CN110400066A - A Statistical Analysis Device for Machining Errors - Google Patents
A Statistical Analysis Device for Machining Errors Download PDFInfo
- Publication number
- CN110400066A CN110400066A CN201910641460.5A CN201910641460A CN110400066A CN 110400066 A CN110400066 A CN 110400066A CN 201910641460 A CN201910641460 A CN 201910641460A CN 110400066 A CN110400066 A CN 110400066A
- Authority
- CN
- China
- Prior art keywords
- sample
- group
- size
- error
- processing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000007619 statistical method Methods 0.000 title claims abstract description 15
- 238000003754 machining Methods 0.000 title claims description 7
- 238000009826 distribution Methods 0.000 claims abstract description 42
- 238000012545 processing Methods 0.000 claims abstract description 33
- 238000000034 method Methods 0.000 claims abstract description 32
- 238000006073 displacement reaction Methods 0.000 claims abstract description 14
- 238000005259 measurement Methods 0.000 claims abstract description 10
- 238000004364 calculation method Methods 0.000 claims abstract description 6
- 238000013480 data collection Methods 0.000 claims abstract description 3
- 238000004458 analytical method Methods 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 238000010586 diagram Methods 0.000 abstract description 7
- 238000012360 testing method Methods 0.000 abstract description 3
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- 239000002699 waste material Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000007689 inspection Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0639—Performance analysis of employees; Performance analysis of enterprise or organisation operations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0639—Performance analysis of employees; Performance analysis of enterprise or organisation operations
- G06Q10/06395—Quality analysis or management
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/04—Manufacturing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/30—Computing systems specially adapted for manufacturing
Landscapes
- Business, Economics & Management (AREA)
- Human Resources & Organizations (AREA)
- Engineering & Computer Science (AREA)
- Strategic Management (AREA)
- Economics (AREA)
- Development Economics (AREA)
- Educational Administration (AREA)
- Entrepreneurship & Innovation (AREA)
- Tourism & Hospitality (AREA)
- General Business, Economics & Management (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Marketing (AREA)
- Physics & Mathematics (AREA)
- Game Theory and Decision Science (AREA)
- Quality & Reliability (AREA)
- Operations Research (AREA)
- Manufacturing & Machinery (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Primary Health Care (AREA)
- Complex Calculations (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
- Testing Or Calibration Of Command Recording Devices (AREA)
Abstract
本发明公开了一种机械加工误差统计分析装置,选取样本容量,采用位移传感器和高精度数显卡尺测出所有样本的原始尺寸,经过模拟量输入模块,通过软件开发出数据处理系统,可实现:数据采集、处理、绘制分布图;判定加工误差性质;确定工序能力及其等级;估算出合格和不合格品率;绘制点图;点图中上下两条控制界限线和两极限尺寸线可作为控制不合格品的参考界限。最后,通过打印机将相关项目打印出来。本发明的有益效果是数据测量准确,计算结果精度高,曲线绘制速度快,可以大大提高加工误差统计分析效率,实现了加工误差统计分析的智能化测试。
The invention discloses a mechanical processing error statistical analysis device, which selects the sample capacity, uses a displacement sensor and a high-precision digital caliper to measure the original size of all samples, and develops a data processing system through an analog quantity input module through software, which can realize : Data collection, processing, and drawing distribution diagrams; judging the nature of processing errors; determining the process capability and its grade; estimating the rate of qualified and unqualified products; As a reference limit for controlling non-conforming products. Finally, print out the relevant items through the printer. The invention has the beneficial effects of accurate data measurement, high calculation result precision and fast curve drawing speed, which can greatly improve the statistical analysis efficiency of processing errors and realize the intelligent test of statistical analysis of processing errors.
Description
技术领域technical field
本发明属于机械加工智能测试技术领域,涉及一种机械加工误差统计分析装置。The invention belongs to the technical field of mechanical processing intelligent testing, and relates to a statistical analysis device for mechanical processing errors.
背景技术Background technique
加工误差的统计分析法是根据加工一批工件检验的数据,运用数理统计原理进行分析处理,从中找出误差的种类、大小及规律,并由此找到产生废品的主要原因,提出解决方法,同时还可以进一步监视加工过程中精度的变化,以便及时采取措施,预防废品的产生。机械加工误差常用的统计分析法主要有分布图和点图法两种。传统的统计数据方法是:选取样本容量,利用千分表分别测出样本零件的原始尺寸,根据样本零件原始尺寸,按要求绘出分布图,确定出加工方法的精度、判断加工误差的性质、判断工序能力及其等级、估算工序加工的合格率及废品率;绘出点图,确定系统误差、随机值误差、指明改进加工过程的方向及时防治废品的发生。该方法存在的问题:零件尺寸数据多,测量工作量大,计算公式多而复杂,人工处理数据容易出错、绘制曲线难度大,人为误差较大。The statistical analysis method of processing errors is based on the data of a batch of workpiece inspections, and uses the principle of mathematical statistics to analyze and process, find out the type, size and law of errors, and thus find the main reason for the generation of waste products, and propose solutions. It is also possible to further monitor the changes in precision during processing, so that measures can be taken in time to prevent the generation of waste products. The commonly used statistical analysis methods for machining errors mainly include distribution diagram and dot diagram method. The traditional statistical data method is: select the sample size, use the dial indicator to measure the original size of the sample parts, draw the distribution map according to the requirements according to the original size of the sample parts, determine the accuracy of the processing method, judge the nature of the processing error, Judging the process capability and its level, estimating the pass rate and reject rate of the process; drawing a point diagram, determining the systematic error and random value error, indicating the direction of improving the processing process and preventing the occurrence of waste in a timely manner. The problems of this method are: there are many parts size data, the measurement workload is heavy, the calculation formulas are many and complex, the manual processing of data is easy to make mistakes, the curve is difficult to draw, and the human error is large.
发明内容Contents of the invention
本发明的目的在于提供一种机械加工误差统计分析装置,本发明的有益效果是数据测量准确,计算结果精度高,曲线绘制速度快,可以大大提高加工误差统计分析效率,实现了加工误差统计分析的智能化测试。The purpose of the present invention is to provide a statistical analysis device for mechanical processing errors. The beneficial effects of the present invention are accurate data measurement, high precision of calculation results, and fast curve drawing speed, which can greatly improve the efficiency of statistical analysis of processing errors and realize statistical analysis of processing errors. intelligence test.
本发明所采用的技术方案是选取样本容量,采用位移传感器和高精度数显卡尺测出所有样本的原始尺寸,经过模拟量输入模块,通过LabVIEW软件开发出数据处理系统,可实现:数据采集、处理、绘制分布图;判定加工误差性质;确定工序能力及其等级;估算出合格和不合格品率;绘制点图;点图中上下两条控制界限线和两极限尺寸线可作为控制不合格品的参考界限。最后,通过打印机将相关项目打印出来。The technical solution adopted in the present invention is to select the sample capacity, adopt displacement sensor and high-precision digital calipers to measure the original size of all samples, and develop a data processing system through the analog quantity input module through LabVIEW software, which can realize: data acquisition, Process and draw the distribution map; determine the nature of the processing error; determine the process capability and its level; estimate the rate of qualified and unqualified products; draw a dot diagram; the upper and lower control limit lines and two limit dimension lines in the dot diagram can be used as control unqualified product reference limits. Finally, print out the relevant items through the printer.
进一步:further:
1.样本尺寸测量1. Sample size measurement
选取样本容量n(通常取n=50-200件);用高精度数显卡尺测出样本零件第一个位置的尺寸,借助于测量平台和V型块,将固定在测量平台横梁上的位移传感器调零;测量平台横梁、纵梁可根据测量需求在水平、垂直方向调整,V 型块位于测量平台上,缓慢转动样本零件一周,通过位移传感器测出每个样本的 (相对于第一个位置的尺寸误差),第一个位置的原始尺寸,即为高精度数显卡尺的读数加上位移传感器显示数据值和。Select the sample capacity n (usually n=50-200 pieces); use high-precision digital calipers to measure the size of the first position of the sample part, and use the measuring platform and V-shaped block to measure the displacement fixed on the beam of the measuring platform The sensor is zeroed; the beam and longitudinal beam of the measuring platform can be adjusted in the horizontal and vertical directions according to the measurement requirements. The size error of the position), the original size of the first position, that is, the reading of the high-precision digital caliper plus the sum of the displayed data value of the displacement sensor.
2.模拟量输入模块2. Analog input module
位移传感器测定的模拟信号经模拟量输入模块,将电信号转换成数字信号,传送到计算机。The analog signal measured by the displacement sensor is converted into a digital signal by the analog input module and sent to the computer.
3.数据计算与曲线绘制3. Data calculation and curve drawing
(1)绘制直方图(1) Draw a histogram
利用LabVIEW数据处理模块软件,分别计算:极差R=xmax-xmin、组数K(根据样本容量选择K=6~12)、组距(每组尺寸间隔)组界(每组尺寸范围,上界:sj=xmin+(j-1)d+d/2;下界:xj=xmin+(j-1)d–d/2(j= 1,2,3,···,k)、组中值xj(每组平均值)、频数(同一尺寸或同一误差组的零件数量)mi、频率(频数与样本容量的比值)样本尺寸公差T、样本的平均值均方根差 Use the LabVIEW data processing module software to calculate: range R=x max -x min , group number K (select K=6~12 according to sample size), group distance (dimension interval of each group) Group boundary (size range of each group, upper bound: s j =x min +(j-1)d+d/2; lower bound: x j =x min +(j-1)d–d/2(j=1 ,2,3,···,k), group median x j (mean value of each group), frequency (number of parts of the same size or the same error group) m i , frequency (ratio of frequency to sample size) Sample size tolerance T, the average value of the sample root mean square error
以工件尺寸误差为横坐标,为频数(或频率)为纵坐标,画出直方图。Take the workpiece size error as the abscissa and the frequency (or frequency) as the ordinate to draw a histogram.
(2)绘制正态分布曲线(2) Draw a normal distribution curve
正态分布的概率密度函数为:The probability density function of the normal distribution is:
y—分布曲线的纵坐标,表示工件的分布密度(频率密度);x—分布曲线的横坐标,表示工件的尺寸或误差。y—the ordinate of the distribution curve, indicating the distribution density (frequency density) of the workpiece; x—the abscissa of the distribution curve, indicating the size or error of the workpiece.
由概率密度函数求概率,随机变量落在区间[x1,x2]内的概率为:Calculate the probability from the probability density function, the probability that the random variable falls within the interval [x 1 ,x 2 ] is:
若工艺过程稳定,则误差分布曲线接近正态分布曲线,标准正态分布σ=1,实际生产中为非标准正态分布,通过令可转换为标准正态分布;若工艺过程不稳定,则应根据实际情况确定其分布曲线。If the process is stable, the error distribution curve is close to the normal distribution curve, and the standard normal distribution σ=1, it is a non-standard normal distribution in actual production, by making It can be converted to standard normal distribution; if the process is unstable, the distribution curve should be determined according to the actual situation.
(3)绘制点图(3) draw dot plot
1)确定样组容量:对样本进行分组,样组容量m通常取4或5件。按样组容量和加工时间顺序,将样本划分成若干个样组。1) Determine the sample group capacity: group the samples, and the sample group capacity m is usually 4 or 5 pieces. Divide the sample into several sample groups according to the order of sample group capacity and processing time.
2)计算各样组的平均值和极差R2) Calculate the average value of each sample group and range R
3)绘制图:以样组序号为横坐标,分别以各样组的平均值和极差R为纵坐标,画出和R点图,在图上标出点图的中心线R图的中心线上控制线和下控制线 3) draw Figure: Take the serial number of the sample group as the abscissa, and take the average value of each sample group and the range R as the ordinate, draw and R point plot, mark the center line of the point plot on the graph Centerline of R chart upper control line and lower control line
4.加工误差统计分析4. Statistical analysis of processing errors
1)分析分布图,确定样本系统常值误差(Am-要求尺寸的平均值);加工精度6σ;工序能力系数工序能力等级,合格率,废品率。1) Analyze the distribution chart to determine the constant value error of the sample system (A m - the average value of the required size); machining accuracy 6σ; process capability coefficient Process capability level, pass rate, scrap rate.
2)分析点图,判别工艺过程稳定性。2) Analysis Dot plot to judge process stability.
附图说明Description of drawings
图1是本发明示方法示意图。Fig. 1 is a schematic diagram of the method of the present invention.
具体实施方式Detailed ways
下面结合具体实施方式对本发明进行详细说明。The present invention will be described in detail below in combination with specific embodiments.
本发明机械加工误差统计分析方法如图1所示,包括以下步骤:The machining error statistical analysis method of the present invention is as shown in Figure 1, comprises the following steps:
1.样本尺寸测量1. Sample size measurement
选取样本容量n(通常取n=50-200件);用高精度数显卡尺测出样本零件第一个位置的尺寸,借助于测量平台和V型块,将固定在测量平台横梁上的位移传感器调零;测量平台横梁、纵梁可根据测量需求在水平、垂直方向调整,V 型块位于测量平台上,缓慢转动样本零件一周,通过位移传感器测出每个样本的 (相对于第一个位置的尺寸误差),第一个位置的原始尺寸,即为高精度数显卡尺的读数加上位移传感器显示数据值和。Select the sample capacity n (usually n=50-200 pieces); use high-precision digital calipers to measure the size of the first position of the sample part, and use the measuring platform and V-shaped block to measure the displacement fixed on the beam of the measuring platform The sensor is zeroed; the beam and longitudinal beam of the measuring platform can be adjusted in the horizontal and vertical directions according to the measurement requirements. The size error of the position), the original size of the first position, that is, the reading of the high-precision digital caliper plus the sum of the displayed data value of the displacement sensor.
2.模拟量输入模块2. Analog input module
位移传感器测定的模拟信号经模拟量输入模块,将电信号转换成数字信号,传送到计算机。The analog signal measured by the displacement sensor is converted into a digital signal by the analog input module and sent to the computer.
3.数据计算与曲线绘制3. Data calculation and curve drawing
(1)绘制直方图(1) Draw a histogram
利用LabVIEW数据处理模块软件,分别计算:极差R=xmax-xmin、组数K(根据样本容量选择K=6~12)、组距(每组尺寸间隔)组界(每组尺寸范围,上界:sj=xmin+(j-1)d+d/2;下界:xj=xmin+(j-1)d–d/2(j= 1,2,3,···,k)、组中值xj(每组平均值)、频数(同一尺寸或同一误差组的零件数量)mi、频率(频数与样本容量的比值)样本尺寸公差T、样本的平均值均方根差 Use the LabVIEW data processing module software to calculate: range R=x max -x min , group number K (select K=6~12 according to sample size), group distance (dimension interval of each group) Group boundary (size range of each group, upper bound: s j =x min +(j-1)d+d/2; lower bound: x j =x min +(j-1)d–d/2(j=1 ,2,3,···,k), group median x j (mean value of each group), frequency (number of parts of the same size or the same error group) m i , frequency (ratio of frequency to sample size) Sample size tolerance T, the average value of the sample root mean square error
以工件尺寸误差为横坐标,为频数(或频率)为纵坐标,画出直方图。Take the workpiece size error as the abscissa and the frequency (or frequency) as the ordinate to draw a histogram.
(3)绘制正态分布曲线(3) Draw a normal distribution curve
正态分布的概率密度函数为:The probability density function of the normal distribution is:
y—分布曲线的纵坐标,表示工件的分布密度(频率密度);x—分布曲线的横坐标,表示工件的尺寸或误差。y—the ordinate of the distribution curve, indicating the distribution density (frequency density) of the workpiece; x—the abscissa of the distribution curve, indicating the size or error of the workpiece.
由概率密度函数求概率,随机变量落在区间[x1,x2]内的概率为:Calculate the probability from the probability density function, the probability that the random variable falls within the interval [x 1 ,x 2 ] is:
若工艺过程稳定,则误差分布曲线接近正态分布曲线,标准正态分布σ=1,实际生产中为非标准正态分布,通过令可转换为标准正态分布;若工艺过程不稳定,则应根据实际情况确定其分布曲线。If the process is stable, the error distribution curve is close to the normal distribution curve, and the standard normal distribution σ=1, it is a non-standard normal distribution in actual production, by making It can be converted to standard normal distribution; if the process is unstable, the distribution curve should be determined according to the actual situation.
(3)绘制点图(3) Draw dot plot
1)确定样组容量:对样本进行分组,样组容量m通常取4或5件。按样组容量和加工时间顺序,将样本划分成若干个样组。1) Determine the sample group capacity: group the samples, and the sample group capacity m is usually 4 or 5 pieces. Divide the sample into several sample groups according to the order of sample group capacity and processing time.
2)计算各样组的平均值和极差R2) Calculate the average value of each sample group and range R
3)绘制图:以样组序号为横坐标,分别以各样组的平均值和极差R为纵坐标,画出和R点图,在图上标出点图的中心线R图的中心线上控制线和下控制线 3) draw Figure: Take the serial number of the sample group as the abscissa, and take the average value of each sample group and the range R as the ordinate, draw and R point plot, mark the center line of the point plot on the graph Centerline of R chart upper control line and lower control line
4.加工误差统计分析4. Statistical analysis of processing errors
1)分析分布图,确定样本系统常值误差(Am-要求尺寸的平均值);加工精度6σ;工序能力系数工序能力等级,合格率,废品率。1) Analyze the distribution chart to determine the constant value error of the sample system (A m - the average value of the required size); machining accuracy 6σ; process capability coefficient Process capability level, pass rate, scrap rate.
2)分析点图,判别工艺过程稳定性。2) Analysis Dot plot to judge process stability.
本发明通过位移传感器测量出样本的原始数据;经过放大器将数字信号放大,借助于LabVIEW虚拟仪器软件,设计一套数据处理系统,完成数据采集、处理、保存、显示分布曲线、计算出合格率、废品率、工序能力参数等,并采取有效措施,降低废品率。The present invention measures the original data of the sample through the displacement sensor; the digital signal is amplified through the amplifier, and a set of data processing system is designed by means of LabVIEW virtual instrument software to complete data collection, processing, storage, display distribution curve, and calculate pass rate, Scrap rate, process capacity parameters, etc., and take effective measures to reduce the scrap rate.
以上所述仅是对本发明的较佳实施方式而已,并非对本发明作任何形式上的限制,凡是依据本发明的技术实质对以上实施方式所做的任何简单修改,等同变化与修饰,均属于本发明技术方案的范围内。The above description is only a preferred embodiment of the present invention, and does not limit the present invention in any form. Any simple modifications made to the above embodiments according to the technical essence of the present invention, equivalent changes and modifications, all belong to this invention. within the scope of the technical solution of the invention.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910641460.5A CN110400066A (en) | 2019-07-16 | 2019-07-16 | A Statistical Analysis Device for Machining Errors |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910641460.5A CN110400066A (en) | 2019-07-16 | 2019-07-16 | A Statistical Analysis Device for Machining Errors |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110400066A true CN110400066A (en) | 2019-11-01 |
Family
ID=68325575
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910641460.5A Pending CN110400066A (en) | 2019-07-16 | 2019-07-16 | A Statistical Analysis Device for Machining Errors |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110400066A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111871841A (en) * | 2020-08-12 | 2020-11-03 | 安徽信息工程学院 | A machine vision parts sorting system, method and device for rotary sorting |
CN114169694A (en) * | 2021-11-16 | 2022-03-11 | 北京科技大学设计研究院有限公司 | Process capability analysis method and device based on big data platform |
CN115494792A (en) * | 2022-09-14 | 2022-12-20 | 磐吉奥科技股份有限公司 | Part processing parameter compensation method and device, electronic equipment and readable storage medium |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103218837A (en) * | 2013-04-22 | 2013-07-24 | 北京航空航天大学 | Unequal class interval histogram rendering method based on empirical distribution function |
CN105787172A (en) * | 2016-02-26 | 2016-07-20 | 南昌航空大学 | Graphing method for rapidly judging rejection rate |
CN107038269A (en) * | 2016-10-31 | 2017-08-11 | 上海理工大学 | Numerical control machine tool method for optimizing based on X-shaped aviation thin-walled standard specimen |
CN109489548A (en) * | 2018-11-15 | 2019-03-19 | 河海大学 | A kind of part processing precision automatic testing method using three-dimensional point cloud |
-
2019
- 2019-07-16 CN CN201910641460.5A patent/CN110400066A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103218837A (en) * | 2013-04-22 | 2013-07-24 | 北京航空航天大学 | Unequal class interval histogram rendering method based on empirical distribution function |
CN105787172A (en) * | 2016-02-26 | 2016-07-20 | 南昌航空大学 | Graphing method for rapidly judging rejection rate |
CN107038269A (en) * | 2016-10-31 | 2017-08-11 | 上海理工大学 | Numerical control machine tool method for optimizing based on X-shaped aviation thin-walled standard specimen |
CN109489548A (en) * | 2018-11-15 | 2019-03-19 | 河海大学 | A kind of part processing precision automatic testing method using three-dimensional point cloud |
Non-Patent Citations (3)
Title |
---|
吕明: "《机械制造技术基础》", 武汉理工大学出版社, pages: 248 - 250 * |
李玉平: "机械加工误差的综合分析及控制研究", vol. 24, no. 3, pages 27 - 30 * |
雷红胜: "基于机器视觉的零件尺寸测量及加工精度分析", no. 3, pages 55 - 69 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111871841A (en) * | 2020-08-12 | 2020-11-03 | 安徽信息工程学院 | A machine vision parts sorting system, method and device for rotary sorting |
CN114169694A (en) * | 2021-11-16 | 2022-03-11 | 北京科技大学设计研究院有限公司 | Process capability analysis method and device based on big data platform |
CN115494792A (en) * | 2022-09-14 | 2022-12-20 | 磐吉奥科技股份有限公司 | Part processing parameter compensation method and device, electronic equipment and readable storage medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101871767B (en) | System and method for detecting form and position tolerance of components | |
CN110400066A (en) | A Statistical Analysis Device for Machining Errors | |
CN109990712B (en) | Online calibration method for width gauge | |
CN118470085B (en) | Metal fitting machining detection system based on three-dimensional modeling | |
CN110285781B (en) | Rapid assessment method for plane parallelism relative to reference plane | |
CN111089544B (en) | Tunnel monitoring measurement data analysis method based on maximum entropy method reliability theory | |
CN102393187A (en) | Three-dimensional homogeneous entity nondestructive measuring device and method | |
CN113532275B (en) | A non-contact R-test spherical center coordinate calibration method using laser displacement sensor | |
CN108645490A (en) | Cold-water meter vision detection system based on image processing techniques and detection method | |
CN105653808A (en) | Specified plasticity extension strength uncertainty evaluation method based on Monte Carlo | |
CN115290012A (en) | Road surface flatness standard field magnitude tracing method based on laser point cloud data | |
CN113158558B (en) | A high-speed railway subgrade continuous compaction analysis method, device and analyzer | |
CN102269581B (en) | Machining precision evaluation method of architectural component | |
CN2685818Y (en) | Shell member centre hole depth measuring instrument | |
CN112540052B (en) | Measuring and calculating method and system for measuring and calculating pollutant discharge amount of storage tank to be measured | |
CN115930847B (en) | Quantitative determination method for roughness evaluation index of three-dimensional structural surface | |
CN113312812B (en) | Method for generating initial geometric defects of cold-formed steel member | |
TWI429878B (en) | Curved surface testing system and method | |
CN205300473U (en) | Mar measuring apparatu | |
CN116202451A (en) | Storage hopper aggregate volume detection system and detection method based on single-point range radar | |
CN116007931A (en) | Evaluation method of gear surface quality based on multi-source information fusion | |
CN114609005A (en) | On-line measurement device and method of soil mechanical composition based on pressure detection | |
CN112378313A (en) | Special calibration scale and method for multi-target digital image detection | |
CN114486820A (en) | An inversion method for supercooled water in the cloud of an airborne microwave radiometer | |
CN113989513A (en) | A method for identifying the reading of a square pointer meter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20191101 |
|
RJ01 | Rejection of invention patent application after publication |