CN110380091A - The preparation method of tricalcium phosphate modified phosphate doping polybenzimidazoles type proton exchange membrane - Google Patents
The preparation method of tricalcium phosphate modified phosphate doping polybenzimidazoles type proton exchange membrane Download PDFInfo
- Publication number
- CN110380091A CN110380091A CN201910767204.0A CN201910767204A CN110380091A CN 110380091 A CN110380091 A CN 110380091A CN 201910767204 A CN201910767204 A CN 201910767204A CN 110380091 A CN110380091 A CN 110380091A
- Authority
- CN
- China
- Prior art keywords
- tricalcium phosphate
- solution
- exchange membrane
- proton exchange
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000001506 calcium phosphate Substances 0.000 title claims abstract description 35
- 239000012528 membrane Substances 0.000 title claims abstract description 35
- 229940078499 tricalcium phosphate Drugs 0.000 title claims abstract description 35
- 229910000391 tricalcium phosphate Inorganic materials 0.000 title claims abstract description 35
- 235000019731 tricalcium phosphate Nutrition 0.000 title claims abstract description 35
- 229920002480 polybenzimidazole Polymers 0.000 title claims abstract description 26
- 238000002360 preparation method Methods 0.000 title claims abstract description 23
- -1 tricalcium phosphate modified phosphate Chemical class 0.000 title claims abstract description 15
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 claims abstract description 31
- 229920000642 polymer Polymers 0.000 claims abstract description 17
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000004693 Polybenzimidazole Substances 0.000 claims abstract description 9
- 239000000178 monomer Substances 0.000 claims abstract description 8
- HYZJCKYKOHLVJF-UHFFFAOYSA-N 1H-benzimidazole Chemical compound C1=CC=C2NC=NC2=C1 HYZJCKYKOHLVJF-UHFFFAOYSA-N 0.000 claims abstract description 5
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 4
- 239000011259 mixed solution Substances 0.000 claims abstract description 4
- 229920000137 polyphosphoric acid Polymers 0.000 claims abstract description 4
- 239000000243 solution Substances 0.000 claims description 33
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 29
- 239000008367 deionised water Substances 0.000 claims description 20
- 229910021641 deionized water Inorganic materials 0.000 claims description 20
- 239000002245 particle Substances 0.000 claims description 17
- 239000011521 glass Substances 0.000 claims description 16
- 238000010438 heat treatment Methods 0.000 claims description 16
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 10
- 238000003756 stirring Methods 0.000 claims description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 8
- 238000001816 cooling Methods 0.000 claims description 8
- 238000010792 warming Methods 0.000 claims description 8
- 239000000376 reactant Substances 0.000 claims description 6
- DLYUQMMRRRQYAE-UHFFFAOYSA-N tetraphosphorus decaoxide Chemical compound O1P(O2)(=O)OP3(=O)OP1(=O)OP2(=O)O3 DLYUQMMRRRQYAE-UHFFFAOYSA-N 0.000 claims description 6
- LBLYYCQCTBFVLH-UHFFFAOYSA-N 2-Methylbenzenesulfonic acid Chemical compound CC1=CC=CC=C1S(O)(=O)=O LBLYYCQCTBFVLH-UHFFFAOYSA-N 0.000 claims description 4
- HEMGYNNCNNODNX-UHFFFAOYSA-N 3,4-diaminobenzoic acid Chemical compound NC1=CC=C(C(O)=O)C=C1N HEMGYNNCNNODNX-UHFFFAOYSA-N 0.000 claims description 4
- DPZVOQSREQBFML-UHFFFAOYSA-N 3h-pyrrolo[3,4-c]pyridine Chemical compound C1=NC=C2CN=CC2=C1 DPZVOQSREQBFML-UHFFFAOYSA-N 0.000 claims description 4
- 238000001354 calcination Methods 0.000 claims description 4
- 229960000935 dehydrated alcohol Drugs 0.000 claims description 4
- 239000002105 nanoparticle Substances 0.000 claims description 4
- 238000005406 washing Methods 0.000 claims description 4
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 3
- 239000000908 ammonium hydroxide Substances 0.000 claims description 3
- 238000005119 centrifugation Methods 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 3
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 claims description 3
- 229910000388 diammonium phosphate Inorganic materials 0.000 claims description 3
- 238000001035 drying Methods 0.000 claims description 3
- 238000000703 high-speed centrifugation Methods 0.000 claims description 3
- 238000010907 mechanical stirring Methods 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 3
- 238000006116 polymerization reaction Methods 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 3
- 239000002994 raw material Substances 0.000 claims description 3
- 239000002904 solvent Substances 0.000 claims description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 2
- 229960004756 ethanol Drugs 0.000 claims description 2
- 235000019441 ethanol Nutrition 0.000 claims description 2
- 238000011010 flushing procedure Methods 0.000 claims description 2
- 229910052698 phosphorus Inorganic materials 0.000 claims description 2
- 239000011574 phosphorus Substances 0.000 claims description 2
- 239000013049 sediment Substances 0.000 claims description 2
- 239000000446 fuel Substances 0.000 abstract description 7
- 238000011031 large-scale manufacturing process Methods 0.000 abstract description 2
- AGGKEGLBGGJEBZ-UHFFFAOYSA-N tetramethylenedisulfotetramine Chemical compound C1N(S2(=O)=O)CN3S(=O)(=O)N1CN2C3 AGGKEGLBGGJEBZ-UHFFFAOYSA-N 0.000 description 5
- 239000002253 acid Substances 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 4
- 239000011575 calcium Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- YSMRWXYRXBRSND-UHFFFAOYSA-N TOTP Chemical compound CC1=CC=CC=C1OP(=O)(OC=1C(=CC=CC=1)C)OC1=CC=CC=C1C YSMRWXYRXBRSND-UHFFFAOYSA-N 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 125000002883 imidazolyl group Chemical group 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229920006389 polyphenyl polymer Polymers 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- KKTUQAYCCLMNOA-UHFFFAOYSA-N 2,3-diaminobenzoic acid Chemical compound NC1=CC=CC(C(O)=O)=C1N KKTUQAYCCLMNOA-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- ZNZYKNKBJPZETN-WELNAUFTSA-N Dialdehyde 11678 Chemical compound N1C2=CC=CC=C2C2=C1[C@H](C[C@H](/C(=C/O)C(=O)OC)[C@@H](C=C)C=O)NCC2 ZNZYKNKBJPZETN-WELNAUFTSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 230000000845 anti-microbial effect Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 150000005690 diesters Chemical class 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- IDGUHHHQCWSQLU-UHFFFAOYSA-N ethanol;hydrate Chemical compound O.CCO IDGUHHHQCWSQLU-UHFFFAOYSA-N 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- UQSQSQZYBQSBJZ-UHFFFAOYSA-N fluorosulfonic acid Chemical compound OS(F)(=O)=O UQSQSQZYBQSBJZ-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 229910001410 inorganic ion Inorganic materials 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 230000036299 sexual function Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006277 sulfonation reaction Methods 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1041—Polymer electrolyte composites, mixtures or blends
- H01M8/1046—Mixtures of at least one polymer and at least one additive
- H01M8/1048—Ion-conducting additives, e.g. ion-conducting particles, heteropolyacids, metal phosphate or polybenzimidazole with phosphoric acid
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1069—Polymeric electrolyte materials characterised by the manufacturing processes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1069—Polymeric electrolyte materials characterised by the manufacturing processes
- H01M8/1086—After-treatment of the membrane other than by polymerisation
- H01M8/1088—Chemical modification, e.g. sulfonation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- General Chemical & Material Sciences (AREA)
- Sustainable Energy (AREA)
- Sustainable Development (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Composite Materials (AREA)
- Fuel Cell (AREA)
- Conductive Materials (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
The present invention relates to a kind of preparation methods of tricalcium phosphate modified phosphate doping polybenzimidazoles type proton exchange membrane, and specifically benzimidazole monomer is main component, react in polyphosphoric acid high temperature and generate polybenzimidazole polymer.After being dissolved in methanesulfonic acid solution after being crushed, nano tricalcium phosphate is added as modifying agent, mixed solution struck off by knifing machine, the transparent or opaque film of yellowish-brown is made according to die size after volatilizing superfluous methanesulfonic acid solution under rear high temperature, is applied to fuel cell field.Preparation method is simple, is suitble to large-scale production.
Description
Technical field
The present invention relates to a kind of preparation methods of high-temperature fuel cell germplasm proton exchange, more particularly to a kind of tricresyl phosphate
Calcium modified phosphate adulterates the preparation method of polybenzimidazoles type proton exchange membrane, is applied to fuel cell field.
Technical background
Proton Exchange Membrane Fuel Cells has using renewable energy, environmental-friendly, generating efficiency is high, quickly opens under room temperature
It moves, using the peculiar advantage included board.Proton exchange membrane (Proton Exchange Membrane, PEM) is a kind of selection transmission
Sexual function polymeric membrane is the key core part in Proton Exchange Membrane Fuel Cells.It separates anode and cathode, resistance
It is directly mixed every fuel and oxygen, transmits hydrogen ion, so that electronics can not reach the another of film by the side of the right film of approach of film
Side, to force electronics that can only reach cathode by dispatch from foreign news agency approach by anode, to generate electric current.Polybenzimidazoles
(Polybenzimidazole, PBI) class compound is the amorphous thermoplastic polymers containing imidazole ring on a kind of main chain.Its
Excellent thermal stability, chemical stability and mechanical performance, so that polybenzimidazoles class is widely used in aerospace, heat-resisting
Textile, adhesive and fuel cell field.It itself is electronics and ion insulator, but the imidazole ring in its skeleton contains alkali
Property-N=group, through inorganic acid it is modified become good proton conductor.Compared with perfluoro sulfonic acid membrane, the PBI film of acid doping exists
(it is greater than 120 under high temperatureoC) proton conductivity with higher, presence of the proton conductive process independent of water are cheap.
Traditional PBI dual MCU system is roughly divided into 5 kinds: 1. tetramine and diacid;2. tetramine and diester;3. tetramine and dialdehyde;4. tetramine and two
Amide;5. tetramine and dintrile.Poly- 2,5- benzimidazole (ABPBI) is polymerize by single monomer 3,4- diaminobenzoic acid (DABA)
It forms, wherein-NH the group on each benzimidazole repetitive unit can be combined in a manner of hydrogen bond with acid, therefore it inhales acid
Ability ratio PBI it is some higher.Usually using acid doping modification, sulfonation modifying, the modified and cross-linking modified method pair of inorganic filler
PBI and ABPBI material is modified to improve the proton conductivity of film or mechanical property.Nano tricalcium phosphate (TCP), usually
It has been reported in bone material and Tissue Engineering Study, purity, partial size, crystallinity of powder etc. are applied to range by emphatically
The influence wanted, preparation can usually pass through acid-base neutralization reaction.
Summary of the invention
In view of the deficiencies of the prior art, the purpose of the present invention is to provide a kind of tricalcium phosphate modified phosphate doping polyphenyl simultaneously
The preparation method of imidazole type proton exchange membrane.
The purpose of the present invention is achieved through the following technical solutions: a kind of tricalcium phosphate modified phosphate doping polybenzimidazoles
The preparation method of type proton exchange membrane reacts in polyphosphoric acid high temperature using benzimidazole monomer as main component and generates polyphenyl simultaneously
Imidazoles polymer after being dissolved in methanesulfonic acid solution after being crushed, adds nano tricalcium phosphate as modifying agent, passes through knifing machine
Mixed solution strikes off to after volatilizing superfluous methanesulfonic acid solution under rear high temperature that yellowish-brown is made according to die size is transparent or impermeable
Bright film comprising the steps of:
(1) preparation of tricalcium phosphate:
Nano tricalcium phosphate is synthesized referring to ethanol-water system, the method is as follows: with a ten thousandth electronic balance, precision weighs Ca respectively
(NO3)2·4H2O and (NH4)2HPO4, the former is dissolved in dehydrated alcohol, the latter is dissolved in deionized water, is stirred in magnetic force
It mixes persistently to stir in device and makes it after completely dissolution, two kinds of solution are uniformly mixed by dropwise addition mode at 40 DEG C, persistently stir 4
Hour, in the process, the pH value of the system is maintained 7.0 or so by way of ammonium hydroxide is added dropwise;After mixing will
Solution moves in baking oven, and 30 DEG C save overnight;It is obtained and is precipitated with centrifuge high speed centrifugation, and rushed with deionized water and dehydrated alcohol
Wash precipitating 3 times, it is therefore an objective to wash away unreacted NO in product3 --And NH4 +Equal inorganic ions, sample resulting after centrifugation is placed on
Dry in 80 DEG C of baking oven, sample is carried out calcination processing after 12 h, parameter setting is as follows: calcination time is 2 hours, temperature
Be 800 DEG C, temperature increase rate be 15 DEG C/per minute, obtain beta-tricalcium phosphate nanometer particle;
(2) polymerization of poly- 2,5- benzimidazole (ABPBI) raw material
By monomer 3,4- diaminobenzoic acid and phosphorus pentoxide are added in three-neck flask, and 20 ml of solvent is added to toluene
Sulfonic acid, synthetic reaction carry out under nitrogen atmosphere, and reactant is heated to 150 DEG C, react 2 hours under mechanical stirring;It will be hot
Reactant solution pour into deionized water make its in threadiness and repeatedly washed with deionized water, then product is immersed in
In 10% NaOH solution of mass fraction, then it is washed with deionized again up to being in neutrality, product is finally put into vacuum drying
110 DEG C drying 24 hours, obtain ABPBI polymer in case;
(3) preparation of proton exchange membrane
ABPBI polymer is dissolved into p-methyl benzenesulfonic acid (TSA), then is proportionally added into the tricresyl phosphate prepared in step (1)
Calcium nanoparticle makes beta-tricalcium phosphate nanometer particle and ABPBI polymer quality ratio 0.25%~5%, stirs 12 hours at room temperature
After obtain uniform viscous solution;Then the viscous solution is poured on glass plate, the gap of knifing machine is adjusted to 0.4mm, with
Then the speed of 10mm/s drawout on glass by viscous solution is transferred quickly in the horizontal heating plate in draught cupboard gradually
200 DEG C are warming up to, until p-methyl benzenesulfonic acid volatilization is complete, hot water is poured into after cooling the temperature to 100 DEG C or so to be facilitated for heating
Film is taken off, film is put into deionized water repeatedly washing and removes remaining MSA in membrane removal, finally by film be put into 110 DEG C it is true
It is 24 hours dry in empty drying box, obtain tricalcium phosphate modified phosphate doping polybenzimidazoles type proton exchange membrane.
Tricalcium phosphate particle size range is 70-200nm in step (1).
When step (3) antimicrobial form couplant configures, tricalcium phosphate and ABPBI mass ratio are 1%, and there is excellent proton to lead
Electric effect.
Different proportion tricalcium phosphate is dispersed into the ontology of ABPBI film by we, obtains proton-conducting and mechanics
The enhancing of performance.
Above-mentioned tricalcium phosphate and the mass ratio of proton exchange membrane are 0.25%, 0.5%, 1%, 2% and 5%.
The characteristics of present invention has preparation method simple, is suitble to large-scale production.
Detailed description of the invention
Attached drawing 1 is homemade beta-tricalcium phosphate nanometer particle SEM photograph used in embodiment;
Attached drawing 2 be the filling that is prepared in embodiment be not filled by the film SEM comparison diagram of beta-tricalcium phosphate nanometer particle;
Attached drawing 3 is the film impedance data comparison diagram prepared in embodiment.
Specific embodiment
Following embodiment is implemented premised on inventive technique scheme, gives detailed embodiment and specific behaviour
Make process, but protection scope of the present invention is not limited to following embodiments.
Embodiment 1
The preparation of proton exchange membrane:
0.4g ABPBI polymer is dissolved into the p-methyl benzenesulfonic acid (TSA) of 6 ml, after stirring 12 hours at room temperature
Uniform viscous solution is obtained, then pours into the viscous solution on glass plate, the gap of knifing machine is adjusted to 0.4mm, with
Then the speed of 10mm/s drawout on glass by viscous solution is transferred quickly in the horizontal heating plate in draught cupboard gradually
200 DEG C are warming up to, until p-methyl benzenesulfonic acid volatilization is complete, hot water is poured into after cooling the temperature to 100 DEG C or so can be square for heating
Film being taken off just.Film is put into deionized water repeatedly washing and removes remaining TSA in membrane removal, film is finally put into 110 DEG C
It is 24 hours dry in vacuum oven.
Embodiment 2
A kind of tricalcium phosphate modified phosphate doping polybenzimidazoles type proton exchange membrane, using benzimidazole monomer as main component,
It is reacted in polyphosphoric acid high temperature and generates polybenzimidazole polymer, after being dissolved in methanesulfonic acid solution after being crushed, add nanometer
Tricalcium phosphate is as modifying agent, after the methanesulfonic acid solution that mixed solution is struck off to surplus of volatilizing under rear high temperature by knifing machine, root
The transparent or opaque film of yellowish-brown is made according to die size, prepares according to the following steps:
(1) beta-tricalcium phosphate nanometer particle prepared in
With a ten thousandth electronic balance, precision weighs Ca (NO respectively3)2·4H2O and (NH4)2HPO4, the former is dissolved in anhydrous
In ethyl alcohol, the latter is dissolved in deionized water, is uniformly mixed two kinds of solution by dropwise addition mode at 40 DEG C, is persistently stirred 4
Hour;In the process, the pH value of the system is maintained 7.0 by way of ammonium hydroxide is added dropwise, after mixing by solution
It moves in baking oven, 30 DEG C save overnight, are obtained and are precipitated with centrifuge high speed centrifugation, and is heavy with deionized water and dehydrated alcohol flushing
It forms sediment 3 times, sample resulting after centrifugation is placed in 80 DEG C of baking oven and is dried, sample is subjected to calcination processing after 12 h, obtains phosphorus
Sour tricalcium nanoparticle;
(2) polymerization of poly- 2,5- benzimidazole (ABPBI) raw material
By monomer 3,4- diaminobenzoic acid and phosphorus pentoxide are added in three-neck flask, and 20 ml of solvent is added to toluene
Sulfonic acid, carries out synthetic reaction under nitrogen atmosphere, and reactant is heated to 150oC reacts 2 hours under mechanical stirring, will be hot
Reactant solution pour into deionized water and repeatedly washed with deionized water, product is then immersed in 10% NaOH of mass fraction
In solution, then it is washed with deionized up to being in neutrality, product is put into 110 in vacuum oven again finallyoC is dry
24 hours, obtain ABPBI polymer;
(3) preparation of proton exchange membrane
0.4g ABPBI polymer is dissolved into the TSA of 6 ml, then is proportionally added into the phosphoric acid prepared in step (1)
Tricalcium nanoparticle 0.001g, accounts for about film quality score 0.25%, obtains after stirring 12 hours at room temperature uniform sticky molten
Liquid;Then the viscous solution is poured on glass plate, the gap of knifing machine is adjusted to 0.4mm, it will be sticky with the speed of 10mm/s
Then solution drawout on glass is transferred quickly to gradually be warming up to 200 DEG C in the horizontal heating plate in draught cupboard, heating is straight
Completely to p-methyl benzenesulfonic acid volatilization, hot water is poured into after cooling the temperature to 100 DEG C or so easily to be taken film off.Film is put
Enter repeatedly to wash in deionized water and remove remaining TSA in membrane removal, film is finally put into 110 DEG C of vacuum ovens dry 24
Hour.
As shown in Figure 1, in the SEM photograph of the tricalcium phosphate prepared in step (1), it can be seen that be prepared through coprecipitation
Tricalcium phosphate particle partial size in 70-200nm range, particle is in irregular pattern, and particle surface is smooth.
Embodiment 3
A kind of tricalcium phosphate modified phosphate doping polybenzimidazoles type proton exchange membrane, (1) and (2) step is same as Example 2,
But step (3) additive amount is different.
0.4g ABPBI polymer is dissolved into the TSA of 6 ml, then is proportionally added into preparation in step (1)
Beta-tricalcium phosphate nanometer particle 0.002g accounts for about film quality score 0.5%, obtains after stirring 12 hours at room temperature uniform sticky
Solution;Then the viscous solution is poured on glass plate, the gap of knifing machine is adjusted to 0.4mm, will be glued with the speed of 10mm/s
Then thick solution drawout on glass is transferred quickly to gradually be warming up to 200 DEG C in the horizontal heating plate in draught cupboard, heating
Until p-methyl benzenesulfonic acid volatilization is completely, hot water is poured into after cooling the temperature to 100 DEG C or so easily to be taken film off.It will
Film is put into deionized water repeatedly washing and removes remaining MSA in membrane removal, and finally film is put into 110 DEG C of vacuum ovens and is done
Dry 24 hours.
Embodiment 4
A kind of tricalcium phosphate modified phosphate doping polybenzimidazoles type proton exchange membrane, (1) and (2) step is same as Example 2,
But step (3) additive amount is different.
0.4g ABPBI polymer is dissolved into the TSA of 6 ml, then is proportionally added into preparation in step (1)
Beta-tricalcium phosphate nanometer particle 0.004g accounts for about film quality score 1%, obtains after stirring 12 hours at room temperature uniform sticky molten
Liquid.Then the viscous solution is poured on glass plate, the gap of knifing machine is adjusted to 0.4mm, it will be sticky with the speed of 10mm/s
Then solution drawout on glass is transferred quickly to gradually be warming up to 200 DEG C in the horizontal heating plate in draught cupboard, heating is straight
Completely to p-methyl benzenesulfonic acid volatilization, hot water is poured into after cooling the temperature to 100 DEG C or so easily to be taken film off.Film is put
Enter repeatedly to wash in deionized water and remove remaining TSA in membrane removal, film is finally put into 110 DEG C of vacuum ovens dry 24
Hour.
Embodiment 5
A kind of tricalcium phosphate modified phosphate doping polybenzimidazoles type proton exchange membrane, (1) and (2) step is same as Example 2,
But step (3) additive amount is different.
0.4g ABPBI polymer is dissolved into the TSA of 6 ml, then is proportionally added into preparation in step (1)
Beta-tricalcium phosphate nanometer particle 0.008g accounts for about film quality score 2%, obtains after stirring 12 hours at room temperature uniform sticky molten
Liquid.Then the viscous solution is poured on glass plate, the gap of knifing machine is adjusted to 0.4mm, it will be sticky with the speed of 10mm/s
Then solution drawout on glass is transferred quickly to gradually be warming up to 200 DEG C in the horizontal heating plate in draught cupboard, heating is straight
Completely to p-methyl benzenesulfonic acid volatilization, hot water is poured into after cooling the temperature to 100 DEG C or so easily to be taken film off.Film is put
Enter repeatedly to wash in deionized water and remove remaining TSA in membrane removal, film is finally put into 110 DEG C of vacuum ovens dry 24
Hour.
Embodiment 6
A kind of tricalcium phosphate modified phosphate doping polybenzimidazoles type proton exchange membrane, (1) and (2) step is same as Example 2,
But step (3) additive amount is different.
0.4g ABPBI polymer is dissolved into the MSA of 6 ml, then is proportionally added into preparation in step (1)
Beta-tricalcium phosphate nanometer particle 0.02g accounts for about film quality score 5%, obtains after stirring 12 hours at room temperature uniform sticky molten
Liquid.Then the viscous solution is poured on glass plate, the gap of knifing machine is adjusted to 0.4mm, it will be sticky with the speed of 10mm/s
Then solution drawout on glass is transferred quickly to gradually be warming up to 200 DEG C in the horizontal heating plate in draught cupboard, heating is straight
Completely to p-methyl benzenesulfonic acid volatilization, hot water is poured into after cooling the temperature to 100 DEG C or so easily to be taken film off.Film is put
Enter repeatedly to wash in deionized water and remove remaining MSA in membrane removal, film is finally put into 110 DEG C of vacuum ovens dry 24
Hour.
As shown in left in Figure 2, embodiment 1 is the pure ABPBI film of tricalcium phosphate blank, it can be seen that in film system
Due to the quick volatilization of toluenesulfonic acid during work, gully and protrusion are formd on the surface, and for diameter in 1um or so, surface is aobvious
It is very coarse, right figure embodiment 5 is to be filled with the ABPBI film of tricalcium phosphate, it can be seen that distribution of particles between gully,
Due to particles filled, originally coarse surface becomes slightly smooth.
The film prepared in embodiment is finally cut into the former piece of diameter 1cm, is found through fixture test AC impedance, in
Resistance is reduced because tricalcium phosphate is added, and the testing impedance of embodiment 1, embodiment 4 and embodiment 6 is shown in Fig. 3.Its calculated proton
Conductivity is summarized in table 1, when finding 1% loading, can reach 18.19 mS/cm.
Claims (3)
1. a kind of preparation method of tricalcium phosphate modified phosphate doping polybenzimidazoles type proton exchange membrane, which is characterized in that with
Benzimidazole monomer is main component, reacts in polyphosphoric acid high temperature and generates polybenzimidazole polymer, dissolves after being crushed
After methanesulfonic acid solution, nano tricalcium phosphate is added as modifying agent, mixed solution is struck off by knifing machine and is waved under rear high temperature
After sending out superfluous methanesulfonic acid solution, the transparent or opaque film of yellowish-brown is made according to die size comprising the steps of:
(1) preparation of tricalcium phosphate:
With a ten thousandth electronic balance, precision weighs Ca (NO respectively3)2·4H2O and (NH4)2HPO4, the former is dissolved in anhydrous
In ethyl alcohol, the latter is dissolved in deionized water, is uniformly mixed two kinds of solution by dropwise addition mode at 40 DEG C, is persistently stirred 4
Hour;In the process, the pH value of the system is maintained 7.0 by way of ammonium hydroxide is added dropwise, after mixing by solution
It moves in baking oven, 30 DEG C save overnight, are obtained and are precipitated with centrifuge high speed centrifugation, and is heavy with deionized water and dehydrated alcohol flushing
It forms sediment 3 times, sample resulting after centrifugation is placed in 80 DEG C of baking oven and is dried, sample is subjected to calcination processing after 12 h, obtains phosphorus
Sour tricalcium nanoparticle;
(2) polymerization of poly- 2,5- benzimidazole (ABPBI) raw material
By monomer 3,4- diaminobenzoic acid and phosphorus pentoxide are added in three-neck flask, and 20 ml of solvent is added to toluene
Sulfonic acid, carries out synthetic reaction under nitrogen atmosphere, and reactant is heated to 150oC reacts 2 hours under mechanical stirring, will be hot
Reactant solution pour into deionized water and repeatedly washed with deionized water, product is then immersed in 10% NaOH of mass fraction
In solution, then it is washed with deionized up to being in neutrality, product is put into 110 in vacuum oven again finallyoC is dry
24 hours, obtain ABPBI polymer;
(3) preparation of proton exchange membrane
ABPBI polymer is dissolved into p-methyl benzenesulfonic acid, the beta-tricalcium phosphate nanometer particle prepared in step (1) is added,
Make beta-tricalcium phosphate nanometer particle and ABPBI polymer quality ratio 0.25%~5%, is obtained after stirring 12 hours at room temperature uniformly
Viscous solution, then the viscous solution is poured on glass plate, the gap of knifing machine is adjusted to 0.4mm, with the speed of 10mm/s
Degree drawout on glass by viscous solution, is then transferred quickly to gradually be warming up to 200 in the horizontal heating plate in draught cupboard
DEG C, until p-methyl benzenesulfonic acid volatilization is complete, hot water is poured into after cooling the temperature to 100 DEG C easily to be taken film off, will for heating
Film is put into deionized water repeatedly washing and removes remaining p-methyl benzenesulfonic acid in membrane removal, and film is finally put into 110 DEG C of vacuum ovens
Middle drying 24 hours obtains tricalcium phosphate modified phosphate doping polybenzimidazoles type proton exchange membrane.
2. the preparation side of tricalcium phosphate modified phosphate doping polybenzimidazoles type proton exchange membrane according to claim 1
Method, which is characterized in that the tricalcium phosphate partial size in step (1) is 70-200nm.
3. the preparation side of tricalcium phosphate modified phosphate doping polybenzimidazoles type proton exchange membrane according to claim 1
Method, which is characterized in that in step (3), tricalcium phosphate and ABPBI mass ratio are 1%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910767204.0A CN110380091A (en) | 2019-08-20 | 2019-08-20 | The preparation method of tricalcium phosphate modified phosphate doping polybenzimidazoles type proton exchange membrane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910767204.0A CN110380091A (en) | 2019-08-20 | 2019-08-20 | The preparation method of tricalcium phosphate modified phosphate doping polybenzimidazoles type proton exchange membrane |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110380091A true CN110380091A (en) | 2019-10-25 |
Family
ID=68259979
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910767204.0A Pending CN110380091A (en) | 2019-08-20 | 2019-08-20 | The preparation method of tricalcium phosphate modified phosphate doping polybenzimidazoles type proton exchange membrane |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110380091A (en) |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1649943A (en) * | 2002-02-28 | 2005-08-03 | 斯图加特大学 | Oligomers and polymers containing sulfinate groups and methods for their preparation |
CN1679192A (en) * | 2002-09-20 | 2005-10-05 | 株式会社钟化 | Proton conducting polymer film and method for production thereof |
CN1742402A (en) * | 2002-10-04 | 2006-03-01 | 佩密斯股份有限公司 | Proton-conducting polymer membrane containing polyazole blends, and application thereof in fuel cells |
CN101157763A (en) * | 2007-09-26 | 2008-04-09 | 东北大学 | Method for preparing phosphoric acid-doped polybenzimidazole film using polybenzimidazole-phosphoric acid-water ternary system |
CN101797483A (en) * | 2009-12-10 | 2010-08-11 | 山东东岳神舟新材料有限公司 | Doped and crosslinked multilayer perfluorinated ionic membrane and preparation method thereof |
CN101891955A (en) * | 2010-07-15 | 2010-11-24 | 上海大学 | Preparation method of high temperature resistant BPO4-ABPBI nanocomposite proton exchange membrane for fuel cell |
CN102443183A (en) * | 2011-01-24 | 2012-05-09 | 山东理工大学 | Preparation method of sulfonated cerium phenylphosphate doped polybenzimidazole high temperature proton exchange membrane |
KR20130048754A (en) * | 2013-04-22 | 2013-05-10 | 이재환 | Curable composition |
CN103700873A (en) * | 2013-12-23 | 2014-04-02 | 武汉众宇动力系统科技有限公司 | Inorganic nanoparticle in-situ modified polybenzimidazole derivative proton exchange membrane and preparation method thereof |
CN105883742A (en) * | 2016-04-08 | 2016-08-24 | 武汉理工大学 | Preparation method of nano beta-tricalcium phosphate |
CN109065926A (en) * | 2018-08-06 | 2018-12-21 | 西北工业大学 | Mineralising legal system in situ has machine-Inorganic multilayer compound proton exchange membrane preparation method |
-
2019
- 2019-08-20 CN CN201910767204.0A patent/CN110380091A/en active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1649943A (en) * | 2002-02-28 | 2005-08-03 | 斯图加特大学 | Oligomers and polymers containing sulfinate groups and methods for their preparation |
CN1679192A (en) * | 2002-09-20 | 2005-10-05 | 株式会社钟化 | Proton conducting polymer film and method for production thereof |
CN1742402A (en) * | 2002-10-04 | 2006-03-01 | 佩密斯股份有限公司 | Proton-conducting polymer membrane containing polyazole blends, and application thereof in fuel cells |
CN101157763A (en) * | 2007-09-26 | 2008-04-09 | 东北大学 | Method for preparing phosphoric acid-doped polybenzimidazole film using polybenzimidazole-phosphoric acid-water ternary system |
CN101797483A (en) * | 2009-12-10 | 2010-08-11 | 山东东岳神舟新材料有限公司 | Doped and crosslinked multilayer perfluorinated ionic membrane and preparation method thereof |
CN101891955A (en) * | 2010-07-15 | 2010-11-24 | 上海大学 | Preparation method of high temperature resistant BPO4-ABPBI nanocomposite proton exchange membrane for fuel cell |
CN102443183A (en) * | 2011-01-24 | 2012-05-09 | 山东理工大学 | Preparation method of sulfonated cerium phenylphosphate doped polybenzimidazole high temperature proton exchange membrane |
KR20130048754A (en) * | 2013-04-22 | 2013-05-10 | 이재환 | Curable composition |
CN103700873A (en) * | 2013-12-23 | 2014-04-02 | 武汉众宇动力系统科技有限公司 | Inorganic nanoparticle in-situ modified polybenzimidazole derivative proton exchange membrane and preparation method thereof |
CN105883742A (en) * | 2016-04-08 | 2016-08-24 | 武汉理工大学 | Preparation method of nano beta-tricalcium phosphate |
CN109065926A (en) * | 2018-08-06 | 2018-12-21 | 西北工业大学 | Mineralising legal system in situ has machine-Inorganic multilayer compound proton exchange membrane preparation method |
Non-Patent Citations (2)
Title |
---|
YOUNG-SUN PARK等: "Low methanol permeable and high proton-conducting Nafion/calcium phosphate composite membrane for DMFC", 《SOLID STATE IONICS》 * |
张肖肖,等: "低温燃料电池用聚(2,5-苯并咪唑)/磺化海泡石复合质子交换膜的制备与性能", 《高分子科学与工程》 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Xue et al. | A novel polymer-modified separator for high-performance lithium-ion batteries | |
Wu et al. | Functional composite polymer electrolytes with imidazole modified SiO2 nanoparticles for high-voltage cathode lithium ion batteries | |
CN107459647B (en) | Polyimide type single ion conducting polymer with side chain grafted bis-sulfimide and application thereof | |
CN111430807B (en) | A kind of solid polymer electrolyte and preparation method thereof | |
CN107565159A (en) | A kind of solid union electrolyte and preparation method thereof and positive electrode and negative pole component and rechargeable nonaqueous electrolytic battery | |
CN112216823B (en) | Sodium vanadium fluorophosphate coated cathode material, sodium ion battery and preparation method and application thereof | |
Zhou et al. | Flexible naphthalene-based polyimide nanofiber cathode with hierarchical micro/nanoporous structure for high-performance organic sodium-ion batteries | |
CN105932209A (en) | Ceramic coating diaphragm for lithium ion battery and preparation method thereof | |
CN113839099B (en) | A method for preparing a high-performance all-solid-state lithium-ion battery | |
El-Toony et al. | Casting of poly hydroxybutarate/poly (vinyl alcohol) membranes for proton exchange fuel cells | |
CN116315076A (en) | A kind of solid electrolyte with continuous ion transport path and its preparation method and application | |
CN109742444A (en) | Polymer solid electrolyte, its preparation method and preparation method of lithiated carbon dots | |
Bai et al. | Preparation and electrochemical performance of LiFePO4/C microspheres by a facile and novel co-precipitation | |
CN115064764A (en) | A kind of composite electrolyte material with high conductivity and wide voltage window modified by ceramic filler, preparation method and application | |
Sinirlioglu et al. | Investigation of perfluorinated proton exchange membranes prepared via a facile strategy of chemically combining poly (vinylphosphonic acid) with PVDF by means of poly (glycidyl methacrylate) grafts | |
CN100513467C (en) | Porous gel polyelectrolyte thin film and preparation method thereof | |
CN113346131B (en) | Composite polymer gel solid electrolyte, preparation method thereof and application of lithium metal battery | |
CN110071328A (en) | Cross-linking type modified polyethyleneimine solid electrolyte and its application | |
CN110380091A (en) | The preparation method of tricalcium phosphate modified phosphate doping polybenzimidazoles type proton exchange membrane | |
Zou et al. | Facile preparation of surface-modified polypropylene nanofiber separators with enhanced ionic transport and welding performance for lithium-ion batteries | |
CN105017171A (en) | Preparation methods and applications for diaminebenzoxazole and copolyamide electrolyte of diaminebenzoxazole | |
CN112421122A (en) | Highly ordered lithium battery block polymer electrolyte membrane and preparation method thereof | |
CN103700873A (en) | Inorganic nanoparticle in-situ modified polybenzimidazole derivative proton exchange membrane and preparation method thereof | |
Wang et al. | Squaraine-linked zwitterionic COF modified LLZTO nanoparticles for high performance polymer composite electrolytes in Li–S batteries | |
Song et al. | Polydopamine-boron nitride nanosheet composites with core-shell structures modified PMIA separator for enhanced performance of high-power lithium-ion batteries |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20191025 |