CN110343991B - Antifriction and antiwear self-lubricating coating bearing and preparation method thereof - Google Patents
Antifriction and antiwear self-lubricating coating bearing and preparation method thereof Download PDFInfo
- Publication number
- CN110343991B CN110343991B CN201910511263.1A CN201910511263A CN110343991B CN 110343991 B CN110343991 B CN 110343991B CN 201910511263 A CN201910511263 A CN 201910511263A CN 110343991 B CN110343991 B CN 110343991B
- Authority
- CN
- China
- Prior art keywords
- bearing
- mixed powder
- powder
- silicon nitride
- boron nitride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000576 coating method Methods 0.000 title claims abstract description 22
- 239000011248 coating agent Substances 0.000 title claims abstract description 21
- 238000002360 preparation method Methods 0.000 title claims abstract description 11
- 239000000919 ceramic Substances 0.000 claims abstract description 36
- 229910052581 Si3N4 Inorganic materials 0.000 claims abstract description 35
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims abstract description 35
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims abstract description 34
- 229910052582 BN Inorganic materials 0.000 claims abstract description 32
- 239000000463 material Substances 0.000 claims abstract description 31
- 239000002041 carbon nanotube Substances 0.000 claims abstract description 26
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 25
- 229910021389 graphene Inorganic materials 0.000 claims abstract description 25
- 238000000034 method Methods 0.000 claims abstract description 22
- 238000007750 plasma spraying Methods 0.000 claims abstract description 15
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 7
- 239000010959 steel Substances 0.000 claims abstract description 7
- 239000011812 mixed powder Substances 0.000 claims description 62
- 239000000843 powder Substances 0.000 claims description 49
- 238000005253 cladding Methods 0.000 claims description 31
- 238000005516 engineering process Methods 0.000 claims description 12
- 230000001360 synchronised effect Effects 0.000 claims description 12
- 229910045601 alloy Inorganic materials 0.000 claims description 10
- 239000000956 alloy Substances 0.000 claims description 10
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 4
- 238000004506 ultrasonic cleaning Methods 0.000 claims description 4
- 239000000758 substrate Substances 0.000 claims description 3
- 229910033181 TiB2 Inorganic materials 0.000 claims 5
- 239000011159 matrix material Substances 0.000 claims 2
- 238000011109 contamination Methods 0.000 claims 1
- 239000003921 oil Substances 0.000 claims 1
- 230000001050 lubricating effect Effects 0.000 abstract description 7
- -1 cemented carbide Inorganic materials 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 4
- 229910010413 TiO 2 Inorganic materials 0.000 abstract description 2
- 238000011065 in-situ storage Methods 0.000 abstract description 2
- 229910052710 silicon Inorganic materials 0.000 description 6
- 238000005238 degreasing Methods 0.000 description 3
- 239000000314 lubricant Substances 0.000 description 3
- 238000002203 pretreatment Methods 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000004372 laser cladding Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/06—Metallic material
- C23C4/067—Metallic material containing free particles of non-metal elements, e.g. carbon, silicon, boron, phosphorus or arsenic
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
- C23C4/134—Plasma spraying
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/66—Special parts or details in view of lubrication
- F16C33/6696—Special parts or details in view of lubrication with solids as lubricant, e.g. dry coatings, powder
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Coating By Spraying Or Casting (AREA)
Abstract
本发明公开了一种减摩抗磨自润滑涂层轴承及其制备方法。该轴承基体材料为轴承钢,基体表面依次有硬质合金层、氮化硅陶瓷层、立方氮化硼层组成的梯度涂层,该梯度涂层具有自润滑功效。所述梯度涂层采用等离子体喷涂方法制备。该轴承综合了轴承钢、硬质合金、氮化硅陶瓷、立方氮化硼及梯度涂层的优点,碳纳米管(CNTs)和氮化硼纳米管(BNNTs)的加入提高了涂层硬度、耐磨性及韧性;轴承整体既具有良好的韧性,又具有非常高的硬度和耐磨性能。工作过程中,温度较低时,石墨烯能够起到润滑效果,高温时PbO、Mo和TiB2会发生原位反应,生成具有润滑效应的PbMoO4、TiO2和B2O3,从而减小轴承摩擦磨损,提高轴承寿命。
The invention discloses a friction-reducing and anti-wear self-lubricating coated bearing and a preparation method thereof. The base material of the bearing is bearing steel, and the surface of the base body is sequentially provided with a gradient coating composed of a cemented carbide layer, a silicon nitride ceramic layer and a cubic boron nitride layer, and the gradient coating has self-lubricating effect. The gradient coating is prepared by plasma spraying method. The bearing combines the advantages of bearing steel, cemented carbide, silicon nitride ceramics, cubic boron nitride and gradient coatings. The addition of carbon nanotubes (CNTs) and boron nitride nanotubes (BNNTs) improves the hardness of the coating, Wear resistance and toughness; the bearing as a whole not only has good toughness, but also has very high hardness and wear resistance. During the working process, when the temperature is low, graphene can play a lubricating effect. At high temperature, PbO, Mo and TiB 2 will react in situ to generate PbMoO 4 , TiO 2 and B 2 O 3 with lubricating effect, thereby reducing Bearing friction and wear, improve bearing life.
Description
技术领域technical field
本发明属于轴承制造技术领域,特别涉及了一种减摩抗磨自润滑涂层轴承及其制备方法。The invention belongs to the technical field of bearing manufacturing, and particularly relates to a friction-reducing and anti-wear self-lubricating coated bearing and a preparation method thereof.
背景技术Background technique
轴承是当代机械设备中一种重要零部件,目前使用较多的轴承材料多为金属,金属材料表面硬度相对较低,摩擦系数较大,承载能力较低,磨损比较严重,通常工作过程中需要使用润滑剂;为减小摩擦磨损,近几年开发出一系列新型的自润滑轴承。自润滑轴承是指轴承材料本身具有润滑、减摩功能,可在无润滑液的条件下实现自润滑功效,从而减小轴承表面摩擦与磨损。Bearings are an important part of contemporary machinery and equipment. At present, most of the bearing materials used are metal. The surface hardness of metal materials is relatively low, the friction coefficient is large, the bearing capacity is low, and the wear is relatively serious. Use lubricants; in order to reduce friction and wear, a series of new self-lubricating bearings have been developed in recent years. Self-lubricating bearing means that the bearing material itself has lubricating and anti-friction functions, which can achieve self-lubricating effect without lubricating fluid, thereby reducing friction and wear on the bearing surface.
中国专利“申请号:CN201710541381.8”报道了一种自润滑轴承及其制备方法,通过激光熔覆方法在含铬合金钢轴承基体表面制备出石墨烯/氟化钙/陶瓷自润滑涂层,从而实现轴承本身的自润滑功能。中国专利“申请号:CN201810655679.6”报道了一种填充固化固体润滑材料自润滑轴承及其制备方法,通过在轴承基体表面预先加工出孔,在孔中填充固体润滑剂,经过时效及固化处理,将二者结合成为一个整体作为自润滑轴承。中国专利“申请号:201811564231.X”报道了一种粉末冶金自润滑轴承的制备方法,通过将粉末润滑剂添加至轴承混合粉中,通过冶金烧结制备出自润滑轴承。Chinese patent "Application No.: CN201710541381.8" reports a self-lubricating bearing and its preparation method. A graphene/calcium fluoride/ceramic self-lubricating coating is prepared on the surface of a chromium-containing alloy steel bearing substrate by a laser cladding method. So as to realize the self-lubricating function of the bearing itself. Chinese patent "Application No.: CN201810655679.6" reports a self-lubricating bearing filled with solid lubricating material and a preparation method thereof. The holes are pre-machined on the surface of the bearing base, and the holes are filled with solid lubricant. After aging and curing treatment , combine the two into a whole as a self-lubricating bearing. The Chinese patent "Application No.: 201811564231.X" reports a method for preparing a powder metallurgy self-lubricating bearing. The self-lubricating bearing is prepared by metallurgical sintering by adding a powder lubricant to the bearing mixed powder.
发明内容SUMMARY OF THE INVENTION
发明目的:本发明公开了一种减摩抗磨自润滑涂层轴承及其制备方法,该轴承既具有良好的韧性、高的硬度,又具有自润滑功效,能够减小工作过程中轴承摩擦磨损,提高轴承寿命。Purpose of the invention: The present invention discloses a friction-reducing and anti-wear self-lubricating coated bearing and a preparation method thereof. The bearing not only has good toughness, high hardness, but also has self-lubricating effect, which can reduce the friction and wear of the bearing during the working process. , improve bearing life.
技术方案:本发明的一种减摩抗磨自润滑涂层轴承通过以下方式实现:Technical scheme: a friction-reducing, anti-wear and self-lubricating coated bearing of the present invention is realized in the following ways:
轴承基体材料为轴承钢,基体表面具有硬质合金层、氮化硅陶瓷层和立方氮化硼层组成的梯度自润滑涂层,所述涂层采用等离子体喷涂技术在轴承基体表面依次熔覆硬质合金混合粉、氮化硅陶瓷混合粉和立方氮化硼混合粉制得;硬质合金混合粉中各成分重量百分比为:55-65%WC、5-8%TiC、5-8%Co、1-2%TaN、15-25%Ni60A、2-4%PbO、2-4%Mo、2-4%TiB2、0.5-1.5%BNNTs、0.5-1.5%CNTs、0.5-1.5%石墨烯,各材料的重量百分比之和为100%;氮化硅陶瓷混合粉中各成分重量百分比为:40-60%Si3N4、10-20%ZrO2、15-25%Ni60A、2-5%PbO、2-5%Mo、2-5%TiB2、0.5-2%BNNTs、0.5-2%CNTs、0.5-2%石墨烯,各材料的重量百分比之和为100%;立方氮化硼混合粉中各成分重量百分比为:50-60%CBN、20-30%Ni60A、2-5%PbO、2-5%Mo、2-5%TiB2、0.5-2%BNNTs、0.5-2%CNTs、0.5-2%石墨烯,各材料的重量百分比之和为100%。The bearing base material is bearing steel, and the base surface has a gradient self-lubricating coating composed of a cemented carbide layer, a silicon nitride ceramic layer and a cubic boron nitride layer. The cemented carbide mixed powder, the silicon nitride ceramic mixed powder and the cubic boron nitride mixed powder are prepared; the weight percentages of the components in the cemented carbide mixed powder are: 55-65% WC, 5-8% TiC, 5-8% Co, 1-2% TaN, 15-25% Ni60A, 2-4% PbO, 2-4% Mo, 2-4% TiB 2 , 0.5-1.5% BNNTs, 0.5-1.5% CNTs, 0.5-1.5% graphite alkene, the sum of the weight percentage of each material is 100%; the weight percentage of each component in the silicon nitride ceramic mixed powder is: 40-60% Si 3 N 4 , 10-20% ZrO 2 , 15-25% Ni60A, 2- 5% PbO, 2-5% Mo, 2-5% TiB 2 , 0.5-2% BNNTs, 0.5-2% CNTs, 0.5-2% graphene, the sum of the weight percentages of each material is 100%; cubic nitridation The weight percentages of the components in the boron mixed powder are: 50-60% CBN, 20-30% Ni60A, 2-5% PbO, 2-5% Mo, 2-5% TiB 2 , 0.5-2% BNNTs, 0.5-2 %CNTs, 0.5-2% graphene, the sum of the weight percentages of each material is 100%.
本发明的一种减摩抗磨自润滑涂层轴承,其具体制备步骤为:A kind of anti-friction and anti-wear self-lubricating coated bearing of the present invention, its specific preparation steps are:
(1)前处理:将轴承基体依次放在酒精和丙酮溶液中超声清洗各20-30min,进行去油污处理;(1) Pre-treatment: Put the bearing base in the alcohol and acetone solution for ultrasonic cleaning for 20-30min each, and carry out degreasing treatment;
(2)熔覆硬质合金层:配置硬质合金混合粉料,其主要成分的重量百分比为:55-65%WC、5-8%TiC、5-8%Co、1-2%TaN、15-25%Ni60A、2-4%PbO、2-4%Mo、2-4%TiB2、0.5-1.5%BNNTs、0.5-1.5%CNTs、0.5-1.5%石墨烯,各材料的重量百分比之和为100%;将配制好的硬质合金混合粉料装入送粉器中,调整送粉器送粉速率为10-80g/cm3;采用等离子体喷涂技术将硬质合金混合粉料熔覆在轴承基体表面,熔覆过程采用同步送粉方式进行;等离子体加工参数如下:功率20-80kW,Ar气流量20-80L/min,H2气流量10-60L/min,扫描速度2-50mm/s;(2) Cladding cemented carbide layer: configure cemented carbide mixed powder, the weight percentages of its main components are: 55-65% WC, 5-8% TiC, 5-8% Co, 1-2% TaN, 15-25% Ni60A, 2-4% PbO, 2-4% Mo, 2-4% TiB 2 , 0.5-1.5% BNNTs, 0.5-1.5% CNTs, 0.5-1.5% graphene, the weight percentage of each material and is 100%; put the prepared cemented carbide mixed powder into the powder feeder, adjust the powder feeding rate of the powder feeder to 10-80g/cm 3 ; use plasma spraying technology to melt the cemented carbide mixed powder It is coated on the surface of the bearing base, and the cladding process is carried out by synchronous powder feeding; the plasma processing parameters are as follows: power 20-80kW, Ar gas flow 20-80L/min, H2 gas flow 10-60L/min, scanning speed 2- 50mm/s;
(3)熔覆氮化硅陶瓷层:配置氮化硅陶瓷混合粉料,其主要成分的重量百分比为:40-60%Si3N4、10-20%ZrO2、15-25%Ni60A、2-5%PbO、2-5%Mo、2-5%TiB2、0.5-2%BNNTs、0.5-2%CNTs、0.5-2%石墨烯,各材料的重量百分比之和为100%;将配制好的氮化硅陶瓷混合粉料装入送粉器中,调整送粉器送粉速率为10-80g/cm3;采用等离子体喷涂技术将氮化硅陶瓷混合粉料熔覆在硬质合金层表面,熔覆过程采用同步送粉方式进行;等离子体加工参数如下:功率20-80kW,Ar气流量20-80L/min,H2气流量10-60L/min,扫描速度2-50mm/s;(3) Cladding silicon nitride ceramic layer: configure silicon nitride ceramic mixed powder, the weight percentages of its main components are: 40-60% Si 3 N 4 , 10-20% ZrO 2 , 15-25% Ni60A, 2-5% PbO, 2-5% Mo, 2-5% TiB 2 , 0.5-2% BNNTs, 0.5-2% CNTs, 0.5-2% graphene, the sum of the weight percentages of each material is 100%; The prepared silicon nitride ceramic mixed powder is loaded into the powder feeder, and the powder feeding rate of the powder feeder is adjusted to be 10-80 g/cm 3 ; the silicon nitride ceramic mixed powder is clad on the hard On the surface of the alloy layer, the cladding process is carried out by synchronous powder feeding; the plasma processing parameters are as follows: power 20-80kW, Ar gas flow 20-80L/min, H2 gas flow 10-60L/min, scanning speed 2-50mm/ s;
(4)熔覆立方氮化硼层:配置立方氮化硼混合粉料,其主要成分的重量百分比为:50-60%CBN、20-30%Ni60A、2-5%PbO、2-5%Mo、2-5%TiB2、0.5-2%BNNTs、0.5-2%CNTs、0.5-2%石墨烯,各材料的重量百分比之和为100%;将配制好的立方氮化硼混合粉料装入送粉器中,调整送粉器送粉速率为10-80g/cm3;采用等离子体喷涂技术将立方氮化硼混合粉料熔覆在氮化硅陶瓷层表面,熔覆过程采用同步送粉方式进行;等离子体加工参数如下:功率20-80kW,Ar气流量20-80L/min,H2气流量10-60L/min,扫描速度2-50mm/s;(4) Cladding cubic boron nitride layer: configure cubic boron nitride mixed powder, and the weight percentage of its main components are: 50-60% CBN, 20-30% Ni60A, 2-5% PbO, 2-5% Mo, 2-5% TiB 2 , 0.5-2% BNNTs, 0.5-2% CNTs, 0.5-2% graphene, the sum of the weight percentages of each material is 100%; the prepared cubic boron nitride mixed powder Put it into the powder feeder, adjust the powder feeding rate of the powder feeder to 10-80g/cm 3 ; use the plasma spraying technology to clad the cubic boron nitride mixed powder on the surface of the silicon nitride ceramic layer, and the cladding process adopts the synchronous The powder feeding method is carried out; the plasma processing parameters are as follows: power 20-80kW, Ar gas flow 20-80L/min, H gas flow 10-60L /min, scanning speed 2-50mm/s;
(5)后处理:熔覆完成后对轴承表面进行修整,使得涂层总厚度为100-3000μm,得到所述自润滑涂层轴承。(5) Post-treatment: After the cladding is completed, the bearing surface is trimmed so that the total thickness of the coating is 100-3000 μm, and the self-lubricating coated bearing is obtained.
与现有技术相比,本发明的有益效果是:Compared with the prior art, the beneficial effects of the present invention are:
1、该轴承兼顾轴承钢、硬质合金、氮化硅基陶瓷、立方氮化硼、CNTs和BNNTs的优点,具有良好的韧性和高的硬度;2、工作过程中,温度较低时,石墨烯能够起到润滑效果,高温时PbO、Mo和TiB2会发生原位反应,生成具有润滑效应的PbMoO4、TiO2和B2O3,使得该轴承能够在较高的温度下具有良好的自润滑作用,从而能够减小轴承摩擦磨损,提高轴承寿命;3、本发明涂层采用等离子体喷涂方法制备,该方法制备效率高,涂层与基体间具有较强的结合强度;同时,涂层可以达到很大的厚度,具有广阔的应用前景。1. The bearing takes into account the advantages of bearing steel, cemented carbide, silicon nitride based ceramics, cubic boron nitride, CNTs and BNNTs, and has good toughness and high hardness; 2. During the working process, when the temperature is low, graphite Alkene can play a lubricating effect. At high temperature, PbO, Mo and TiB 2 will react in situ to generate PbMoO 4 , TiO 2 and B 2 O 3 with lubricating effect, so that the bearing can have good performance at higher temperature. The self-lubricating effect can reduce the friction and wear of the bearing and improve the bearing life; 3. The coating of the present invention is prepared by the plasma spraying method, which has high preparation efficiency and strong bonding strength between the coating and the substrate; The layer can reach a large thickness and has broad application prospects.
附图说明Description of drawings
图1为本发明的一种减摩抗磨自润滑涂层轴承结构示意图,图2为本发明的深沟球轴承的剖面示意图;其中:1为轴承基体材料,2为硬质合金层,3为氮化硅陶瓷层,4为立方氮化硼层,5为内圈基体,6为外圈基体,7为滚珠。Fig. 1 is a schematic diagram of the structure of a bearing with an anti-friction, anti-wear and self-lubricating coating of the present invention, and Fig. 2 is a schematic sectional view of a deep groove ball bearing of the present invention; wherein: 1 is a bearing base material, 2 is a cemented carbide layer, 3 is a silicon nitride ceramic layer, 4 is a cubic boron nitride layer, 5 is an inner ring base, 6 is an outer ring base, and 7 is a ball.
具体实施方式Detailed ways
实施例1:Example 1:
轴承基体材料为GCr15轴承钢,基体表面具有硬质合金层、氮化硅陶瓷层和立方氮化硼层组成的梯度自润滑涂层,所述涂层采用等离子体喷涂技术在轴承基体表面依次熔覆硬质合金混合粉、氮化硅陶瓷混合粉和立方氮化硼混合粉制得;硬质合金混合粉中各成分重量百分比为:55%WC、8%TiC、8%Co、1%TaN、20%Ni60A、2%PbO、2%Mo、2%TiB2、0.5%BNNTs、0.5%CNTs、1%石墨烯,各材料的重量百分比之和为100%;氮化硅陶瓷混合粉中各成分重量百分比为:45%Si3N4、20%ZrO2、20%Ni60A、4%PbO、4%Mo、2%TiB2、2%BNNTs、2%CNTs、1%石墨烯,各材料的重量百分比之和为100%;立方氮化硼混合粉中各成分重量百分比为:55%CBN、30%Ni60A、4%PbO、4%Mo、2%TiB2、2%BNNTs、2%CNTs、1%石墨烯,各材料的重量百分比之和为100%。The bearing base material is GCr15 bearing steel, and the base surface has a gradient self-lubricating coating composed of a cemented carbide layer, a silicon nitride ceramic layer and a cubic boron nitride layer. The cemented carbide mixed powder, the silicon nitride ceramic mixed powder and the cubic boron nitride mixed powder are prepared; the weight percentages of the components in the cemented carbide mixed powder are: 55% WC, 8% TiC, 8% Co, 1% TaN , 20% Ni60A, 2% PbO, 2% Mo, 2% TiB 2 , 0.5% BNNTs, 0.5% CNTs, 1% graphene, the sum of the weight percentages of each material is 100%; The weight percentages of the components are: 45% Si 3 N 4 , 20% ZrO 2 , 20% Ni60A, 4% PbO, 4% Mo, 2% TiB 2 , 2% BNNTs, 2% CNTs, 1% graphene. The sum of the weight percentages is 100%; the weight percentages of the components in the cubic boron nitride mixed powder are: 55% CBN, 30% Ni60A, 4% PbO, 4% Mo, 2% TiB 2 , 2% BNNTs, 2% CNTs, 1% graphene, the sum of the weight percentages of each material is 100%.
本发明的一种减摩抗磨自润滑涂层轴承,其具体制备步骤为:A kind of anti-friction and anti-wear self-lubricating coated bearing of the present invention, its specific preparation steps are:
(1)前处理:将轴承基体依次放在酒精和丙酮溶液中超声清洗各20min,进行去油污处理;(1) Pre-treatment: Put the bearing base in the alcohol and acetone solution for ultrasonic cleaning for 20 minutes each, and carry out degreasing treatment;
(2)熔覆硬质合金层:配置硬质合金混合粉料,其主要成分的重量百分比为:55%WC、8%TiC、8%Co、1%TaN、20%Ni60A、2%PbO、2%Mo、2%TiB2、0.5%BNNTs、0.5%CNTs、1%石墨烯,各材料的重量百分比之和为100%;将配制好的硬质合金混合粉料装入送粉器中,调整送粉器送粉速率为10g/cm3;采用等离子体喷涂技术将硬质合金混合粉料熔覆在轴承基体表面,熔覆过程采用同步送粉方式进行;等离子体加工参数如下:功率20kW,Ar气流量20L/min,H2气流量20L/min,扫描速度2mm/s;(2) Cladding cemented carbide layer: configure cemented carbide mixed powder, the weight percentages of its main components are: 55%WC, 8%TiC, 8%Co, 1%TaN, 20%Ni60A, 2%PbO, 2% Mo, 2% TiB 2 , 0.5% BNNTs, 0.5% CNTs, 1% graphene, the sum of the weight percentages of each material is 100%; the prepared cemented carbide mixed powder is loaded into the powder feeder, The powder feeding rate of the powder feeder was adjusted to 10g/cm 3 ; the cemented carbide mixed powder was clad on the surface of the bearing base by plasma spraying technology, and the cladding process was carried out by synchronous powder feeding; the plasma processing parameters were as follows: power 20kW , Ar airflow 20L/min, H 2 airflow 20L/min, scanning speed 2mm/s;
(3)熔覆氮化硅陶瓷层:配置氮化硅陶瓷混合粉料,其主要成分的重量百分比为:45%Si3N4、20%ZrO2、20%Ni60A、4%PbO、4%Mo、2%TiB2、2%BNNTs、2%CNTs、1%石墨烯,各材料的重量百分比之和为100%;将配制好的氮化硅陶瓷混合粉料装入送粉器中,调整送粉器送粉速率为10g/cm3;采用等离子体喷涂技术将氮化硅陶瓷混合粉料熔覆在硬质合金层表面,熔覆过程采用同步送粉方式进行;等离子体加工参数如下:功率20kW,Ar气流量20L/min,H2气流量20L/min,扫描速度2mm/s;(3) Cladding silicon nitride ceramic layer: configure silicon nitride ceramic mixed powder, the weight percentages of its main components are: 45% Si 3 N 4 , 20% ZrO 2 , 20% Ni60A, 4% PbO, 4% Mo, 2% TiB 2 , 2% BNNTs, 2% CNTs, 1% graphene, the sum of the weight percentages of each material is 100%; put the prepared silicon nitride ceramic mixed powder into the powder feeder, adjust The powder feeding rate of the powder feeder is 10g/cm 3 ; the silicon nitride ceramic mixed powder is clad on the surface of the cemented carbide layer by plasma spraying technology, and the cladding process is carried out by means of synchronous powder feeding; the plasma processing parameters are as follows: Power 20kW, Ar gas flow 20L/min, H 2 gas flow 20L/min, scanning speed 2mm/s;
(4)熔覆立方氮化硼层:配置立方氮化硼混合粉料,其主要成分的重量百分比为:55%CBN、30%Ni60A、4%PbO、4%Mo、2%TiB2、2%BNNTs、2%CNTs、1%石墨烯,各材料的重量百分比之和为100%;将配制好的立方氮化硼混合粉料装入送粉器中,调整送粉器送粉速率为10g/cm3;采用等离子体喷涂技术将立方氮化硼混合粉料熔覆在氮化硅陶瓷层表面,熔覆过程采用同步送粉方式进行;等离子体加工参数如下:功率20kW,Ar气流量20L/min,H2气流量20L/min,扫描速度2mm/s;(4) Cladding cubic boron nitride layer: configure cubic boron nitride mixed powder, the weight percentage of its main components are: 55% CBN, 30% Ni60A, 4% PbO, 4% Mo, 2% TiB 2 , 2 %BNNTs, 2% CNTs, 1% graphene, the sum of the weight percentages of each material is 100%; the prepared cubic boron nitride mixed powder is loaded into the powder feeder, and the powder feeding rate of the powder feeder is adjusted to 10g /cm 3 ; the cubic boron nitride mixed powder is clad on the surface of the silicon nitride ceramic layer by plasma spraying technology, and the cladding process is carried out by means of synchronous powder feeding; the plasma processing parameters are as follows: power 20kW, Ar gas flow 20L /min, H 2 flow rate 20L/min, scanning speed 2mm/s;
(5)后处理:熔覆完成后对轴承表面进行修整,使得涂层总厚度为500μm,得到所述自润滑涂层轴承。(5) Post-treatment: After the cladding is completed, the bearing surface is trimmed so that the total thickness of the coating is 500 μm to obtain the self-lubricating coated bearing.
实施例2:Example 2:
轴承基体材料为9Cr18轴承钢,基体表面具有硬质合金层、氮化硅陶瓷层和立方氮化硼层组成的梯度自润滑涂层,所述涂层采用等离子体喷涂技术在轴承基体表面依次熔覆硬质合金混合粉、氮化硅陶瓷混合粉和立方氮化硼混合粉制得;硬质合金混合粉中各成分重量百分比为:60%WC、5%TiC、5%Co、2%TaN、16%Ni60A、3%PbO、3%Mo、3%TiB2、1%BNNTs、1%CNTs、1%石墨烯,各材料的重量百分比之和为100%;氮化硅陶瓷混合粉中各成分重量百分比为:55%Si3N4、15%ZrO2、16%Ni60A、3%PbO、3%Mo、3%TiB2、2%BNNTs、2%CNTs、1%石墨烯,各材料的重量百分比之和为100%;立方氮化硼混合粉中各成分重量百分比为:60%CBN、25%Ni60A、3%PbO、3%Mo、3%TiB2、2%BNNTs、2%CNTs、2%石墨烯,各材料的重量百分比之和为100%。The bearing base material is 9Cr18 bearing steel, and the base surface has a gradient self-lubricating coating composed of a cemented carbide layer, a silicon nitride ceramic layer and a cubic boron nitride layer. The cemented carbide mixed powder, the silicon nitride ceramic mixed powder and the cubic boron nitride mixed powder are prepared; the weight percentages of the components in the cemented carbide mixed powder are: 60% WC, 5% TiC, 5% Co, 2% TaN , 16% Ni60A, 3% PbO, 3% Mo, 3% TiB 2 , 1% BNNTs, 1% CNTs, 1% graphene, the sum of the weight percentages of each material is 100%; The weight percentages of the components are: 55% Si 3 N 4 , 15% ZrO 2 , 16% Ni60A, 3% PbO, 3% Mo, 3% TiB 2 , 2% BNNTs, 2% CNTs, 1% graphene. The sum of the weight percentages is 100%; the weight percentages of the components in the cubic boron nitride mixed powder are: 60% CBN, 25% Ni60A, 3% PbO, 3% Mo, 3% TiB 2 , 2% BNNTs, 2% CNTs, 2% graphene, the sum of the weight percentages of each material is 100%.
本发明的一种减摩抗磨自润滑涂层轴承,其具体制备步骤为:A kind of anti-friction and anti-wear self-lubricating coated bearing of the present invention, its specific preparation steps are:
(1)前处理:将轴承基体依次放在酒精和丙酮溶液中超声清洗各30min,进行去油污处理;(1) Pre-treatment: Put the bearing base in the alcohol and acetone solutions for ultrasonic cleaning for 30 minutes each, and carry out degreasing treatment;
(2)熔覆硬质合金层:配置硬质合金混合粉料,其主要成分的重量百分比为:60%WC、5%TiC、5%Co、2%TaN、16%Ni60A、3%PbO、3%Mo、3%TiB2、1%BNNTs、1%CNTs、1%石墨烯,各材料的重量百分比之和为100%;将配制好的硬质合金混合粉料装入送粉器中,调整送粉器送粉速率为80g/cm3;采用等离子体喷涂技术将硬质合金混合粉料熔覆在轴承基体表面,熔覆过程采用同步送粉方式进行;等离子体加工参数如下:功率80kW,Ar气流量80L/min,H2气流量60L/min,扫描速度50mm/s;(2) Cladding cemented carbide layer: configure cemented carbide mixed powder, the weight percentages of its main components are: 60%WC, 5%TiC, 5%Co, 2%TaN, 16%Ni60A, 3%PbO, 3% Mo, 3% TiB 2 , 1% BNNTs, 1% CNTs, 1% graphene, the sum of the weight percentages of each material is 100%; the prepared cemented carbide mixed powder is loaded into the powder feeder, The powder feeding rate of the powder feeder was adjusted to 80g/cm 3 ; the cemented carbide mixed powder was clad on the surface of the bearing base by plasma spraying technology, and the cladding process was carried out by synchronous powder feeding; the plasma processing parameters were as follows: power 80kW , Ar airflow 80L/min, H 2 airflow 60L/min, scanning speed 50mm/s;
(3)熔覆氮化硅陶瓷层:配置氮化硅陶瓷混合粉料,其主要成分的重量百分比为:55%Si3N4、15%ZrO2、16%Ni60A、3%PbO、3%Mo、3%TiB2、2%BNNTs、2%CNTs、1%石墨烯,各材料的重量百分比之和为100%;将配制好的氮化硅陶瓷混合粉料装入送粉器中,调整送粉器送粉速率为80g/cm3;采用等离子体喷涂技术将氮化硅陶瓷混合粉料熔覆在硬质合金层表面,熔覆过程采用同步送粉方式进行;等离子体加工参数如下:功率80kW,Ar气流量80L/min,H2气流量60L/min,扫描速度50mm/s;(3) Cladding silicon nitride ceramic layer: configure silicon nitride ceramic mixed powder, the weight percentages of its main components are: 55% Si 3 N 4 , 15% ZrO 2 , 16% Ni60A, 3% PbO, 3% Mo, 3% TiB 2 , 2% BNNTs, 2% CNTs, 1% graphene, the sum of the weight percentages of each material is 100%; put the prepared silicon nitride ceramic mixed powder into the powder feeder, adjust The powder feeding rate of the powder feeder is 80g/cm 3 ; the silicon nitride ceramic mixed powder is clad on the surface of the cemented carbide layer by plasma spraying technology, and the cladding process is carried out by synchronous powder feeding; the plasma processing parameters are as follows: Power 80kW, Ar airflow 80L/min, H 2 airflow 60L/min, scanning speed 50mm/s;
(4)熔覆立方氮化硼层:配置立方氮化硼混合粉料,其主要成分的重量百分比为:60%CBN、25%Ni60A、3%PbO、3%Mo、3%TiB2、2%BNNTs、2%CNTs、2%石墨烯,各材料的重量百分比之和为100%;将配制好的立方氮化硼混合粉料装入送粉器中,调整送粉器送粉速率为80g/cm3;采用等离子体喷涂技术将立方氮化硼混合粉料熔覆在氮化硅陶瓷层表面,熔覆过程采用同步送粉方式进行;等离子体加工参数如下:功率80kW,Ar气流量80L/min,H2气流量60L/min,扫描速度50mm/s;(4) Cladding cubic boron nitride layer: configure cubic boron nitride mixed powder, the weight percentage of its main components are: 60% CBN, 25% Ni60A, 3% PbO, 3% Mo, 3% TiB 2 , 2 %BNNTs, 2% CNTs, 2% graphene, the sum of the weight percentages of each material is 100%; the prepared cubic boron nitride mixed powder is loaded into the powder feeder, and the powder feeding rate of the powder feeder is adjusted to 80g /cm 3 ; the cubic boron nitride mixed powder is clad on the surface of the silicon nitride ceramic layer by plasma spraying technology, and the cladding process is carried out by synchronous powder feeding; the plasma processing parameters are as follows: power 80kW, Ar gas flow 80L /min, H 2 airflow 60L/min, scanning speed 50mm/s;
(5)后处理:熔覆完成后对轴承表面进行修整,使得涂层总厚度为3000μm,得到所述自润滑涂层轴承。(5) Post-treatment: After the cladding is completed, the bearing surface is trimmed so that the total thickness of the coating is 3000 μm, and the self-lubricating coated bearing is obtained.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910511263.1A CN110343991B (en) | 2019-06-13 | 2019-06-13 | Antifriction and antiwear self-lubricating coating bearing and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910511263.1A CN110343991B (en) | 2019-06-13 | 2019-06-13 | Antifriction and antiwear self-lubricating coating bearing and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110343991A CN110343991A (en) | 2019-10-18 |
CN110343991B true CN110343991B (en) | 2020-12-11 |
Family
ID=68181984
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910511263.1A Expired - Fee Related CN110343991B (en) | 2019-06-13 | 2019-06-13 | Antifriction and antiwear self-lubricating coating bearing and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110343991B (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111120619A (en) * | 2019-11-25 | 2020-05-08 | 航天科工智能机器人有限责任公司 | Harmonic gear drive wave generator and harmonic gear drive |
CN111945095B (en) * | 2020-09-07 | 2022-06-24 | 南京工程学院 | A multifunctional composite layer based on tantalum-based alloy for friction reduction, noise reduction and heat insulation |
CN112128228B (en) * | 2020-09-10 | 2022-03-18 | 杭州电子科技大学 | Bearing with base oil self-driven to contact area and processing method of inner ring and outer ring of bearing |
CN112358905B (en) * | 2020-11-09 | 2022-05-27 | 扬州工业职业技术学院 | Ternary boride solid lubrication gradient coating and preparation method thereof |
CN112392859A (en) * | 2020-11-24 | 2021-02-23 | 中国电子科技集团公司第十四研究所 | Bearing raceway antifriction method based on low-temperature low-pressure high-load working condition |
CN112610608B (en) * | 2020-11-26 | 2022-07-15 | 东南大学 | A kind of wide temperature range self-lubricating bearing and preparation method thereof |
CN113088957B (en) * | 2021-02-20 | 2022-09-02 | 景德镇明兴航空锻压有限公司 | Method for preparing wear-resistant and high-temperature-resistant coating on surface of titanium alloy through laser cladding |
CN114033799B (en) * | 2021-11-29 | 2024-02-27 | 江苏科技大学 | Method for processing composite lubrication structure of sliding bearing based on electron beam curing |
CN116121573B (en) * | 2023-03-14 | 2024-01-02 | 创拓精工(江苏)有限公司 | Nut with composite coating on surface and preparation method thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59174558A (en) * | 1983-03-24 | 1984-10-03 | タテホ化学工業株式会社 | Ceramic crosslinked formed body and manufacture |
US7842403B2 (en) * | 2006-02-23 | 2010-11-30 | Atotech Deutschland Gmbh | Antifriction coatings, methods of producing such coatings and articles including such coatings |
CN105603387B (en) * | 2016-02-11 | 2018-04-03 | 广东工业大学 | Boron nitride system composite coating, the gradient ultra-fine cemented carbide cutter with the composite coating and preparation method thereof |
CN108300993A (en) * | 2018-01-26 | 2018-07-20 | 东南大学 | Silicon nitride-hard alloy gradient coating cutter and preparation method thereof |
-
2019
- 2019-06-13 CN CN201910511263.1A patent/CN110343991B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN110343991A (en) | 2019-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110343991B (en) | Antifriction and antiwear self-lubricating coating bearing and preparation method thereof | |
CN109023342B (en) | Gradient ceramic coating micro-texture self-lubricating cutter and preparation method thereof | |
CN110318017B (en) | Toughening and reinforcing in-situ reaction type micro-texture self-lubricating bearing and preparation method thereof | |
CN111270234B (en) | A kind of method for preparing titanium-aluminum enhanced coating on titanium alloy surface | |
CN110241412B (en) | Laminated coating self-lubricating bearing and preparation method thereof | |
Fan et al. | Surface composition–lubrication design of Al2O3/Ni laminated composites—Part I: Tribological synergy effect of micro–dimpled texture and diamond–like carbon films in a water environment | |
CN107460475A (en) | A kind of self-lubricating bearing and preparation method thereof | |
CN110373623B (en) | A kind of gradient self-lubricating bearing and preparation method thereof | |
CN110205624B (en) | A kind of laminated hard coating self-lubricating tool and preparation method thereof | |
CN108588501B (en) | A kind of aluminum alloy composite material with solid self-lubricating property and preparation method thereof | |
CN101109060A (en) | Carbon fiber integral fabric/carbon-copper composite material and preparation method | |
CN111676469A (en) | SiC/Al prepared by laser cracking polycarbosilane precursor2O3Method for multiphase ceramic coating | |
CN112609178B (en) | Material increase manufacturing wide-temperature-range self-lubricating coating cutter and preparation method thereof | |
CN110241347B (en) | A kind of superhard self-lubricating coating tool and preparation method thereof | |
JP2009191291A (en) | Ceramic structure having self-lubricating film, and method for producing the same | |
CN109797358A (en) | A kind of preparation method of ceramic base self-lubricating composite coating | |
CN117286493B (en) | Laser cladding nickel-aluminum-based wear-resistant coating and preparation method thereof | |
KR101039631B1 (en) | Cemented carbide tools and manufacturing method thereof | |
CN107460476A (en) | A kind of titanium alloy surface TiC enhancings titanium-based composite coat and preparation method thereof | |
CN103710558B (en) | A kind of preparation technology of high temperature self-lubricating composite | |
CN215781425U (en) | Gradient composite coating on the surface of a titanium alloy ice blade | |
Chen et al. | Filling the pores of plasma electrolytic oxidation coatings on titanium with hydrothermal synthesized MoS2: coating structure and tribological performance | |
CN101671811A (en) | Method for preparing high-load tribology DLC membrane on surface of titanium | |
CN105862104B (en) | A kind of preparation method of wear resistant friction reducing composite alumina film | |
CN110205578B (en) | A kind of plasma sprayed gradient hard coating self-lubricating tool and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20201211 |