CN110380217A - High-gain end-on-fire antenna based on artificial surface plasmon - Google Patents
High-gain end-on-fire antenna based on artificial surface plasmon Download PDFInfo
- Publication number
- CN110380217A CN110380217A CN201910680912.0A CN201910680912A CN110380217A CN 110380217 A CN110380217 A CN 110380217A CN 201910680912 A CN201910680912 A CN 201910680912A CN 110380217 A CN110380217 A CN 110380217A
- Authority
- CN
- China
- Prior art keywords
- gain
- transmission line
- surface plasmon
- antenna
- artificial surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005540 biological transmission Effects 0.000 claims abstract description 34
- 239000002184 metal Substances 0.000 claims abstract description 33
- 239000000758 substrate Substances 0.000 claims abstract description 20
- 230000005855 radiation Effects 0.000 claims abstract description 17
- 230000007704 transition Effects 0.000 claims abstract description 13
- 239000010410 layer Substances 0.000 claims description 34
- 239000002356 single layer Substances 0.000 claims description 3
- 238000013461 design Methods 0.000 abstract description 3
- 230000008878 coupling Effects 0.000 abstract description 2
- 238000010168 coupling process Methods 0.000 abstract description 2
- 238000005859 coupling reaction Methods 0.000 abstract description 2
- 238000005516 engineering process Methods 0.000 description 4
- 238000004088 simulation Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
- H01Q1/38—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/48—Earthing means; Earth screens; Counterpoises
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/50—Structural association of antennas with earthing switches, lead-in devices or lightning protectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q19/00—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
- H01Q19/10—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
- H01Q19/104—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces using a substantially flat reflector for deflecting the radiated beam, e.g. periscopic antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q19/00—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
- H01Q19/28—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using a secondary device in the form of two or more substantially straight conductive elements
- H01Q19/30—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using a secondary device in the form of two or more substantially straight conductive elements the primary active element being centre-fed and substantially straight, e.g. Yagi antenna
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/16—Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
- H01Q9/20—Two collinear substantially straight active elements; Substantially straight single active elements
Landscapes
- Details Of Aerials (AREA)
- Waveguide Aerials (AREA)
- Aerials With Secondary Devices (AREA)
Abstract
本发明揭示了一种基于人工表面等离子激元(Spoof Surface Plasmon Polaritons,SSPPs)的高增益端射天线,包含了介质基片、上层金属贴片和下层金属贴片;所述的上层金属贴片位于介质基片的上表面,包括微带传输线、渐变形过渡槽、SSPPs传输线、偶极子的一部分以及引向器;所述的下层金属贴片位于介质基片的下表面,包括接地面、渐变形过渡槽、SSPPs传输线以及偶极子的一部分。该结构采用人工表面等离子体激元波导传输能量,在终端利用偶极子实现辐射,并且在天线的末端引入八木天线的引向器,利用接地面代替八木天线的反射器,从而提高增益。本发明优化了传统的偶极子端射天线,设计结构简单,工作带宽增大,减小了天线间的互耦,大幅度提高了天线增益。
The present invention discloses a high-gain end-fire antenna based on artificial surface plasmon polaritons (Spoof Surface Plasmon Polaritons, SSPPs), which includes a dielectric substrate, an upper metal patch and a lower metal patch; the upper metal patch Located on the upper surface of the dielectric substrate, including microstrip transmission lines, tapered transition slots, SSPPs transmission lines, a part of the dipole and directors; the lower metal patch is located on the lower surface of the dielectric substrate, including the ground plane, Parts of tapered transition slots, SSPPs transmission lines, and dipoles. The structure uses artificial surface plasmon waveguide to transmit energy, uses dipoles at the terminal to achieve radiation, and introduces the director of the Yagi antenna at the end of the antenna, and uses the ground plane to replace the reflector of the Yagi antenna, thereby increasing the gain. The invention optimizes the traditional dipole end-fire antenna, has a simple design structure, increases the working bandwidth, reduces the mutual coupling between the antennas, and greatly improves the antenna gain.
Description
技术领域technical field
本发明涉及一种基于人工表面等离子激元的高增益端射天线,可用于微波技术领域。The invention relates to a high-gain end-fire antenna based on artificial surface plasmons, which can be used in the field of microwave technology.
背景技术Background technique
人工表面等离子体激元波导被认为是GHz到THz区域传输线的理想选择,近几年被科学界和工程界广泛关注。最常用的是利用周期性沟槽结构来引导人工表面等离子体激元波,并基于这种波导结构设计了多种天线、滤波器、耦合器等多种无源器件。人工表面等离子激元的发展主要依赖于SPP波的辐射,现以实现的多种辐射方式为基于人工表面等离子激元的天线开辟了道路,但其中却大部分天线的体积较大,相对复杂,因此,我们考虑了其他辐射单元。偶极子作为最基本、最常用的天线,由于其制作方便、与射频电路集成方便,在天线工程中得到了广泛的应用。然而,当应用于太赫兹频率的微波时,偶极子的增益明显偏低。随着超材料在不同的天线中不断的应用,完全可以利用超材料实现带宽和增益的增强、波束聚焦和频率重构。本发明设计的天线就是将超材料技术和偶极子向结合,使得到更广泛的应用。Artificial surface plasmon waveguides are considered to be an ideal choice for transmission lines in the GHz to THz region, and have attracted extensive attention from the scientific and engineering communities in recent years. The most commonly used is to use periodic trench structures to guide artificial surface plasmon waves, and based on this waveguide structure, various passive devices such as antennas, filters, and couplers have been designed. The development of artificial surface plasmon polaritons mainly depends on the radiation of SPP waves. The various radiation methods realized now open up the way for antennas based on artificial surface plasmon polaritons, but most of them are large in size and relatively complex. Therefore, we considered other radiating elements. As the most basic and commonly used antenna, dipole has been widely used in antenna engineering because of its convenient fabrication and easy integration with radio frequency circuits. However, when applied to microwaves at terahertz frequencies, the gain of the dipole is significantly lower. With the continuous application of metamaterials in different antennas, metamaterials can be used to achieve bandwidth and gain enhancement, beam focusing and frequency reconfiguration. The antenna designed in the present invention combines the metamaterial technology and the dipole direction, so that it can be used more widely.
发明内容Contents of the invention
了解决上述背景技术提出的技术问题,本发明旨在提供一种基于人工表面等离子激元的高增益端射天线,解决了偶极子天线增益低的问题并且为今后研究具有增益更高的天线打下基础。In order to solve the technical problems raised by the above-mentioned background technology, the present invention aims to provide a high-gain end-fire antenna based on artificial surface plasmons, which solves the problem of low gain of dipole antennas and provides a basis for future research on antennas with higher gain. lay the foundation.
本发明将通过以下技术方案得以实现:基于人工表面等离子激元的高增益端射天线,高增益端射天线为单层结构,包含了介质基片、顶层金属层和底层金属层;顶层金属层位于介质基片的上表面,包括微带传输线、渐变形过渡槽、SSPPs传输线、偶极子的一部分以及引向器;底层金属层位于介质基片的下表面,包括接地面、渐变形过渡槽、SSPPs传输线以及偶极子的一部分;微带传输线馈电经过渐变过渡槽后采用SSPPs传输线波导传输能量,在终端利用偶极子实现能量辐射,在天线的末端引入八木天线的引向器,利用接地面代替八木天线的反射器,提高增益,形成高增益端射天线。The present invention will be realized through the following technical solutions: a high-gain end-fire antenna based on artificial surface plasmons, the high-gain end-fire antenna is a single-layer structure, including a dielectric substrate, a top metal layer and a bottom metal layer; the top metal layer Located on the upper surface of the dielectric substrate, including microstrip transmission lines, gradient transition slots, SSPPs transmission lines, a part of the dipole, and directors; the underlying metal layer is located on the lower surface of the dielectric substrate, including ground planes, gradient transition slots , SSPPs transmission line and a part of the dipole; the microstrip transmission line feeds through the gradual transition slot and uses the SSPPs transmission line waveguide to transmit energy, and uses the dipole at the terminal to achieve energy radiation, and introduces the director of the Yagi antenna at the end of the antenna. The ground plane replaces the reflector of the Yagi antenna to increase the gain and form a high-gain end-fire antenna.
本发明进一步限定的技术方案为:The technical scheme further defined in the present invention is:
优选地,所述顶层金属层中微带传输线(5)到SSPPs传输线(7)中间的过渡带采用梯形渐变槽结构。Preferably, the transition zone between the microstrip transmission line (5) and the SSPPs transmission line (7) in the top metal layer adopts a trapezoidal tapered groove structure.
优选地,渐变槽一共有8个,依次加深,直至和SSPPs传输线的槽等深。Preferably, there are a total of 8 gradient grooves, which are deepened sequentially until they are as deep as the grooves of the SSPPs transmission line.
优选地,所述顶层金属层中SSPPs传输线结构是梳状周期结构,每一个沟槽的高度和宽度都是相同的。Preferably, the SSPPs transmission line structure in the top metal layer is a comb-like periodic structure, and the height and width of each groove are the same.
优选地,所述顶层金属层右端的引向器从左到右间距是逐渐增大的,长度是逐渐缩短的。Preferably, the distance between the directors at the right end of the top metal layer increases gradually from left to right, and the length gradually decreases.
优选地,所述底层金属层的接地面是一个U形接地面。Preferably, the ground plane of the underlying metal layer is a U-shaped ground plane.
优选地,所述底层金属层中的传输线和偶极子同上表面金属的传输线和偶极子是完全对称反向的,即形状、大小相同,方向相反。Preferably, the transmission lines and dipoles in the bottom metal layer are completely symmetrical and opposite to the transmission lines and dipoles in the metal on the upper surface, that is, the shape and size are the same, and the directions are opposite.
优选地,所述的介质基片为FR4介质板,介电常数为2.65,厚度为0.8毫米。Preferably, the dielectric substrate is an FR4 dielectric board with a dielectric constant of 2.65 and a thickness of 0.8 mm.
本发明采用以上技术方案与现有技术相比,具有以下技术效果:该高增益端射天线结构简单、体积小、易于集成,与传统的偶极子天线相比,所提出的基于SSPPs的高增益端射天线系统能够保持能量的完整性和较小的波导损耗。同时,由于人工表面等离子激元的束缚性很强,人工表面等离子激元波导能够提供更紧凑的平面结构,可以在没有明显相互耦合的情况下,与其他平面器件进行制作。与现有的SSPPs天线相比,该结构具有更小的尺寸。仿真的试验结果也表明该结构具有良好的性能。结果显示,在设计频率为6ghz时,基于SSPPs的高增益端射天线增益能达到9.5dBi。Compared with the prior art, the present invention adopts the above technical scheme and has the following technical effects: the high-gain endfire antenna is simple in structure, small in size and easy to integrate; compared with the traditional dipole antenna, the proposed high-gain antenna based on SSPPs Gain endfire antenna systems maintain energy integrity and minimize waveguide losses. At the same time, due to the strong confinement of artificial surface plasmons, artificial surface plasmon waveguides can provide more compact planar structures and can be fabricated with other planar devices without significant mutual coupling. Compared with existing SSPPs antennas, the structure has a smaller size. Simulation test results also show that the structure has good performance. The results show that the high-gain end-fire antenna based on SSPPs can achieve a gain of 9.5dBi when the design frequency is 6GHz.
本发明优化了偶极子天线,首先扩展了天线的接地面,使得天线后端的辐射区域被反射到了前端,改变了偶极子天线的辐射方向并提高了天线的增益;其次引进了引向器,改善了天线的方向性并进一步提高了天线的增益,实现了高增益端射天线。The invention optimizes the dipole antenna, firstly, the grounding plane of the antenna is expanded, so that the radiation area at the rear end of the antenna is reflected to the front end, the radiation direction of the dipole antenna is changed and the gain of the antenna is improved; secondly, a director is introduced , which improves the directivity of the antenna and further increases the gain of the antenna, realizing a high-gain end-fire antenna.
附图说明Description of drawings
图1是本发明基于人工表面等离子激元的高增益端射天线的三维结构示意图。FIG. 1 is a schematic diagram of a three-dimensional structure of a high-gain endfire antenna based on artificial surface plasmons according to the present invention.
图2是本发明基于人工表面等离子激元的高增益端射天线的三维分解示意图。Fig. 2 is a three-dimensional exploded schematic view of the high-gain end-fire antenna based on artificial surface plasmons of the present invention.
图3是本发明基基于人工表面等离子激元的高增益端射天线的俯视图。Fig. 3 is a top view of the high-gain end-fire antenna based on artificial surface plasmons of the present invention.
图4是本发明基于人工表面等离子激元的高增益端射天线的S参数仿真结果。Fig. 4 is the S-parameter simulation result of the high-gain end-fire antenna based on the artificial surface plasmon of the present invention.
图5是本发明基于人工表面等离子激元的高增益端射天线的2D方向图示意图。FIG. 5 is a schematic diagram of a 2D pattern of the high-gain end-fire antenna based on artificial surface plasmons of the present invention.
图中附图标记为:1-介质基片,2-顶层金属层,3-底层金属层,4-接地面,5-微带线,6-渐变过渡带,7-SSPPs传输线,8-偶极子,9-引向器。The reference signs in the figure are: 1-dielectric substrate, 2-top metal layer, 3-bottom metal layer, 4-ground plane, 5-microstrip line, 6-gradient transition zone, 7-SSPPs transmission line, 8-even Pole, 9-director.
具体实施方式Detailed ways
本发明的目的、优点和特点,将通过下面优选实施例的非限制性说明进行图示和解释。Objects, advantages and features of the present invention will be illustrated and explained by the following non-limiting description of preferred embodiments.
本发明揭示了一种基于人工表面等离子激元的高增益端射天线,如图1、图2和图3所示,所述高增益端射天线为单层结构,包括介质基片1及顶层金属层2和底层金属层3,所述顶层金属层2设置于介质基片1的上表面,所述底层金属层3设置于介质基片1的下表面,即高增益端射天线由上至下依次包含顶层金属层、介质基片和底层金属片。在本技术方案中,所述介质基片为FR4介质板,介电常数为2.65,厚度为0.8毫米。The present invention discloses a high-gain end-fire antenna based on artificial surface plasmons, as shown in Figure 1, Figure 2 and Figure 3, the high-gain end-fire antenna is a single-layer structure, including a dielectric substrate 1 and a top layer The metal layer 2 and the bottom metal layer 3, the top metal layer 2 is arranged on the upper surface of the dielectric substrate 1, and the bottom metal layer 3 is arranged on the lower surface of the dielectric substrate 1, that is, the high-gain end-fire antenna is from top to bottom The lower layer contains the top metal layer, the dielectric substrate and the bottom metal sheet in sequence. In this technical solution, the dielectric substrate is an FR4 dielectric board with a dielectric constant of 2.65 and a thickness of 0.8 mm.
所述顶层金属层2和底层金属3上设置有天线结构,顶层金属结构包括微带线5、渐变过渡带6、SSPPs传输线7、偶极子8以及引向器9;底层金属结构包括接地面4、渐变过渡带6、SSPPs传输线7以及偶极子8;所述天线结构利用微带线馈电,经过渐变过渡槽后采用SSPPs波导传输能量,在终端利用偶极子实现能量辐射,并且在天线的末端引入引向器,从而提高增益,形成高增益端射天线。The top metal layer 2 and the bottom metal layer 3 are provided with an antenna structure, the top metal structure includes a microstrip line 5, a gradual transition zone 6, an SSPPs transmission line 7, a dipole 8 and a director 9; the bottom metal structure includes a ground plane 4. Gradient transition zone 6, SSPPs transmission line 7 and dipole 8; the antenna structure utilizes microstrip line feed, adopts SSPPs waveguide to transmit energy after passing through the gradient transition slot, and utilizes dipole to realize energy radiation at the terminal, and in The end of the antenna is introduced into the director to increase the gain and form a high-gain end-fire antenna.
所述天线结构设置于所述介质基片的上下表面,其中渐变过渡带和SSPPs传输线均为反对称结构,即上下表面的传输线部分大小、结构完全相同,方向相反。The antenna structure is arranged on the upper and lower surfaces of the dielectric substrate, wherein both the tapered transition zone and the SSPPs transmission line are antisymmetric structures, that is, the transmission lines on the upper and lower surfaces have the same size and structure, and the directions are opposite.
所述天线结构的偶极子部分分布在介质基片的上下表面。The dipole part of the antenna structure is distributed on the upper and lower surfaces of the dielectric substrate.
所述天线结构的引向器为三根金属贴片,均设置于介质基片的上表面,位于终端偶极子的右侧。The directors of the antenna structure are three metal patches, all of which are arranged on the upper surface of the dielectric substrate and located on the right side of the terminal dipole.
如图2所示,系统中完整的天线结构是通过微带线激发电磁波经过过渡带后利用SSPPs波导传输能量,在终端利用偶极子实现能量辐射,并通过引向器引导天线的辐射方向。As shown in Figure 2, the complete antenna structure in the system is to use the microstrip line to excite the electromagnetic wave through the transition zone and then use the SSPPs waveguide to transmit energy. At the terminal, the dipole is used to realize energy radiation, and the radiation direction of the antenna is guided by the director.
本发明能顺利实现由全向辐射到定向辐射的转变,并大幅度提高天线的增益,相对于传统的偶极子端射天线,本发明使得天线更加紧凑,降低了介质损耗。The invention can smoothly realize the transformation from omnidirectional radiation to directional radiation, and greatly increase the gain of the antenna. Compared with the traditional dipole end-fire antenna, the invention makes the antenna more compact and reduces the dielectric loss.
图4为基于人工表面等离子激元的高增益端射天线的反射系数的仿真结果图,从图中可直观看出,本发明基于人工表面等离子激元的高增益端射天线在5.4GHz-6.3GHz的频段内,S11均低于-10dB,因此在工作频带5.4GHz-6.3GHz内天线能够完好的工作。Figure 4 is a simulation result diagram of the reflection coefficient of the high-gain end-fire antenna based on artificial surface plasmons. It can be seen intuitively from the figure that the high-gain end-fire antenna based on artificial surface plasmons of the present invention operates at 5.4GHz-6.3 In the frequency band of GHz, S 11 is lower than -10dB, so the antenna can work well in the working frequency band of 5.4GHz-6.3GHz.
图5为基于人工表面等离子激元的高增益端射天线的二维辐射方向图,从图中可以很清楚地看到,增益最高能达近10dBi,说明增加了引向器后大幅度的提高了天线的辐射增益。Figure 5 is a two-dimensional radiation pattern of a high-gain end-fire antenna based on artificial surface plasmons. It can be clearly seen from the figure that the maximum gain can reach nearly 10dBi, which shows that the increase of the director is greatly improved. the radiation gain of the antenna.
本发明提出了基于人工表面等离子激元的高增益端射天线,相对于传统的偶极子天线,利用人工表面等离子激元波导代替传统的微带传输线,可以大大减少传输损耗,使电磁波被束缚在金属表明传播。然后为了提高端射天线的辐射增益,我们根据八木天线的辐射机理,在天线终端方向加载引向器结构,并延伸介质波导的接地面作为八木天线的反射器,以实现辐射增益的增强。通过对天线结构进行仿真检验,我们可以看出该结构具有良好的性能。基于超材料SSPPs天线系统在设计频率为6GHz时,增益最高可达到10dBi,比传统的偶极子端射天线高出7dBi,并且具有较好的方向性。The present invention proposes a high-gain end-fire antenna based on artificial surface plasmons. Compared with traditional dipole antennas, artificial surface plasmon waveguides are used to replace traditional microstrip transmission lines, which can greatly reduce transmission loss and make electromagnetic waves bound On metal indicates spread. Then, in order to improve the radiation gain of the end-fire antenna, we loaded the director structure in the direction of the antenna terminal according to the radiation mechanism of the Yagi antenna, and extended the ground plane of the dielectric waveguide as the reflector of the Yagi antenna to enhance the radiation gain. Through the simulation test of the antenna structure, we can see that the structure has good performance. Based on the metamaterial SSPPs antenna system, when the design frequency is 6GHz, the gain can reach up to 10dBi, which is 7dBi higher than the traditional dipole endfire antenna, and has better directivity.
以上所述,仅为本发明中的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉该技术的人在本发明所揭露的技术范围内,可理解想到的变换或替换,都应涵盖在本发明的包含范围之内,因此,本发明的保护范围应该以权利要求书的保护范围为准。The above is only a specific implementation mode in the present invention, but the scope of protection of the present invention is not limited thereto. Anyone familiar with the technology can understand the conceivable transformation or replacement within the technical scope disclosed in the present invention. All should be covered within the scope of the present invention, therefore, the protection scope of the present invention should be based on the protection scope of the claims.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910680912.0A CN110380217B (en) | 2019-07-26 | 2019-07-26 | High-gain end-fire antenna based on artificial surface plasmon |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910680912.0A CN110380217B (en) | 2019-07-26 | 2019-07-26 | High-gain end-fire antenna based on artificial surface plasmon |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110380217A true CN110380217A (en) | 2019-10-25 |
CN110380217B CN110380217B (en) | 2021-02-02 |
Family
ID=68256353
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910680912.0A Active CN110380217B (en) | 2019-07-26 | 2019-07-26 | High-gain end-fire antenna based on artificial surface plasmon |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110380217B (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110957575A (en) * | 2019-12-19 | 2020-04-03 | 南通大学 | A Surface Plasmon Structure Sharing Large Frequency Ratio Dual-Band Antenna |
CN111463565A (en) * | 2020-03-17 | 2020-07-28 | 西安电子科技大学 | Terahertz wave impedance tuning air dielectric yagi antenna structure and manufacturing method thereof |
CN111755829A (en) * | 2020-05-29 | 2020-10-09 | 常熟市泓博通讯技术股份有限公司 | High gain antenna module |
CN112993553A (en) * | 2021-02-09 | 2021-06-18 | 维沃移动通信有限公司 | Antenna unit and antenna structure |
CN113285229A (en) * | 2021-06-07 | 2021-08-20 | 南京邮电大学 | High-gain end-fire circularly polarized antenna based on artificial surface plasmon polariton |
CN113782955A (en) * | 2021-08-24 | 2021-12-10 | 天津大学 | A broadband high-gain compressed high-order mode Yagi antenna |
CN113922094A (en) * | 2021-08-13 | 2022-01-11 | 南京冠旭新材料科技有限公司 | Perfect scattering reduction metamaterial based on artificial surface plasmon |
CN114336090A (en) * | 2021-11-30 | 2022-04-12 | 北京交通大学 | An artificial surface plasmon-fed dual-polarized patch antenna array |
CN114665241A (en) * | 2022-03-18 | 2022-06-24 | 北京邮电大学 | Conversion structure and method of artificial surface plasmon and microstrip line |
CN115149258A (en) * | 2022-07-27 | 2022-10-04 | 重庆邮电大学 | A heteroplanar asymmetric millimeter-wave circularly polarized endfire antenna based on artificial surface plasmon |
US12034234B2 (en) | 2021-12-29 | 2024-07-09 | Beijing Boe Technology Development Co., Ltd. | Antenna and electronic apparatus |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116897470A (en) | 2022-01-29 | 2023-10-17 | 京东方科技集团股份有限公司 | Antenna, display substrate and display device |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101656351A (en) * | 2009-06-10 | 2010-02-24 | 东南大学 | Wideband Yagi aerial for half-mould substrate integrated waveguide feed |
CN102738580A (en) * | 2012-07-03 | 2012-10-17 | 浙江大学 | Ultra-wideband monopole antenna with expanded horizontal plane open circuit section and semi-oval slot |
CN103531876A (en) * | 2013-10-25 | 2014-01-22 | 东南大学 | Efficient transmission line of surface plasmon |
CN103606759A (en) * | 2013-11-29 | 2014-02-26 | 电子科技大学 | Dual-mode antenna with wave beam direction switchable |
CN103618145A (en) * | 2013-11-29 | 2014-03-05 | 东南大学 | Thin-substrate quari-yagi plane horn antenna |
CN105119030A (en) * | 2015-09-17 | 2015-12-02 | 南京航空航天大学 | Ultra-wideband artificial surface Plasmon low-pass filter |
CN105552544A (en) * | 2016-01-22 | 2016-05-04 | 东南大学 | End-fire type artificial surface plasmon antenna |
CN105789790A (en) * | 2016-04-27 | 2016-07-20 | 六盘水师范学院 | Spoof surface plasmon polaritons (SSPPs) type microwave band-pass filter |
CN107248616A (en) * | 2017-06-07 | 2017-10-13 | 东南大学 | Same frequency dual-circle polarization leaky-wave antenna based on artificial surface phasmon |
CN107666037A (en) * | 2017-08-23 | 2018-02-06 | 广东顺德中山大学卡内基梅隆大学国际联合研究院 | A kind of double frequency high-gain Yagi antenna |
CN107681258A (en) * | 2017-08-04 | 2018-02-09 | 上海交通大学 | Small-sized high-efficiency UHF frequency band low-profile broadband antenna adopting SPP structure |
US20180076376A1 (en) * | 2016-09-14 | 2018-03-15 | Patrick K. Brady | Structures, system and method for converting electromagnetic radiation to electrical energy using metamaterials, rectennas and compensation structures |
CN108493597A (en) * | 2018-03-21 | 2018-09-04 | 南通大学 | A kind of millimeter wave antenna based on surface plasma excimer |
CN108767451A (en) * | 2018-04-04 | 2018-11-06 | 上海交通大学 | The large-angle scanning antenna of directional diagram reconstructable based on SSPP structures |
CN109301461A (en) * | 2018-11-22 | 2019-02-01 | 湖南华诺星空电子技术有限公司 | A kind of miniature ultra wide band plane yagi aerial |
CN109326861A (en) * | 2018-10-15 | 2019-02-12 | 东南大学 | A compact artificial surface plasmon transmission line |
-
2019
- 2019-07-26 CN CN201910680912.0A patent/CN110380217B/en active Active
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101656351A (en) * | 2009-06-10 | 2010-02-24 | 东南大学 | Wideband Yagi aerial for half-mould substrate integrated waveguide feed |
CN102738580A (en) * | 2012-07-03 | 2012-10-17 | 浙江大学 | Ultra-wideband monopole antenna with expanded horizontal plane open circuit section and semi-oval slot |
CN103531876A (en) * | 2013-10-25 | 2014-01-22 | 东南大学 | Efficient transmission line of surface plasmon |
CN103606759A (en) * | 2013-11-29 | 2014-02-26 | 电子科技大学 | Dual-mode antenna with wave beam direction switchable |
CN103618145A (en) * | 2013-11-29 | 2014-03-05 | 东南大学 | Thin-substrate quari-yagi plane horn antenna |
CN103618145B (en) * | 2013-11-29 | 2016-03-23 | 东南大学 | The accurate Yagi spark gap planar horn antenna of thin substrate |
CN105119030A (en) * | 2015-09-17 | 2015-12-02 | 南京航空航天大学 | Ultra-wideband artificial surface Plasmon low-pass filter |
CN105552544A (en) * | 2016-01-22 | 2016-05-04 | 东南大学 | End-fire type artificial surface plasmon antenna |
CN105789790A (en) * | 2016-04-27 | 2016-07-20 | 六盘水师范学院 | Spoof surface plasmon polaritons (SSPPs) type microwave band-pass filter |
US20180076376A1 (en) * | 2016-09-14 | 2018-03-15 | Patrick K. Brady | Structures, system and method for converting electromagnetic radiation to electrical energy using metamaterials, rectennas and compensation structures |
CN107248616A (en) * | 2017-06-07 | 2017-10-13 | 东南大学 | Same frequency dual-circle polarization leaky-wave antenna based on artificial surface phasmon |
CN107681258A (en) * | 2017-08-04 | 2018-02-09 | 上海交通大学 | Small-sized high-efficiency UHF frequency band low-profile broadband antenna adopting SPP structure |
CN107666037A (en) * | 2017-08-23 | 2018-02-06 | 广东顺德中山大学卡内基梅隆大学国际联合研究院 | A kind of double frequency high-gain Yagi antenna |
CN108493597A (en) * | 2018-03-21 | 2018-09-04 | 南通大学 | A kind of millimeter wave antenna based on surface plasma excimer |
CN108767451A (en) * | 2018-04-04 | 2018-11-06 | 上海交通大学 | The large-angle scanning antenna of directional diagram reconstructable based on SSPP structures |
CN109326861A (en) * | 2018-10-15 | 2019-02-12 | 东南大学 | A compact artificial surface plasmon transmission line |
CN109301461A (en) * | 2018-11-22 | 2019-02-01 | 湖南华诺星空电子技术有限公司 | A kind of miniature ultra wide band plane yagi aerial |
Non-Patent Citations (6)
Title |
---|
DAOFENG YE: "A Dual-Band Printed End-Fire Antenna with DSPSL Feeding", 《HINDAWI PUBLISHING CORPORATION》 * |
DOU TIAN: "Endfire Antenna Based on Spoof Surface Plasmon Polaritons", 《PROGRESS IN ELECTROMAGNETICS RESEARCH》 * |
G. S. KIROV: "Study of Backfire Antennas", 《JOURNAL OF MICROWAVES, OPTOELECTRONICS AND ELECTROMAGNETIC APPLICATIONS》 * |
GAURAV MITTAL: "Design, Analysis and Characterisation of Spoof Surface Plasmon Polaritons based Wideband Bandpass Filter at Microwave Frequency", 《DEFENCE SCIENCE JOURNAL》 * |
SON XUAT TA: "Cavity-Backed Angled-Dipole Antennas for Millimeter-Wave Wireless Applications", 《HINDAWI PUBLISHING CORPORATION》 * |
田豆: "基于人工表面等离子基元的双向端射天线", 《2017年全国天线年会论文集(上册)》 * |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110957575B (en) * | 2019-12-19 | 2021-08-03 | 南通大学 | A Surface Plasmon Structure Sharing Large Frequency Ratio Dual-Band Antenna |
CN110957575A (en) * | 2019-12-19 | 2020-04-03 | 南通大学 | A Surface Plasmon Structure Sharing Large Frequency Ratio Dual-Band Antenna |
CN111463565B (en) * | 2020-03-17 | 2023-02-10 | 西安电子科技大学 | Terahertz wave impedance tuning air dielectric yagi antenna structure and manufacturing method thereof |
CN111463565A (en) * | 2020-03-17 | 2020-07-28 | 西安电子科技大学 | Terahertz wave impedance tuning air dielectric yagi antenna structure and manufacturing method thereof |
CN111755829A (en) * | 2020-05-29 | 2020-10-09 | 常熟市泓博通讯技术股份有限公司 | High gain antenna module |
CN111755829B (en) * | 2020-05-29 | 2023-08-18 | 常熟市泓博通讯技术股份有限公司 | High gain antenna module |
CN112993553A (en) * | 2021-02-09 | 2021-06-18 | 维沃移动通信有限公司 | Antenna unit and antenna structure |
CN113285229A (en) * | 2021-06-07 | 2021-08-20 | 南京邮电大学 | High-gain end-fire circularly polarized antenna based on artificial surface plasmon polariton |
CN113285229B (en) * | 2021-06-07 | 2022-05-20 | 南京邮电大学 | High-gain end-fire circularly polarized antenna based on artificial surface plasmon polariton |
CN113922094A (en) * | 2021-08-13 | 2022-01-11 | 南京冠旭新材料科技有限公司 | Perfect scattering reduction metamaterial based on artificial surface plasmon |
CN113782955A (en) * | 2021-08-24 | 2021-12-10 | 天津大学 | A broadband high-gain compressed high-order mode Yagi antenna |
CN113782955B (en) * | 2021-08-24 | 2023-06-16 | 天津大学 | Broadband high-gain compressed high-order mode yagi antenna |
CN114336090A (en) * | 2021-11-30 | 2022-04-12 | 北京交通大学 | An artificial surface plasmon-fed dual-polarized patch antenna array |
US12034234B2 (en) | 2021-12-29 | 2024-07-09 | Beijing Boe Technology Development Co., Ltd. | Antenna and electronic apparatus |
CN114665241B (en) * | 2022-03-18 | 2022-10-21 | 北京邮电大学 | An artificial surface plasmon and microstrip line conversion structure and method |
CN114665241A (en) * | 2022-03-18 | 2022-06-24 | 北京邮电大学 | Conversion structure and method of artificial surface plasmon and microstrip line |
CN115149258A (en) * | 2022-07-27 | 2022-10-04 | 重庆邮电大学 | A heteroplanar asymmetric millimeter-wave circularly polarized endfire antenna based on artificial surface plasmon |
Also Published As
Publication number | Publication date |
---|---|
CN110380217B (en) | 2021-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110380217B (en) | High-gain end-fire antenna based on artificial surface plasmon | |
Bai et al. | Modified compact antipodal Vivaldi antenna for 4–50-GHz UWB application | |
Liu et al. | Investigations of SIW leaky-wave antenna for endfire-radiation with narrow beam and sidelobe suppression | |
CN109742532B (en) | Symmetry period slot leaky-wave antenna based on artificial surface plasmon | |
El-Nady et al. | Gain enhancement of a millimeter wave antipodal vivaldi antenna by epsilon-near-zero metamaterial | |
Jiang et al. | Wideband small aperture endfire antenna based on spoof surface plasmon polaritons | |
US7079082B2 (en) | Coplanar waveguide continuous transverse stub (CPW-CTS) antenna for wireless communications | |
CN109768374B (en) | A millimeter wave lens antenna | |
CN102820513A (en) | High-gain dielectric resonator antenna applied to 60 GHz system | |
CN106921047A (en) | A kind of waveguide feed all-metal dual polarized panel antennas array and its optimization method | |
CN113764878A (en) | A beam-reconfigurable leaky-wave antenna | |
CN110444865A (en) | Log-periodic antenna based on artificial surface plasmon | |
CN114824773A (en) | Vivaldi antenna for ultra-wideband detection and preparation method thereof | |
CN109904617A (en) | Frequency swept leaky-wave antenna based on high-resistance transmission line formed by loading parasitic branches | |
CN211530188U (en) | Novel end-fire antenna based on split ring resonator | |
Zhang et al. | Full-space-scanning substrate integrated waveguide antenna with enhanced scanning rate and efficiency | |
CN113991297B (en) | Wide-angle beam scanning antenna array based on super-surface and artificial surface plasmon | |
CN114094353B (en) | Ultra-wideband tightly coupled array antenna | |
CN106785479A (en) | A kind of lobe millimeter wave micro-strip antenna wide based on plane single pole sub antenna | |
Turan | Dualband and tunable beam tilting wideband high gain compact endfire antennas based on spoof surface plasmon polaritons | |
Sifat et al. | High gain wideband log periodic dipole array antenna loaded with corrugations | |
CN109286070B (en) | A kind of surface wave yagi aerial | |
Gatea et al. | Gradient distribution of metasurface based antenna performance enhancement | |
Ying et al. | Design and application of Vivaldi antenna array | |
CN108649331A (en) | A kind of ultra wide band low section Vivaldi antennas of vertical polarization |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information | ||
CB02 | Change of applicant information |
Address after: 210003, 66 new model street, Gulou District, Jiangsu, Nanjing Applicant after: NANJING University OF POSTS AND TELECOMMUNICATIONS Address before: No.186 software Avenue, Yuhuatai District, Nanjing City, Jiangsu Province, 210003 Applicant before: NANJING University OF POSTS AND TELECOMMUNICATIONS |
|
GR01 | Patent grant | ||
GR01 | Patent grant |