
背景技术Background technique
HDR(英文全称为“High Dynamic Range”,中文全称为“高动态范围”)图像比较LDR(英文全称为“Low Dynamic Range”,中文全称为“低动态范围”)图像能够表达更多的场景细节与亮度对比信息,在数字图像技术中得到了广泛的应用。专用的HDR显示设备造价昂贵,性价比低。HDR图像在LDR显示设备上显示时,无法真实再现原场景的完整光影效果,而好的色调映射方法可以实现HDR图像动态范围的有效压缩,解决动态范围不匹配问题,以满足更多的实际应用需求。Compared with LDR (English full name is "Low Dynamic Range", Chinese full name is "low dynamic range") images, HDR (English full name is "High Dynamic Range", Chinese full name is "High Dynamic Range") images can express more scene details Contrast information with brightness has been widely used in digital image technology. Dedicated HDR display devices are expensive and cost-effective. When an HDR image is displayed on an LDR display device, it cannot truly reproduce the complete light and shadow effects of the original scene, but a good tone mapping method can achieve effective compression of the dynamic range of the HDR image and solve the problem of dynamic range mismatch to meet more practical applications need.
一般来说,HDR图像领域有关色调映射的方法主要分为全局色调映射方法和局部色调映射方法两大类。其中,全局色调映射方法,即对于HDR图像中的每一个像素都使用同样的映射函数进行变换。该类方法由于是每个像素点应用同一个映射函数,是一对一的映射关系,故该类方法的优点是方法简单,运行速度较快,但是此方法没有考虑像素点的空间位置,只考虑了像素点的灰度值,会导致结果图像在亮度、颜色和细节方面造成损失。最早在1984年,Miller基于Stevens心理物理实验数据提出一种全局方法。1993年,Tumblin和Rushmeier同样在Stevens心理物理实验的基础上针对亮度域提出了一种全局方法,该方法是非线性的。1994年,Ward基于视觉敏感性,提出能够使图像对比亮度得以提升的线性映射方法。2003年,Drago在对数变换的基础上提出了一种色调映射方法,因为对数变换和人眼对光的感知更加相似,但是该方法细节丢失严重,无法高效地压缩动态范围。Generally speaking, methods related to tone mapping in the field of HDR images are mainly divided into two categories: global tone mapping methods and local tone mapping methods. Among them, the global tone mapping method uses the same mapping function to transform each pixel in the HDR image. This type of method applies the same mapping function to each pixel, which is a one-to-one mapping relationship, so the advantages of this type of method are that the method is simple and the operation speed is fast, but this method does not consider the spatial position of the pixel point, only Considers the grayscale value of the pixel, resulting in a loss of brightness, color, and detail in the resulting image. As early as 1984, Miller proposed a global method based on Stevens psychophysical experimental data. In 1993, Tumblin and Rushmeier also proposed a global method for the brightness domain based on Stevens' psychophysical experiments, which is nonlinear. In 1994, based on visual sensitivity, Ward proposed a linear mapping method that can improve the contrast and brightness of images. In 2003, Drago proposed a tone mapping method based on the logarithmic transformation, because the logarithmic transformation is more similar to the human eye's perception of light, but the method loses serious details and cannot efficiently compress the dynamic range.
局部色调映射方法,即对于HDR图像中的不同像素点分别采用不同的映射函数进行变换。对每个像素点所在的不同区域进行不同的变换,将像素点的空间位置也纳入考虑范围内,最后有可能出现映射之前不同的像素值映射之后变为一样的值,而映射之前像素值相同的点由于空间位置的不同映射之后变为不同的值的情况。和全局色调映射方法相比较而言,局部色调映射方法不仅考虑了像素点的灰度值,更进一步考虑了像素点的空间位置,故经过该类方法处理后的结果图像会得到更好的效果。而局部色调映射方法缺点是所需的计算量较大,并且容易产生“光晕(halo)”效应。1993年,由Chiu等人最早提出一种局部方法,该方法通过人类视觉系统对亮度变化的敏感性获得局部亮度变化系数,但该方法在极亮极暗区域无法达到理想效果。2002年,Reinhard等人基于摄影模型提出一种自适应调节亮度的局部方法,该方法运行速度较快,并且实现了色彩、对比度和全局亮度的可控性操作,但易造成光晕或细节丢失。2002年,Fattal等人基于亮度梯度域压缩提出一种局部方法,通过调节梯度衰减函数对图像较大亮度梯度区域进行动态范围压缩操作。2011年,SylvainParis等人将局部拉普拉斯滤波器应用到HDR图像动态范围压缩,提出了局部拉普拉斯滤波的边缘感知色调映射方法。2016年,Li等人基于图像多尺度分解及引导滤波提出一种局部方法,该方法可以较好地保持全局对比度和局部对比度,同时可以保留更多细节信息。该方法操作过程中会根据实际需要把图像分成不同的层级,并且在分层过程中完成对图像的相关处理,但由于该过程无法精细把握,会导致图像合成时出现光晕现象。The local tone mapping method uses different mapping functions to transform different pixels in the HDR image. Different transformations are performed on different areas where each pixel is located, and the spatial position of the pixel is also taken into consideration. In the end, it is possible that different pixel values before mapping become the same value after mapping, while the pixel values before mapping are the same The situation where the points become different values due to different mappings of spatial positions. Compared with the global tone mapping method, the local tone mapping method not only considers the gray value of the pixel, but also further considers the spatial position of the pixel, so the resulting image processed by this type of method will get better results . The disadvantage of the local tone mapping method is that it requires a large amount of calculation and is prone to produce a "halo" effect. In 1993, a local method was first proposed by Chiu et al. This method obtains the local brightness variation coefficient through the sensitivity of the human visual system to brightness changes, but this method cannot achieve ideal results in extremely bright and extremely dark areas. In 2002, Reinhard et al. proposed a local method for adaptively adjusting brightness based on the photographic model. This method runs faster and realizes the controllable operation of color, contrast and global brightness, but it is easy to cause halo or loss of details. . In 2002, Fattal et al. proposed a local method based on brightness gradient domain compression, which performs a dynamic range compression operation on the larger brightness gradient area of the image by adjusting the gradient attenuation function. In 2011, SylvainParis et al. applied the local Laplacian filter to HDR image dynamic range compression, and proposed an edge-aware tone mapping method for local Laplacian filtering. In 2016, Li et al. proposed a local method based on multi-scale image decomposition and guided filtering, which can better maintain global contrast and local contrast while retaining more detailed information. During the operation of this method, the image will be divided into different layers according to the actual needs, and the related processing of the image will be completed during the layering process, but because the process cannot be accurately grasped, it will cause halo phenomenon when the image is synthesized.
发明内容Contents of the invention
本发明的目的在于提供一种来克服或至少减轻现有技术的上述缺陷中的至少一个基于多尺度形态学的HDR图像色调映射方法,该方法实现了对HDR图像动态范围的有效压缩,避免了光晕或其他伪影的产生,而且该方法计算量小,能够满足某些实时性的应用需求。The purpose of the present invention is to provide a multi-scale morphology-based HDR image tone mapping method to overcome or at least alleviate at least one of the above-mentioned defects of the prior art, which realizes effective compression of the dynamic range of the HDR image and avoids halo or other artifacts, and this method has a small amount of calculation, which can meet some real-time application requirements.
为实现上述目的,本发明提供一种基于多尺度形态学的HDR图像色调映射方法,该方法包括如下步骤:In order to achieve the above object, the present invention provides a multi-scale morphology based HDR image tone mapping method, the method includes the following steps:
S1,输入待压缩的HDR图像;S1, input the HDR image to be compressed;
S2,构造所述待压缩的HDR图像的对数图像;S2, constructing a logarithmic image of the HDR image to be compressed;
S3,对所述对数图像以第一预设倍数进行动态范围压缩多尺度分解,得到第一高斯金字塔和第一拉普拉斯金字塔;S3, performing dynamic range compression multi-scale decomposition on the logarithmic image with a first preset multiple to obtain a first Gaussian pyramid and a first Laplacian pyramid;
S4,采用一维保边界磨光算子提取所述第一高斯金字塔增强后的细节层,并将所述第一高斯金字塔的细节层以第二预设倍数逐层加到所述第一拉普拉斯金字塔对应的层,得到第二拉普拉斯金字塔;S4, using a one-dimensional boundary-preserving polishing operator to extract the enhanced detail layer of the first Gaussian pyramid, and adding the detailed layer of the first Gaussian pyramid to the first drawing layer by layer with a second preset multiple The layer corresponding to the Placian pyramid is obtained the second Laplacian pyramid;
S5,对所述第二拉普拉斯金字塔以第三预设倍数进行动态范围压缩重构,得到动态范围压缩后的细节增强图像;S5. Perform dynamic range compression and reconstruction on the second Laplacian pyramid with a third preset multiple to obtain a detail-enhanced image after dynamic range compression;
S6,对所述细节增强的图像进行指数变换,得到第一LDR图像;以及S6. Perform exponential transformation on the detail-enhanced image to obtain a first LDR image; and
S7,对所述第一LDR图像进行颜色校正,得到待输出的LDR图像;S7, performing color correction on the first LDR image to obtain an LDR image to be output;
其中,S4中的“采用一维保边界磨光算子提取所述第一高斯金字塔增强后的细节层”的方法具体包括:Wherein, the method of "using a one-dimensional boundary-preserving polishing operator to extract the detail layer enhanced by the first Gaussian pyramid" in S4 specifically includes:
S41,将保边界二维磨光算子按照所述待压缩的HDR图像的水平和竖直两个方向进行分解,获得水平的一维保边界磨光算子和竖直的一维保边界磨光算子;S41. Decompose the boundary-preserving two-dimensional polishing operator according to the horizontal and vertical directions of the HDR image to be compressed to obtain a horizontal one-dimensional boundary-preserving polishing operator and a vertical one-dimensional boundary-preserving polishing operator. light operator;
S42,根据S1中的所述待压缩的HDR图像的种类,利用S41获得的水平的一维保边界磨光算子和竖直的一维保边界磨光算子,分别对所述第一高斯金字塔逐层进行顶帽变换和底帽变换,以获得所述第一高斯金字塔的亮细节层和暗细节层;和S42. According to the type of the HDR image to be compressed in S1, use the horizontal one-dimensional boundary-preserving polishing operator and the vertical one-dimensional boundary-preserving polishing operator obtained in S41 to separately perform the first Gaussian The pyramid is subjected to top-hat transformation and bottom-hat transformation layer by layer to obtain the light detail layer and dark detail layer of the first Gaussian pyramid; and
S43,将S42得到的亮细节层的伽马变换结果逐层减去S42得到的暗细节层的伽马变换结果,得到所述第一高斯金字塔增强后的细节层。S43. Subtracting the gamma transformation result of the dark detail layer obtained in S42 layer by layer from the gamma transformation result of the bright detail layer obtained in S42, to obtain the detail layer enhanced by the first Gaussian pyramid.
进一步地,S4中,所述待压缩的HDR图像为自然场景的HDR图像的情形下,S42具体包括:Further, in S4, in the case that the HDR image to be compressed is an HDR image of a natural scene, S42 specifically includes:
S421,利用水平的一维保边界磨光算子和竖直的一维保边界磨光算子分别对所述第一高斯金字塔逐层进行顶帽变换,将每层水平方向顶帽变换结果和竖直方向顶帽变换结果逐点取小,得到亮细节层;S421. Use the horizontal one-dimensional boundary-preserving polishing operator and the vertical one-dimensional boundary-preserving polishing operator to perform top-hat transformation on the first Gaussian pyramid layer by layer, and convert the horizontal top-hat transformation results and The vertical top-hat transformation result is taken point by point to get the bright detail layer;
S422,利用水平的一维保边界磨光算子和竖直的一维保边界磨光算子分别对所述第一高斯金字塔逐层进行底帽变换,将每层水平方向底帽变换结果和竖直方向底帽变换结果逐点取小,得到暗细节层。S422. Use the horizontal one-dimensional boundary-preserving polishing operator and the vertical one-dimensional boundary-preserving polishing operator to respectively perform bottom hat transformation on the first Gaussian pyramid layer by layer, and convert the results of the horizontal bottom hat transformation and The bottom hat transformation result in the vertical direction is taken point by point to get the dark detail layer.
进一步地,S4中,所述待压缩的HDR图像为CT-HDR图像的情形下,S42具体包括:Further, in S4, in the case that the HDR image to be compressed is a CT-HDR image, S42 specifically includes:
S421,利用水平的一维保边界磨光算子和竖直的一维保边界磨光算子分别对所述第一高斯金字塔逐层进行顶帽变换,将每层水平方向顶帽变换结果和竖直方向顶帽变换结果逐点取大,得到亮细节层;S421. Use the horizontal one-dimensional boundary-preserving polishing operator and the vertical one-dimensional boundary-preserving polishing operator to perform top-hat transformation on the first Gaussian pyramid layer by layer, and convert the horizontal top-hat transformation results and The vertical top-hat transformation result is taken point by point to obtain a bright detail layer;
S422,利用水平的一维保边界磨光算子和竖直的一维保边界磨光算子分别对所述第一高斯金字塔逐层进行底帽变换,将每层水平方向底帽变换结果和竖直方向底帽变换结果逐点取大,得到暗细节层。S422. Use the horizontal one-dimensional boundary-preserving polishing operator and the vertical one-dimensional boundary-preserving polishing operator to respectively perform bottom hat transformation on the first Gaussian pyramid layer by layer, and convert the results of the horizontal bottom hat transformation and The bottom hat transformation result in the vertical direction is taken point by point to obtain the dark detail layer.
进一步地,S3包括:利用如下式(1),从所述第一高斯金字塔的最底层开始,对所述第一高斯金字塔以第一预设倍数进行动态范围压缩多尺度分解;Further, S3 includes: using the following formula (1), starting from the bottom layer of the first Gaussian pyramid, performing dynamic range compression multi-scale decomposition on the first Gaussian pyramid with a first preset multiple;
式(1)中,I是所述对数图像,{G0,G1,......,GN-1}是第一高斯金字塔,G0是所述第一高斯金字塔的最底层,Gl是所述第一高斯金字塔的第l+1层,N是所述第一高斯金字塔的层数,downsample表示滤波下采样算子,β1为所述第一预设倍数。In formula (1), I is the logarithmic image, {G 0 , G 1 ,..., G N-1 } is the first Gaussian pyramid, and G 0 is the maximum value of the first Gaussian pyramid. The bottom layer, G1 is the l +1th layer of the first Gaussian pyramid, N is the number of layers of the first Gaussian pyramid, downsample represents a filter downsampling operator, and β1 is the first preset multiple.
进一步地,S5包括:利用下式(2),从所述第二拉普拉斯金字塔的最顶层开始,对所述第二拉普拉斯金字塔以第三预设倍数进行动态范围压缩重构,得到的所述细节增强图像G′0;Further, S5 includes: using the following formula (2), starting from the topmost layer of the second Laplacian pyramid, performing dynamic range compression reconstruction on the second Laplacian pyramid with a third preset multiple , the obtained detail enhanced image G′ 0 ;
式(2)中,L′N-1是所述第二拉普拉斯金字塔的最顶层,GN-1是所述第一高斯金字塔的顶层图像,G′l是产生的中间高斯金字塔的第l+1层,Ll是所述第二拉普拉斯金字塔的第l+1层,是对G′l+1层滤波上采样的结果,β2为所述第三预设倍数,l是所述第二拉普拉斯金字塔的第l+1层,N是分解得到的所述第二拉普拉斯金字塔的层数。In the formula (2), L' N-1 is the topmost layer of the second Laplacian pyramid, G N-1 is the top layer image of the first Gaussian pyramid, and G' l is the middle Gaussian pyramid generated The l+1th layer, L l is the l+1th layer of the second Laplace pyramid, is the result of filtering and upsampling the G' l+1 layer, β 2 is the third preset multiple, l is the l+1th layer of the second Laplacian pyramid, and N is the decomposed obtained The number of layers of the second Laplacian pyramid.
进一步地,S3中所述第一高斯金字塔和第一拉普拉斯金字塔的多尺度分解层数与所述待压缩的HDR图像的尺寸相关。Further, the number of multi-scale decomposition layers of the first Gaussian pyramid and the first Laplacian pyramid in S3 is related to the size of the HDR image to be compressed.
进一步地,S4和S5中所述的第二预设倍数和第三预设倍数和输入图像的动态范围有关,设置为[0.35,1]。Further, the second preset multiple and the third preset multiple described in S4 and S5 are related to the dynamic range of the input image, and are set to [0.35, 1].
进一步地,S3中所述的第一预设倍数设置为[0.1,1]。Further, the first preset multiple described in S3 is set to [0.1, 1].
本发明由于采用上技术方案,其具有以下的优点:1、本发明实现了HDR图像动态范围的有效压缩,另外,该方法计算速度快,可满足某些实时性应用需求。2、本发明在动态范围压缩过程中,能够有效地避免光晕和其他伪影的产生;3、本发明方法适用于不同类型的图像,如真实场景的HDR图像、工业CT图像。Because the present invention adopts the above technical solution, it has the following advantages: 1. The present invention realizes the effective compression of the dynamic range of HDR images. In addition, the method has a fast calculation speed and can meet certain real-time application requirements. 2. The present invention can effectively avoid the generation of halos and other artifacts during the dynamic range compression process; 3. The method of the present invention is applicable to different types of images, such as HDR images of real scenes and industrial CT images.
附图说明Description of drawings
图1为输入的自然场景的HDR图像;Figure 1 is the HDR image of the input natural scene;
图2为利用本发明方法对图1多尺度形态学动态范围压缩后的图像;Fig. 2 is the image compressed by the multi-scale morphological dynamic range of Fig. 1 by using the method of the present invention;
图3为输入的工业CT-HDR图像;Figure 3 is the input industrial CT-HDR image;
图4为利用本发明方法对图2多尺度形态学动态范围压缩后的图像。Fig. 4 is the compressed image of multi-scale morphological dynamic range in Fig. 2 by using the method of the present invention.
具体实施方式Detailed ways
在附图中,使用相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面结合附图对本发明的实施例进行详细说明。In the drawings, the same or similar reference numerals are used to denote the same or similar elements or elements having the same or similar functions. Embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings.
本实施例提供的基于多尺度形态学的HDR图像色调映射方法包括如下步骤:The multi-scale morphology-based HDR image tone mapping method provided in this embodiment includes the following steps:
S1,输入待压缩的HDR图像。其中,HDR图像既可以是图1中示出的自然场景的HDR图像,也可以是图3中示出的工业CT-HDR图像,还可以是其它类型的HDR图像。S1, input the HDR image to be compressed. Wherein, the HDR image may be the HDR image of the natural scene shown in FIG. 1 , the industrial CT-HDR image shown in FIG. 3 , or other types of HDR images.
S2,构造所述待压缩的HDR图像I的对数图像。其中,“构造HDR图像的对数图像”具体是包括:首先,计算S1输入的待压缩HDR图像的亮度分量图像,然后,对亮度图像逐像素求自然对数,得到所述待压缩的HDR图像I的对数图像。S2. Construct a logarithmic image of the HDR image I to be compressed. Wherein, "constructing the logarithmic image of the HDR image" specifically includes: first, calculating the luminance component image of the HDR image to be compressed input by S1, and then calculating the natural logarithm of the luminance image pixel by pixel to obtain the HDR image to be compressed Log graph of I.
S3,对所述对数图像以第一预设倍数进行动态范围压缩多尺度分解,得到第一高斯金字塔{G0,G1,...,GN-1},再通过第一高斯金字塔{G0,G1,...,GN-1}获得第一拉普拉斯金字塔{L0,L1,...,LN-1}。其中,“对所述对数图像以第一预设倍数进行动态范围压缩多尺度分解,得到第一高斯金字塔”的具体实现方法将在下文进行详细说明。而“通过第一高斯金字塔{G0,G1,...,GN-1}获得第一拉普拉斯金字塔{L0,L1,...,LN-1}”的具体实现方法为现有技术,在此不再展开描述。所述第一预设倍数与S1输入的待压缩HDR图像的动态范围有关,设置为[0.35,1]。S3, perform dynamic range compression multi-scale decomposition on the logarithmic image with the first preset multiple to obtain the first Gaussian pyramid {G 0 , G 1 ,...,G N-1 }, and then pass the first Gaussian pyramid {G 0 , G 1 , ..., G N-1 } Obtain the first Laplacian pyramid {L 0 , L 1 , ..., L N-1 }. Wherein, the specific implementation method of "performing dynamic range compression and multi-scale decomposition on the logarithmic image with a first preset multiple to obtain a first Gaussian pyramid" will be described in detail below. And "obtain the first Laplacian pyramid {L 0 , L 1 , ..., L N-1 } through the first Gaussian pyramid {G 0 , G 1 , ..., G N- 1 }" specific The implementation method is the prior art, and will not be described here. The first preset multiple is related to the dynamic range of the HDR image to be compressed input by S1, and is set to [0.35, 1].
S4,采用一维保边界磨光算子提取第一高斯金字塔{G0,G1,...,GN-1}增强后的细节层,并将得到的第一高斯金字塔{G0,G1,...,GN-1}增强后的细节层以第二预设倍数逐层加到所述第一拉普拉斯金字塔{L0,L1,...,LN-1}对应的层,得到第二拉普拉斯金字塔{L′0,L′1,...,L′N-1}。其中,第二预设倍数的取值范围设置为[0.1,1],细节增强越厉害。S4的具体实现方法将根据S1中的所述待压缩的HDR图像的种类的不同,将会有不同的实现方式,这些方法将在下文展开说明。S4, using a one-dimensional boundary-preserving polishing operator to extract the first Gaussian pyramid {G 0 , G 1 , ..., G N-1 } enhanced detail layer, and the obtained first Gaussian pyramid {G 0 , G 1 ,...,G N-1 } enhanced detail layers are added to the first Laplacian pyramid {L 0 , L 1 ,...,L N- 1 } corresponding layer, get the second Laplacian pyramid {L′ 0 , L′ 1 ,..., L′ N-1 }. Wherein, the value range of the second preset multiple is set to [0.1, 1], and the detail enhancement is stronger. The specific implementation method of S4 will be implemented in different ways according to the type of the HDR image to be compressed in S1, and these methods will be described below.
S5,对所述第二拉普拉斯金字塔以第三预设倍数进行动态范围压缩重构,得到动态范围压缩后的细节增强图像。其中,所述第三预设倍数与S1中的所述待压缩的HDR图像的动态范围有关,试验数据显示:设置为[0.35,1]范围内的值动态范围压缩效果较好。“对所述第二拉普拉斯金字塔以第三预设倍数进行动态范围压缩重构”将在下文展开说明。S5. Perform dynamic range compression and reconstruction on the second Laplacian pyramid with a third preset multiple to obtain a detail-enhanced image after dynamic range compression. Wherein, the third preset multiple is related to the dynamic range of the HDR image to be compressed in S1, and experimental data shows that the dynamic range compression effect is better when set to a value within the range of [0.35,1]. The “dynamic range compression and reconstruction of the second Laplacian pyramid with a third preset multiple” will be described below.
S6,对所述细节增强的图像进行指数变换,得到第一LDR图像I′。其中,“指数变换”为现有技术,在此不再展开说明。S6. Perform exponential transformation on the detail-enhanced image to obtain a first LDR image I′. Among them, "exponential transformation" is a prior art, and will not be further described here.
S7,对所述第一LDR图像进行颜色校正,得到待输出的LDR图像I″。其中,“颜色校正”为现有技术,在此不再展开说明。S7. Perform color correction on the first LDR image to obtain an LDR image I" to be output. Wherein, "color correction" is a prior art and will not be described here.
本实施例利用如上的多尺度动态范围压缩和细节增强操作,可以有效避免光晕的产生,且本实施例所提供的方法能够应用于不同的图像类型的有效动态范围压缩。This embodiment utilizes the above multi-scale dynamic range compression and detail enhancement operations to effectively avoid the generation of halos, and the method provided by this embodiment can be applied to effective dynamic range compression of different image types.
在一个实施例中,对于S1输入的待压缩HDR图像为二维图像,如果直接采用二维的保边界平滑算子,将会引入光晕,因此本实施例将二维的保边界平滑算子分解成两个一维平滑算子,再利用一维的算子对输入的二维图像进行操作。本实施例中的一维平滑算子采用的是一维形态学操作,当然也可以采用一维梯度零范数平滑,一维中值滤波等等保边界的一维平滑算子。鉴于此,S4具体包括:In one embodiment, the HDR image to be compressed inputted by S1 is a two-dimensional image. If a two-dimensional boundary-preserving smoothing operator is directly used, halos will be introduced. Therefore, in this embodiment, the two-dimensional boundary-preserving smoothing operator Decompose into two one-dimensional smoothing operators, and then use one-dimensional operators to operate on the input two-dimensional image. The one-dimensional smoothing operator in this embodiment adopts one-dimensional morphological operation, of course, one-dimensional gradient zero-norm smoothing, one-dimensional median filtering and other boundary-preserving one-dimensional smoothing operators can also be used. In view of this, S4 specifically includes:
S41,将保边界二维磨光算子按照所述待压缩的HDR图像的水平和竖直两个方向进行分解,获得水平的一维保边界磨光算子和竖直的一维保边界磨光算子。其中,通常一维保边界磨光算子的大小为3个元素。S41. Decompose the boundary-preserving two-dimensional polishing operator according to the horizontal and vertical directions of the HDR image to be compressed to obtain a horizontal one-dimensional boundary-preserving polishing operator and a vertical one-dimensional boundary-preserving polishing operator. light operator. Among them, usually the size of the one-dimensional boundary-preserving polishing operator is 3 elements.
S42,根据S1中的所述待压缩的HDR图像的种类,水平的一维保边界磨光算子和竖直的一维保边界磨光算子分别对第一高斯金字塔{G0,G1,...,GN-1}逐层进行顶帽变换和底帽变换,以获得第一高斯金字塔{G0,G1,...,GN-1}的亮细节层和暗细节层。S42, according to the type of the HDR image to be compressed in S1, the horizontal one-dimensional boundary-preserving polishing operator and the vertical one-dimensional boundary-preserving polishing operator respectively perform the first Gaussian pyramid {G 0 , G 1 ,...,G N-1 } perform top-hat transformation and bottom-hat transformation layer by layer to obtain the bright detail layer and dark detail of the first Gaussian pyramid {G 0 ,G 1 ,...,G N-1 } Floor.
S43,将S42得到的亮细节层的伽马变换结果逐层减去S42得到的暗细节层的伽马变换结果,得到第一高斯金字塔{G0,G1,...,GN-1}增强后的细节层。例如:S42得到的亮细节记作S42得到的暗细节记作第一高斯金字塔{G0,G1,...,GN-1}增强后的细节层记作detail,这可表示为下式:S43, subtracting the gamma transformation result of the dark detail layer obtained in S42 layer by layer from the gamma transformation result of the bright detail layer obtained in S42, to obtain the first Gaussian pyramid {G 0 , G 1 , ..., G N-1 } Enhanced detail layer. For example: the bright details obtained by S42 are denoted as The dark details obtained by S42 are denoted as The enhanced detail layer of the first Gaussian pyramid {G 0 , G 1 ,..., G N-1 } is denoted as detail, which can be expressed as the following formula:
S44,利用下式(3),将得到的第一高斯金字塔{G0,G1,...,GN-1}增强后的细节层details以第二预设倍数λ逐层加到所述第一拉普拉斯金字塔{L0,L1,...,LN-1}对应的层,得到第二拉普拉斯金字塔{L′0,L′1,...,L′N-1}。S44, using the following formula (3), add the obtained first Gaussian pyramid {G 0 , G 1 , ..., G N-1 } enhanced detail layer details to the second preset multiple λ layer by layer Describe the layers corresponding to the first Laplacian pyramid {L 0 , L 1 , ..., L N-1 }, and get the second Laplacian pyramid {L′ 0 , L′ 1 , ..., L ' N-1 }.
需要说明的是,若输入HDR图像是二维结构,则上述的“水平”方向指的是图像矩阵的行方向,“竖直”方向指的是图像矩阵的列方向。It should be noted that if the input HDR image has a two-dimensional structure, the above "horizontal" direction refers to the row direction of the image matrix, and the "vertical" direction refers to the column direction of the image matrix.
在一个实施例中,S4中的待压缩的HDR图像为自然场景的HDR图像的情形下,S42具体包括:In one embodiment, when the HDR image to be compressed in S4 is an HDR image of a natural scene, S42 specifically includes:
S421,利用水平的一维保边界磨光算子和竖直的一维保边界磨光算子分别对所述第一高斯金字塔逐层进行顶帽变换,将每层水平方向顶帽变换结果和竖直方向顶帽变换结果逐点取小,得到亮细节层;S421. Use the horizontal one-dimensional boundary-preserving polishing operator and the vertical one-dimensional boundary-preserving polishing operator to perform top-hat transformation on the first Gaussian pyramid layer by layer, and convert the horizontal top-hat transformation results and The vertical top-hat transformation result is taken point by point to get the bright detail layer;
S422,利用水平的一维保边界磨光算子和竖直的一维保边界磨光算子分别对所述第一高斯金字塔逐层进行底帽变换,将每层水平方向底帽变换结果和竖直方向底帽变换结果逐点取小,得到暗细节层。S422. Use the horizontal one-dimensional boundary-preserving polishing operator and the vertical one-dimensional boundary-preserving polishing operator to respectively perform bottom hat transformation on the first Gaussian pyramid layer by layer, and convert the results of the horizontal bottom hat transformation and The bottom hat transformation result in the vertical direction is taken point by point to get the dark detail layer.
本实施例中所针对的自然场景的HDR图像,动态范围压缩结果应与人眼系统的感知保持一致,本实施例通过极力避免光晕的产生,同时增强细节的方式,即采用对水平方向和竖直方向这两个方向的细节进行取小,使自然场景的HDR图像中边缘模糊的光环得以消除,即消除自然场景的HDR图像中的光晕,从而更加符合人眼系统对于真实自然场景的视觉感知。For the HDR image of the natural scene in this embodiment, the dynamic range compression result should be consistent with the perception of the human eye system. This embodiment tries to avoid the generation of halo while enhancing the details. The details in the two directions of the vertical direction are reduced, so that the blurred halo in the HDR image of the natural scene can be eliminated, that is, the halo in the HDR image of the natural scene can be eliminated, so that it is more in line with the human eye system for the real natural scene. visual perception.
在一个实施例中,S4中的待压缩的HDR图像为CT-HDR图像的情形下,S42具体包括:In one embodiment, when the HDR image to be compressed in S4 is a CT-HDR image, S42 specifically includes:
S421,利用水平的一维保边界磨光算子和竖直的一维保边界磨光算子分别对所述第一高斯金字塔逐层进行顶帽变换,将每层水平方向顶帽变换结果和竖直方向顶帽变换结果逐点取大,得到亮细节层;S421. Use the horizontal one-dimensional boundary-preserving polishing operator and the vertical one-dimensional boundary-preserving polishing operator to perform top-hat transformation on the first Gaussian pyramid layer by layer, and convert the horizontal top-hat transformation results and The vertical top-hat transformation result is taken point by point to obtain a bright detail layer;
S422,利用水平的一维保边界磨光算子和竖直的一维保边界磨光算子分别对所述第一高斯金字塔逐层进行底帽变换,将每层水平方向底帽变换结果和竖直方向底帽变换结果逐点取大,得到暗细节层。S422. Use the horizontal one-dimensional boundary-preserving polishing operator and the vertical one-dimensional boundary-preserving polishing operator to respectively perform bottom hat transformation on the first Gaussian pyramid layer by layer, and convert the results of the horizontal bottom hat transformation and The bottom hat transformation result in the vertical direction is taken point by point to obtain the dark detail layer.
本实施例中所针对的CT-HDR图像,其更关注对图像细节的保留程度和整体亮暗对比度的好坏,因此,采用水平方向和竖直方向这两个方向的细节取大,更有利于细节增强,生成的LDR图像细节更加突出。The CT-HDR image aimed at in this embodiment pays more attention to the degree of preservation of image details and the quality of the overall bright and dark contrast. It is conducive to detail enhancement, and the details of the generated LDR image are more prominent.
在一个实施例中,S3包括:In one embodiment, S3 includes:
利用如下式(1),从第一高斯金字塔的最底层开始,对所述第一高斯金字塔以第一预设倍数进行动态范围压缩多尺度分解:Using the following formula (1), starting from the bottom layer of the first Gaussian pyramid, the dynamic range compression multi-scale decomposition is performed on the first Gaussian pyramid with a first preset multiple:
式(1)中,I是所述对数图像,{G0,G1,......,GN-1}是第一高斯金字塔,G0是所述第一高斯金字塔的最底层,Gl是所述第一高斯金字塔的第l+1层,N是所述第一高斯金字塔的层数,downsample表示滤波下采样算子,β1为所述第一预设倍数。In formula (1), I is the logarithmic image, {G 0 , G 1 ,..., G N-1 } is the first Gaussian pyramid, and G 0 is the maximum value of the first Gaussian pyramid. The bottom layer, G1 is the l +1th layer of the first Gaussian pyramid, N is the number of layers of the first Gaussian pyramid, downsample represents a filter downsampling operator, and β1 is the first preset multiple.
在一个实施例中,S5包括:In one embodiment, S5 includes:
利用下式(2),从所述第二拉普拉斯金字塔的最顶层开始,采用自顶向下的方式,逐层进行递推,直至l=0,对所述第二拉普拉斯金字塔以第三预设倍数进行动态范围压缩重构,得到的所述细节增强图像G′0:Using the following formula (2), starting from the topmost layer of the second Laplacian pyramid, adopting a top-down manner, recursively layer by layer until l=0, for the second Laplacian The pyramid performs dynamic range compression and reconstruction at the third preset multiple, and the obtained detail enhanced image G′ 0 is:
式(2)中,LN-1是所述第二拉普拉斯金字塔的最顶层,GN-1是所述第一高斯金字塔的顶层图像,G′l是产生的中间高斯金字塔的第l+1层,Ll是所述第二拉普拉斯金字塔的第l+1层,是对G′l+1层滤波上采样的结果,β2为所述第三预设倍数,l是所述第二拉普拉斯金字塔的第l+1层,N是分解得到的所述第二拉普拉斯金字塔的层数。In formula (2), L N-1 is the topmost layer of the second Laplacian pyramid, G N-1 is the top layer image of the first Gaussian pyramid, and G' l is the first layer of the intermediate Gaussian pyramid generated. l+1 layer, L l is the l+1th layer of the second Laplace pyramid, is the result of filtering and upsampling the G' l+1 layer, β 2 is the third preset multiple, l is the l+1th layer of the second Laplacian pyramid, and N is the decomposed obtained The number of layers of the second Laplacian pyramid.
在一个实施例中,S3中所述第一高斯金字塔和第一拉普拉斯金字塔的多尺度分解层数与所述待压缩的HDR图像的尺寸相关。一般情况下,HDR图像尺寸越大,分解层数越多,比如:大小为1848*1848的HDR图像可以分解层数为8层。In one embodiment, the number of multi-scale decomposition layers of the first Gaussian pyramid and the first Laplacian pyramid in S3 is related to the size of the HDR image to be compressed. Generally, the larger the size of the HDR image, the more the number of decomposition layers. For example, an HDR image with a size of 1848*1848 can be decomposed into 8 layers.
对比图1和图2发现,图2符合人眼系统对于真实场景的感知,对比图3和图4发现,图4中的细节更加突出,便于做进一步的处理。图2显示的是自然场景中的HDR图像,但是本发明保护范围并不限于对自然场景中HDR图像的动态范围压缩。Comparing Figure 1 and Figure 2, it is found that Figure 2 conforms to the perception of the real scene by the human eye system. Comparing Figure 3 and Figure 4, it is found that the details in Figure 4 are more prominent, which is convenient for further processing. Fig. 2 shows an HDR image in a natural scene, but the protection scope of the present invention is not limited to the dynamic range compression of the HDR image in a natural scene.
最后需要指出的是:以上实施例仅用以说明本发明的技术方案,而非对其限制。本领域的普通技术人员应当理解:可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。Finally, it should be pointed out that the above embodiments are only used to illustrate the technical solutions of the present invention, rather than to limit them. Those skilled in the art should understand that: the technical solutions described in the foregoing embodiments can be modified, or equivalent replacements can be made to some of the technical features; these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the various aspects of the present invention. The spirit and scope of the technical solutions of the embodiments.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910622002.7A CN110415188B (en) | 2019-07-10 | 2019-07-10 | A Tone Mapping Method for HDR Images Based on Multiscale Morphology |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910622002.7A CN110415188B (en) | 2019-07-10 | 2019-07-10 | A Tone Mapping Method for HDR Images Based on Multiscale Morphology |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110415188A true CN110415188A (en) | 2019-11-05 |
CN110415188B CN110415188B (en) | 2021-08-20 |
Family
ID=68360977
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910622002.7A Expired - Fee Related CN110415188B (en) | 2019-07-10 | 2019-07-10 | A Tone Mapping Method for HDR Images Based on Multiscale Morphology |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110415188B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113674173A (en) * | 2021-08-19 | 2021-11-19 | Oppo广东移动通信有限公司 | Image processing method and device, terminal and readable storage medium |
CN113724144A (en) * | 2020-05-22 | 2021-11-30 | 北京小米移动软件有限公司 | Image processing method and image signal processor on terminal equipment |
CN114463207A (en) * | 2022-01-24 | 2022-05-10 | 哈尔滨理工大学 | Tone Mapping Method Based on Global Dynamic Range Compression and Local Luminance Estimation |
Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7146059B1 (en) * | 2003-03-05 | 2006-12-05 | Massachusetts Institute Of Technology | Method of performing fast bilateral filtering and using the same for the display of high-dynamic-range images |
WO2011008239A1 (en) * | 2009-06-29 | 2011-01-20 | Thomson Licensing | Contrast enhancement |
CN102637292A (en) * | 2011-02-10 | 2012-08-15 | 西门子公司 | Image processing method and device |
CN102646269A (en) * | 2012-02-29 | 2012-08-22 | 中山大学 | An image processing method and device based on Laplacian pyramid |
WO2012118961A1 (en) * | 2011-03-02 | 2012-09-07 | Dolby Laboratories Licensing Corporation | Local multiscale tone-mapping operator |
CN104463820A (en) * | 2014-10-29 | 2015-03-25 | 广东工业大学 | Reverse tone mapping algorithm based on frequency domain |
CN104504666A (en) * | 2015-01-16 | 2015-04-08 | 成都品果科技有限公司 | Tone mapping method based on Laplacian pyramid |
US20150170389A1 (en) * | 2013-12-13 | 2015-06-18 | Konica Minolta Laboratory U.S.A., Inc. | Automatic selection of optimum algorithms for high dynamic range image processing based on scene classification |
US20150181186A1 (en) * | 2013-09-10 | 2015-06-25 | Apple Inc. | Image Tone Adjustment using Local Tone Curve Computation |
CN105825472A (en) * | 2016-05-26 | 2016-08-03 | 重庆邮电大学 | Rapid tone mapping system and method based on multi-scale Gauss filters |
CN105869112A (en) * | 2016-04-20 | 2016-08-17 | 西安理工大学 | Method for tone mapping of high dynamic range picture with edge kept minimized |
CN106506983A (en) * | 2016-12-12 | 2017-03-15 | 天津大学 | A HDR video generation method suitable for LDR video |
US9600741B1 (en) * | 2015-03-18 | 2017-03-21 | Amazon Technologies, Inc. | Enhanced image generation based on multiple images |
CN106530263A (en) * | 2016-10-19 | 2017-03-22 | 天津大学 | Single-exposure high-dynamic range image generation method adapted to medical image |
CN107220956A (en) * | 2017-04-18 | 2017-09-29 | 天津大学 | A kind of HDR image fusion method of the LDR image based on several with different exposures |
CN107274372A (en) * | 2017-06-26 | 2017-10-20 | 重庆名图医疗设备有限公司 | Dynamic image Enhancement Method and device based on pyramid local contrast |
CN107845128A (en) * | 2017-11-03 | 2018-03-27 | 安康学院 | A kind of more exposure high-dynamics image method for reconstructing of multiple dimensioned details fusion |
US20190043177A1 (en) * | 2018-06-15 | 2019-02-07 | Intel Corporation | Hybrid tone mapping for consistent tone reproduction of scenes in camera systems |
CN109493283A (en) * | 2018-08-23 | 2019-03-19 | 金陵科技学院 | A kind of method that high dynamic range images ghost is eliminated |
CN109685742A (en) * | 2018-12-29 | 2019-04-26 | 哈尔滨理工大学 | A kind of image enchancing method under half-light environment |
-
2019
- 2019-07-10 CN CN201910622002.7A patent/CN110415188B/en not_active Expired - Fee Related
Patent Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7146059B1 (en) * | 2003-03-05 | 2006-12-05 | Massachusetts Institute Of Technology | Method of performing fast bilateral filtering and using the same for the display of high-dynamic-range images |
WO2011008239A1 (en) * | 2009-06-29 | 2011-01-20 | Thomson Licensing | Contrast enhancement |
CN102637292A (en) * | 2011-02-10 | 2012-08-15 | 西门子公司 | Image processing method and device |
WO2012118961A1 (en) * | 2011-03-02 | 2012-09-07 | Dolby Laboratories Licensing Corporation | Local multiscale tone-mapping operator |
CN102646269A (en) * | 2012-02-29 | 2012-08-22 | 中山大学 | An image processing method and device based on Laplacian pyramid |
US20150181186A1 (en) * | 2013-09-10 | 2015-06-25 | Apple Inc. | Image Tone Adjustment using Local Tone Curve Computation |
US20150170389A1 (en) * | 2013-12-13 | 2015-06-18 | Konica Minolta Laboratory U.S.A., Inc. | Automatic selection of optimum algorithms for high dynamic range image processing based on scene classification |
CN104463820A (en) * | 2014-10-29 | 2015-03-25 | 广东工业大学 | Reverse tone mapping algorithm based on frequency domain |
CN104504666A (en) * | 2015-01-16 | 2015-04-08 | 成都品果科技有限公司 | Tone mapping method based on Laplacian pyramid |
US9600741B1 (en) * | 2015-03-18 | 2017-03-21 | Amazon Technologies, Inc. | Enhanced image generation based on multiple images |
CN105869112A (en) * | 2016-04-20 | 2016-08-17 | 西安理工大学 | Method for tone mapping of high dynamic range picture with edge kept minimized |
CN105825472A (en) * | 2016-05-26 | 2016-08-03 | 重庆邮电大学 | Rapid tone mapping system and method based on multi-scale Gauss filters |
CN106530263A (en) * | 2016-10-19 | 2017-03-22 | 天津大学 | Single-exposure high-dynamic range image generation method adapted to medical image |
CN106506983A (en) * | 2016-12-12 | 2017-03-15 | 天津大学 | A HDR video generation method suitable for LDR video |
CN107220956A (en) * | 2017-04-18 | 2017-09-29 | 天津大学 | A kind of HDR image fusion method of the LDR image based on several with different exposures |
CN107274372A (en) * | 2017-06-26 | 2017-10-20 | 重庆名图医疗设备有限公司 | Dynamic image Enhancement Method and device based on pyramid local contrast |
CN107845128A (en) * | 2017-11-03 | 2018-03-27 | 安康学院 | A kind of more exposure high-dynamics image method for reconstructing of multiple dimensioned details fusion |
US20190043177A1 (en) * | 2018-06-15 | 2019-02-07 | Intel Corporation | Hybrid tone mapping for consistent tone reproduction of scenes in camera systems |
CN109493283A (en) * | 2018-08-23 | 2019-03-19 | 金陵科技学院 | A kind of method that high dynamic range images ghost is eliminated |
CN109685742A (en) * | 2018-12-29 | 2019-04-26 | 哈尔滨理工大学 | A kind of image enchancing method under half-light environment |
Non-Patent Citations (8)
Title |
---|
B. GU ET AL.: "Local Edge-Preserving Multiscale Decomposition for High Dynamic Range Image Tone Mapping", 《IEEE TRANSACTIONS ON IMAGE PROCESSING》 * |
ERIK REINHARD ET AL.: "Photographic tone reproduction for digital images", 《IN PROCEEDINGS OF THE 29TH ANNUAL CONFERENCE ON COMPUTER GRAPHICS AND INTERACTIVE TECHNIQUES 》 * |
RAIHAN FIROZ ET AL.: "Medical Image Enhancement Using Morphological Transformation", 《JOURNAL OF DATA ANALYSIS AND INFORMATION PROCESSING》 * |
伍世宾 等: "基于多尺度带限的自适应直方图均衡和数学形态学的医学X射线图像对比度增强算法", 《集成技术》 * |
张文婷: "基于导向滤波的图像增强算法研究", 《中国优秀硕士学位论文全文数据库信息科技辑》 * |
梁云 等: "改进拉普拉斯金字塔模型的高动态图像色调映射方法", 《计算机辅助设计与图形学学报》 * |
芦碧波 等: "基于双边滤波的多尺度分层色调映射算法", 《液晶与显示》 * |
蒲雅蕾: "高动态范围图像色调映射方法的研究与实现", 《中国优秀硕士学位论文全文数据库信息科技辑》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113724144A (en) * | 2020-05-22 | 2021-11-30 | 北京小米移动软件有限公司 | Image processing method and image signal processor on terminal equipment |
CN113674173A (en) * | 2021-08-19 | 2021-11-19 | Oppo广东移动通信有限公司 | Image processing method and device, terminal and readable storage medium |
CN114463207A (en) * | 2022-01-24 | 2022-05-10 | 哈尔滨理工大学 | Tone Mapping Method Based on Global Dynamic Range Compression and Local Luminance Estimation |
Also Published As
Publication number | Publication date |
---|---|
CN110415188B (en) | 2021-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | An experiment-based review of low-light image enhancement methods | |
Liu et al. | Efficient single image dehazing and denoising: An efficient multi-scale correlated wavelet approach | |
CN104574293B (en) | Multiple dimensioned Retinex image sharpenings algorithm based on bounded computing | |
CN105243641B (en) | A kind of low light image Enhancement Method based on dual-tree complex wavelet transform | |
CN101303766A (en) | A Fast Color Image Enhancement Method Based on Retinex Theory | |
CN101821773B (en) | Method of enhancing contrast of image | |
Kovaleski et al. | High-quality brightness enhancement functions for real-time reverse tone mapping | |
CN105825472A (en) | Rapid tone mapping system and method based on multi-scale Gauss filters | |
CN113724164B (en) | Visible light image noise removing method based on fusion reconstruction guidance filtering | |
CN110415188A (en) | A tone mapping method for HDR images based on multi-scale morphology | |
CN109472754A (en) | A method for removing metal artifacts in CT images based on image inpainting | |
CN116630198A (en) | A multi-scale fusion underwater image enhancement method combined with adaptive gamma correction | |
Lei et al. | Low-light image enhancement using the cell vibration model | |
CN111353955A (en) | Image processing method, device, equipment and storage medium | |
Yang et al. | Low-light image enhancement based on Retinex theory and dual-tree complex wavelet transform | |
CN115456912A (en) | Tone mapping method based on multi-scale WLS filtering fusion | |
Nnolim | Image de-hazing via gradient optimized adaptive forward-reverse flow-based partial differential equation | |
CN101889295A (en) | Method for generating multi-scale contrast-enhanced images | |
CN110706180A (en) | A method, system, device and medium for improving the visual quality of extremely dark images | |
CN109993701A (en) | A method for depth map super-resolution reconstruction based on pyramid structure | |
CN110390652A (en) | A Medical Image Enhancement Method Combining Fuzzy Set and Fractional Differential | |
Wang et al. | Low-light image enhancement algorithm based on improved multi-scale retinex with adaptive brightness compensation | |
Tun et al. | Joint training of noisy image patch and impulse response of low-pass filter in CNN for image denoising | |
CN106127704A (en) | For reducing the real time enhancing method of infrared image edge fuzziness | |
Ancuti et al. | Image decolorization based on information theory |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20210820 |
|
CF01 | Termination of patent right due to non-payment of annual fee |