[go: up one dir, main page]

CN110346868A - 光电子装置及其阵列 - Google Patents

光电子装置及其阵列 Download PDF

Info

Publication number
CN110346868A
CN110346868A CN201910272084.7A CN201910272084A CN110346868A CN 110346868 A CN110346868 A CN 110346868A CN 201910272084 A CN201910272084 A CN 201910272084A CN 110346868 A CN110346868 A CN 110346868A
Authority
CN
China
Prior art keywords
waveguide
optoelectronic device
curved
optically active
curved waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910272084.7A
Other languages
English (en)
Inventor
A.J.齐尔基
A.麦基
P.斯里尼瓦桑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Composite Semiconductor Technology Global Co Ltd
Lockley Photonics Co Ltd
Original Assignee
Composite Semiconductor Technology Global Co Ltd
Lockley Photonics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Composite Semiconductor Technology Global Co Ltd, Lockley Photonics Co Ltd filed Critical Composite Semiconductor Technology Global Co Ltd
Publication of CN110346868A publication Critical patent/CN110346868A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • G02F1/017Structures with periodic or quasi periodic potential variation, e.g. superlattices, quantum wells
    • G02F1/01708Structures with periodic or quasi periodic potential variation, e.g. superlattices, quantum wells in an optical wavequide structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12004Combinations of two or more optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • G02F1/025Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction in an optical waveguide structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0085Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for modulating the output, i.e. the laser beam is modulated outside the laser cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0265Intensity modulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1003Waveguide having a modified shape along the axis, e.g. branched, curved, tapered, voids
    • H01S5/101Curved waveguide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/12142Modulator
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • G02F1/0155Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction modulating the optical absorption
    • G02F1/0157Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction modulating the optical absorption using electro-absorption effects, e.g. Franz-Keldysh [FK] effect or quantum confined stark effect [QCSE]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/10Materials and properties semiconductor
    • G02F2202/102In×P and alloy
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/70Semiconductor optical amplifier [SOA] used in a device covered by G02F
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34306Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength longer than 1000nm, e.g. InP based 1300 and 1500nm lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/50Amplifier structures not provided for in groups H01S5/02 - H01S5/30

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

一种光电子装置和一种包括多个所述光电子装置的阵列。所述装置包括:光学活性区域,所述光学活性区域具有用于在所述光学活性区域上施加电场的电极排列;第一弯曲波导,所述第一弯曲波导被布置成引导光进入所述光学活性区域中;和第二弯曲波导,所述第二弯曲波导被布置成引导光离开所述光学活性区域;其中所述第一弯曲波导和所述第二弯曲波导是由带隙不同于所述光学活性区域的带隙的材料形成,并且其中由所述第一弯曲波导、所述光学活性区域和所述第二弯曲波导形成的总引导路径是U形的。

Description

光电子装置及其阵列
技术领域
本发明涉及一种具有弯曲波导的高速光电子装置,所述弯曲波导均在同一方向上弯曲。
背景技术
在常规光电子装置中,输入波导将装置的第一边缘上的小平面耦合到光学活性区域。输出波导接着将光学活性区域耦合到装置的第二边缘上的小平面,所述第二边缘整体上与所述第一边缘对置。这是因为将曲率引入到波导中会大大增加由经由波导的传输引起的信号损失。
然而,这些装置更难以混合集成到硅中,并且在呈阵列形式时需要更长的驱动器互连长度,这是因为活性区域不能位于装置的边缘附近。
发明内容
本发明提供一种利用弯曲波导的光电子装置,所述弯曲波导由带隙不同于光学活性区域的材料形成。所述光电子装置可以具有高速光电子部分,并且可以通过短迹线路连接到例如ASIC的电子芯片。较短的迹线能够有利地导致更快的操作。
因此,在第一方面中,本发明提供一种光电子装置,所述光电子装置包括:光学活性区域,所述光学活性区域具有用于在所述光学活性区域上施加电场的电极布置;第一弯曲波导,所述第一弯曲波导被布置成引导光进入所述光学活性区域中;和第二弯曲波导,所述第二弯曲波导被布置成引导光离开所述光学活性区域;其中所述第一弯曲波导和所述第二弯曲波导由带隙不同于所述光学活性区域的带隙的材料形成,并且其中由所述第一弯曲波导、所述光学活性区域和所述第二弯曲波导形成的总引导路径是U形的。换句话说,所述第一弯曲波导、所述第二弯曲波导和所述光学活性材料一起形成波导U形弯道。所述光学活性区域和所述电极布置一起充当高速光电子部分,所述高速光电子部分在所述光学活性区域的活性材料中制造并且位于“U”的底部。
这样,允许所述光学活性区域的所述高速光电子部分位于所述光电子装置的边缘附近,但是保持装置足够大以制造倒装芯片结合。此外,通过将所述光学活性区域从所述弯曲波导(所述弯曲波导可以是无源的)解耦,能够不需要修改所述弯曲波导而使所述光学活性区域的性能达到最优。
所述第一弯曲波导和/或所述第二弯曲波导可以形成为量子阱互混或外延再生长的波导。
对于需要阵列中的多个光电子装置的高密度集成的应用,例如与ASIC的共封装,所述第一弯曲波导与所述第二弯曲波导之间的最大距离可以优选地不大于250 μm。在高密度集成并非必要的应用中,所述最大距离还可以介于100 μm与160 μm之间,或大于250 μm。
所述第一弯曲波导和/或所述第二弯曲波导的曲率半径小于100 μm。所述曲率半径可以介于10 μm与80 μm之间,最优选地介于30 um与80 um之间。
所述第一弯曲波导和所述第二弯曲波导各自弯曲90°的角度。
所述光电子装置还可以包括第一电极和第二电极,所述电极安置在所述光学活性区域的第一侧上并且电连接到所述光学活性区域。所述第一电极可以是信号电极,并且所述第二电极可以是接地电极。所述光电子装置还可以包括第三电极,所述第三电极是第二接地电极。
所述第一弯曲波导和所述第二弯曲波导可以是低损耗无源波导。低损耗可以表示在所述光学活性区域的工作波长下,所述第一弯曲波导和所述第二弯曲波导引起的光学信号衰减比所述光学活性区域引起的光学信号衰减少。
所述第一弯曲波导和/或所述第二弯曲波导可以是深刻蚀波导。深刻蚀可以表示所述波导是板波导(与脊形波导相比)或侧壁刻蚀台阶比所述波导的光模的中心深。所述深刻蚀波导可以由磷化铟形成。
所述光电子装置还可以包括:无源低损耗输入波导,所述无源低损耗输入波导耦合到所述第一弯曲波导或作为所述第一弯曲波导的延续部分提供;和无源低损耗输出波导,所述无源低损耗输出波导耦合到所述第二弯曲波导或作为所述第二弯曲波导的延续部分提供;其中所述输入波导和所述输出波导中的每一者具有邻近于所述光电子装置的第一边缘的末端,和与所述第一弯曲波导和所述第二弯曲波导相同的带隙。上文所描述的所述第一电极和所述第二电极可以邻近于所述光电子装置的不同于所述第一边缘的边缘而安置。
所述光电子装置还可以包括:分布反馈激光器,所述分布反馈激光器耦合到所述第一弯曲波导;和输出波导,所述输出波导耦合到所述第二弯曲波导或作为所述第二弯曲波导的延续部分提供;使得所述光电子装置是电吸收调制激光器。所述分布反馈激光器可以由带隙与所述光学活性区域的所述带隙相同或可具有不同于所述光学活性区域和所述第一和第二弯曲波导的带隙的第三带隙的材料形成。
所述光学活性区域的所述高速光电子部分可以是电吸收调制器。当也包括分布反馈激光器时,所述装置可以是电吸收调制激光器(EML)。所述高速光电子部分尤其还可以是MOS-CAP马赫-曾德(Mach-Zhender)调制器或环形谐振器调制器。
所述第一弯曲波导和所述第二弯曲波导可以由带隙在波长上低于所述光学活性区域的带隙的材料形成。
所述第一弯曲波导和所述第二弯曲波导中的每一者可以采用欧拉(Euler)弯道的形式,能在US 9,778,417 B1中找到欧拉弯道的实例。
在第二方面中,本发明提供一种安置在芯片上的光电子装置的阵列,其中:每个光电子装置如关于所述第一方面所描述地所安排;并且邻近成对的光电子装置的光学活性区域之间的距离不大于250 μm。
每个光电子装置可以具有:输入波导,所述输入波导耦合到每个第一弯曲波导或作为每个第一弯曲波导的延续部分提供;和输出波导,所述输出波导耦合到每个第二弯曲波导或作为每个第二弯曲波导的延续部分提供;其中每一输入波导和每一输出波导具有第一末端,所述第一末端远离其相应光学活性区域并且邻近于所述芯片的同一侧。
每个光电子装置可以具有:分布反馈激光器,所述分布反馈激光器耦合到每个第一弯曲波导;和输出波导,所述输出波导耦合到每个第二弯曲波导或作为每个第二弯曲波导的延续部分提供;使得所述光电子装置是电吸收调制激光器;其中每个输出波导的远离其相应光学活性区域的末端邻近于所述芯片的同一侧。
附图说明
现将参考附图以举例方式来描述本发明的实施方案,在附图中:
图1A至图1C各自示出根据本发明的一实施方案的光电子装置的变体;
图2示出一另外光电子装置,所述装置包括分布反馈激光器(DFB);
图3A和图3B各自示出根据本发明的多个实施方案的其他光电子装置,所述光电子装置包括半导体光放大器(SOA);
图4A和图4B各自示出根据本发明的多个实施方案的另外其他光电子装置,其中这些装置还包括半导体光放大器。
图5示出根据本发明的一实施方案的光电子装置的阵列;并且
图6示出根据本发明的一实施方案的光电子装置的阵列。
具体实施方式
图1A示出光电子装置100。所述装置在III-V半导体芯片或晶片101上形成,并且由例如InGaAsP/InP或InAlGaAs/InP制成。所述装置通常包括光学活性区域102,所述光学活性区域由具有相关联带隙的第一材料结构(例如,InGaAsP或InAlGaAs多量子阱异质结构、InGaAsP或InAlGaAs块体材料)形成。邻近于所述光学活性区域的相反末端的是第一弯曲波导103和第二弯曲波导104。第一弯曲波导103、光学活性区域102和第二弯曲波导104一起形成U形弯道;U形引导光学路径。所述第一弯曲波导和所述第二弯曲波导由带隙不同于所述光学活性区域的带隙的材料结构形成,或经过调整而具有所述材料结构。通过调整特定层中的InGaAsP或InAlGaAs四元材料中的元素的原子比和/或改变多个量子阱异质结构中的量子阱的厚度或材料界面剖面来实现所述不同的带隙。通常使所述波导中的带隙低于所述光学活性区域中的带隙。带隙波长的移位可以为50 nm至100 nm更低,并且在一些实例中可以高达200 nm更低。所述第一弯曲波导和所述第二弯曲波导是无源装置,这是因为所述波导不用于主动地调制通过波导的光学信号。在这个图中示出的实例中,所述弯曲波导具有50 μm或大约50 μm的有效曲率半径。所述弯曲波导可以是互混或再生长的量子阱,以致相对于光学活性区域102改变所述弯曲波导的带隙。所述弯曲波导的弯曲度可以描述为急转弯或欧拉弯曲。这个实例中的弯曲度是90°。
量子阱互混是一种工艺,其中原子形成量子阱并且原子的对应壁垒相互扩散,或其中杂质材料(例如锌或铜,或其合金)由于高温退火而扩散到所述活性区域中。相互扩散能够使用以下方式来实现:经由光吸收诱发无序来完成互混的激光照射;或其他方法,例如植入引入诱发相互扩散的点缺陷的元素,或无杂质扩散方法(如例如Helmy等在1998年7月/8月的IEEE量子电子学专题期刊第4卷第4期第653至660页中公开的)。杂质扩散可以通过如下处理来进行:图案化装置本体的具有多个区的杂质材料的表面,所述杂质材料可以并入载体材料中;然后,升高装置本体温度持续一受控预定时间(例如退火),这可以使杂质材料扩散到光学活性区域(例如量子阱)中;然后,使现有离子或原子从光学活性区域(例如量子阱)外扩散到载体或衬底材料或间隔物层,如例如US 6,719,884 B2中所描述。再生长是一种工艺,其中将现有半导体光学活性材料的一部分刻蚀掉,然后,将具有不同带隙波长(例如具有元素的不同原子比,或不同量子阱厚度)的第二光学活性材料再生长到被刻蚀掉的区域中。再生长可以是外延。
输入波导105将芯片101的边缘109耦合到第一弯曲波导103的一个末端。类似地,输出波导106将第二弯曲波导104耦合到芯片101的同一个边缘109。所述输入波导和所述输出波导是不同于所述第一弯曲波导和所述第二弯曲波导的波导,或作为所述弯曲波导的延续部分提供,但是和弯曲波导103和104具有相同的带隙。所述输入波导和所述输出波导可以耦合到芯片101的边缘109附近的锥形物或模式转换器。
所述装置还包括信号电极107和接地电极108以电驱动所述光学活性区域。在这个实例中,两个电极邻近于所述芯片的第二边缘110而安置,所述第二边缘在与邻近于输入波导和输出波导的边缘109相对的侧上。由于两个电极在芯片的同一边缘上,因此这允许利用短RF迹线的倒装芯片结合,或利用到芯片外驱动器芯片的短线结合长度的线结合。所述装置中的输入波导105与输出波导106之间的距离可以用于确定所述光电子装置的总“宽度”。这个宽度可以小于250 μm,并且可以介于100 μm与160 μm之间。
图1B示出一变体装置,所述装置与图1A的装置的区别在于,额外接地电极111安置在源或信号电极107的与第一接地电极108相对的侧上。除此之外,所述装置等同于图1A中示出的装置。类似地,图1C中示出的装置与图1A中示出的装置的区别在于,接地电极108和源或信号电极107已经调换,使得接地电极108定位成接近第一弯曲波导103,并且源/信号电极107定位成接近第二弯曲波导104。
图2示出替代性装置200,所述装置与上文所讨论的装置100共享许多特征。相似特征由相似附图标记来指示。然而,图2中的装置200含有替代输入波导105 (如上文所讨论)的分布反馈激光器201。所述激光器耦合到第一弯曲波导103,以致提供激光到光学活性区域102。分布反馈激光器201优选地由带隙与所述光学活性区域相同(或基本上相同)的材料形成。可选地,所述分布反馈激光器能够由带隙不同于所述光学活性区域和所述无源波导区域两者的材料形成。尽管未示出,但是装置200中的电极107和108能具有图1A至图1C中的上文所描述的配置中的任一者。
图3A示出替代性装置300A,所述装置与上文所讨论的装置100共享许多特征。相似特征由相似附图标记来指示。光学活性区域102形成高速光电子装置,诸如电吸收调制器EAM。装置300A与图1C中示出的装置100的区别在于,装置300A还包括半导体光放大器(SOA),所述SOA包括另一光学活性区域112、另一接地电极118和另一源电极117。EAM和SOA通常由相同的半导体材料形成,但是在结构和/或组成上可以不同。EAM和SOA均位于U形弯道的底部处,在第一弯曲波导103与第二弯曲波导104之间。
图3B示出替代性装置300B,所述装置与上文关于图3A所论述的装置300A共享许多特征。相似特征再次由相似附图标记来指示。所述装置与图3A的装置的区别在于,所述装置包括耦合到第一弯曲波导103的分布反馈激光器201。所述装置与图2的装置的区别在于,所述装置包括位于U形弯道的底部处、邻近EAM的光学活性区域102的SOA区域。
图4A和图4B展示替代性装置,所述装置与图3A和图3B的装置的区别分别在于,不是位于U形弯道的底部处,SOA位于第二弯曲波导104的相对EAM的第一光学活性区域102的另一侧。换句话说,SOA沿着输出波导106位于U形弯道的腿上。
在上文关于图3A、图3B、图4A以及图4B所描述的实施方案中的每一者中,电极垫107、108、117、118可以在其他位置并且以其他配置定位。DFB垫和SOA垫因此可以定位成远离裸片的边缘。然而,EAM垫是RF垫,并且因此应当定位成接近裸片的边缘。
图3A和图3B示出也处在边缘并且接近EAM的SOA。因此,可存在单一驱动器芯片(DC和RF),但是应注意,波导的间隔相当大。为了减小所述间隔,能够使用例如图4A和图4B的布置,但是在这里,EAM远离SOA,因此,RF (高速)驱动器可以是与DC驱动器/源分开的芯片。
在上述的实施方案中的任一者中,DFB和SOA是正向偏压的,而EAM是反向偏压的。
图5示出安置在单一晶片或芯片上的高速光电子装置100a至100n的阵列500。如可见,所有输入波导和输出波导耦合到芯片的同一边缘,这会利于芯片倒装到主机PIC,因为仅芯片的一侧需要精确对准到主机PIC波导或纤维附接到芯片的仅一侧,并且安装在光学网络中。值得注意的是装置之间的间距501,即邻近光电子装置100a至100n中的相似特征之间的距离。举例来说,光电子装置100a中的输入波导与光电子装置100b中的相应输入波导之间的距离可以被称为间距。所述间距通常小于250 μm。
图6示出安置在单一晶片或芯片上的高速光电子装置200a至200n的替代性阵列600。如可见,所有输出波导耦合到芯片的同一边缘,这会利于芯片倒装到主机PIC,因为仅芯片的一侧需要精确对准到主机PIC波导或纤维附接到芯片的仅一侧,并且安装在光学网络中。值得注意的是装置之间的间距601,即邻近光电子装置200a至200n中的相似特征之间的距离。举例来说,光电子装置200a中的输出波导与光电子装置200b中的相应输出波导之间的距离可以被称为间距。所述间距通常小于250 μm。
尽管未示出,但是如上所述的光电子装置阵列可以包括根据图1A至图1C的至少一个光电子装置,和根据图2的至少一个光电子装置。
尽管已经结合上述的示例性实施方案描述了本发明,但是当给出本公开是,本领域技术人员将了解许多等效的修改和变化。因此,上文陈述的本发明的示例性实施方案被视为说明性而非限制性的。在不背离本发明的精神和范围的情况下,可以对所描述实施方案做出各种改变。
特此以引用的方式并入上文引用的所有参考。
元件符号
100、200 光电子装置
101 晶片/芯片
102 光学活性区域
103 第一弯曲波导
104 第二弯曲波导
105 输入波导
106 输出波导
107、117 源/信号电极
108、118 接地电极
109 芯片的第一边缘
110 芯片的第二边缘
111 额外接地电极
201 分布反馈激光器(DFB)
300、400 阵列
301、401 间距

Claims (25)

1.一种光电子装置,所述光电子装置包括:
光学活性区域,所述光学活性区域具有用于在所述光学活性区域上施加电场的电极布置;
第一弯曲波导,所述第一弯曲波导被布置成引导光进入所述光学活性区域中;以及
第二弯曲波导,所述第二弯曲波导被布置成引导光离开所述光学活性区域;
其中所述第一弯曲波导和所述第二弯曲波导由带隙不同于所述光学活性区域的带隙的材料形成,并且其中由所述第一弯曲波导、所述光学活性区域和所述第二弯曲波导形成的总引导路径是U形的。
2.如权利要求1所述的光电子装置,其中所述第一弯曲波导和/或所述第二弯曲波导形成为量子阱互混或再生长波导。
3.如权利要求1或权利要求2中任一项所述的光电子装置,其中所述第一弯曲波导与所述第二弯曲波导之间的最大距离不大于250 μm。
4.如前述权利要求中任一项所述的光电子装置,其中所述第一弯曲波导和/或所述第二弯曲波导的曲率半径小于100 μm。
5.如前述权利要求中任一项所述的光电子装置,其中所述第一弯曲波导和所述第二弯曲波导各自弯曲90°的角度。
6.如前述权利要求中任一项所述的光电子装置,其中所述电极布置还包括第一电极和第二电极,所述电极安置在所述光学活性区域的第一侧上并且电连接到所述光学活性区域。
7.如权利要求6所述的光电子装置,其中所述第一电极是信号电极,并且所述第二电极是接地电极。
8.如权利要求7所述的光电子装置,所述光电子装置还包括第三电极,所述第三电极是第二接地电极。
9.如权利要求6至8中任一项所述的光电子装置,所述光电子装置被配置成作为电吸收调制器操作。
10.如前述权利要求中任一项所述的光电子装置,其中所述第一弯曲波导和所述第二弯曲波导是低损耗无源波导。
11.如前述权利要求中任一项所述的光电子装置,其中所述第一弯曲波导和/或所述第二弯曲波导是深刻蚀波导。
12.如权利要求11所述的光电子装置,其中所述深刻蚀波导由磷化铟形成。
13.如前述权利要求中任一项所述的光电子装置,所述光电子装置还包括:
输入波导,所述输入波导耦合到所述第一弯曲波导或作为所述第一弯曲波导的延续部分提供;以及
输出波导,所述输出波导耦合到所述第二弯曲波导或作为所述第二弯曲波导的延续部分提供;
其中所述输入波导和所述输出波导中的每一者具有邻近于所述光电子装置的第一边缘的末端。
14.如从属于权利要求6至8中任一项的权利要求13所述的光电子装置,其中所述第一电极和所述第二电极邻近于所述光电子装置的不同于所述第一边缘的边缘而安置。
15.如权利要求1至12中任一项所述的光电子装置,所述光电子装置还包括:
分布反馈激光器,所述分布反馈激光器耦合到所述第一弯曲波导;以及
输出波导,所述输出波导耦合到所述第二弯曲波导或作为所述第二弯曲波导的延续部分提供;
使得所述光电子装置是电吸收调制激光器。
16.如权利要求15所述的光电子装置,其中所述分布反馈激光器由带隙与所述光学活性区域的带隙相同的材料形成。
17.如权利要求15所述的光电子装置,其中所述分布反馈激光器由带隙不同于所述光学活性区域的带隙并且不同于所述第一弯曲波导和所述第二弯曲波导的带隙的材料形成。
18.如前述权利要求中任一项所述的光电子装置,其中所述光学活性区域是电吸收调制器。
19.如前述权利要求中任一项所述的光电子装置,其中所述第一弯曲波导和所述第二弯曲波导由带隙在波长上低于所述光学活性区域的带隙的材料形成。
20.如权利要求9所述的光电子装置,所述光电子装置还包括半导体光放大器(SOA)。
21.如权利要求19所述的光电子装置,其中所述SOA位于所述第一弯曲波导与所述第二弯曲波导之间。
22.如权利要求19所述的光电子装置,其中所述光电子装置包括输出波导,所述输出波导耦合到所述第二弯曲波导或作为所述第二弯曲波导的延续部分提供;并且其中所述SOA位于所述输出波导处。
23.一种安置在芯片上的光电子装置的阵列,其中:
每个光电子装置是如权利要求1至21中任一项所述的光电子装置;并且
邻近成对的光电子装置的光学活性区域之间的距离不大于250 μm。
24.如权利要求23所述的阵列,其中每个光电子装置具有:
输入波导,所述输入波导耦合到每个第一弯曲波导或作为每个第一弯曲波导的延续部分提供;以及
输出波导,所述输出波导耦合到每个第二弯曲波导或作为每个第二弯曲波导的延续部分提供;
其中每一输入波导和每一输出波导具有第一末端,所述第一末端远离其相应光学活性区域并且邻近于所述芯片的同一侧。
25.如权利要求23所述的阵列,其中每个光电子装置具有:
分布反馈激光器,所述分布反馈激光器耦合到每个第一弯曲波导;以及
输出波导,所述输出波导耦合到每个第二弯曲波导或作为每个第二弯曲波导的延续部分提供;
使得所述光电子装置是电吸收调制激光器;
其中每个输出波导的远离其相应光学活性区域的末端邻近于所述芯片的同一侧。
CN201910272084.7A 2018-04-06 2019-04-04 光电子装置及其阵列 Pending CN110346868A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB1805782.8A GB2572641B (en) 2018-04-06 2018-04-06 Optoelectronic device and array thereof
GB1805782.8 2018-04-06

Publications (1)

Publication Number Publication Date
CN110346868A true CN110346868A (zh) 2019-10-18

Family

ID=62202776

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201910272084.7A Pending CN110346868A (zh) 2018-04-06 2019-04-04 光电子装置及其阵列
CN201920454266.1U Active CN210864104U (zh) 2018-04-06 2019-04-04 光电子装置及其阵列

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201920454266.1U Active CN210864104U (zh) 2018-04-06 2019-04-04 光电子装置及其阵列

Country Status (4)

Country Link
US (7) US20190310496A1 (zh)
CN (2) CN110346868A (zh)
GB (1) GB2572641B (zh)
WO (1) WO2019193111A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112713214A (zh) * 2019-10-25 2021-04-27 原子能和替代能源委员会 通过将晶片转移到接收衬底来制造光子芯片的方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11327259B2 (en) * 2017-12-07 2022-05-10 Intel Corporation Integrated circuit package with electro-optical interconnect circuitry
GB2572641B (en) * 2018-04-06 2021-06-02 Rockley Photonics Ltd Optoelectronic device and array thereof
US11480728B2 (en) * 2019-06-12 2022-10-25 Apple Inc. Pixel array implemented on photonic integrated circuit (PIC)
JP7243545B2 (ja) * 2019-09-20 2023-03-22 富士通オプティカルコンポーネンツ株式会社 光増幅器及び光増幅器の試験方法
US20220019021A1 (en) * 2020-07-14 2022-01-20 Denselight Semiconductors Pte Ltd Photonic integrated circuit for amplifying optical signals
WO2022184868A1 (en) * 2021-03-05 2022-09-09 Rockley Photonics Limited Waveguide facet interface
EP4356186A1 (en) * 2021-06-16 2024-04-24 Rockley Photonics Limited Optoelectronic device and array thereof
WO2025013161A1 (ja) * 2023-07-10 2025-01-16 日本電信電話株式会社 半導体光集積素子、半導体光集積素子の製造方法、半導体光装置および半導体光装置の制御方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102338940A (zh) * 2011-08-31 2012-02-01 清华大学 基于环腔的电吸收调制器
US20130016744A1 (en) * 2011-07-13 2013-01-17 Oracle International Corporation Laser source with tunable-grating-waveguide reflections
CN104781708A (zh) * 2012-10-18 2015-07-15 Vttoy技术研究中心 弯曲光波导
CN106164679A (zh) * 2013-12-13 2016-11-23 英特尔公司 光机械惯性传感器
US20170192173A1 (en) * 2016-01-04 2017-07-06 Infinera Corporation Photonic Integrated Circuit Package
US20170194309A1 (en) * 2016-01-04 2017-07-06 Infinera Corporation Photonic integrated circuit package
CN210864104U (zh) * 2018-04-06 2020-06-26 洛克利光子有限公司 光电子装置及其阵列

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51146196A (en) * 1975-06-11 1976-12-15 Hitachi Ltd Diode laser
US4786131A (en) 1987-07-28 1988-11-22 Polaroid Corporation Star coupler
US5212758A (en) 1992-04-10 1993-05-18 At&T Bell Laboratories Planar lens and low order array multiplexer
JPH06313821A (ja) * 1993-04-19 1994-11-08 Siemens Ag オプトエレクトロニク集積回路
EP0645649A3 (de) 1993-09-23 1995-05-17 Siemens Ag Gekrümmter streifenförmiger integriert optischer Wellenleiter.
WO1997011396A1 (en) 1995-09-20 1997-03-27 Philips Electronics N.V. Integrated optical circuit comprising a polarization convertor
JPH1164654A (ja) 1997-08-15 1999-03-05 Nippon Telegr & Teleph Corp <Ntt> 光導波路
GB9813281D0 (en) 1998-06-19 1998-08-19 Bookham Technology Ltd Temperature stable integrated optical device
AUPQ935500A0 (en) 2000-08-11 2000-09-07 Jds Uniphase Pty Ltd Optical waveguide with minimised cladding mode coupling
AU2001281623A1 (en) 2000-08-17 2002-02-25 Mcmaster University Silicon-on-insulator optical waveguide fabrication by local oxidation of silicon
GB2367376B (en) 2000-09-13 2003-04-30 Bookham Technology Plc Rib waveguide device with mode filter
GB0118637D0 (en) 2001-07-31 2001-09-19 Bookham Technology Plc Integrated optic device
US6661556B2 (en) * 2001-08-24 2003-12-09 T-Networks, Inc. Stabilizing electro-absorption modulators (EAM's) performance by maintaining constant absorption with the use of integrated tap couplers
GB2379795B (en) 2001-09-13 2004-02-18 Univ Glasgow Method of manufacturing optical devices and related improvements
EP1436931B1 (en) * 2001-10-09 2005-12-28 Infinera Corporation Digital optical network architecture
GB0129404D0 (en) 2001-12-07 2002-01-30 Blazephotonics Ltd An arrayed-waveguide grating
EP1464997A1 (en) 2003-04-04 2004-10-06 ThreeFive Photonics B.V. Integrated optical device comprising a bend waveguide
US7020371B2 (en) * 2003-05-23 2006-03-28 Metrophotonics Inc. Planar waveguide structure with polarization compensation
JP2006078570A (ja) 2004-09-07 2006-03-23 Nhk Spring Co Ltd 光導波路
JP2006091679A (ja) 2004-09-27 2006-04-06 Nec Corp 光導波路デバイス
US20070153868A1 (en) * 2005-11-14 2007-07-05 Applied Materials, Inc. Legal Department Semiconductor laser
US7599596B1 (en) * 2008-03-13 2009-10-06 Kotura, Inc. Optical receiver for use with range of signal strengths
US8045834B2 (en) 2008-05-19 2011-10-25 California Institute Of Technology Silica-on-silicon waveguides and related fabrication methods
EP2304483B1 (en) 2008-06-23 2016-04-13 Imec Retro-reflective structures
US8131122B2 (en) * 2008-07-26 2012-03-06 Zhejiang University Monolithically integrated multi-directional transceiver
US10105081B2 (en) 2009-09-09 2018-10-23 Indigo Diabetes Nv Implantable sensor
JP2011155103A (ja) * 2010-01-27 2011-08-11 Panasonic Corp 半導体発光素子
JP2012173551A (ja) * 2011-02-22 2012-09-10 Canare Electric Co Ltd 半導体光スイッチチップ及び光スイッチモジュール
JP6342651B2 (ja) 2012-12-06 2018-06-13 アイメックImec 外部影響に対して低感受性の集積フォトニックデバイスおよび感受性低減方法
JP6020190B2 (ja) * 2013-01-21 2016-11-02 セイコーエプソン株式会社 発光装置、スーパールミネッセントダイオード、およびプロジェクター
GB2543122B (en) 2015-11-12 2018-07-18 Rockley Photonics Ltd An optoelectronic component
US9690045B2 (en) 2014-03-31 2017-06-27 Huawei Technologies Co., Ltd. Apparatus and method for a waveguide polarizer comprising a series of bends
EP3167318B1 (en) 2014-07-08 2022-03-02 Universiteit Gent Polarization independent processing in integrated photonics
EP2977801B1 (en) 2014-07-24 2019-11-06 IMEC vzw Integrated grating coupler and power splitter
US10444734B2 (en) * 2014-08-22 2019-10-15 Mentor Graphics Corporation Manufacture of non-rectilinear features
US12199405B2 (en) * 2015-04-29 2025-01-14 Infinera Corporation Photonic integrated circuit including compact lasers with extended tunability
CN104901159B (zh) * 2015-05-27 2018-01-05 中国科学院长春光学精密机械与物理研究所 多波导集成谐振半导体激光器
US9606293B2 (en) 2015-06-29 2017-03-28 Elenion Technologies, Llc Bent taper with varying widths for an optical waveguide
US10838146B2 (en) 2016-06-03 2020-11-17 Rockley Photonics Limited Single mode waveguide with an adiabatic bend
US10488589B2 (en) 2017-02-08 2019-11-26 Rockley Photonics Limited T-shaped arrayed waveguide grating
US10439357B2 (en) * 2017-07-06 2019-10-08 Hewlett Packard Enterprise Development Lp Tunable laser

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130016744A1 (en) * 2011-07-13 2013-01-17 Oracle International Corporation Laser source with tunable-grating-waveguide reflections
CN102338940A (zh) * 2011-08-31 2012-02-01 清华大学 基于环腔的电吸收调制器
CN104781708A (zh) * 2012-10-18 2015-07-15 Vttoy技术研究中心 弯曲光波导
CN106164679A (zh) * 2013-12-13 2016-11-23 英特尔公司 光机械惯性传感器
US20170192173A1 (en) * 2016-01-04 2017-07-06 Infinera Corporation Photonic Integrated Circuit Package
US20170194309A1 (en) * 2016-01-04 2017-07-06 Infinera Corporation Photonic integrated circuit package
CN210864104U (zh) * 2018-04-06 2020-06-26 洛克利光子有限公司 光电子装置及其阵列

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112713214A (zh) * 2019-10-25 2021-04-27 原子能和替代能源委员会 通过将晶片转移到接收衬底来制造光子芯片的方法
CN112713214B (zh) * 2019-10-25 2023-09-15 原子能和替代能源委员会 通过将晶片转移到接收衬底来制造光子芯片的方法

Also Published As

Publication number Publication date
GB2572641A (en) 2019-10-09
US20230359069A1 (en) 2023-11-09
US20210199995A1 (en) 2021-07-01
US20250102838A1 (en) 2025-03-27
US20210080761A1 (en) 2021-03-18
WO2019193111A1 (en) 2019-10-10
CN210864104U (zh) 2020-06-26
US20190310496A1 (en) 2019-10-10
GB2572641B (en) 2021-06-02
GB201805782D0 (en) 2018-05-23
US11681167B2 (en) 2023-06-20
US12099267B2 (en) 2024-09-24
US20210311333A1 (en) 2021-10-07
US20200363663A1 (en) 2020-11-19

Similar Documents

Publication Publication Date Title
CN210864104U (zh) 光电子装置及其阵列
US10826267B2 (en) Surface coupled systems
US8737772B2 (en) Reducing optical loss in an optical modulator using depletion region
KR101594467B1 (ko) 하이브리드 레이저
US8731346B2 (en) Waveguide integration on laser for alignment-tolerant assembly
US20190326729A1 (en) Method for fabricating an elctro-absorption modulated laser and electro-absorption modulated laser
JP2019054107A (ja) 半導体光素子
Jain et al. Integrated hybrid silicon transmitters
CN100533880C (zh) 多级集成光子器件
JP3284994B2 (ja) 半導体光集積素子及びその製造方法
US6917055B2 (en) Optoelectronic component and method for producing an optoelectronic component
WO2005114307A1 (en) Laterally implanted electroabsorption modulated laser
JP2013165201A (ja) 半導体光素子、半導体光モジュール、およびその製造方法
US6931041B2 (en) Integrated semiconductor laser device and method of manufacture thereof
US11934007B2 (en) Assembly of an active semiconductor component and of a silicon-based passive optical component
US20150185582A1 (en) Mask design and method of fabricating a mode converter optical semiconductor device
US20230095386A1 (en) Supermode filtering waveguide emitters
US10725241B2 (en) Asymmetrical spot-size converter and method of manufacturing spot-size converter
JP2011258785A (ja) 光導波路およびそれを用いた光半導体装置
CN114761845B (zh) 用于光子集成电路的波导结构
US20210184421A1 (en) Semiconductor Optical Element
CN115336123A (zh) 电吸收调制激光器
US6937632B2 (en) Integrated semiconductor laser and waveguide device
EP4033618A1 (en) Mach zehnder-modulated lasers
Chen et al. Two stacks of MQW for fabricating high-speed electro-absorption modulator integrated DFB laser

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20191018

WD01 Invention patent application deemed withdrawn after publication