CN110367959A - A kind of blood pressure measuring device based on pulse wave phase difference and pulse wave characteristic parameters - Google Patents
A kind of blood pressure measuring device based on pulse wave phase difference and pulse wave characteristic parameters Download PDFInfo
- Publication number
- CN110367959A CN110367959A CN201910648955.0A CN201910648955A CN110367959A CN 110367959 A CN110367959 A CN 110367959A CN 201910648955 A CN201910648955 A CN 201910648955A CN 110367959 A CN110367959 A CN 110367959A
- Authority
- CN
- China
- Prior art keywords
- pulse wave
- module
- phase difference
- blood pressure
- storage module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000036772 blood pressure Effects 0.000 title claims abstract description 59
- 238000009530 blood pressure measurement Methods 0.000 claims abstract description 40
- 238000000034 method Methods 0.000 claims abstract description 22
- 238000000611 regression analysis Methods 0.000 claims abstract description 22
- 238000005259 measurement Methods 0.000 claims abstract description 21
- 230000008569 process Effects 0.000 claims abstract description 7
- 238000004364 calculation method Methods 0.000 claims description 23
- 238000013500 data storage Methods 0.000 claims description 23
- 230000003750 conditioning effect Effects 0.000 claims description 21
- 238000000605 extraction Methods 0.000 claims description 17
- 238000007781 pre-processing Methods 0.000 claims description 15
- 230000029058 respiratory gaseous exchange Effects 0.000 claims description 14
- 238000006243 chemical reaction Methods 0.000 claims description 9
- 210000002321 radial artery Anatomy 0.000 claims description 9
- 230000035488 systolic blood pressure Effects 0.000 claims description 9
- 230000000747 cardiac effect Effects 0.000 claims description 6
- 238000001914 filtration Methods 0.000 claims description 6
- 238000012545 processing Methods 0.000 claims description 6
- 230000008859 change Effects 0.000 claims description 5
- 239000000284 extract Substances 0.000 claims description 4
- 230000036387 respiratory rate Effects 0.000 claims description 4
- 230000001419 dependent effect Effects 0.000 claims description 3
- 230000035487 diastolic blood pressure Effects 0.000 claims description 3
- 230000007774 longterm Effects 0.000 claims description 3
- 230000035790 physiological processes and functions Effects 0.000 claims description 3
- 230000000284 resting effect Effects 0.000 claims description 3
- 102220162701 rs201262353 Human genes 0.000 claims description 3
- 102220103881 rs201490575 Human genes 0.000 claims description 3
- 230000000630 rising effect Effects 0.000 claims 1
- 238000004458 analytical method Methods 0.000 abstract description 2
- 206010020772 Hypertension Diseases 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000036541 health Effects 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 208000024172 Cardiovascular disease Diseases 0.000 description 2
- 230000004872 arterial blood pressure Effects 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 230000003205 diastolic effect Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 210000002460 smooth muscle Anatomy 0.000 description 2
- 210000001367 artery Anatomy 0.000 description 1
- 230000036996 cardiovascular health Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000013186 photoplethysmography Methods 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 230000002861 ventricular Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0002—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
- A61B5/0004—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by the type of physiological signal transmitted
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/021—Measuring pressure in heart or blood vessels
- A61B5/02108—Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6802—Sensor mounted on worn items
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6813—Specially adapted to be attached to a specific body part
- A61B5/6824—Arm or wrist
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7203—Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7225—Details of analogue processing, e.g. isolation amplifier, gain or sensitivity adjustment, filtering, baseline or drift compensation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Physics & Mathematics (AREA)
- Public Health (AREA)
- Pathology (AREA)
- Signal Processing (AREA)
- Physiology (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Psychiatry (AREA)
- Cardiology (AREA)
- Vascular Medicine (AREA)
- Power Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
Abstract
本发明提出了一种基于脉搏波相位差和脉搏波特征参数的血压测量装置。装置通过设计脉搏波相位差信号采集模块实现了只在人体同一位置放置传感器并同步采集同一位置的脉搏波相位差和其它脉搏波信息,解决了传统上使用脉搏波到达时间测量需要在人体多处附着测量电极获得心电图便携性较差的问题;通过上位机系统实现了控制下位机的采集过程,并且提取脉搏波的不同特征参数,将特征参数、脉搏波相位差和电子血压计数据进行逐步回归分析得到回归方程,后续血压测量便可不用进行逐步回归分析直接利用回归方程和脉搏波相位差信号采集模块采集的脉搏波信息直接得到血压值。该装置可以实现血压的连续测量,并得到丰富的同一位置不同类型脉搏波信息。
The invention proposes a blood pressure measuring device based on pulse wave phase difference and pulse wave characteristic parameters. By designing the pulse wave phase difference signal acquisition module, the device realizes only placing the sensor at the same position of the human body and synchronously collects the pulse wave phase difference and other pulse wave information at the same position, which solves the traditional use of pulse wave arrival time measurement in multiple places on the human body. The portability of the electrocardiogram obtained by attaching the measuring electrodes is poor; the acquisition process of the lower computer is controlled through the upper computer system, and different characteristic parameters of the pulse wave are extracted, and the characteristic parameters, pulse wave phase difference and electronic sphygmomanometer data are gradually regressed The regression equation is obtained through analysis, and subsequent blood pressure measurement can directly use the regression equation and the pulse wave information collected by the pulse wave phase difference signal acquisition module to directly obtain the blood pressure value without stepwise regression analysis. The device can realize continuous measurement of blood pressure, and obtain abundant pulse wave information of different types at the same location.
Description
技术领域:Technical field:
本发明涉及医疗设备健康监护领域,特别涉及到血压检测领域,实现一一种基于脉搏波相位差和脉搏波特征参数的血压测量装置。The invention relates to the field of health monitoring of medical equipment, in particular to the field of blood pressure detection, and realizes a blood pressure measurement device based on pulse wave phase difference and pulse wave characteristic parameters.
背景技术:Background technique:
无创连续血压测量是一种间接测量人体血压的方法,相对于有创测量而言,更加适合在日常生活中进行血压测量。而且在无创连续测量血压时,可以测得丰富的脉搏波信息,对于了解外界和内在因素对血压的影响规律、血管参数评估和心血管疾病的防预,具有重要的科研和临床价值。另外,在中国心血管疾病是影响城乡居民身体健康的头号天敌,而高血压是影响心血管健康的重要部分,根据研究预测显示,我国目前有2.7亿人患有高血压,而大部分人对此并不知情。因此无创连续血压监测的普及对于高血压的控制和提高国民健康水平将产生积极的意义,对无创连续血压监测技术开展研究具有重要的健康应用价值。Non-invasive continuous blood pressure measurement is an indirect method of measuring human blood pressure. Compared with invasive measurement, it is more suitable for blood pressure measurement in daily life. Moreover, when non-invasive and continuous blood pressure is measured, a wealth of pulse wave information can be measured, which has important scientific research and clinical value for understanding the influence of external and internal factors on blood pressure, evaluating vascular parameters and preventing cardiovascular diseases. In addition, in China, cardiovascular disease is the number one natural enemy that affects the health of urban and rural residents, and hypertension is an important part of cardiovascular health. According to research estimates, there are currently 270 million people in my country suffering from high blood pressure, and most people have high blood pressure. This is not known. Therefore, the popularization of non-invasive continuous blood pressure monitoring will have positive significance for the control of hypertension and the improvement of national health, and the research on non-invasive continuous blood pressure monitoring technology has important health application value.
近年来,使用脉搏波到达时间(PAT)进行无创连续血压监测已经很流行。PAT定义为心电图ECG的R波峰值到外围脉搏波峰值点之间的时间差。然而使用这种方法会带来一系列的弊端,首先因为 PAT包含预发射期(PEP),这是由心室机电延迟(VEMD)和等容收缩期决定的。此外,平滑肌(SM)收缩的影响在外周动脉是不可忽视的,这将影响PAT和血压之间的关系。而且,心电图的测量需要至少两个电极放置在人体皮肤表面,电极之间不可避免的需要用导线连接,这将影响测量的方便性。这些缺点限制了无创连续血压测量技术的应用和推广。在最近的研究中,利用脉搏波相位差来进行无创连续血压测量有望改进上述缺点。脉搏波的相位差(PD)是指两种不同种类的脉搏波(如压力脉搏波和光电容积脉搏波),从心室开始传播到同一位置,由于不同脉搏波传播速度的差异,会导致峰值有一个时间差,这个时间差就是脉搏波相位差。而单纯使用脉搏波相位差进行血压测量会产生较大的误差,因此,如果既可以提高无创连续血压测量装置的便携性,减少传感器测量在人体的放置位置,又可以达到提高基于脉搏波相位差测量装置的精确度的目的,可以极大的助力基于脉搏波相位差的无创连续血压测量在血压测量领域的应用,研究成果能够为基于脉搏波相位差和脉搏波特征参数的血压测量提供依据,并形成基于脉搏波相位差和脉搏波特征参数的血压装置,在此基础上建立一种基于脉搏波相位差和脉搏波特征参数的血压测量装置。Noninvasive continuous blood pressure monitoring using pulse wave arrival time (PAT) has become popular in recent years. PAT is defined as the time difference between the peak R wave of the ECG and the peak point of the peripheral pulse wave. However, using this method will bring a series of disadvantages, firstly because the PAT includes the pre-fire period (PEP), which is determined by the ventricular electromechanical delay (VEMD) and the isovolumic systole period. In addition, the effect of smooth muscle (SM) contraction is not negligible in peripheral arteries, which will affect the relationship between PAT and blood pressure. Moreover, the measurement of the electrocardiogram requires at least two electrodes to be placed on the surface of the human skin, and the electrodes must be connected with wires inevitably, which will affect the convenience of measurement. These shortcomings limit the application and promotion of non-invasive continuous blood pressure measurement technology. In recent studies, non-invasive continuous blood pressure measurement using pulse wave phase difference is expected to improve the above shortcomings. The phase difference (PD) of pulse wave refers to two different types of pulse waves (such as pressure pulse wave and photoplethysmography wave), which propagate from the ventricle to the same position. Due to the difference in the propagation speed of different pulse waves, the peak value will be different A time difference, this time difference is the pulse wave phase difference. However, simply using the pulse wave phase difference for blood pressure measurement will produce large errors. Therefore, if the portability of the non-invasive continuous blood pressure measurement device can be improved, the placement of the sensor measurement on the human body can be reduced, and the pulse wave phase difference based on the pulse wave phase difference can be improved. The purpose of the accuracy of the measuring device can greatly facilitate the application of non-invasive continuous blood pressure measurement based on pulse wave phase difference in the field of blood pressure measurement. The research results can provide a basis for blood pressure measurement based on pulse wave phase difference and pulse wave characteristic parameters. A blood pressure device based on pulse wave phase difference and pulse wave characteristic parameters is formed, and a blood pressure measurement device based on pulse wave phase difference and pulse wave characteristic parameters is established on this basis.
针对使用基于PAT原理进行血压测量进行时,需要在人体多处附着测量电极获得心电图,便携性较差和单纯使用脉搏波相位差进行血压测量精度不高的问题,本发明提出一种基于脉搏波相位差和脉搏波特征参数的血压测量装置,旨在减少电极放置在人体的位置,并且提高测量精度,从而提高装置的可便携性和准确性,为基于脉搏波相位差和脉搏波特征参数的血压测量提供依据,并形成基于脉搏波相位差和脉搏波特征参数的血压方法,在此基础上建立基于脉搏波相位差和脉搏波特征参数的血压测量装置,为基于脉搏波相位差的无创连续血压测量推广与应用提供助力。Aiming at the problems of poor portability and low accuracy of blood pressure measurement by simply using the pulse wave phase difference when measuring blood pressure based on the PAT principle, it is necessary to attach measuring electrodes to multiple places on the human body to obtain an electrocardiogram. A blood pressure measurement device based on phase difference and pulse wave characteristic parameters aims to reduce the position of electrodes placed on the human body and improve measurement accuracy, thereby improving the portability and accuracy of the device. It is based on pulse wave phase difference and pulse wave characteristic parameters. Provide the basis for blood pressure measurement, and form a blood pressure method based on pulse wave phase difference and pulse wave characteristic parameters. On this basis, establish a blood pressure measurement device based on pulse wave phase difference and pulse wave characteristic parameters, which is a non-invasive continuous The promotion and application of blood pressure measurement provide assistance.
发明内容:Invention content:
针对使用基于PAT原理进行血压测量进行时,需要在人体多处附着测量电极获得心电图便携性较差和单纯使用脉搏波相位差进行血压测量精度不高的问题,本发明提出一种基于脉搏波相位差和脉搏波特征参数的血压测量装置,旨在减少电极放置在人体的位置,并且提高测量精度,从而提高装置的可便携性和准确性,为基于脉搏波相位差和脉搏波特征参数的血压测量提供依据,并形成基于脉搏波相位差和脉搏波特征参数的血压方法,在此基础上建立基于脉搏波相位差和脉搏波特征参数的血压测量装置,为基于脉搏波相位差的无创连续血压测量推广与应用提供助力。Aiming at the problems of poor portability of electrocardiogram obtained by attaching measurement electrodes to multiple places on the human body when using the PAT principle for blood pressure measurement and low accuracy of blood pressure measurement by simply using the pulse wave phase difference, the present invention proposes a pulse wave phase-based The blood pressure measuring device of difference and pulse wave characteristic parameters aims to reduce the position of electrodes placed on the human body and improve the measurement accuracy, thereby improving the portability and accuracy of the device, providing a blood pressure measurement device based on pulse wave phase difference and pulse wave characteristic parameters Provide a basis for measurement, and form a blood pressure method based on pulse wave phase difference and pulse wave characteristic parameters, on this basis, establish a blood pressure measurement device based on pulse wave phase difference and pulse wave characteristic parameters, which is a non-invasive continuous blood pressure Assist in measurement promotion and application.
一种基于脉搏波相位差和脉搏波特征参数的血压测量装置包括脉搏波相位差信号采集模块、MCU控制模块、上位机系统、电源供电模块;所述的脉搏波相位差信号采集模块与MCU控制模块之间采用导线连接;所述的MCU控制模块和上位机系统之间采用蓝牙连接;所述的电源供电模块采用电线和其余模块连接;所述的脉搏波相位差信号采集模块的目的是同时在人体桡动脉处测得两种不同类型的脉搏波,使信号通过调理电路;所述的MCU控制模块接受来自上位机系统的控制指令,并分别将脉搏波相位差信号采集模块得到的两种不同脉搏波信号进行A/D模数转换,且将转换后的数字信号经蓝牙发送到上位机系统;所述的上位机系统发送控制指令给MCU控制模块,从而控制脉搏波相位差信号采集模块工作。上位机系统还可存储来自所述的脉搏波相位差信号采集模块采集到的脉搏波数据,并且提取出脉搏波相位差、脉搏波特征参数与血压拟合出线性方程;所述的电源供电模块可为其余模块提供稳定的电压源。A blood pressure measurement device based on pulse wave phase difference and pulse wave characteristic parameters includes pulse wave phase difference signal acquisition module, MCU control module, host computer system, power supply module; described pulse wave phase difference signal acquisition module and MCU control The modules are connected by wires; the MCU control module and the upper computer system are connected by bluetooth; the power supply module is connected with other modules by wires; the purpose of the pulse wave phase difference signal acquisition module is to Two different types of pulse waves are measured at the radial artery of the human body, so that the signals pass through the conditioning circuit; Perform A/D analog-to-digital conversion on different pulse wave signals, and send the converted digital signals to the host computer system via Bluetooth; the host computer system sends control instructions to the MCU control module, thereby controlling the pulse wave phase difference signal acquisition module Work. The host computer system can also store the pulse wave data collected from the pulse wave phase difference signal acquisition module, and extract the pulse wave phase difference, pulse wave characteristic parameters and blood pressure to fit a linear equation; the power supply module A stable voltage source can be provided for the rest of the modules.
进一步,所述的脉搏波相位差信号采集模块包括传感器模块和信号调理模块。所述的的传感器模块包括两种不同类型的传感器,可同时在人体桡动脉处测得两种不同类型的脉搏波;优选的,此处两种不同类型的传感器选用光电传感器和压力传感器,两种传感器分别反映的是血液的充盈程度和动脉压力的变化;所述的信号调理模块包括光电脉搏波信号调理电路模块和压力脉搏波调理电路模块,两路脉搏波信号调理电路模块均由前置放大电路、低通滤波电路和二级放大电路组成,作用为实现对检测到的脉搏波信号进行放大,同时滤除外界的高频干扰,并且达到适合A/D转换需要的电压。Further, the pulse wave phase difference signal acquisition module includes a sensor module and a signal conditioning module. The sensor module includes two different types of sensors, which can simultaneously measure two different types of pulse waves at the radial artery of the human body; preferably, the two different types of sensors are photoelectric sensors and pressure sensors. The two sensors respectively reflect the filling degree of blood and the change of arterial pressure; the signal conditioning module includes a photoelectric pulse wave signal conditioning circuit module and a pressure pulse wave signal conditioning circuit module, and the two pulse wave signal conditioning circuit modules are controlled by a front Composed of an amplifier circuit, a low-pass filter circuit and a secondary amplifier circuit, the function is to amplify the detected pulse wave signal, filter out external high-frequency interference, and achieve a voltage suitable for A/D conversion.
进一步,所述的上位机系统发出采集控制指令给所述的MCU控制模块,控制所述的脉搏波相位差信号采集模块采集双路脉搏波;所述的上位机系统包括脉搏波信号预处理模块、脉搏波波形存储模块、特征点提取模块、特征点存储模块、相位差计算模块、相位差存储模块、逐步回归分析模块、电子血压计数据存储模块、回归方程存储模块和血压计算模块。Further, the host computer system sends a collection control command to the MCU control module to control the pulse wave phase difference signal acquisition module to collect two-way pulse waves; the host computer system includes a pulse wave signal preprocessing module , pulse wave waveform storage module, feature point extraction module, feature point storage module, phase difference calculation module, phase difference storage module, stepwise regression analysis module, electronic sphygmomanometer data storage module, regression equation storage module and blood pressure calculation module.
进一步,所述的脉搏波信号预处理模块用于处理来自MCU控制模块的数字脉搏波信号,主要包括剔除特殊信号、数字滤波和去除基线漂移处理,以便获得收到干扰更小的脉搏波信号,为后续提取特征量做准备;所述的脉搏波波形存储模块存储来自脉搏波信号预处理模块处理的两路脉搏波波形信号;所述的特征点提取模块用于提取所述的脉搏波波形存储模块存储的脉搏波波形的特征量;所述的特征点存储模块用于存储所述的特征点提取模块提取的特征量,并与所述的电子血压计数据存储模块存储的电子血压计数据形成一一对应关系;所述的相位差计算模块用于计算从所述的特征点存储模块存储的两路脉搏波主波峰值点之间的相位差;所述的相位差存储模块用于存储从所述的相位差计算模块计算的两路脉搏波主波峰值点之间的相位差,并与所述的电子血压计数据存储模块存储的电子血压计数据形成一一对应关系;所述的逐步回归分析模块分析所述的特征点存储模块存储的特征点和所述的相位差存储模块存储的相位差,分析两者与所述的电子血压计数据存储模块存储的血压值之间的线性关系;所述的回归方程存储模块用于存储逐步回归分析模块获得的回归方程;所述的电子血压计数据存储模块用于存储使用电子血压计测量得到的血压值;所述的血压计算模块用于使用从回归方程存储模块存储的线性方程、从所述的特征点存储模块存储的脉搏波特征点和从所述的相位差存储模块存储的脉搏波相位差值,将后两者数据代入到前者之中,便可测得血压。Further, the pulse wave signal preprocessing module is used to process the digital pulse wave signal from the MCU control module, mainly including eliminating special signals, digital filtering and removing baseline drift processing, so as to obtain pulse wave signals with less interference, Prepare for subsequent feature extraction; the pulse wave waveform storage module stores two pulse wave waveform signals processed by the pulse wave signal preprocessing module; the feature point extraction module is used to extract the pulse wave waveform storage The feature quantity of the pulse waveform stored by the module; the feature point storage module is used to store the feature quantity extracted by the feature point extraction module, and is formed with the electronic sphygmomanometer data stored by the electronic sphygmomanometer data storage module One-to-one correspondence; the phase difference calculation module is used to calculate the phase difference between the two pulse wave main wave peak points stored from the feature point storage module; the phase difference storage module is used to store from The phase difference between the two pulse wave main wave peak points calculated by the phase difference calculation module forms a one-to-one correspondence with the electronic sphygmomanometer data stored by the electronic sphygmomanometer data storage module; the step-by-step The regression analysis module analyzes the feature points stored in the feature point storage module and the phase difference stored in the phase difference storage module, and analyzes the linear relationship between the two and the blood pressure value stored in the electronic sphygmomanometer data storage module The regression equation storage module is used to store the regression equation obtained by the stepwise regression analysis module; the electronic sphygmomanometer data storage module is used to store the blood pressure value measured by the electronic sphygmomanometer; the blood pressure calculation module is used for Using the linear equation stored from the regression equation storage module, the pulse wave feature points stored from the feature point storage module and the pulse wave phase difference value stored from the phase difference storage module, the latter two data are substituted into the former Among them, the blood pressure can be measured.
进一步,所述的脉搏波特征量包括脉搏波收缩期相对时间 T1t=T1/T,收缩期和舒张期的时间比T12=T1/T2,重搏波时间相对时间Tft=Tf/T,脉搏波主峰高度H,降中峡高度h,重搏波高度g,降中峡相对高度Hh=h/H,重搏波相对高度Hg=g/H,收缩期相对面积S1S=S1/(S1+S2),收缩期与舒张期的时间比S12=S1/S2,主峰上升速率V,特征量K值以及每搏心输出量Z。其中Pd为脉搏波波谷点对应值,Ps为脉搏波峰值点对应值,Pm代表脉搏波平均值。其中每搏心输出量Z定义为Z=H(1+T12)。H代表脉搏波主峰高度,T12代表收缩期和舒张期的时间比。Further, the pulse wave characteristic quantity includes pulse wave systolic relative time T1t=T1/T, systolic and diastolic time ratio T12=T1/T2, dicrotic wave time relative time Tft=Tf/T, pulse wave Main peak height H, descending isthmus height h, dicrotic wave height g, descending isthmus relative height Hh=h/H, dicrotic wave relative height Hg=g/H, systolic relative area S1S=S1/(S1+S2 ), the time ratio of systole and diastole S12=S1/S2, the main peak rise rate V, the characteristic value K and the cardiac output per stroke Z. in P d is the value corresponding to the valley point of the pulse wave, P s is the value corresponding to the peak point of the pulse wave, and P m represents the average value of the pulse wave. The cardiac output Z per stroke is defined as Z=H(1+T12). H represents the main peak height of the pulse wave, and T12 represents the time ratio between systole and diastole.
进一步,所述的逐步回归分析可得到基本形式如下所示的方程:Further, the described stepwise regression analysis can obtain the equation shown in the basic form as follows:
y=a0+a1×x1+a2×x2+...+an×xn y=a 0 +a 1 ×x 1 +a 2 ×x 2 +...+a n ×x n
其中,y是因变量,也就是收缩压和舒张压。a0为常数项,a1,a2...an为偏回归系数。x1,x2...xn为自变量,也就是PD和脉搏波特征参数。where y is the dependent variable, namely systolic and diastolic blood pressure. a 0 is a constant term, and a 1 , a 2 ... a n are partial regression coefficients. x 1 , x 2 ... x n are independent variables, that is, characteristic parameters of PD and pulse wave.
本发明进一步提供一种使用本装置的方法,包括以下步骤:The present invention further provides a method for using the device, comprising the following steps:
步骤一:双路不同类型脉搏波的采集和电子血压计的测量Step 1: Acquisition of two different types of pulse waves and measurement of electronic sphygmomanometer
步骤11:将脉搏波相位差信号采集模块佩戴于右手内侧桡动脉上,使用所述的上位机系统发出采集控制指令给所述的MCU控制模块;Step 11: Wear the pulse wave phase difference signal acquisition module on the inner radial artery of the right hand, and use the host computer system to send an acquisition control command to the MCU control module;
步骤12:所述的MCU控制模块控制所述的所述的脉搏波相位差信号采集模块中的传感器模块开始采集双路不同类型脉搏波;Step 12: The MCU control module controls the sensor module in the pulse wave phase difference signal acquisition module to start collecting two different types of pulse waves;
步骤13:通过信号调理电路模块将双路脉搏波信号进行放大和滤波处理,并将处理完的双路不同类型脉搏波信号传输至所述的 MCU控制模块;Step 13: Amplify and filter the two-way pulse wave signal through the signal conditioning circuit module, and transmit the processed two-way pulse wave signal of different types to the MCU control module;
步骤14:所述的MCU控制模块将脉搏波相位差信号采集模块得到的双路脉搏波信号进行A/D模数转换,并将转换后的数字信号经蓝牙发送到上位机系统中的脉搏波信号预处理模块中;Step 14: The MCU control module performs A/D analog-to-digital conversion on the two-way pulse wave signal obtained by the pulse wave phase difference signal acquisition module, and sends the converted digital signal to the pulse wave in the host computer system via Bluetooth. In the signal preprocessing module;
步骤二:双路不同类型脉搏波信号的处理Step 2: Processing of two different types of pulse wave signals
步骤21:使用所述的上位机系统中的脉搏波信号预处理模块处理来自MCU控制模块的数字脉搏波信号,主要包括剔除特殊信号、数字滤波和去除基线漂移处理,并存储于所述的上位机系统中的脉搏波波形存储模块;Step 21: Use the pulse wave signal preprocessing module in the host computer system to process the digital pulse wave signal from the MCU control module, mainly including eliminating special signals, digital filtering and removing baseline drift, and storing in the host Pulse wave waveform storage module in computer system;
步骤22:使用所述的特征点提取模块提取存储于所述的脉搏波波形存储模块中的脉搏波的特征量;Step 22: Use the feature point extraction module to extract the feature quantity of the pulse wave stored in the pulse wave waveform storage module;
步骤23:使用所述的特征点存储模块存储所述的特征点提取模块中的脉搏波特征量,并与所述的电子血压计数据存储模块存储的电子血压计数据形成一一对应关系;Step 23: Use the feature point storage module to store the pulse wave feature quantity in the feature point extraction module, and form a one-to-one correspondence with the electronic sphygmomanometer data stored in the electronic sphygmomanometer data storage module;
步骤24:使用所述的相位差计算模块用于计算从所述的特征点存储模块存储的两路脉搏波主波峰值点之间的相位差;Step 24: using the phase difference calculation module to calculate the phase difference between the two pulse wave main wave peak points stored in the feature point storage module;
步骤25:使用所述的相位差存储模块用于存储所述的相位差计算模块中的相位差数据,并与所述的电子血压计数据存储模块存储的电子血压计数据形成一一对应关系;Step 25: Use the phase difference storage module to store the phase difference data in the phase difference calculation module, and form a one-to-one correspondence with the electronic sphygmomanometer data stored in the electronic sphygmomanometer data storage module;
步骤26:使用所述的逐步回归分析模块用于分析所述的特征点存储模块存储的特征点和所述的相位差存储模块存储的相位差,分析两者与所述的电子血压计数据存储模块存储的血压值之间的线性关系,并将得到的回归方程存储于所述的回归方程存储模块中,以便后续使用。此外,仅在第一次使用本发明时需要使用逐步回归分析模块;Step 26: Use the stepwise regression analysis module to analyze the feature points stored in the feature point storage module and the phase difference stored in the phase difference storage module, and analyze the relationship between the two and the electronic sphygmomanometer data storage The linear relationship between the blood pressure values stored in the module, and the obtained regression equation is stored in the regression equation storage module for subsequent use. Furthermore, the stepwise regression analysis module needs to be used only when using the invention for the first time;
步骤27:使用所述的血压计算模块用于使用从逐步回归分析模块分析出的线性方程、从所述的特征点存储模块存储的脉搏波特征和从所述的相位差存储模块存储的脉搏波相位差值,将后两者数据代入到前者之中,便可在接下来的时间连续测得血压;Step 27: Use the blood pressure calculation module to use the linear equation analyzed from the stepwise regression analysis module, the pulse wave characteristics stored from the feature point storage module and the pulse wave stored from the phase difference storage module By substituting the latter two data into the former, the blood pressure can be continuously measured in the following time;
步骤三:校准Step 3: Calibration
本发明还提供一种校准方法,用于提高使用本装置进行长时间血压连续测量的测量精度,根据回归方程存储模块存储的方程的自变量数量,来决定重复步骤一和步骤21至步骤25的次数,需要重复的次数为自变量数量加一。此外,由于人体血压在一段时间内相对稳定,本发明采用改变呼吸频率的方法,即在使用电子血压计测量血压时改变呼吸频率,来改变人体生理状态,从而在相对较短的时间内尽可能获得更多人体不同的血压及其双路脉搏波数据。The present invention also provides a calibration method, which is used to improve the measurement accuracy of long-term continuous blood pressure measurement using the device, and determines the number of independent variables of the equation stored in the regression equation storage module to determine the number of steps to repeat step 1 and step 21 to step 25. The number of times to be repeated is the number of independent variables plus one. In addition, since the blood pressure of the human body is relatively stable for a period of time, the present invention adopts the method of changing the breathing rate, that is, changing the breathing rate when using an electronic sphygmomanometer to measure the blood pressure, to change the physiological state of the human body, so as to achieve as much as possible in a relatively short period of time. Obtain more different blood pressure and two-way pulse wave data of the human body.
步骤31:在平稳呼吸的状态下,重复步骤21至步骤25;Step 31: Repeat Step 21 to Step 25 in a steady breathing state;
步骤32:休息一分钟后,改变呼吸频率的同时再重复步骤21至步骤25;Step 32: After resting for one minute, repeat steps 21 to 25 while changing the breathing rate;
步骤33:再次休息一分钟,再次改变呼吸频率的同时重复步骤 21至步骤25。直到重复的次数和自变量数量加一相同时为止。Step 33: Rest for another minute and repeat steps 21 to 25 while changing the breathing rate again. Until the number of repetitions is equal to the number of independent variables plus one.
本发明的有益效果如下:The beneficial effects of the present invention are as follows:
1.本发明提出的一种基于脉搏波相位差和脉搏波特征参数的血压测量装置具有便携性强,结构简单和实用价值高等优点,有利于无创连续血压测量技术的推广。1. A blood pressure measurement device based on pulse wave phase difference and pulse wave characteristic parameters proposed by the present invention has the advantages of strong portability, simple structure and high practical value, which is conducive to the promotion of non-invasive continuous blood pressure measurement technology.
2.本发明提出的一种基于脉搏波相位差和脉搏波特征参数的血压测量装置可以同时在同一部位测得两种不同类型的脉搏波,并获取大量脉搏波信息,有利于将来分析不同脉搏波之间的特征差异。2. A blood pressure measurement device based on pulse wave phase difference and pulse wave characteristic parameters proposed by the present invention can simultaneously measure two different types of pulse waves at the same site, and obtain a large amount of pulse wave information, which is beneficial for future analysis of different pulse waves Characteristic differences between waves.
3.本发明提出的一种基于脉搏波相位差和脉搏波特征参数的血压测量装置综合使用了脉搏波相位差和脉搏波特征参数进行血压的计算,有利于提高计算出的血压精度。3. A blood pressure measurement device based on pulse wave phase difference and pulse wave characteristic parameters proposed by the present invention uses pulse wave phase difference and pulse wave characteristic parameters to calculate blood pressure, which is beneficial to improve the accuracy of the calculated blood pressure.
附图说明:Description of drawings:
图1为本发明所述一种基于脉搏波相位差和脉搏波特征参数的血压测量装置示意图Fig. 1 is a schematic diagram of a blood pressure measurement device based on pulse wave phase difference and pulse wave characteristic parameters according to the present invention
图2为本发明所述上位机系统包含的模块示意图Fig. 2 is a schematic diagram of modules included in the upper computer system of the present invention
图3为本发明所述脉搏波相位差信号采集模块包含的模块示意图Fig. 3 is a schematic diagram of modules included in the pulse wave phase difference signal acquisition module of the present invention
图4为本发明所述脉搏波特征量示意图Fig. 4 is a schematic diagram of the pulse wave feature quantity according to the present invention
具体实施方式:Detailed ways:
参照附图,进一步说明本发明:With reference to accompanying drawing, further illustrate the present invention:
针对使用基于PAT原理进行血压测量进行时,需要在人体多处附着测量电极获得心电图便携性较差和单纯使用脉搏波相位差进行血压测量精度不高的问题,本发明提出一种基于脉搏波相位差和脉搏波特征参数的血压测量装置,旨在减少电极放置在人体的位置,并且提高测量精度,从而提高装置的可便携性和准确性,为基于脉搏波相位差和脉搏波特征参数的血压测量提供依据,并形成基于脉搏波相位差和脉搏波特征参数的血压方法,在此基础上建立基于脉搏波相位差和脉搏波特征参数的血压测量装置,为基于脉搏波相位差的无创连续血压测量推广与应用提供助力。Aiming at the problems of poor portability of electrocardiogram obtained by attaching measurement electrodes to multiple places on the human body when using the PAT principle for blood pressure measurement and low accuracy of blood pressure measurement by simply using the pulse wave phase difference, the present invention proposes a pulse wave phase-based The blood pressure measuring device of difference and pulse wave characteristic parameters aims to reduce the position of electrodes placed on the human body and improve the measurement accuracy, thereby improving the portability and accuracy of the device, providing a blood pressure measurement device based on pulse wave phase difference and pulse wave characteristic parameters Provide a basis for measurement, and form a blood pressure method based on pulse wave phase difference and pulse wave characteristic parameters, on this basis, establish a blood pressure measurement device based on pulse wave phase difference and pulse wave characteristic parameters, which is a non-invasive continuous blood pressure Assist in measurement promotion and application.
本发明首先提出一种基于脉搏波相位差信号和脉搏波特征参数的血压测量装置如图1所示,包括脉搏波相位差信号采集模块、MCU 控制模块、上位机系统、电源供电模块;所述的脉搏波相位差信号信号采集模块与MCU控制模块之间采用导线连接;所述的MCU控制模块和上位机系统之间采用蓝牙连接;所述的电源供电模块采用电线和其余模块连接;所述的脉搏波相位差信号信号采集模块的目的是同时在人体桡动脉处测得两种不同类型的脉搏波,使信号通过调理电路;所述的MCU控制模块接受来自上位机系统的控制指令,并分别将脉搏波相位差信号采集模块得到的两种不同脉搏波信号进行A/D模数转换,且将转换后的数字信号经蓝牙发送到上位机系统;所述的上位机系统发送控制指令给MCU控制模块,从而控制脉搏波相位差信号采集模块工作。上位机系统还可存储来自所述的脉搏波相位差信号采集模块采集到的脉搏波数据,并且提取出脉搏波相位差、脉搏波特征参数与血压拟合出线性方程;所述的电源供电模块可为其余模块提供稳定的电压源。The present invention first proposes a blood pressure measurement device based on pulse wave phase difference signal and pulse wave characteristic parameters, as shown in Figure 1, including pulse wave phase difference signal acquisition module, MCU control module, host computer system, power supply module; The pulse wave phase difference signal acquisition module and the MCU control module are connected by wires; the MCU control module and the upper computer system are connected by bluetooth; the power supply module is connected with the remaining modules by wires; The purpose of the pulse wave phase difference signal acquisition module is to measure two different types of pulse waves at the radial artery of the human body at the same time, so that the signals pass through the conditioning circuit; the MCU control module accepts control instructions from the host computer system, and Carry out A/D analog-to-digital conversion to two different pulse wave signals obtained by the pulse wave phase difference signal acquisition module respectively, and send the converted digital signal to the host computer system via bluetooth; the host computer system sends control instructions to The MCU controls the module to control the pulse wave phase difference signal acquisition module to work. The host computer system can also store the pulse wave data collected from the pulse wave phase difference signal acquisition module, and extract the pulse wave phase difference, pulse wave characteristic parameters and blood pressure to fit a linear equation; the power supply module A stable voltage source can be provided for the rest of the modules.
进一步,所述的脉搏波相位差信号采集模块如图3所示,具体包括传感器模块和信号调理模块。所述的的传感器模块包括两种不同类型的传感器,可同时在人体桡动脉处测得两种不同类型的脉搏波;优选的,此处两种不同类型的传感器选用光电传感器和压力传感器,两种传感器分别反映的是血液的充盈程度和动脉压力的变化;所述的信号调理模块包括光电脉搏波信号调理电路模块和压力脉搏波调理电路模块,两路脉搏波信号调理电路模块均由前置放大电路、低通滤波电路和二级放大电路组成,作用为实现对检测到的脉搏波信号进行放大,同时滤除外界的高频干扰,并且达到适合A/D转换需要的电压。Further, the pulse wave phase difference signal acquisition module is shown in FIG. 3 , which specifically includes a sensor module and a signal conditioning module. The sensor module includes two different types of sensors, which can simultaneously measure two different types of pulse waves at the radial artery of the human body; preferably, the two different types of sensors are photoelectric sensors and pressure sensors. The two sensors respectively reflect the filling degree of blood and the change of arterial pressure; the signal conditioning module includes a photoelectric pulse wave signal conditioning circuit module and a pressure pulse wave signal conditioning circuit module, and the two pulse wave signal conditioning circuit modules are controlled by a front Composed of an amplifier circuit, a low-pass filter circuit and a secondary amplifier circuit, the function is to amplify the detected pulse wave signal, filter out external high-frequency interference, and achieve a voltage suitable for A/D conversion.
进一步,所述的上位机系统如图2所示。上位机系统发出采集控制指令给所述的MCU控制模块,控制所述的脉搏波相位差信号采集模块采集双路脉搏波;所述的上位机系统包括脉搏波信号预处理模块、脉搏波波形存储模块、特征点提取模块、特征点存储模块、相位差计算模块、相位差存储模块、逐步回归分析模块、电子血压计数据存储模块、回归方程存储模块和血压计算模块。Further, the host computer system is shown in FIG. 2 . The upper computer system sends acquisition control instructions to the MCU control module to control the pulse wave phase difference signal acquisition module to collect two-way pulse waves; the upper computer system includes a pulse wave signal preprocessing module, a pulse wave waveform storage module, feature point extraction module, feature point storage module, phase difference calculation module, phase difference storage module, stepwise regression analysis module, electronic sphygmomanometer data storage module, regression equation storage module and blood pressure calculation module.
进一步,所述的脉搏波信号预处理模块用于处理来自MCU控制模块的数字脉搏波信号,主要包括剔除特殊信号、数字滤波和去除基线漂移处理,以便获得收到干扰更小的脉搏波信号,为后续提取特征量做准备;所述的脉搏波波形存储模块存储来自脉搏波信号预处理模块处理的两路脉搏波波形信号;所述的特征点提取模块用于提取所述的脉搏波波形存储模块存储的脉搏波波形的特征量;所述的特征点存储模块用于存储所述的特征点提取模块提取的特征量,并与所述的电子血压计数据存储模块存储的电子血压计数据形成一一对应关系;所述的相位差计算模块用于计算从所述的特征点存储模块存储的两路脉搏波主波峰值点之间的相位差;所述的相位差存储模块用于存储从所述的相位差计算模块计算的两路脉搏波主波峰值点之间的相位差,并与所述的电子血压计数据存储模块存储的电子血压计数据形成一一对应关系;所述的逐步回归分析模块分析所述的特征点存储模块存储的特征点和所述的相位差存储模块存储的相位差,分析两者与所述的电子血压计数据存储模块存储的血压值之间的线性关系;所述的回归方程存储模块用于存储逐步回归分析模块获得的回归方程;所述的电子血压计数据存储模块用于存储使用电子血压计测量得到的血压值;所述的血压计算模块用于使用从回归方程存储模块存储的线性方程、从所述的特征点存储模块存储的脉搏波特征点和从所述的相位差存储模块存储的脉搏波相位差值,将后两者数据代入到前者之中,便可测得血压。Further, the pulse wave signal preprocessing module is used to process the digital pulse wave signal from the MCU control module, mainly including eliminating special signals, digital filtering and removing baseline drift processing, so as to obtain pulse wave signals with less interference, Prepare for subsequent feature extraction; the pulse wave waveform storage module stores two pulse wave waveform signals processed by the pulse wave signal preprocessing module; the feature point extraction module is used to extract the pulse wave waveform storage The feature quantity of the pulse waveform stored by the module; the feature point storage module is used to store the feature quantity extracted by the feature point extraction module, and is formed with the electronic sphygmomanometer data stored by the electronic sphygmomanometer data storage module One-to-one correspondence; the phase difference calculation module is used to calculate the phase difference between the two pulse wave main wave peak points stored from the feature point storage module; the phase difference storage module is used to store from The phase difference between the two pulse wave main wave peak points calculated by the phase difference calculation module forms a one-to-one correspondence with the electronic sphygmomanometer data stored by the electronic sphygmomanometer data storage module; the step-by-step The regression analysis module analyzes the feature points stored in the feature point storage module and the phase difference stored in the phase difference storage module, and analyzes the linear relationship between the two and the blood pressure value stored in the electronic sphygmomanometer data storage module The regression equation storage module is used to store the regression equation obtained by the stepwise regression analysis module; the electronic sphygmomanometer data storage module is used to store the blood pressure value measured by the electronic sphygmomanometer; the blood pressure calculation module is used for Using the linear equation stored from the regression equation storage module, the pulse wave feature points stored from the feature point storage module and the pulse wave phase difference value stored from the phase difference storage module, the latter two data are substituted into the former Among them, the blood pressure can be measured.
进一步,所述的脉搏波特征量如图4所示,包括脉搏波收缩期相对时间T1t=T1/T,收缩期和舒张期的时间比T12=T1/T2,重搏波时间相对时间Tft=Tf/T,脉搏波主峰高度H,降中峡高度h,重搏波高度g,降中峡相对高度Hh=h/H,重搏波相对高度Hg=g/H,收缩期相对面积S1S=S1/(S1+S2),收缩期与舒张期的时间比S12=S1/S2,主峰上升速率V=CC’/BC’,特征量K值以及每搏心输出量Z。其中Pd为脉搏波波谷点对应值,为图4中的B点的纵坐标, Ps为脉搏波峰值点对应值,为图4中所示的C点的纵坐标,Pm代表平均值,是从图4中B到B’的积分值除以该周期得到的值。其中每搏心输出量Z定义为Z=H(1+T12)。H代表脉搏波主峰高度, T12代表收缩期和舒张期的时间比。Further, the pulse wave feature quantity is shown in Figure 4, including pulse wave systolic relative time T1t=T1/T, systolic and diastolic time ratio T12=T1/T2, dicrotic wave time relative time Tft= Tf/T, pulse wave main peak height H, descending isthmus height h, dicrotic wave height g, descending isthmus relative height Hh=h/H, dicrotic wave relative height Hg=g/H, systolic relative area S1S= S1/(S1+S2), time ratio of systole and diastole S12=S1/S2, main peak rise rate V=CC'/BC', characteristic value K and cardiac output per stroke Z. in P d is the corresponding value of the pulse wave trough point, which is the ordinate of the B point in Fig. 4, and P s is the corresponding value of the pulse wave peak point, which is the ordinate of the C point shown in Fig. 4, and P m represents the average value, is the value obtained by dividing the integral value from B to B' in Figure 4 by the period. The cardiac output Z per stroke is defined as Z=H(1+T12). H represents the main peak height of the pulse wave, and T12 represents the time ratio between systole and diastole.
进一步,所述的逐步回归分析可得到基本形式如下所示的方程:Further, the described stepwise regression analysis can obtain the equation shown in the basic form as follows:
y=a0+a1×x1+a2×x2+...+an×xn y=a 0 +a 1 ×x 1 +a 2 ×x 2 +...+a n ×x n
其中,y是因变量,也就是收缩压和舒张压。a0为常数项,a1,a2...an为偏回归系数。x1,x2...xn为自变量,也就是PD和脉搏波特征参数。where y is the dependent variable, namely systolic and diastolic blood pressure. a 0 is a constant term, and a 1 , a 2 ... a n are partial regression coefficients. x 1 , x 2 ... x n are independent variables, that is, characteristic parameters of PD and pulse wave.
本发明进一步提供一种使用本装置的方法,包括以下步骤:The present invention further provides a method for using the device, comprising the following steps:
步骤一:双路不同类型脉搏波的采集和电子血压计的测量Step 1: Acquisition of two different types of pulse waves and measurement of electronic sphygmomanometer
步骤11:将脉搏波相位差采集模块佩戴于右手内侧桡动脉上,使用所述的上位机系统发出采集控制指令给所述的MCU控制模块;Step 11: Wear the pulse wave phase difference acquisition module on the medial radial artery of the right hand, and use the host computer system to send an acquisition control command to the MCU control module;
步骤12:所述的MCU控制模块控制所述的所述的脉搏波相位差采集模块中的传感器模块开始采集双路不同类型脉搏波;Step 12: the MCU control module controls the sensor module in the pulse wave phase difference acquisition module to start collecting two different types of pulse waves;
步骤13:通过信号调理电路模块将双路脉搏波信号进行放大和滤波处理,并将处理完的双路不同类型脉搏波信号传输至所述的 MCU控制模块;Step 13: Amplify and filter the two-way pulse wave signal through the signal conditioning circuit module, and transmit the processed two-way pulse wave signal of different types to the MCU control module;
步骤14:所述的MCU控制模块将脉搏波相位差采集模块得到的双路脉搏波信号进行A/D模数转换,并将转换后的数字信号经蓝牙发送到上位机系统中的脉搏波信号预处理模块中;Step 14: The MCU control module performs A/D analog-to-digital conversion on the two-way pulse wave signal obtained by the pulse wave phase difference acquisition module, and sends the converted digital signal to the pulse wave signal in the host computer system via Bluetooth In the preprocessing module;
步骤二:双路不同类型脉搏波信号的处理Step 2: Processing of two different types of pulse wave signals
步骤21:使用所述的上位机系统中的脉搏波信号预处理模块处理来自MCU控制模块的数字脉搏波信号,主要包括剔除特殊信号、数字滤波和去除基线漂移处理,并存储于所述的上位机系统中的脉搏波波形存储模块;Step 21: Use the pulse wave signal preprocessing module in the host computer system to process the digital pulse wave signal from the MCU control module, mainly including eliminating special signals, digital filtering and removing baseline drift, and storing in the host Pulse wave waveform storage module in computer system;
步骤22:使用所述的特征点提取模块提取存储于所述的脉搏波波形存储模块中的脉搏波的特征量;Step 22: Use the feature point extraction module to extract the feature quantity of the pulse wave stored in the pulse wave waveform storage module;
步骤23:使用所述的特征点存储模块存储所述的特征点提取模块中的脉搏波特征量,并与所述的电子血压计数据存储模块存储的电子血压计数据形成一一对应关系;Step 23: Use the feature point storage module to store the pulse wave feature quantity in the feature point extraction module, and form a one-to-one correspondence with the electronic sphygmomanometer data stored in the electronic sphygmomanometer data storage module;
步骤24:使用所述的相位差计算模块用于计算从所述的特征点存储模块存储的两路脉搏波主波峰值点之间的相位差;Step 24: using the phase difference calculation module to calculate the phase difference between the two pulse wave main wave peak points stored in the feature point storage module;
步骤25:使用所述的相位差存储模块用于存储所述的相位差计算模块中的相位差数据,并与所述的电子血压计数据存储模块存储的电子血压计数据形成一一对应关系;Step 25: Use the phase difference storage module to store the phase difference data in the phase difference calculation module, and form a one-to-one correspondence with the electronic sphygmomanometer data stored in the electronic sphygmomanometer data storage module;
步骤26:使用所述的逐步回归分析模块用于分析所述的特征点存储模块存储的特征点和所述的相位差存储模块存储的相位差,分析两者与所述的电子血压计数据存储模块存储的血压值之间的线性关系,并将得到的回归方程存储于所述的回归方程存储模块中,以便后续使用。此外,仅在第一次使用本发明时需要使用逐步回归分析模块;Step 26: Use the stepwise regression analysis module to analyze the feature points stored in the feature point storage module and the phase difference stored in the phase difference storage module, and analyze the relationship between the two and the electronic sphygmomanometer data storage The linear relationship between the blood pressure values stored in the module, and the obtained regression equation is stored in the regression equation storage module for subsequent use. Furthermore, the stepwise regression analysis module needs to be used only when using the invention for the first time;
步骤27:使用所述的血压计算模块用于使用从逐步回归分析模块分析出的线性方程、从所述的特征点存储模块存储的脉搏波特征和从所述的相位差存储模块存储的脉搏波相位差值,将后两者数据代入到前者之中,便可在接下来的时间连续测得血压;Step 27: Use the blood pressure calculation module to use the linear equation analyzed from the stepwise regression analysis module, the pulse wave characteristics stored from the feature point storage module and the pulse wave stored from the phase difference storage module By substituting the latter two data into the former, the blood pressure can be continuously measured in the following time;
步骤三:校准Step 3: Calibration
本发明还提供一种校准方法,用于提高使用本装置进行长时间血压连续测量的测量精度,根据回归方程存储模块存储的方程的自变量数量,来决定重复步骤一和步骤21至步骤25的次数,需要重复的次数为自变量数量加一。此外,由于人体血压在一段时间内相对稳定,本发明采用改变呼吸频率的方法,即在使用电子血压计测量血压时改变呼吸频率,来改变人体生理状态,从而在相对较短的时间内尽可能获得更多人体不同的血压及其双路脉搏波数据;The present invention also provides a calibration method, which is used to improve the measurement accuracy of long-term continuous blood pressure measurement using the device, and determines the number of independent variables of the equation stored in the regression equation storage module to determine the number of steps to repeat step 1 and step 21 to step 25. The number of times to be repeated is the number of independent variables plus one. In addition, since the blood pressure of the human body is relatively stable for a period of time, the present invention adopts the method of changing the breathing rate, that is, changing the breathing rate when using an electronic sphygmomanometer to measure the blood pressure, to change the physiological state of the human body, so as to achieve as much as possible in a relatively short period of time. Obtain more different blood pressure and two-way pulse wave data of the human body;
步骤31:在平稳呼吸的状态下,重复步骤21至步骤25;Step 31: Repeat Step 21 to Step 25 in a steady breathing state;
步骤32:休息一分钟后,改变呼吸频率的同时再重复步骤21至步骤25;Step 32: After resting for one minute, repeat steps 21 to 25 while changing the breathing rate;
步骤33:再次休息一分钟,再次改变呼吸频率的同时重复步骤 21至步骤25。直到重复的次数和自变量数量加一相同时为止。Step 33: Rest for another minute and repeat steps 21 to 25 while changing the breathing rate again. Until the number of repetitions is equal to the number of independent variables plus one.
示例地,若得到的回归方程为y=a0+a1×PD+a2×K,在平稳呼吸状态下使用电子血压计测得的收缩压为110mmHg,收缩压为 76mmHg,使用本发明的装置测得的PD为50ms,使用本发明的装置测得的K为0.54,则可得到For example, if the obtained regression equation is y=a 0 +a 1 ×PD+a 2 ×K, the systolic blood pressure measured by an electronic sphygmomanometer in a steady breathing state is 110mmHg, and the systolic blood pressure is 76mmHg. The PD measured by the device is 50ms, and the K measured using the device of the present invention is 0.54, then it can be obtained
110=a0+a1×50+a2×0.54110=a 0 +a 1 ×50+a 2 ×0.54
76=a0 *+a1 *×50+a2 *×0.5476=a 0 * +a 1 * ×50+a 2 * ×0.54
若第一次改变呼吸频率后使用电子血压计测得的收缩压为 120mmHg,收缩压为80mmHg,使用本发明的装置测得的PD为46ms,使用本发明的装置测得的K为0.50,则可得到If the systolic blood pressure measured by the electronic sphygmomanometer is 120mmHg after changing the respiratory rate for the first time, the systolic blood pressure is 80mmHg, the PD measured by the device of the present invention is 46ms, and the K measured by the device of the present invention is 0.50, then available
120=a0+a1×46+a2×0.50120=a 0 +a 1 ×46+a 2 ×0.50
80=a0 *+a1 *×46+a2 *×0.5080=a 0 * +a 1 * ×46+a 2 * ×0.50
若第二次改变呼吸频率后使用电子血压计测得的收缩压为 130mmHg,收缩压为86mmHg,使用本发明的装置测得的PD为40ms,使用本发明的装置测得的K为0.45,则可得到If the systolic blood pressure measured by the electronic sphygmomanometer is 130mmHg after changing the respiratory rate for the second time, the systolic blood pressure is 86mmHg, the PD measured by the device of the present invention is 40ms, and the K measured by the device of the present invention is 0.45, then available
130=a0+a1×40+a2×0.45130=a 0 +a 1 ×40+a 2 ×0.45
86=a0 *+a1 *×40+a2 *×0.4586=a 0 * +a 1 * ×40+a 2 * ×0.45
通过求解以上方程便可求出各个系数。Each coefficient can be obtained by solving the above equation.
本说明书实施例所述的内容仅仅是对发明构思的实现形式的列举,本发明的保护范围不应当被视为仅限于实施例所陈述的具体形式,本发明的保护范围也及于本领域技术人员根据本发明构思所能够想到的等同技术手段。The content described in the embodiments of this specification is only an enumeration of the implementation forms of the inventive concept. The protection scope of the present invention should not be regarded as limited to the specific forms stated in the embodiments. Equivalent technical means that a person can think of based on the concept of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910648955.0A CN110367959A (en) | 2019-07-18 | 2019-07-18 | A kind of blood pressure measuring device based on pulse wave phase difference and pulse wave characteristic parameters |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910648955.0A CN110367959A (en) | 2019-07-18 | 2019-07-18 | A kind of blood pressure measuring device based on pulse wave phase difference and pulse wave characteristic parameters |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110367959A true CN110367959A (en) | 2019-10-25 |
Family
ID=68253814
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910648955.0A Pending CN110367959A (en) | 2019-07-18 | 2019-07-18 | A kind of blood pressure measuring device based on pulse wave phase difference and pulse wave characteristic parameters |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110367959A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112155514A (en) * | 2020-10-14 | 2021-01-01 | 太原理工大学 | Non-contact intraocular pressure measuring method based on pulse bioelectricity detection |
CN113171065A (en) * | 2021-04-27 | 2021-07-27 | 湖南海度智能科技有限公司 | Novel wrist formula blood pressure measurement wrist-watch |
CN114305358A (en) * | 2021-02-24 | 2022-04-12 | 心永(北京)科技有限公司 | Calibration method and device of blood pressure measurement model, computer equipment and storage medium |
CN116098597A (en) * | 2022-12-28 | 2023-05-12 | 佳禾智能科技股份有限公司 | PEP-based continuous blood pressure estimation method |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0750878A1 (en) * | 1995-01-17 | 1997-01-02 | Colin Corporation | Blood pressure monitor |
US20040167414A1 (en) * | 2002-12-05 | 2004-08-26 | Omron Healthcare Co., Ltd. | Pulse wave monitoring device |
CN1849998A (en) * | 2006-05-26 | 2006-10-25 | 中国人民解放军空军航空医学研究所 | Method and apparatus for continuously measuring blood pressure |
CN103099610A (en) * | 2011-11-11 | 2013-05-15 | 杭州电子科技大学 | Ambulatory blood pressure measuring device and method based on pulse wave transmission time difference of left brachial artery and right brachial artery |
CN103637788A (en) * | 2013-12-02 | 2014-03-19 | 清华大学 | Real-time blood pressure measuring device |
CN103637787A (en) * | 2013-12-02 | 2014-03-19 | 清华大学 | Real-time blood pressure measuring device and method for measuring pulse wave transmission time difference in real time |
CN104116503A (en) * | 2014-07-16 | 2014-10-29 | 华中科技大学 | Noninvasive continuous blood pressure measuring method and device |
CN105877723A (en) * | 2016-06-22 | 2016-08-24 | 中国科学院苏州生物医学工程技术研究所 | Noninvasive continuous blood pressure measuring device |
US20160353998A1 (en) * | 2015-06-02 | 2016-12-08 | National Central University | Apparatus and method for noninvasive and cuffless blood pressure measurement |
CN107157461A (en) * | 2017-07-06 | 2017-09-15 | 中国科学院合肥物质科学研究院 | Noninvasive continuous BP measurement method based on photoplethysmographic |
CN107669256A (en) * | 2017-11-13 | 2018-02-09 | 深圳先进技术研究院 | Measuring method, the device and system of continuous blood pressure |
-
2019
- 2019-07-18 CN CN201910648955.0A patent/CN110367959A/en active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0750878A1 (en) * | 1995-01-17 | 1997-01-02 | Colin Corporation | Blood pressure monitor |
US20040167414A1 (en) * | 2002-12-05 | 2004-08-26 | Omron Healthcare Co., Ltd. | Pulse wave monitoring device |
CN1849998A (en) * | 2006-05-26 | 2006-10-25 | 中国人民解放军空军航空医学研究所 | Method and apparatus for continuously measuring blood pressure |
CN103099610A (en) * | 2011-11-11 | 2013-05-15 | 杭州电子科技大学 | Ambulatory blood pressure measuring device and method based on pulse wave transmission time difference of left brachial artery and right brachial artery |
CN103637788A (en) * | 2013-12-02 | 2014-03-19 | 清华大学 | Real-time blood pressure measuring device |
CN103637787A (en) * | 2013-12-02 | 2014-03-19 | 清华大学 | Real-time blood pressure measuring device and method for measuring pulse wave transmission time difference in real time |
CN104116503A (en) * | 2014-07-16 | 2014-10-29 | 华中科技大学 | Noninvasive continuous blood pressure measuring method and device |
US20160353998A1 (en) * | 2015-06-02 | 2016-12-08 | National Central University | Apparatus and method for noninvasive and cuffless blood pressure measurement |
CN105877723A (en) * | 2016-06-22 | 2016-08-24 | 中国科学院苏州生物医学工程技术研究所 | Noninvasive continuous blood pressure measuring device |
CN107157461A (en) * | 2017-07-06 | 2017-09-15 | 中国科学院合肥物质科学研究院 | Noninvasive continuous BP measurement method based on photoplethysmographic |
CN107669256A (en) * | 2017-11-13 | 2018-02-09 | 深圳先进技术研究院 | Measuring method, the device and system of continuous blood pressure |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112155514A (en) * | 2020-10-14 | 2021-01-01 | 太原理工大学 | Non-contact intraocular pressure measuring method based on pulse bioelectricity detection |
CN114305358A (en) * | 2021-02-24 | 2022-04-12 | 心永(北京)科技有限公司 | Calibration method and device of blood pressure measurement model, computer equipment and storage medium |
CN113171065A (en) * | 2021-04-27 | 2021-07-27 | 湖南海度智能科技有限公司 | Novel wrist formula blood pressure measurement wrist-watch |
CN116098597A (en) * | 2022-12-28 | 2023-05-12 | 佳禾智能科技股份有限公司 | PEP-based continuous blood pressure estimation method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101518439B (en) | Cardiac function detecting system based on cardiac sound and electrocardiogram | |
CN110367959A (en) | A kind of blood pressure measuring device based on pulse wave phase difference and pulse wave characteristic parameters | |
CN106618537B (en) | Continuous dynamic blood pressure monitoring device and method based on pulse wave conduction | |
CN103190891B (en) | Measurement device and method for pulse wave velocity physiological parameters based on photoelectric plethysmography | |
WO2017206838A1 (en) | Blood pressure measurement instrument | |
CN104116503B (en) | A kind of measurement apparatus of noinvasive continuous blood pressure | |
CN106725396B (en) | Non-invasive beat-to-beat blood pressure measuring device and method based on double pulse waves | |
CN201492415U (en) | Blood vessel health degree detection device | |
CN106264504A (en) | Noninvasive Blood Pressure Measurement System based on finger arteriogram and method | |
CN102755157B (en) | Measuring method of finger tip blood flow rate and measuring instrument thereof | |
CN109512409A (en) | A kind of cardiovascular health assessment device and its application method | |
CN204971245U (en) | Human many parameter monitoring of vital sign system | |
CN113160921A (en) | Construction method and application of digital human cardiovascular system based on hemodynamics | |
CN110236508A (en) | A kind of non-invasive blood pressure continuous monitoring method | |
CN108175387A (en) | A kind of peripheral vascular resistance detection device and detection method based on electrocardio and pulse wave Morphologic Parameters | |
CN110881967A (en) | Non-invasive multi-segment peripheral arterial vessel elastic function detection method and instrument thereof | |
CN112089405A (en) | Pulse wave characteristic parameter measuring and displaying device | |
CN109512410A (en) | A kind of more physiological signal Fusion Features without cuff continuous BP measurement method | |
CN108261193A (en) | A kind of continuous blood pressure measurer and measuring method based on heart impact signal | |
CN207627308U (en) | A kind of ambulatory blood pressure measuring device | |
CN103654747B (en) | The noinvasive harvester of cardiovascular multidate information | |
CN201759550U (en) | Multifunctional arteriosclerosis detecting system | |
Qiu et al. | A wireless wearable sensor patch for the real-time estimation of continuous beat-to-beat blood pressure | |
CN205866733U (en) | There is not continuous blood pressure measuring device of wound | |
WO2018006501A1 (en) | Integrated circuit structure for continuous detection of human blood pressure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20191025 |