[go: up one dir, main page]

CN110408642A - A method for efficient deletion of large genome fragments based on the endogenous CRISPR-Cas system of Zymomonas mobilis and its application - Google Patents

A method for efficient deletion of large genome fragments based on the endogenous CRISPR-Cas system of Zymomonas mobilis and its application Download PDF

Info

Publication number
CN110408642A
CN110408642A CN201910692120.5A CN201910692120A CN110408642A CN 110408642 A CN110408642 A CN 110408642A CN 201910692120 A CN201910692120 A CN 201910692120A CN 110408642 A CN110408642 A CN 110408642A
Authority
CN
China
Prior art keywords
crispr
editing
zymomonas mobilis
cas system
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910692120.5A
Other languages
Chinese (zh)
Other versions
CN110408642B (en
Inventor
彭文舫
杨世辉
郑艳丽
易犁
马立新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Ruijiakang Biotechnology Co ltd
Original Assignee
Hubei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei University filed Critical Hubei University
Priority to CN201910692120.5A priority Critical patent/CN110408642B/en
Priority to US17/295,045 priority patent/US20220348939A1/en
Priority to PCT/CN2019/112556 priority patent/WO2021017200A1/en
Publication of CN110408642A publication Critical patent/CN110408642A/en
Application granted granted Critical
Publication of CN110408642B publication Critical patent/CN110408642B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Mycology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明属于基因工程技术领域,尤其涉及基于运动发酵单胞菌內源CRISPR‑Cas系统的基因组大片段高效删除方法及其应用。其技术要点包括:构建含人工CRISPR表达单元的质粒;确定大片段编辑靶位点,针对编辑靶位点选取guideRNA序列,并设计引物;将guideRNA引物序列构建至含人工CRISPR表达单元的质粒上,构建载体;将供体DNA序列构建至载体上,获得编辑质粒;将编辑质粒转化至感受态细胞中进行编辑。本发明利用基于运动发酵单胞菌內源CRISPR‑Cas系统的高通量基因编辑平台,实现对该菌株基因组大片段删除的编辑目的,促进代谢工程、系统生物学及合成生物学的发展。

The invention belongs to the technical field of genetic engineering, and in particular relates to a method for efficiently deleting large genome fragments based on the endogenous CRISPR-Cas system of Zymomonas mobilis and its application. The technical points include: constructing a plasmid containing an artificial CRISPR expression unit; determining a large fragment editing target site, selecting a guideRNA sequence for the editing target site, and designing primers; constructing a guideRNA primer sequence on a plasmid containing an artificial CRISPR expression unit, Construct the vector; construct the donor DNA sequence on the vector to obtain the editing plasmid; transform the editing plasmid into competent cells for editing. The invention utilizes a high-throughput gene editing platform based on the endogenous CRISPR-Cas system of Zymomonas mobilis to realize the editing purpose of deleting a large segment of the genome of the strain, and promote the development of metabolic engineering, systems biology and synthetic biology.

Description

基于运动发酵单胞菌內源CRISPR-Cas系统的基因组大片段高 效删除方法及其应用Genome large fragment height based on endogenous CRISPR-Cas system of Zymomonas mobilis Efficient deletion method and its application

技术领域technical field

本发明属于基因工程技术领域,尤其涉及基于运动发酵单胞菌內源CRISPR-Cas系统的基因组大片段高效删除方法及其应用。The invention belongs to the technical field of genetic engineering, and in particular relates to a method for efficiently deleting large genome fragments based on the endogenous CRISPR-Cas system of Zymomonas mobilis and its application.

背景技术Background technique

近年来,利用微生物进行代谢工程、系统生物学及合成生物学等方面的研究取得了良好的进展,为理性化设计、构建微生物细胞工厂,利用生物体活细胞或酶对可再生生物质,如纤维素等进行物质转化,生产生物能源,实现生物冶炼的工业化提供了重要的理论基础。生物能源再生化是解决人类目前面临的资源、能源短缺及环境污染严重等问题的有效手段之一。In recent years, the use of microorganisms for metabolic engineering, systems biology, and synthetic biology has made good progress. For the rational design and construction of microbial cell factories, living cells or enzymes are used to treat renewable biomass, such as It provides an important theoretical basis for the transformation of cellulose and other substances, the production of bioenergy, and the industrialization of biosmelting. Bioenergy regeneration is one of the effective means to solve the problems of resource and energy shortage and serious environmental pollution that human beings are currently facing.

运动发酵单胞菌因为能天然产酒精,对酒精耐受性高,可以利用玉米秸秆水解物生产 10.7%(v/v)的高浓度纤维素酒精;是目前已知的唯一可以在厌氧条件下通过Entner-Doudoroff (ED)途径代谢葡萄糖或果糖生产乙醇的微生物,其每代谢一分子的葡萄糖或者果糖只产生一分子的ATP,产能低,因而大部分碳源(>95%)被转化为产物乙醇,只有约2-2.6%的碳源用于细胞生长,目标产物产率非常高;运动发酵单胞菌可在广泛的温度(24-45℃)及pH 范围(3.5-7.5)生长,是公认的GRAS(Generally Recognized As Safe)菌株等特性,被认为是理想的微生物细胞工厂。而且,其基因组大小仅为约2Mbp,在开展基因组精简工作,构建最适基因组细胞工厂方面具有很大优势。Because Zymomonas mobilis can produce alcohol naturally, it has high tolerance to alcohol, and can use corn stalk hydrolyzate to produce high-concentration cellulose alcohol of 10.7% (v/v); Microorganisms that metabolize glucose or fructose to produce ethanol through the Entner-Doudoroff (ED) pathway produce only one molecule of ATP per molecule of glucose or fructose metabolized, and the production capacity is low, so most of the carbon source (>95%) is converted to For the product ethanol, only about 2-2.6% of the carbon source is used for cell growth, and the target product yield is very high; Zymomonas mobilis can grow in a wide range of temperature (24-45°C) and pH range (3.5-7.5), It is a recognized GRAS (Generally Recognized As Safe) strain and other characteristics, and is considered to be an ideal microbial cell factory. Moreover, its genome size is only about 2Mbp, which has great advantages in carrying out genome streamlining work and constructing an optimal genome cell factory.

最小基因组的构建通常情况下是将基因组中非必需的DNA序列进行删除,最有效的方法是进行大片段的敲除。然而,利用目前常规的遗传操作方法无法满足这一需求。虽然目前常用的基于CRISPR-Cas9的基因编辑工具可实现高通量的基因组编辑,但外源表达Cas9对运动发酵单胞菌的细胞毒性限制了该工具的应用。The construction of a minimal genome is usually to delete non-essential DNA sequences in the genome, and the most effective method is to knock out large fragments. However, this need cannot be met by current conventional genetic manipulation methods. Although the commonly used CRISPR-Cas9-based gene editing tool can achieve high-throughput genome editing, the cytotoxicity of exogenously expressed Cas9 to Zymomonas mobilis limits the application of this tool.

常规的遗传学方法通过同源重组对基因进行敲除,但目前仅限于对单个小基因的敲除,由于这些方法直接利用宿主体内DNA重组修复系统,在无任何外源DNA损伤压力的情况下,重组效率极低,这一特点在基因组大片段删除上显得尤为突出。而且,对于每一个目标基因的敲除,均需要引入特定的选择标记,会存在可用选择标记有限、引入抗生素标记而产生生物安全隐患等等一些问题。此外,也存在耗时长,效率低等缺陷。Conventional genetic methods knock out genes through homologous recombination, but are currently limited to the knockout of a single small gene. Since these methods directly use the DNA recombination repair system in the host, they can be eliminated without any external DNA damage pressure. , the recombination efficiency is extremely low, which is particularly prominent in the deletion of large fragments of the genome. Moreover, for the knockout of each target gene, a specific selectable marker needs to be introduced, and there will be some problems such as limited available selectable markers, biosafety hazards caused by the introduction of antibiotic markers, and the like. In addition, there are also defects such as long time consumption and low efficiency.

目前常用的基于CRISPR-Cas9系统的基因编辑技术因为能在基因组特定位点引入DNA 损伤,促使宿主体内DNA重组修复系统实施基因组修复,从而引入突变,提高重组效率,被广泛应用于包括人体细胞在内的各类生物(细胞)中。然而,随着研究的深入,越来越多的结果显示,异源表达这些核酸酶会对宿主产生不同程度的细胞毒性。这可能是截止目前为止,相关应用难在运动发酵单胞菌中开展的主要原因之一。The currently commonly used gene editing technology based on the CRISPR-Cas9 system is widely used, including in human cells, because it can introduce DNA damage at specific sites in the genome, prompting the DNA recombination repair system in the host to perform genome repair, thereby introducing mutations and improving recombination efficiency. In all kinds of organisms (cells) inside. However, with the deepening of research, more and more results show that heterologous expression of these nucleases can cause different degrees of cytotoxicity to the host. This may be one of the main reasons why related applications are difficult to carry out in Zymomonas mobilis so far.

发明内容Contents of the invention

针对现有技术存在的问题,本发明提供了基于运动发酵单胞菌內源CRISPR-Cas系统的基因组大片段高效删除方法及其应用。本发明的目的在于利用基于运动发酵单胞菌基因组编码的I-F型CRISPR-Cas系统的基因编辑平台,对其自身基因组上的大片段(>10kb,约为基因组的5‰)进行敲除,为在该菌株及类似细胞中开展最小基因组细胞工厂的构建等研究工作提供高效的工具,促进代谢工程、系统生物学及合成生物学的发展。Aiming at the problems existing in the prior art, the present invention provides a method for efficiently deleting large genome fragments based on the endogenous CRISPR-Cas system of Zymomonas mobilis and its application. The purpose of the present invention is to use the gene editing platform based on the I-F type CRISPR-Cas system encoded by the Zymomonas mobilis genome to knock out large fragments (>10kb, about 5‰ of the genome) on its own genome, for Research work such as the construction of minimal genome cell factories in this strain and similar cells provides efficient tools to promote the development of metabolic engineering, systems biology and synthetic biology.

本发明是这样实现的,基于运动发酵单胞菌內源CRISPR-Cas系统的基因组大片段高效删除方法,包括以下步骤:The present invention is achieved in this way. The method for efficiently deleting large genome fragments based on the endogenous CRISPR-Cas system of Zymomonas mobilis comprises the following steps:

步骤1:构建含人工CRISPR表达单元的质粒;Step 1: constructing a plasmid containing an artificial CRISPR expression unit;

步骤2:确定大片段编辑靶位点,针对编辑靶位点选取guideRNA序列,并设计引物;Step 2: Determine the large fragment editing target site, select the guideRNA sequence for the editing target site, and design primers;

步骤3:将guideRNA引物序列构建至含人工CRISPR表达单元的质粒上,构建载体;Step 3: Construct the guideRNA primer sequence on the plasmid containing the artificial CRISPR expression unit to construct the vector;

步骤4:将供体DNA序列构建至载体上,获得编辑质粒;Step 4: Construct the donor DNA sequence onto the vector to obtain the editing plasmid;

步骤5:将编辑质粒转化至感受态细胞中进行编辑。Step 5: Transform the editing plasmid into competent cells for editing.

进一步,所述大片段序列长度在10kb以上。Further, the length of the large fragment sequence is above 10kb.

进一步,所述含人工CRISPR表达单元的质粒为在Z.mobilis-E.coli穿梭载体pEZ15Asp 上构建人工CRISPR表达单元。Further, the plasmid containing the artificial CRISPR expression unit is an artificial CRISPR expression unit constructed on the Z.mobilis-E.coli shuttle vector pEZ15Asp.

进一步,所述人工CRISPR表达单元包括启动子leader序列,CRISPR簇及终止子。Further, the artificial CRISPR expression unit includes a promoter leader sequence, a CRISPR cluster and a terminator.

进一步,所述人工CRISPR簇包括两个repeat,且两个repeat中间插入了两个BsaⅠ的酶切位点。Further, the artificial CRISPR cluster includes two repeats, and two BsaI restriction sites are inserted between the two repeats.

进一步,步骤5中所述感受态细胞为运动发酵单胞菌ZM4感受态细胞。Further, the competent cells described in step 5 are Zymomonas mobilis ZM4 competent cells.

如权利要求1-6任一所述的基于运动发酵单胞菌內源CRISPR-Cas系统的基因组大片段高效删除方法在基因大片段删除中的应用。The application of the method for efficiently deleting large genome fragments based on the endogenous CRISPR-Cas system of Zymomonas mobilis in the deletion of large gene fragments according to any one of claims 1-6.

综上所述,本发明的优点及积极效果为:In summary, the advantages and positive effects of the present invention are:

本发明利用基于运动发酵单胞菌內源CRISPR-Cas系统的高通量基因编辑平台,实现对该菌株基因组大片段删除的编辑目的,促进代谢工程、系统生物学及合成生物学的发展。且本发明以运动发酵单胞菌为模式菌株,运用其內源CRISPR-Cas系统进行基因编辑,能够有效避免外源Cas核酸蛋白对宿主产生的细胞毒性的同时,实现高效的基因组大片段删除。The invention utilizes a high-throughput gene editing platform based on the endogenous CRISPR-Cas system of Zymomonas mobilis to realize the editing purpose of deleting a large segment of the genome of the strain, and promote the development of metabolic engineering, systems biology and synthetic biology. In addition, the present invention uses Zymomonas mobilis as a model strain and uses its endogenous CRISPR-Cas system for gene editing, which can effectively avoid the cytotoxicity of exogenous Cas nucleic acid proteins on the host and at the same time realize efficient deletion of large genome fragments.

附图说明Description of drawings

图1是运动发酵单胞菌编码的CRISPR-Cas系统;Figure 1 is the CRISPR-Cas system encoded by Zymomonas mobilis;

图2是C2S7和C3S4序列;Figure 2 is the sequence of C2S7 and C3S4;

图3是CRISPR-Cas系统体内剪切活性检测结果;Figure 3 is the detection results of the in vivo shearing activity of the CRISPR-Cas system;

图4是人工CRISPR表达单元;Figure 4 is an artificial CRISPR expression unit;

图5是大片段序列删除原理示意图;Figure 5 is a schematic diagram of the principle of deletion of large fragment sequences;

图6是菌落PCR阳性克隆结果;Fig. 6 is colony PCR positive clone result;

图7是转化子测序结果。Fig. 7 is the sequencing result of transformants.

具体实施方式Detailed ways

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the object, technical solution and advantages of the present invention more clear, the present invention will be further described in detail below in conjunction with the examples. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.

本发明披露了基于运动发酵单胞菌內源CRISPR-Cas系统的基因组大片段高效删除方法及其应用,具体如下各实施例所示。The present invention discloses a method for efficiently deleting large genome fragments based on the endogenous CRISPR-Cas system of Zymomonas mobilis and its application, as shown in the following examples.

实施例1运动发酵单胞菌內源CRISPR-Cas基因组编辑系统的构建Example 1 Construction of Zymomonas mobilis Endogenous CRISPR-Cas Genome Editing System

(1)运动发酵单胞菌基因组编码的CRISPR-Cas系统组学分析(1) CRISPR-Cas phylogenetic analysis of the genome encoding of Zymomonas mobilis

本发明开展的前提是研究菌株需自身编码CRISPR-Cas系统,且具有DNA剪切活性,这就要求宿主基因组编码CRISPR簇和完整的Cas蛋白体系。The premise of the present invention is that the research strain needs to encode the CRISPR-Cas system itself and have DNA splicing activity, which requires the host genome to encode the CRISPR cluster and the complete Cas protein system.

以运动发酵单胞菌Z.mobilis 4为模式菌株,对Z.mobilis 4测序数据进行了分析,结果显示,该菌株基因组编码4个CRISPR结构序列,根据其在基因组的排列顺序,我们将其依次命名为CRISPR1-CRISPR4,见图1。CRISPR1占据基因组113,783-114,170区域,包含7个 repeat序列;CRISPR2占据1,244,355-1,245,866区域,包含9个repeat序列;CRISPR3占据 1,598,754-1,599,144区域,包含7个repeat序列。CRISPR4由2个repeat和1个spacer组成,占据1,595,315-1,599,403区域。CRISPR2-4位于同一条链,而CRISPR1位于互补链上。这些 CRISPR结构中repeat均为保守的28bp序列,spacer长度为32或33bp,其中32bp占70%。该基因组还编码一个cas基因簇,包括cas1,cas3,csy1,csy2,csy3和csy4基因,其中cas1,cas3形成一个操纵子,而所有csy基因以一个操纵子形式排列。上述结果中cas3基因是一个cas2和cas3基因的融合形式,是I-F型CRISPR-Cas系统的一个标志性特征。Taking Zymomonas mobilis Z.mobilis 4 as the model strain, the sequencing data of Z.mobilis 4 were analyzed. The results showed that the genome of the strain encoded four CRISPR structural sequences. According to their sequence in the genome, we sequenced them Named CRISPR1-CRISPR4, see Figure 1. CRISPR1 occupies the 113,783-114,170 region of the genome and contains 7 repeat sequences; CRISPR2 occupies the 1,244,355-1,245,866 region and contains 9 repeat sequences; CRISPR3 occupies the 1,598,754-1,599,144 region and contains 7 repeat sequences. CRISPR4 consists of 2 repeats and 1 spacer, occupying the 1,595,315-1,599,403 region. CRISPR2-4 are on the same strand, while CRISPR1 is on the complementary strand. The repeats in these CRISPR structures are all conserved 28bp sequences, and the spacer length is 32 or 33bp, of which 32bp accounts for 70%. The genome also encodes a cas gene cluster, including cas1, cas3, csy1, csy2, csy3 and csy4 genes, where cas1, cas3 form an operon, and all csy genes are arranged in an operon. In the above results, the cas3 gene is a fusion form of the cas2 and cas3 genes, which is a hallmark feature of the I-F type CRISPR-Cas system.

(2)运动发酵单胞菌内源I-F型CRISPR-Cas系统体内剪切活性检测(2) Detection of in vivo cleavage activity of the endogenous I-F type CRISPR-Cas system of Zymomonas mobilis

为了检测Z.mobilis 4菌株I-F型CRISPR-Cas系统是否可在crRNA的介导下体内剪切DNA,根据转录组分析结果,我们分别选取了CRISPR2中spacer7(C2S7)和CRISPR3中spacer4(C3S4),在其序列5’端加上5’-CCC-3’PAM,见图2。具体操作为:将Z.mobilis-E.col穿梭载体pEZ15Asp用XbaⅠ和EcoRⅠ双酶切,酶切体系见表1。与C2S7和C3S4的引物退火(表2)后用T4DNA连接酶连接(表3)。通过转化到E.coli DH5α中进行质粒扩增,然后对转化子进行菌落PCR验证(表4),构建好的质粒均通过测序验证。同时,将5’加上 5’-AAA-3’序列的spacer插入到载体,得到对应的参照质粒。穿梭载体pEZ15Asp上含有壮观霉素抗性编码基因。In order to test whether the type I-F CRISPR-Cas system of Z. mobilis 4 strain can cleave DNA in vivo under the mediation of crRNA, according to the results of transcriptome analysis, we selected spacer7 (C2S7) in CRISPR2 and spacer4 (C3S4) in CRISPR3, Add 5'-CCC-3'PAM at the 5' end of the sequence, as shown in Figure 2. The specific operation is as follows: the Z.mobilis-E.col shuttle vector pEZ15Asp was double-digested with XbaI and EcoRI, and the restriction system is shown in Table 1. After annealing with the primers of C2S7 and C3S4 (Table 2), they were ligated with T4 DNA ligase (Table 3). Plasmid amplification was performed by transforming into E.coli DH5α, and then the transformants were verified by colony PCR (Table 4), and the constructed plasmids were verified by sequencing. At the same time, insert the spacer with 5' plus 5'-AAA-3' sequence into the vector to obtain the corresponding reference plasmid. The shuttle vector pEZ15Asp contains the spectinomycin resistance coding gene.

表1:载体双酶切体系Table 1: Vector double enzyme digestion system

载体双酶切程序:37℃保温3-4h。Carrier double enzyme digestion program: 37 ℃ incubation for 3-4h.

C2S7和C3S4引物序列:C2S7 and C3S4 primer sequences:

C2S7(CCC)-F:AATTCCCGATCGCGGGCAACGGTTTATTCAGCTATCCGCGC,见 SEQ ID NO:1;C2S7(CCC)-F: AATTCCCGATCGCGGGCAACGGTTTATTCAGCTATCCGCGC, see SEQ ID NO: 1;

C2S7(CCC)-R:CTAGGCGCGGATAGCTGAATAAACCGTTGCCCGCGATCGGG,见 SEQ ID NO:2;C2S7(CCC)-R: CTAGGCGCGGATAGCTGAATAAACCGTTGCCCGCGATCGGG, see SEQ ID NO: 2;

C2S7(AAA)-F:AATTAAAGATCGCGGGCAACGGTTTATTCAGCTATCCGCG,见 SEQ ID NO:3;C2S7(AAA)-F: AATTAAAGATCGCGGGCAACGGTTTTATTCAGCTATCCGCG, see SEQ ID NO: 3;

C2S7(AAA)-R:CTAGGCGCGGATAGCTGAATAAACCGTTGCCCGCGATCTT,见 SEQ ID NO:4;C2S7(AAA)-R: CTAGGCGCGGATAGCTGAATAAACCGTTGCCCGCGATCTT, see SEQ ID NO:4;

C3S4(CCC)-F:AATTCCCGTCTGGCTGAAATGAGGTCCGACGATTTGCAT,见SEQ ID NO:5;C3S4(CCC)-F: AATTCCCGTCTGGCTGAAATGAGGTCCGACGATTTGCAT, see SEQ ID NO: 5;

C3S4(CCC)-R:GTTAATGCAAATCGTCGGACCTCATTTCAGCCAGACGGG,见SEQ ID NO:6;C3S4(CCC)-R: GTTAATGCAAATCGTCGGACCTCATTTCAGCCAGACGGG, see SEQ ID NO: 6;

C3S4(AAA)-F:AATTAAAGTCTGGCTGAAATGAGGTCCGACGATTTGCAT,见SEQ ID NO:7;C3S4(AAA)-F: AATTAAAGTCTGGCTGAAATGAGGTCCGACGATTTGCAT, see SEQ ID NO: 7;

C3S4(AAA)-R:GTTAATGCAAATCGTCGGACCTCATTTCAGCCAGACTTT,见SEQ ID NO:8。C3S4(AAA)-R: GTTAATGCAAATCGTCGGACCTCATTTCAGCCAGACTTT, see SEQ ID NO:8.

表2:引物退火体系Table 2: Primer Annealing System

引物退火程序:95℃保温5min,然后常温退火。Primer annealing procedure: keep at 95°C for 5 minutes, then anneal at room temperature.

表3:T4 DNA连接酶连接体系Table 3: T4 DNA Ligase Ligation System

T4DNA连接酶连接程序:22℃保温2h。T4DNA ligase ligation program: keep warm at 22°C for 2h.

大肠杆菌DH5α的转化方法:取50μL感受态细胞于冰上,加入5μL的酶连产物,冰上静置10min,42℃热激35s,加入450μL液体LB,37℃复苏1h。取100μL涂布于100μg/mL 壮观霉素抗性平板,37℃培养16h。Transformation method of Escherichia coli DH5α: Take 50 μL of competent cells on ice, add 5 μL of the enzyme-linked product, let stand on ice for 10 minutes, heat shock at 42°C for 35 seconds, add 450 μL of liquid LB, and recover at 37°C for 1 hour. Take 100 μL and spread it on a 100 μg/mL spectinomycin-resistant plate, and incubate at 37°C for 16 hours.

PCR程序为:步骤1,98℃,3min;步骤2,98℃,10s;步骤3,55℃,15s;步骤4, 72℃,30s;步骤2-步骤4循环25次;步骤5,72℃,2min。The PCR program is: step 1, 98°C, 3min; step 2, 98°C, 10s; step 3, 55°C, 15s; step 4, 72°C, 30s; step 2-step 4 cycles 25 times; step 5, 72°C , 2min.

表4:菌落PCR体系Table 4: Colony PCR system

用提取的质粒对ZM4进行电转化。取ZM4感受态细胞于冰上,待感受态细胞融化后取 50μL加入电转杯中,并在电转杯中加入1μg质粒。电转条件为1600V,25μF,200Ω。电转完毕后于RMG液体培养基中于30℃复苏。复苏6-12小时的培养物于6000rpm,1min离心,除去上清。加入200μL新鲜的RMG培养基,取100μL涂布于100μg/mL壮观霉素抗性平板, 30℃孵育2天。ZM4 was electrotransformed with the extracted plasmid. Take ZM4 competent cells on ice, after the competent cells are thawed, take 50 μL and add them to the electroporation cup, and add 1 μg plasmid into the electroporation cup. Electroporation conditions were 1600V, 25μF, 200Ω. Resuscitate in RMG liquid medium at 30°C after electroporation. The cultures recovered for 6-12 hours were centrifuged at 6000 rpm for 1 min, and the supernatant was removed. Add 200 μL of fresh RMG medium, take 100 μL and spread it on a 100 μg/mL spectinomycin-resistant plate, and incubate at 30°C for 2 days.

预测,将质粒分别转化到宿主后,如果I-F型CRISPR-Cas系统有活性,插入的protospacer 将被剪切,在含有100μg/mL壮观霉素的RMG培养基平板上进行筛选,则会造成平板上形成少数几个菌落;而转化参照质粒的平板上则会形成大量菌落。It is predicted that after the plasmids are respectively transformed into the host, if the I-F type CRISPR-Cas system is active, the inserted protospacer will be sheared and screened on the RMG medium plate containing 100 μg/mL spectinomycin, resulting in Few colonies formed; plates transformed with the reference plasmid produced a large number of colonies.

实验结果如图3,转化干涉质粒的效率相比于转化参照质粒要低103倍,由此说明,基因组上CRISPR中表达的crRNA介导I-F型系统的DNA活性对干涉质粒中protospacer进行了剪切,从而确定该系统可被用于DNA序列的定点靶向和切割。The experimental results are shown in Figure 3. The efficiency of transforming the interference plasmid is 10 3 times lower than that of the reference plasmid, which shows that the crRNA expressed in the CRISPR on the genome mediates the DNA activity of the IF-type system to cut the protospacer in the interference plasmid. cleavage, thus confirming that the system can be used for site-specific targeting and cleavage of DNA sequences.

(3)基因组编辑质粒的组成(3) Composition of genome editing plasmids

在质粒pEZ15Asp上构建了一个人工CRISPR表达单元,见图4,由启动子leader序列, CRISPR簇及终止子组成。该人工CRISPR表达单元由三方基因合成公司人工合成。人工CRISPR簇包括两个repeat中间插入了两个BsaⅠ的酶切位点,这两个BsaⅠ的酶切位点的功能是为了方便目标基因上选取的guideRNA序列的插入。本实施例中启动子Leader序列、RgR模块序列以及T7终止子序列分别见SEQ ID NO:18-SEQ ID NO:20。An artificial CRISPR expression unit was constructed on the plasmid pEZ15Asp, as shown in Figure 4, which consists of a promoter leader sequence, a CRISPR cluster and a terminator. The artificial CRISPR expression unit was artificially synthesized by Sanfang Gene Synthesis Company. The artificial CRISPR cluster includes two BsaI restriction sites inserted in the middle of two repeats. The function of these two BsaI restriction sites is to facilitate the insertion of the selected guideRNA sequence on the target gene. In this example, the promoter Leader sequence, RgR module sequence and T7 terminator sequence are respectively shown in SEQ ID NO: 18-SEQ ID NO: 20.

实施例2基于运动发酵单胞菌內源CRISPR-Cas系统的基因组大片段高效删除方法的应用Example 2 Application of the method for efficient deletion of large genome fragments based on the endogenous CRISPR-Cas system of Zymomonas mobilis

本发明首先利用生物信息学方法确定需要保留的必需基因及可以删除的非必需基因,选择一段长度为10kb的非必须基因作为目标敲除大片段。然后设计guide RNA和供体DNA序列。最后在质粒上装载人工CRISPR簇表达模块和供体DNA序列,并将该质粒电转化到运动发酵单胞菌细胞内完成编辑。原理示意图见图5所示,具体实验方案如下所示:In the present invention, bioinformatics methods are firstly used to determine the essential genes that need to be retained and the non-essential genes that can be deleted, and select a non-essential gene with a length of 10 kb as the target knockout large fragment. Then design guide RNA and donor DNA sequences. Finally, the artificial CRISPR cluster expression module and donor DNA sequence were loaded on the plasmid, and the plasmid was electrotransformed into Zymomonas mobilis cells to complete the editing. The schematic diagram of the principle is shown in Figure 5, and the specific experimental scheme is as follows:

(1)目标敲除大片段的选取(1) Selection of target knockout large fragments

通过生物信息学分析在该菌的基因组上找到了一段非必须基因ZMO1815-ZMO1822(10,021bp)可作为大片段敲除的目标序列。Through bioinformatics analysis, a non-essential gene ZMO1815-ZMO1822 (10,021bp) was found on the genome of the bacteria, which can be used as the target sequence for large fragment knockout.

(2)目标序列guideRNA序列选取(2) Target sequence guideRNA sequence selection

从目标基因序列ZMO1815-ZMO1822中截取任意5’-CCC-3’下游紧邻的32bp序列作为 guide RNA,该序列可位于基因组任一条链上。设计引物。From the target gene sequence ZMO1815-ZMO1822, the 32bp sequence immediately downstream of any 5'-CCC-3' was intercepted as a guide RNA, and the sequence could be located on any strand of the genome. Design primers.

10K-guideRNA引物序列:10K-guideRNA primer sequence:

10K-gRNA1-F:gaaagaccttatgcctatgtcgatacaaccacgaat,见SEQ ID NO:9;10K-gRNA1-F: gaaagacccttatgcctatgtcgatacaaccacgaat, see SEQ ID NO: 9;

10K-gRNA1-R:gaacattcgtggttgtatcgacataggcataaggtc,见SEQ ID NO:10。10K-gRNA1-R: gaacattcgtggttgtatcgacataggcataaggtc, see SEQ ID NO:10.

(3)guide RNA在基因编辑质粒上的装载(3) Loading of guide RNA on the gene editing plasmid

将实施例1中制备的含有人工CRISPR表达单元的质粒用BsaⅠ线性化(表5),与guide RNA引物退火后用T4DNA连接酶连接(同上,表3),通过转化到E.coli DH5α中进行质粒扩增(方法同实施例1),然后对转化子进行菌落PCR验证(同上,表4),构建好的质粒均通过测序验证。The plasmid containing the artificial CRISPR expression unit prepared in Example 1 was linearized with BsaI (Table 5), annealed with the guide RNA primer and ligated with T4 DNA ligase (same as above, Table 3), and transformed into E.coli DH5α The plasmid was amplified (the method was the same as in Example 1), and then the transformants were verified by colony PCR (same as above, Table 4), and the constructed plasmids were verified by sequencing.

表5:载体单酶切体系Table 5: Vector single enzyme digestion system

载体单酶切程序:37℃保温3-4h。Carrier single enzyme digestion procedure: 37°C incubation for 3-4h.

菌落PCR验证引物序列:Colony PCR verification primer sequences:

pEZ15A-F:ggcaaagccaccctatttttag,见SEQ ID NO:11;pEZ15A-F: ggcaaagccaccctatttttag, see SEQ ID NO: 11;

10K-gRNA1-R:gaacattcgtggttgtatcgacataggcataaggtc,见SEQ ID NO:10。10K-gRNA1-R: gaacattcgtggttgtatcgacataggcataaggtc, see SEQ ID NO:10.

(4)供体DNA序列的获取及其在编辑质粒上的装载(4) Acquisition of donor DNA sequence and its loading on the editing plasmid

供体DNA序列选取目标基因上、下游各1Kb左右的序列,通过融合PCR技术(表6) 对其进行扩增和连接。将上一步构建好的载体用XmaⅠ和SacⅠ双酶切(表7),再与供体 DNA序列通过Gibson装配的方法转化E.coli DH5α,然后对转化子进行菌落PCR验证,构建好的编辑质粒均通过测序验证。For the donor DNA sequence, select the upstream and downstream sequences of about 1 Kb each of the target gene, and amplify and connect them by fusion PCR technology (Table 6). The vector constructed in the previous step was digested with XmaI and SacI (Table 7), and then transformed into E.coli DH5α with the donor DNA sequence by Gibson assembly method, and then the transformant was verified by colony PCR to construct the edited plasmid All were verified by sequencing.

融合PCR程序为:步骤1,98℃,3min;步骤2,98℃,10s;步骤3,55℃,15s;步骤 4,72℃,30s;步骤2-步骤4循环30次;步骤5,72℃,2min。The fusion PCR program is: step 1, 98°C, 3min; step 2, 98°C, 10s; step 3, 55°C, 15s; step 4, 72°C, 30s; step 2-step 4 cycles 30 times; step 5, 72 ℃, 2min.

供体DNA引物序列:Donor DNA primer sequences:

10K-up-F:tcgagcgtcccatagatctcgagctcggttgtgataagcggcagat,见SEQ ID NO:12;10K-up-F: tcgagcgtcccatagatctcgagctcggttgtgataagcggcagat, see SEQ ID NO: 12;

10K-up-R:aaacccgttacagaaatgggatgcaccctttagggagtcg,见SEQ ID NO:13;10K-up-R: aaacccgttacagaaatgggatgcaccctttagggagtcg, see SEQ ID NO: 13;

10K-down-F:cgactccctaaagggtgcatcccatttctgtaacgggttt,见SEQ ID NO:14;10K-down-F: cgactccctaaagggtgcatcccatttctgtaacgggttt, see SEQ ID NO: 14;

10K-down-R:gggtcaaataaagggtcaaacccgggcgagttcatattcacggtcg,见SEQ IDNO:15。10K-down-R: gggtcaaataaagggtcaaacccgggcgagttcatattcacggtcg, see SEQ ID NO:15.

表6:融合PCR反应体系Table 6: Fusion PCR reaction system

表7:载体双酶切体系Table 7: Vector double enzyme digestion system

载体双酶切程序:37℃保温3-4h。Carrier double enzyme digestion program: 37 ℃ incubation for 3-4h.

(5)编辑质粒电转化ZM4感受态细胞(5) Electrotransform ZM4 Competent Cells with Editing Plasmid

取50μL感受态细胞于冰上,加入1μg的编辑质粒,待感受态细胞融化后转入0.1cm的电转杯中。电转条件为1600V,25μF,200Ω。电转完毕后于RM液体培养基中于30℃复苏。复苏6-12小时的培养物于6000rpm,1min离心,除去上清。加入200μL新鲜的RM培养基,取100μL涂布于200μg/mL壮观霉素抗性平板,30℃培养2天。再用引物10K-check-F, 10K-check-R进行菌落PCR(同上,表4)筛选阳性克隆。Take 50 μL of competent cells on ice, add 1 μg of edited plasmid, and transfer the competent cells into a 0.1 cm electroporation cuvette after they are thawed. Electroporation conditions were 1600V, 25μF, 200Ω. Resuscitate in RM liquid medium at 30°C after electroporation. The cultures recovered for 6-12 hours were centrifuged at 6000 rpm for 1 min, and the supernatant was removed. Add 200 μL of fresh RM medium, take 100 μL and spread it on a 200 μg/mL spectinomycin-resistant plate, and incubate at 30°C for 2 days. Colony PCR (same as above, Table 4) was used to screen positive clones with primers 10K-check-F and 10K-check-R.

10K-check-F:gacaagagcggaatccgcgt,见SEQ ID NO:16;10K-check-F: gacaagagcggaatccgcgt, see SEQ ID NO: 16;

10K-check-R:ggatggtgcctttccctgaa,见SEQ ID NO:17。10K-check-R: ggatggtgcctttccctgaa, see SEQ ID NO:17.

(6)结果与分析(6) Results and analysis

菌落PCR筛选阳性克隆结果见图6,结果显示,成功的敲除了10kb的基因组大片段,编辑效率达到40%,从而说明了该发明可用于高效删除基因组大片段。对上述PCR产物进行了测序分析,结果如图7所示,得到的编辑菌株中,基因簇的删除与实验设计完全吻合,说明了该发明在基因编辑上的精准性。The results of positive clones screened by colony PCR are shown in Figure 6. The results show that a large genome fragment of 10kb was successfully knocked out, and the editing efficiency reached 40%, thus illustrating that the invention can be used to efficiently delete large genome fragments. The above PCR products were sequenced and analyzed, and the results are shown in Figure 7. In the obtained edited strain, the deletion of gene clusters was completely consistent with the experimental design, which demonstrated the accuracy of the invention in gene editing.

以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention should be included in the protection of the present invention. within range.

序列表sequence listing

<110> 湖北大学<110> Hubei University

<120> 基于运动发酵单胞菌內源CRISPR-Cas系统的基因组大片段高效删除方法及其应用<120> Method for efficient deletion of large genome fragments based on endogenous CRISPR-Cas system of Zymomonas mobilis and its application

<160> 20<160> 20

<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0

<210> 1<210> 1

<211> 41<211> 41

<212> DNA<212>DNA

<213> 人工序列(C2S7CCC-F)<213> Artificial sequence (C2S7CCC-F)

<400> 1<400> 1

aattcccgat cgcgggcaac ggtttattca gctatccgcg c 41aattcccgat cgcgggcaac ggtttatca gctatccgcg c 41

<210> 2<210> 2

<211> 41<211> 41

<212> DNA<212>DNA

<213> 人工序列(C2S7CCC-R)<213> Artificial sequence (C2S7CCC-R)

<400> 2<400> 2

ctaggcgcgg atagctgaat aaaccgttgc ccgcgatcgg g 41ctaggcgcgg atagctgaat aaaccgttgc ccgcgatcgg g 41

<210> 3<210> 3

<211> 40<211> 40

<212> DNA<212>DNA

<213> 人工序列(C2S7AAA-F)<213> Artificial sequence (C2S7AAA-F)

<400> 3<400> 3

aattaaagat cgcgggcaac ggtttattca gctatccgcg 40aattaaagat cgcgggcaac ggtttattca gctatccgcg 40

<210> 4<210> 4

<211> 40<211> 40

<212> DNA<212>DNA

<213> 人工序列(C2S7AAA-R)<213> Artificial sequence (C2S7AAA-R)

<400> 4<400> 4

ctaggcgcgg atagctgaat aaaccgttgc ccgcgatctt 40ctaggcgcgg atagctgaat aaaccgttgc ccgcgatctt 40

<210> 5<210> 5

<211> 39<211> 39

<212> DNA<212>DNA

<213> 人工序列(C3S4CCC-F)<213> Artificial sequence (C3S4CCC-F)

<400> 5<400> 5

aattcccgtc tggctgaaat gaggtccgac gatttgcat 39aattcccgtc tggctgaaat gaggtccgac gatttgcat 39

<210> 6<210> 6

<211> 39<211> 39

<212> DNA<212>DNA

<213> 人工序列(C3S4CCC-R)<213> Artificial sequence (C3S4CCC-R)

<400> 6<400> 6

gttaatgcaa atcgtcggac ctcatttcag ccagacggg 39gttaatgcaa atcgtcggac ctcatttcag ccagacggg 39

<210> 7<210> 7

<211> 39<211> 39

<212> DNA<212>DNA

<213> 人工序列(C3S4AAA-F)<213> Artificial sequence (C3S4AAA-F)

<400> 7<400> 7

aattaaagtc tggctgaaat gaggtccgac gatttgcat 39aattaaagtc tggctgaaat gaggtccgac gatttgcat 39

<210> 8<210> 8

<211> 39<211> 39

<212> DNA<212>DNA

<213> 人工序列(C3S4AAA-R)<213> Artificial sequence (C3S4AAA-R)

<400> 8<400> 8

gttaatgcaa atcgtcggac ctcatttcag ccagacttt 39gttaatgcaa atcgtcggac ctcatttcag ccagacttt 39

<210> 9<210> 9

<211> 36<211> 36

<212> DNA<212>DNA

<213> 人工序列(10K-gRNA1-F)<213> artificial sequence (10K-gRNA1-F)

<400> 9<400> 9

gaaagacctt atgcctatgt cgatacaacc acgaat 36gaaagacctt atgcctatgt cgatacaacc acgaat 36

<210> 10<210> 10

<211> 36<211> 36

<212> DNA<212>DNA

<213> 人工序列(10K-gRNA1-R)<213> artificial sequence (10K-gRNA1-R)

<400> 10<400> 10

gaacattcgt ggttgtatcg acataggcat aaggtc 36gaacattcgt ggttgtatcg acataggcat aaggtc 36

<210> 11<210> 11

<211> 22<211> 22

<212> DNA<212>DNA

<213> 人工序列(pEZ15A-F)<213> Artificial sequence (pEZ15A-F)

<400> 11<400> 11

ggcaaagcca ccctattttt ag 22ggcaaagcca ccctattttt ag 22

<210> 12<210> 12

<211> 46<211> 46

<212> DNA<212>DNA

<213> 人工序列(10K-up-F)<213> Artificial sequence (10K-up-F)

<400> 12<400> 12

tcgagcgtcc catagatctc gagctcggtt gtgataagcg gcagat 46tcgagcgtcc catagatctc gagctcggtt gtgataagcg gcagat 46

<210> 13<210> 13

<211> 40<211> 40

<212> DNA<212>DNA

<213> 人工序列(10K-up-R)<213> Artificial sequence (10K-up-R)

<400> 13<400> 13

aaacccgtta cagaaatggg atgcaccctt tagggagtcg 40aaacccgtta cagaaatggg atgcaccctt tagggagtcg 40

<210> 14<210> 14

<211> 40<211> 40

<212> DNA<212>DNA

<213> 人工序列(10K-down-F)<213> Artificial sequence (10K-down-F)

<400> 14<400> 14

cgactcccta aagggtgcat cccatttctg taacgggttt 40cgactcccta aagggtgcat cccatttctg taacgggttt 40

<210> 15<210> 15

<211> 46<211> 46

<212> DNA<212>DNA

<213> 人工序列(10K-down-R)<213> artificial sequence (10K-down-R)

<400> 15<400> 15

gggtcaaata aagggtcaaa cccgggcgag ttcatattca cggtcg 46gggtcaaata aagggtcaaa cccgggcgag ttcatattca cggtcg 46

<210> 16<210> 16

<211> 20<211> 20

<212> DNA<212>DNA

<213> 人工序列(10K-check-F)<213> Artificial sequence (10K-check-F)

<400> 16<400> 16

gacaagagcg gaatccgcgt 20gacaagagcg gaatccgcgt 20

<210> 17<210> 17

<211> 20<211> 20

<212> DNA<212>DNA

<213> 人工序列(10K-check-R)<213> Artificial sequence (10K-check-R)

<400> 17<400> 17

ggatggtgcc tttccctgaa 20ggatggtgcc tttccctgaa 20

<210> 18<210> 18

<211> 148<211> 148

<212> DNA<212>DNA

<213> 启动子leader(启动子leader)<213> promoter leader (promoter leader)

<400> 18<400> 18

tttgaccctt tatttgaccc tctttttttg gcatgtaaaa aaatccttta aaatcaatag 60tttgaccctt tatttgaccc tctttttttg gcatgtaaaa aaatccttta aaatcaatag 60

gttaaaaata ggctctattt ttagggttat ttggctattt ttgcccgata ttcctttcat 120gttaaaaata ggctctattt ttagggttat ttggctattt ttgcccgata ttcctttcat 120

ttagggggat ttttaattat ttactcta 148ttagggggat ttttaattat ttactcta 148

<210> 19<210> 19

<211> 72<211> 72

<212> DNA<212>DNA

<213> RgR(RgR)<213> RgR(RgR)

<400> 19<400> 19

gttcactgcc gcacaggcag cttagaaagg agaccgaggt ctcagttcac tgccgcacag 60gttcactgcc gcacaggcag cttagaaagg agaccgaggt ctcagttcac tgccgcacag 60

gcagcttaga aa 72gcagcttaga aa 72

<210> 20<210> 20

<211> 28<211> 28

<212> DNA<212>DNA

<213> T7终止子(T7终止子)<213> T7 terminator (T7 terminator)

<400> 20<400> 20

ggctcacctt cgggtgggcc tttctgcg 28ggctcacctt cgggtgggcc tttctgcg 28

Claims (7)

1.基于运动发酵单胞菌內源CRISPR-Cas系统的基因组大片段高效删除方法,其特征在于,包括以下步骤:1. A method for efficiently deleting large genome fragments based on the endogenous CRISPR-Cas system of Zymomonas mobilis, comprising the following steps: 步骤1:构建含人工CRISPR表达单元的质粒;Step 1: constructing a plasmid containing an artificial CRISPR expression unit; 步骤2:确定大片段编辑靶位点,针对编辑靶位点选取guideRNA序列,并设计引物;Step 2: Determine the large fragment editing target site, select the guideRNA sequence for the editing target site, and design primers; 步骤3:将guideRNA引物序列构建至含人工CRISPR表达单元的质粒上,构建载体;Step 3: Construct the guideRNA primer sequence on the plasmid containing the artificial CRISPR expression unit to construct the vector; 步骤4:将供体DNA序列构建至载体上,获得编辑质粒;Step 4: Construct the donor DNA sequence onto the vector to obtain the editing plasmid; 步骤5:将编辑质粒转化至感受态细胞中进行编辑。Step 5: Transform the editing plasmid into competent cells for editing. 2.根据权利要求1所述的基于运动发酵单胞菌內源CRISPR-Cas系统的基因组大片段高效删除方法,其特征在于:所述大片段序列长度在10kb以上。2. The method for efficiently deleting large genome fragments based on the endogenous CRISPR-Cas system of Zymomonas mobilis according to claim 1, characterized in that: the length of the large fragment sequence is more than 10 kb. 3.根据权利要求1所述的基于运动发酵单胞菌內源CRISPR-Cas系统的基因组大片段高效删除方法,其特征在于:所述含人工CRISPR表达单元的质粒为在Z.mobilis-E.coli穿梭载体pEZ15Asp上构建人工CRISPR表达单元。3. The method for efficiently deleting large genome fragments based on Zymomonas mobilis endogenous CRISPR-Cas system according to claim 1, characterized in that: the plasmid containing the artificial CRISPR expression unit is in Z.mobilis-E. The artificial CRISPR expression unit was constructed on the coli shuttle vector pEZ15Asp. 4.根据权利要求3所述的基于运动发酵单胞菌內源CRISPR-Cas系统的基因组大片段高效删除方法,其特征在于:所述人工CRISPR表达单元包括启动子leader序列,CRISPR簇及终止子。4. The method for efficiently deleting large genome fragments based on the endogenous CRISPR-Cas system of Zymomonas mobilis according to claim 3, characterized in that: the artificial CRISPR expression unit comprises a promoter leader sequence, a CRISPR cluster and a terminator . 5.根据权利要求4所述的基于运动发酵单胞菌內源CRISPR-Cas系统的基因组大片段高效删除方法,其特征在于:所述人工CRISPR簇包括两个repeat,且两个repeat中间插入了两个BsaⅠ的酶切位点。5. The method for efficiently deleting large genome fragments based on the endogenous CRISPR-Cas system of Zymomonas mobilis according to claim 4, characterized in that: the artificial CRISPR cluster includes two repeats, and two repeats are inserted in the middle Two restriction sites for BsaI. 6.根据权利要求1所述的基于运动发酵单胞菌內源CRISPR-Cas系统的基因组大片段高效删除方法,其特征在于:步骤5中所述感受态细胞为运动发酵单胞菌ZM4感受态细胞。6. The method for efficiently deleting large genome fragments based on the endogenous CRISPR-Cas system of Zymomonas mobilis according to claim 1, characterized in that: the competent cell described in step 5 is Zymomonas mobilis ZM4 competent cell. 7.如权利要求1-6任一所述的基于运动发酵单胞菌內源CRISPR-Cas系统的基因组大片段高效删除方法在基因大片段删除中的应用。7. The application of the method for efficiently deleting large genome fragments based on the endogenous CRISPR-Cas system of Zymomonas mobilis as described in any one of claims 1-6 in deleting large gene fragments.
CN201910692120.5A 2019-07-30 2019-07-30 Efficient deletion of large genomic fragments based on the endogenous CRISPR-Cas system of Zymomonas mobilis and its application Active CN110408642B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201910692120.5A CN110408642B (en) 2019-07-30 2019-07-30 Efficient deletion of large genomic fragments based on the endogenous CRISPR-Cas system of Zymomonas mobilis and its application
US17/295,045 US20220348939A1 (en) 2019-07-30 2019-10-22 CRISPR-Cas system for genome editing in Zymomonas mobilis, and applications thereof
PCT/CN2019/112556 WO2021017200A1 (en) 2019-07-30 2019-10-22 Zymomonas mobilis-based crispr-cas system, genome editing system and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910692120.5A CN110408642B (en) 2019-07-30 2019-07-30 Efficient deletion of large genomic fragments based on the endogenous CRISPR-Cas system of Zymomonas mobilis and its application

Publications (2)

Publication Number Publication Date
CN110408642A true CN110408642A (en) 2019-11-05
CN110408642B CN110408642B (en) 2021-11-05

Family

ID=68363934

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910692120.5A Active CN110408642B (en) 2019-07-30 2019-07-30 Efficient deletion of large genomic fragments based on the endogenous CRISPR-Cas system of Zymomonas mobilis and its application

Country Status (1)

Country Link
CN (1) CN110408642B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111454981A (en) * 2020-03-27 2020-07-28 华中农业大学 A DNA double-strand break repair tool and its application
CN113528408A (en) * 2021-06-08 2021-10-22 湖北大学 A method and application for efficient deletion of large genomic fragments based on CRISPR-nCas3 system
CN115806922A (en) * 2022-09-19 2023-03-17 湖北大学 Genetic engineering strain of Zymomonas mobilis and its application
CN115896149A (en) * 2022-08-25 2023-04-04 湖北大学 Zymomonas mobilis gene editing plasmid, kit, method and application
CN116515724A (en) * 2023-04-24 2023-08-01 湖北大学 Zymomonas mobilis utilizing inorganic nitrogen source, application and nitrogen metabolism regulation gene

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104109687A (en) * 2014-07-14 2014-10-22 四川大学 Construction and application of Zymomonas mobilis CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-association proteins)9 system
CN104131023A (en) * 2014-07-08 2014-11-05 四川大学 Plasmids capable of applying RED recombinant system in zymomonas mobilis, construction method and applications thereof
CN106929533A (en) * 2017-03-10 2017-07-07 上海交通大学医学院附属新华医院 The construction method of KARS point mutation mouse models and its application
CN107435051A (en) * 2017-07-28 2017-12-05 新乡医学院 A kind of cell line gene knockout method that large fragment deletion is quickly obtained by CRISPR/Cas9 systems
CN108473986A (en) * 2016-01-08 2018-08-31 诺维信公司 The genome editor of Bacillus host cell
WO2019002218A2 (en) * 2017-06-25 2019-01-03 Snipr Technologies Limited Altering microbial populations & modifying microbiota
CN110331158A (en) * 2019-07-30 2019-10-15 湖北大学 Edit methods and its application simultaneously of polygenic locus based on the endogenous CRISPR-Cas system of zymomonas mobilis
CN110358768A (en) * 2019-07-30 2019-10-22 湖北大学 A kind of genome edit methods and its application based on the endogenous CRISPR-Cas system of zymomonas mobilis
CN111454981A (en) * 2020-03-27 2020-07-28 华中农业大学 A DNA double-strand break repair tool and its application
US10760065B2 (en) * 2013-09-05 2020-09-01 Massachusetts Institute Of Technology Tuning microbial populations with programmable nucleases
EP3750989A1 (en) * 2019-02-20 2020-12-16 Synbionik GmbH Production of plant-based active substances (e.g. cannabinoids) by recombinant microorganisms

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10760065B2 (en) * 2013-09-05 2020-09-01 Massachusetts Institute Of Technology Tuning microbial populations with programmable nucleases
CN104131023A (en) * 2014-07-08 2014-11-05 四川大学 Plasmids capable of applying RED recombinant system in zymomonas mobilis, construction method and applications thereof
CN104109687A (en) * 2014-07-14 2014-10-22 四川大学 Construction and application of Zymomonas mobilis CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-association proteins)9 system
CN108473986A (en) * 2016-01-08 2018-08-31 诺维信公司 The genome editor of Bacillus host cell
CN106929533A (en) * 2017-03-10 2017-07-07 上海交通大学医学院附属新华医院 The construction method of KARS point mutation mouse models and its application
WO2019002218A2 (en) * 2017-06-25 2019-01-03 Snipr Technologies Limited Altering microbial populations & modifying microbiota
CN107435051A (en) * 2017-07-28 2017-12-05 新乡医学院 A kind of cell line gene knockout method that large fragment deletion is quickly obtained by CRISPR/Cas9 systems
EP3750989A1 (en) * 2019-02-20 2020-12-16 Synbionik GmbH Production of plant-based active substances (e.g. cannabinoids) by recombinant microorganisms
CN110331158A (en) * 2019-07-30 2019-10-15 湖北大学 Edit methods and its application simultaneously of polygenic locus based on the endogenous CRISPR-Cas system of zymomonas mobilis
CN110358768A (en) * 2019-07-30 2019-10-22 湖北大学 A kind of genome edit methods and its application based on the endogenous CRISPR-Cas system of zymomonas mobilis
CN111454981A (en) * 2020-03-27 2020-07-28 华中农业大学 A DNA double-strand break repair tool and its application

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
GE DONG等: ""Functional Characterization of CRISPR-Cas System in the Ethanologenic Bacterium Zymomonas mobilis ZM4"", 《ADVANCES IN MICROBIOLOGY》 *
QING-HUA CAO等: ""Using the CRISPR/Cas9 system to eliminate native plasmids of Zymomonas mobilis ZM4"", 《BIOSCIENCE, BIOTECHNOLOGY, AND BIOCHEMISTRY》 *
YANLI ZHENG等: ""Characterization and repurposing of the endogenous Type I-F CRISPR–Cas system of Zymomonas mobilis for genome engineering"", 《NUCLEIC ACIDS RESEARCH》 *
李佳等: ""CRISPR/Cas9技术在斑马鱼基因修饰中的应用"", 《生命科学》 *
杨永富等: ""运动发酵单胞菌底盘细胞研究现状及展望"", 《合成生物学》 *
董阁等: ""运动发酵单胞菌CRISPR/Cas系统的功能分析"", 《2015中国遗传学会大会论文摘要汇编》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111454981A (en) * 2020-03-27 2020-07-28 华中农业大学 A DNA double-strand break repair tool and its application
CN113528408A (en) * 2021-06-08 2021-10-22 湖北大学 A method and application for efficient deletion of large genomic fragments based on CRISPR-nCas3 system
CN113528408B (en) * 2021-06-08 2022-03-01 湖北大学 A method and application for efficient deletion of large genomic fragments based on CRISPR-nCas3 system
CN115896149A (en) * 2022-08-25 2023-04-04 湖北大学 Zymomonas mobilis gene editing plasmid, kit, method and application
CN115806922A (en) * 2022-09-19 2023-03-17 湖北大学 Genetic engineering strain of Zymomonas mobilis and its application
CN115806922B (en) * 2022-09-19 2023-08-11 湖北大学 Genetic engineering strain of Zymomonas mobilis and its application
CN116515724A (en) * 2023-04-24 2023-08-01 湖北大学 Zymomonas mobilis utilizing inorganic nitrogen source, application and nitrogen metabolism regulation gene
CN116515724B (en) * 2023-04-24 2024-03-08 湖北大学 Zymomonas mobilis utilizing inorganic nitrogen sources, applications and nitrogen metabolism regulatory genes
US12146132B2 (en) 2023-04-24 2024-11-19 Hubei University Genetically modified Zymomonas mobilis to utilize inorganic n source, methods and uses thereof

Also Published As

Publication number Publication date
CN110408642B (en) 2021-11-05

Similar Documents

Publication Publication Date Title
CN110408642A (en) A method for efficient deletion of large genome fragments based on the endogenous CRISPR-Cas system of Zymomonas mobilis and its application
CN110358768B (en) Genome editing method based on endogenous CRISPR-Cas system of Zymomonas mobilis and application thereof
CN110331158A (en) Edit methods and its application simultaneously of polygenic locus based on the endogenous CRISPR-Cas system of zymomonas mobilis
Li et al. CRISPR‐based genome editing and expression control systems in Clostridium acetobutylicum and Clostridium beijerinckii
Bourgade et al. Genetic and metabolic engineering challenges of C1-gas fermenting acetogenic chassis organisms
CN110358767B (en) Zymomonas mobilis genome editing method based on CRISPR-Cas12a system and application thereof
JP2000509988A (en) Stable recombinant yeast for fermenting xylose to ethanol
BRPI0309796B1 (en) process for the use of genetically modified zymomonas mobilis, and modified zymomonas
JP2016073285A (en) Zymomonas with improved arabinose utilization
CN105802943B (en) A pullulanase chimera with improved performance and a Pichia pastoris mutant strain with high yield of the chimera
US7374939B1 (en) Method of inactivation of an end product of energy metabolism in Zymomonas mobilis
CN112094841B (en) Construction method of Escherichia coli engineering strain utilizing glucose and xylose simultaneously
EP3194568B1 (en) Clostridium acetobutylicum strains unable to produce hydrogen and useful for the continuous production of chemicals and fuels
CN104789586B (en) Genome of E.coli integration vector, genetic engineering bacterium and the application in xylitol is produced
KR101690780B1 (en) Method for Regulating Gene Expression Using Synthetic Regulatory Small RNA in Clostridia
US20220348939A1 (en) CRISPR-Cas system for genome editing in Zymomonas mobilis, and applications thereof
CN111944810B (en) Targeted TNFα gene knockout sgRNA and TNFα gene knockout porcine embryonic fibroblast cell line and its application
CN109628448B (en) Industrial saccharomyces cerevisiae stress resistance modification based on saccharomyces cerevisiae CRISPR library
WO2020134427A1 (en) Use of sll0528 gene in improving ethanol tolerance of synechocystis sp. pcc 6803
CN103194419B (en) Microorganism and uses thereof
Sugiyama et al. Advances in molecular methods to alter chromosomes and genome in the yeast Saccharomyces cerevisiae
CN113265383B (en) Hansenula polymorpha gene editing system, its application and gene editing method
CN108865912A (en) A kind of methanol height tolerance pichia pastoris engineered strain and its construction method
WO2023018718A1 (en) Microbial approach for the production of long chain compounds
CN111454981A (en) A DNA double-strand break repair tool and its application

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230412

Address after: Room A316, Building B4-B8, Building B8, Wuhan National Bioindustry (Jiufeng Innovation) Base, No. 666 Gaoxin Avenue, Donghu New Technology Development Zone, Wuhan City, Hubei Province, 430000

Patentee after: Wuhan Ruijiakang Biotechnology Co.,Ltd.

Address before: 430062 368 Friendship Avenue, Wuchang District, Wuhan, Hubei.

Patentee before: Hubei University