CN110335940A - Giant magnetoresistance device and magnetic tunnel junction structure and electronic equipment including same - Google Patents
Giant magnetoresistance device and magnetic tunnel junction structure and electronic equipment including same Download PDFInfo
- Publication number
- CN110335940A CN110335940A CN201910619674.2A CN201910619674A CN110335940A CN 110335940 A CN110335940 A CN 110335940A CN 201910619674 A CN201910619674 A CN 201910619674A CN 110335940 A CN110335940 A CN 110335940A
- Authority
- CN
- China
- Prior art keywords
- magnetic
- layer
- magnetic layer
- electrode
- plane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 264
- 125000006850 spacer group Chemical group 0.000 claims abstract description 30
- 239000007769 metal material Substances 0.000 claims abstract description 3
- 239000002885 antiferromagnetic material Substances 0.000 claims description 6
- 230000005355 Hall effect Effects 0.000 claims description 5
- 239000003302 ferromagnetic material Substances 0.000 claims description 5
- 239000011810 insulating material Substances 0.000 claims description 4
- 230000002547 anomalous effect Effects 0.000 claims description 3
- 230000002441 reversible effect Effects 0.000 abstract description 2
- 238000000034 method Methods 0.000 description 12
- 239000000758 substrate Substances 0.000 description 12
- 230000005290 antiferromagnetic effect Effects 0.000 description 11
- 238000010586 diagram Methods 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 229910003321 CoFe Inorganic materials 0.000 description 2
- 229910019236 CoFeB Inorganic materials 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 230000015654 memory Effects 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- -1 such as Co Substances 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/10—Magnetoresistive devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N52/00—Hall-effect devices
Landscapes
- Hall/Mr Elements (AREA)
Abstract
本发明涉及巨磁致电阻器件和磁性隧道结结构及包括其的电子设备。根据一示例性实施例,一种巨磁致电阻器件可包括:第一参考磁层,具有固定的第一面内磁矩;自由磁层,具有在与所述第一参考磁层的第一面内磁矩基本平行和反平行的方向上可翻转的第二面内磁矩;第一间隔层,位于所述第一参考磁层和所述自由磁层之间,并且由非磁金属材料形成;以及第一电极和第二电极,设置在所述第一参考磁层、自由磁层和第一间隔层的相对两侧,用于施加流过它们的面内电流,其中,所述第一电极和第二电极施加的面内电流的方向与所述第一参考磁层的第一面内磁矩的方向成一角度,所述角度在30度至150度的范围内。
The invention relates to a giant magnetoresistance device and a magnetic tunnel junction structure and electronic equipment including the same. According to an exemplary embodiment, a giant magnetoresistive device may include: a first reference magnetic layer having a fixed first in-plane magnetic moment; a free magnetic layer having a first a second in-plane magnetic moment reversible in substantially parallel and antiparallel directions; a first spacer layer located between said first reference magnetic layer and said free magnetic layer, and made of a non-magnetic metallic material forming; and a first electrode and a second electrode disposed on opposite sides of the first reference magnetic layer, the free magnetic layer and the first spacer layer for applying an in-plane current flowing therethrough, wherein the first The direction of the in-plane current applied by the first electrode and the second electrode forms an angle with the direction of the first in-plane magnetic moment of the first reference magnetic layer, and the angle is in the range of 30 degrees to 150 degrees.
Description
技术领域technical field
本发明总体上涉及自旋电子学领域,更特别地,涉及一种巨磁致电阻器件和磁性隧道结结构、以及包括它们的电子设备。The present invention generally relates to the field of spintronics, and more particularly, relates to a giant magnetoresistance device and a magnetic tunnel junction structure, and electronic equipment including them.
背景技术Background technique
巨磁致电阻(GMR)器件和磁性隧道结(MTJ)器件已经广泛应用于现代电子设备中,例如用作磁存储器、自旋逻辑器件、磁传感器等。典型的巨磁致电阻(GMR)器件和磁性隧道结(MTJ)器件都具有三明治结构,即包括自由磁层、参考磁层以及位于二者之间的间隔层,GMR器件的间隔层由非磁导电金属例如Cu、Ru等形成,而MTJ器件的间隔层由非磁绝缘材料例如MgO、Al2O3等形成。自由磁层的磁矩可以自由翻转,而参考磁层的磁矩被固定,GMR和MTJ器件的电阻与自由磁层的磁矩和参考磁层的磁矩之间的夹角θ的余弦值cos(θ)成比例。当自由磁层的磁矩与参考磁层的磁矩彼此平行排列时,磁性隧道结的电阻最低,处于低电阻态;当自由磁层的磁矩与参考磁层的磁矩反平行排列时,磁性隧道结的电阻最高,处于高电阻态。Giant magnetoresistance (GMR) devices and magnetic tunnel junction (MTJ) devices have been widely used in modern electronic devices, such as magnetic memories, spin logic devices, magnetic sensors, etc. Typical giant magnetoresistance (GMR) devices and magnetic tunnel junction (MTJ) devices have a sandwich structure, including a free magnetic layer, a reference magnetic layer, and a spacer layer between them. The spacer layer of a GMR device consists of a nonmagnetic Conductive metals such as Cu, Ru, etc. are formed, while the spacer layer of the MTJ device is formed of non - magnetic insulating materials such as MgO, Al2O3 , etc. The magnetic moment of the free magnetic layer can be flipped freely, while the magnetic moment of the reference magnetic layer is fixed, the resistance of the GMR and MTJ devices and the cosine value cos of the angle θ between the magnetic moments of the free magnetic layer and the magnetic moments of the reference magnetic layer (θ) is proportional. When the magnetic moment of the free magnetic layer and the magnetic moment of the reference magnetic layer are arranged parallel to each other, the resistance of the magnetic tunnel junction is the lowest, and it is in a low resistance state; when the magnetic moment of the free magnetic layer is arranged antiparallel to the magnetic moment of the reference magnetic layer, The magnetic tunnel junction has the highest resistance and is in a high resistance state.
如何翻转磁性隧道结的自由磁层的磁矩一直是磁性隧道结研究领域的一个重要问题,也是将磁性隧道结应用到磁器件中时必须解决的一个问题。第一种方法是通过两个正交磁场来翻转自由磁层的磁矩,但是这种方法需要施加大的电流来产生足够大的磁场,因此功耗很大,而且磁场可能会影响相邻器件,引起可靠性问题。第二种方法是利用自旋转移力矩(STT),通过流经磁性隧道结的自旋电流来进行翻转。但是,该方法也有一定的缺陷。如果自旋电流过大,容易导致磁性隧道结被击穿;如果自旋电流太小,则又不足以翻转自由磁层的磁矩。因此,该方法对翻转电流的精度以及磁性隧道结阵列的均匀性有着非常高的要求,导致其难以实用。第三种方法则是利用自旋霍尔效应(SHE),其也称为自旋轨道转矩(SOT)翻转方案。例如,已授权的中国发明专利201510574526.5提出了设置与自由磁层相接触的自旋霍尔效应(SHE)层,其可以由Pt、Au、Ta等贵金属形成。当面内电流流过SHE层时,其产生的自旋流会注入相邻的自由层,从而翻转自由层的磁矩。然而,该方法仍需要增加单独的SHE层,导致结构和制造工艺复杂。How to flip the magnetic moment of the free magnetic layer of the magnetic tunnel junction has always been an important problem in the field of magnetic tunnel junction research, and it is also a problem that must be solved when the magnetic tunnel junction is applied to magnetic devices. The first method is to flip the magnetic moment of the free magnetic layer by two orthogonal magnetic fields, but this method needs to apply a large current to generate a large enough magnetic field, so the power consumption is large, and the magnetic field may affect adjacent devices , causing reliability problems. The second approach is to use spin-transfer torque (STT) to flip through a spin current flowing through a magnetic tunnel junction. However, this method also has certain drawbacks. If the spin current is too large, it is easy to cause the breakdown of the magnetic tunnel junction; if the spin current is too small, it is not enough to flip the magnetic moment of the free magnetic layer. Therefore, this method has very high requirements on the accuracy of the switching current and the uniformity of the magnetic tunnel junction array, making it difficult to be practical. The third approach is to use the spin Hall effect (SHE), which is also known as the spin-orbit torque (SOT) flipping scheme. For example, the granted Chinese invention patent 201510574526.5 proposes setting a spin Hall effect (SHE) layer in contact with the free magnetic layer, which can be formed of noble metals such as Pt, Au, Ta, etc. When an in-plane current flows through the SHE layer, the resulting spin current is injected into the adjacent free layer, thereby flipping the magnetic moment of the free layer. However, this method still needs to add a separate SHE layer, resulting in complex structures and fabrication processes.
因此,仍需要一种改进的手段,其能够实现操作简单、稳定、并且功耗低的磁矩翻转过程。Therefore, there is still a need for an improved method, which can realize the magnetic moment switching process with simple operation, stable operation and low power consumption.
发明内容Contents of the invention
针对上述技术问题,提出了本发明。In view of the above technical problems, the present invention is proposed.
根据一示例性实施例,提供一种巨磁致电阻(GMR)器件,包括:第一参考磁层,具有固定的第一面内磁矩;自由磁层,具有在与所述第一参考磁层的第一面内磁矩基本平行和反平行的方向上可翻转的第二面内磁矩;第一间隔层,位于所述第一参考磁层和所述自由磁层之间,并且由非磁金属材料形成;以及第一电极和第二电极,设置在所述第一参考磁层、自由磁层和第一间隔层的相对两侧,用于施加流过它们的面内电流,其中,所述第一电极和第二电极施加的面内电流的方向与所述第一参考磁层的第一面内磁矩的方向成一角度,所述角度在30度至150度的范围内。According to an exemplary embodiment, a giant magnetoresistance (GMR) device is provided, comprising: a first reference magnetic layer having a fixed first in-plane magnetic moment; a free magnetic layer having a magnetic A second in-plane magnetic moment switchable in directions substantially parallel and antiparallel to the first in-plane magnetic moment of the layer; a first spacer layer positioned between said first reference magnetic layer and said free magnetic layer, and composed of formed of a non-magnetic metal material; and a first electrode and a second electrode disposed on opposite sides of the first reference magnetic layer, the free magnetic layer and the first spacer layer for applying an in-plane current flowing through them, wherein The direction of the in-plane current applied by the first electrode and the second electrode forms an angle with the direction of the first in-plane magnetic moment of the first reference magnetic layer, and the angle is in the range of 30 degrees to 150 degrees.
在一些示例中,所述角度为大约90度。In some examples, the angle is about 90 degrees.
在一些示例中,所述第一参考磁层由铁磁材料形成,所述铁磁材料在施加有所述面内电流时,通过反常霍尔效应产生自旋流,以翻转所述自由磁层的磁矩。In some examples, the first reference magnetic layer is formed of a ferromagnetic material that, when applied with the in-plane current, generates a spin current through an anomalous Hall effect to flip the free magnetic layer magnetic moment.
在一些示例中,所述GMR器件还包括:第一钉扎层,由反铁磁材料形成,位于所述第一参考磁层的与所述第一间隔层相反的一侧,用于钉扎所述第一参考磁层的第一面内磁矩。In some examples, the GMR device further includes: a first pinning layer, formed of an antiferromagnetic material, located on the opposite side of the first reference magnetic layer to the first spacer layer, for pinning A first in-plane magnetic moment of the first reference magnetic layer.
在一些示例中,所述第一电极和所述第二电极用于施加写入电流,所述自由磁层的第二面内磁矩根据所述写入电流的方向而翻转。In some examples, the first electrode and the second electrode are used to apply a write current, and the second in-plane magnetic moment of the free magnetic layer is reversed according to the direction of the write current.
在一些示例中,所述第一电极和所述第二电极还用于施加读取电流,所述读取电流小于所述写入电流,从而不会使所述自由磁层的第二面内磁矩发生翻转。In some examples, the first electrode and the second electrode are also used to apply a read current, the read current is smaller than the write current, so as not to make the second plane of the free magnetic layer The magnetic moment flips.
在一些示例中,所述GMR器件还包括:第三电极和第四电极,设置在所述第一参考磁层、自由磁层和第一间隔层的上下两侧,用于施加流过它们的垂直读取电流。In some examples, the GMR device further includes: a third electrode and a fourth electrode, arranged on the upper and lower sides of the first reference magnetic layer, the free magnetic layer and the first spacer layer, for applying the current flowing through them. Vertical read current.
根据另一示例性实施例,提供一种磁性隧道结结构,包括:上述GMR器件;第二间隔层,由非磁绝缘材料形成,位于所述自由磁层的与所述第一间隔层相反的一侧;以及第二参考磁层,位于所述第二间隔层的与所述自由磁层相反的一侧,具有与所述第一参考磁层的第一面内磁矩平行的第三面内磁矩。According to another exemplary embodiment, there is provided a magnetic tunnel junction structure, comprising: the above-mentioned GMR device; a second spacer layer, formed of a non-magnetic insulating material, located on the opposite side of the free magnetic layer to the first spacer layer one side; and a second reference magnetic layer, located on the opposite side of the second spacer layer from the free magnetic layer, having a third plane parallel to the first in-plane magnetic moment of the first reference magnetic layer internal magnetic moment.
在一些示例中,所述磁性隧道结结构还包括:第三电极和第四电极,设置在所述磁性隧道结结构的上下两侧,用于施加流过所述磁性隧道结结构的垂直电流,其中,所述第一电极和第二电极施加的面内电流是写入电流,所述第三电极和第四电极施加的垂直电流是读取电流。In some examples, the magnetic tunnel junction structure further includes: a third electrode and a fourth electrode, arranged on the upper and lower sides of the magnetic tunnel junction structure, for applying a vertical current flowing through the magnetic tunnel junction structure, Wherein, the in-plane current applied by the first electrode and the second electrode is a write current, and the vertical current applied by the third electrode and the fourth electrode is a read current.
在一些示例中,所述磁性隧道结结构还包括:第二钉扎层,由反铁磁材料形成,位于所述第二参考磁层的与所述第二间隔层相反的一侧,用于钉扎所述第二参考磁层的第三面内磁矩。In some examples, the magnetic tunnel junction structure further includes: a second pinning layer formed of an antiferromagnetic material, located on the opposite side of the second reference magnetic layer to the second spacer layer, for A third in-plane magnetic moment of the second reference magnetic layer is pinned.
根据另一示例性实施例,提供一种电子设备,包括上述巨磁致电阻器件或上述磁性隧道结结构。According to another exemplary embodiment, there is provided an electronic device including the above-mentioned giant magnetoresistive device or the above-mentioned magnetic tunnel junction structure.
在一些示例中,所述电子设备是磁存储器件、磁逻辑器件或磁传感器。In some examples, the electronic device is a magnetic memory device, a magnetic logic device, or a magnetic sensor.
在本发明的巨磁致电阻器件和磁性隧道结结构中,不需要增加额外的层,即可在没有外磁场的情况下,通过电流来翻转自由磁层的磁矩,因此实现了操作简单、稳定、并且功耗低的磁矩翻转过程,具有广泛的应用前景。In the giant magnetoresistance device and the magnetic tunnel junction structure of the present invention, there is no need to add additional layers, and the magnetic moment of the free magnetic layer can be reversed by passing a current in the absence of an external magnetic field, thus achieving simple operation, The magnetic moment reversal process with stability and low power consumption has broad application prospects.
附图说明Description of drawings
图1是根据本发明一示例性实施例的巨磁致电阻器件的结构示意图。Fig. 1 is a schematic structural diagram of a giant magnetoresistive device according to an exemplary embodiment of the present invention.
图2是示出图1的巨磁致电阻器件的翻转原理的示意图。FIG. 2 is a schematic diagram illustrating the flipping principle of the giant magnetoresistive device of FIG. 1 .
图3是示出图1的巨磁致电阻器件在施加翻转电流之后的电阻特性的曲线图。FIG. 3 is a graph showing resistance characteristics of the giant magnetoresistive device of FIG. 1 after a flipping current is applied.
图4是根据本发明另一示例性实施例的磁性隧道结结构的示意图。FIG. 4 is a schematic diagram of a magnetic tunnel junction structure according to another exemplary embodiment of the present invention.
具体实施方式Detailed ways
下面参照附图来描述本发明的示例性实施例。Exemplary embodiments of the present invention are described below with reference to the accompanying drawings.
图1是根据本发明一示例性实施例的巨磁致电阻器件的结构示意图。如图1所示,巨磁致电阻器件10可包括依次形成于衬底(未示出)上的反铁磁钉扎层11、参考磁层12、间隔层13和自由磁层14。在另一些实施例中,反铁磁钉扎层11、参考磁层12、间隔层13和自由磁层14可以以相反的顺序形成在衬底上,其不影响本发明原理的实施。Fig. 1 is a schematic structural diagram of a giant magnetoresistive device according to an exemplary embodiment of the present invention. As shown in FIG. 1 , the giant magnetoresistive device 10 may include an antiferromagnetic pinning layer 11 , a reference magnetic layer 12 , a spacer layer 13 and a free magnetic layer 14 sequentially formed on a substrate (not shown). In some other embodiments, the antiferromagnetic pinning layer 11 , the reference magnetic layer 12 , the spacer layer 13 and the free magnetic layer 14 may be formed on the substrate in reverse order, which does not affect the implementation of the principles of the present invention.
衬底可以是任何适当的衬底,例如Si衬底、SiO2衬底、SOI衬底、石英衬底、蓝宝石衬底、MgO衬底、Al2O3衬底等。在一些实施例中,衬底上还可以形成有缓冲层,反铁磁钉扎层11形成在缓冲层上。The substrate may be any suitable substrate, such as Si substrate, SiO 2 substrate, SOI substrate, quartz substrate, sapphire substrate, MgO substrate, Al 2 O 3 substrate and the like. In some embodiments, a buffer layer may also be formed on the substrate, and the antiferromagnetic pinning layer 11 is formed on the buffer layer.
反铁磁钉扎层11可以由反铁磁材料例如IrMn等形成,其用于钉扎参考磁层12的磁矩,使得其在巨磁致电阻器件10的运行期间可以保持固定不变。The antiferromagnetic pinning layer 11 can be formed of an antiferromagnetic material such as IrMn, which is used to pin the magnetic moment of the reference magnetic layer 12 so that it can remain constant during the operation of the giant magnetoresistive device 10 .
参考磁层12和自由磁层14每个都可以由铁磁材料形成,例如Co、Fe、Ni以及包括Co、Fe、Ni的合金,诸如CoFe、NiFe、CoFeB等。参考磁层12和自由磁层14每个都具有面内磁矩,参考磁层12的磁矩被反铁磁钉扎层11钉扎而保持固定不变,而自由磁层14的磁矩可以在与参考磁层12的磁矩平行和反平行的方向上自由翻转。虽然在图1的实施例中,参考磁层12的磁矩被反铁磁钉扎层11钉扎,但是在另一些实施例中,参考磁层12也可以具有自钉扎结构,例如通过具有较大厚度、采用矫顽力较高的硬磁材料、或者采用人工反铁磁结构等,使参考磁层12的磁矩保持固定在预定方向上。Reference magnetic layer 12 and free magnetic layer 14 may each be formed of ferromagnetic materials such as Co, Fe, Ni, and alloys including Co, Fe, Ni, such as CoFe, NiFe, CoFeB, and the like. Each of the reference magnetic layer 12 and the free magnetic layer 14 has an in-plane magnetic moment, the magnetic moment of the reference magnetic layer 12 is pinned by the antiferromagnetic pinning layer 11 to keep fixed, and the magnetic moment of the free magnetic layer 14 can be It is free to flip in directions parallel and antiparallel to the magnetic moment of the reference magnetic layer 12 . Although in the embodiment of FIG. 1, the magnetic moment of the reference magnetic layer 12 is pinned by the antiferromagnetic pinning layer 11, in other embodiments, the reference magnetic layer 12 may also have a self-pinning structure, for example by having The magnetic moment of the reference magnetic layer 12 is kept fixed in a predetermined direction by using a larger thickness, using a hard magnetic material with a higher coercive force, or using an artificial antiferromagnetic structure, etc.
间隔层13位于参考磁层12和自由磁层14之间,由非磁导电材料形成,例如Cu、Ru、Au等。The spacer layer 13 is located between the reference magnetic layer 12 and the free magnetic layer 14 and is formed of non-magnetic and conductive materials, such as Cu, Ru, Au and the like.
可以看出,上面描述的巨磁致电阻器件10的结构与传统的巨磁致电阻器件基本相同,因此这里仅简要描述,以避免使本说明书变得冗余,模糊了本发明的要点。It can be seen that the structure of the giant magnetoresistive device 10 described above is basically the same as the traditional giant magnetoresistive device, so it is only briefly described here to avoid making the description redundant and obscuring the gist of the present invention.
巨磁致电阻器件10还包括形成在反铁磁钉扎层11、参考磁层12、间隔层13和自由磁层14的多层结构的相对两侧的第一电极15和第二电极16,用于向该多层结构施加面内电流。在本发明的实施例中,通过第一电极15和第二电极16施加的面内电流的方向与参考磁层12的固定磁矩方向成一角度,该角度可以在例如30度至150度的范围内,优选地可以在60度至120度的范围内,更优选地可以在80度至100度的范围内,例如可以为90度。由于自由磁层14的磁矩与参考磁层12的磁矩平行或反平行,因此通过第一电极15和第二电极16施加的面内电流的方向也与自由磁层14的磁矩方向成一角度。The giant magnetoresistive device 10 also includes a first electrode 15 and a second electrode 16 formed on opposite sides of the multilayer structure of the antiferromagnetic pinning layer 11, the reference magnetic layer 12, the spacer layer 13 and the free magnetic layer 14, Used to apply an in-plane current to the multilayer structure. In an embodiment of the present invention, the direction of the in-plane current applied through the first electrode 15 and the second electrode 16 forms an angle with the fixed magnetic moment direction of the reference magnetic layer 12, and the angle may be in the range of, for example, 30 degrees to 150 degrees , preferably within a range of 60° to 120°, more preferably within a range of 80° to 100°, for example, 90°. Since the magnetic moment of the free magnetic layer 14 is parallel or antiparallel to the magnetic moment of the reference magnetic layer 12, the direction of the in-plane current applied by the first electrode 15 and the second electrode 16 is also aligned with the magnetic moment direction of the free magnetic layer 14. angle.
下面参照图2描述巨磁致电阻器件10的自由磁层14的磁矩的翻转原理。如图2所示,NiFe形成的参考磁层12的磁矩mp可以在+y轴方向上,自由磁层14的磁矩mf可以在-y轴方向上,即二者彼此反平行。通过电极15和16施加的电流I在+x方向上,即电流方向与参考磁层12的磁矩之间的夹角为90度。当+x方向上的面内电流I流过巨磁致电阻器件10时,由于铁磁材料的反常霍尔效应,参考磁层12会产生自旋极化方向与电流方向垂直的自旋流,如图2中的小球箭头所示,该自旋流沿垂直于膜面的方向传输,如图2中的虚线箭头所示,然后被自由磁层14吸收,产生的自旋转矩作用到自由磁层14的磁矩mf上,当自旋流足够大时,即可将自由磁层14的磁矩mf从-y轴方向翻转到+y轴方向上。相反,如果改变电流的方向,例如为-x轴方向,则可以将自由磁层14的磁矩mf翻转到-y轴方向上来。The principle of switching the magnetic moment of the free magnetic layer 14 of the giant magnetoresistive device 10 will be described below with reference to FIG. 2 . As shown in FIG. 2 , the magnetic moment mp of the reference magnetic layer 12 formed of NiFe may be in the +y-axis direction, and the magnetic moment m f of the free magnetic layer 14 may be in the -y-axis direction, that is, the two are antiparallel to each other. The current I applied through the electrodes 15 and 16 is in the +x direction, that is, the angle between the current direction and the magnetic moment of the reference magnetic layer 12 is 90 degrees. When the in-plane current I in the +x direction flows through the giant magnetoresistive device 10, due to the anomalous Hall effect of the ferromagnetic material, the reference magnetic layer 12 will generate a spin current whose spin polarization direction is perpendicular to the current direction, As shown by the small ball arrow in Figure 2, the spin current is transmitted along the direction perpendicular to the film surface, as shown by the dotted arrow in Figure 2, and then absorbed by the free magnetic layer 14, the resulting spin torque acts on For the magnetic moment m f of the free magnetic layer 14 , when the spin current is large enough, the magnetic moment m f of the free magnetic layer 14 can be reversed from the direction of the -y axis to the direction of the +y axis. On the contrary, if the direction of the current is changed, for example, the direction of the -x axis, the magnetic moment m f of the free magnetic layer 14 can be reversed to the direction of the -y axis.
这里可以理解的是,电流方向与参考磁层12的磁矩之间的夹角为90度时,施加给自由磁层14的磁矩mf的自旋转矩最大,但是也可以为其他角度。只要电流方向与参考磁层12的磁矩之间存在一夹角,电流产生的自旋流即可向自由磁层14的磁矩mf施加一自旋转矩。优选地,夹角在例如30度至150度的范围内。It can be understood here that the angle between the current direction and the magnetic moment of the reference magnetic layer 12 When is 90 degrees, the spin torque of the magnetic moment m f applied to the free magnetic layer 14 is the largest, but Other angles are also possible. As long as there is an included angle between the current direction and the magnetic moment of the reference magnetic layer 12 , the spin current generated by the current can apply a spin torque to the magnetic moment m f of the free magnetic layer 14 . Preferably, the angle In the range of, for example, 30 degrees to 150 degrees.
还可以理解的是,电流I在流过自由磁层14时,也会产生影响参考磁层12的自旋流。由于参考磁层12的磁矩被固定,不易被翻转,而自由磁层14的磁矩容易自由翻转,因此在自由磁层14和参考磁层12之间的竞争中,自由磁层14的磁矩被翻转,而参考磁层12的磁矩可保持不变。It can also be understood that when the current I flows through the free magnetic layer 14 , it will also generate a spin current affecting the reference magnetic layer 12 . Since the magnetic moment of the reference magnetic layer 12 is fixed and difficult to be flipped, and the magnetic moment of the free magnetic layer 14 is easy to flip freely, so in the competition between the free magnetic layer 14 and the reference magnetic layer 12, the magnetic moment of the free magnetic layer 14 The moment is flipped, while the magnetic moment of the reference magnetic layer 12 can remain unchanged.
如上所述,通过控制电流I的方向,即可将自由磁层14的磁矩翻转到期望的方向上,从而使巨磁致电阻器件10处于平行态(低阻态)或反平行态(高阻态),该过程相当于向巨磁致电阻器件10中写入了“0”或“1”。此外,可以通过电极15和16施加一比前述写入电流I更小的读取电流,以读取巨磁致电阻器件10的状态。这里,读取电流可以同样经由电极15和16来施加,只是其比较小,所以不会引起自由磁层14的磁矩翻转。本发明的巨磁致电阻器件10不需要额外的层来翻转自由磁层14的磁矩,并且可以通过相同的电极来施加写入电流和读取电流,从而具有更简单的结构,能够实现操作简单、稳定、并且功耗低的磁矩翻转过程。As mentioned above, by controlling the direction of the current I, the magnetic moment of the free magnetic layer 14 can be reversed to the desired direction, so that the giant magnetoresistive device 10 is in a parallel state (low resistance state) or an antiparallel state (high resistance state). resistance state), this process is equivalent to writing “0” or “1” into the giant magnetoresistive device 10 . In addition, a read current smaller than the aforementioned write current I can be applied through the electrodes 15 and 16 to read the state of the giant magnetoresistive device 10 . Here, the read current can also be applied via the electrodes 15 and 16 , but it is relatively small so as not to cause a magnetic moment reversal of the free magnetic layer 14 . The giant magnetoresistive device 10 of the present invention does not require additional layers to flip the magnetic moment of the free magnetic layer 14, and can apply the write current and the read current through the same electrode, thereby having a simpler structure and enabling operation Simple, stable, and low power consumption magnetic moment switching process.
图3是示出图1的巨磁致电阻器件在施加翻转电流之后的电阻特性的曲线图。首先,对巨磁致电阻器件10施加一翻转电流(或者称为写入电流),然后施加一较小的读取电流以读取巨磁致电阻器件10的状态。从图3的曲线图可以看出,当施加较大的翻转电流后,可以改变巨磁致电阻器件10的状态,并且翻转电流的方向可以决定自由磁层14的磁矩方向,从而在高阻态和低阻态之间切换。利用巨磁致电阻器件10的这种特性,其可以用于各种电子设备中,例如磁存储器、自旋逻辑器件、以及用作磁记录读头的磁传感器等。传统巨磁致电阻器件在这些电子设备中的应用是已知的,仅需要用本发明的巨磁致电阻器件10代替传统的磁致电阻器件即可,因此这里不再详细描述这些电子设备的具体结构。FIG. 3 is a graph showing resistance characteristics of the giant magnetoresistive device of FIG. 1 after a flipping current is applied. Firstly, a reversal current (or called writing current) is applied to the giant magnetoresistive device 10 , and then a smaller read current is applied to read the state of the giant magnetoresistive device 10 . As can be seen from the graph in Fig. 3, when a larger flipping current is applied, the state of the giant magnetoresistive device 10 can be changed, and the direction of the flipping current can determine the direction of the magnetic moment of the free magnetic layer 14, thus in high resistance state and low-impedance state switching. Utilizing this characteristic of the giant magnetoresistive device 10, it can be used in various electronic devices, such as magnetic memory devices, spin logic devices, and magnetic sensors used as magnetic recording read heads. The application of traditional giant magnetoresistive devices in these electronic devices is known, and it is only necessary to replace the traditional magnetoresistive devices with the giant magnetoresistive device 10 of the present invention, so the details of these electronic devices will not be described here. Concrete structure.
图4是根据本发明另一示例性实施例的磁性隧道结结构的示意图。如图4所示,磁性隧道结结构20除了包括前面描述的巨磁致电阻器件10之外,还包括形成在自由磁层14上的第二间隔层21,形成在第二间隔层21上的第二参考磁层22,以及形成在第二参考磁层22上的第二反铁磁钉扎层23。FIG. 4 is a schematic diagram of a magnetic tunnel junction structure according to another exemplary embodiment of the present invention. As shown in FIG. 4 , the magnetic tunnel junction structure 20 includes a second spacer layer 21 formed on the free magnetic layer 14 in addition to the giant magnetoresistive device 10 described above, and a second spacer layer 21 formed on the second spacer layer 21 The second reference magnetic layer 22 , and the second antiferromagnetic pinning layer 23 formed on the second reference magnetic layer 22 .
与第一间隔层13不同,磁性隧道结结构20的第二间隔层21可以由非磁绝缘材料例如金属氧化物形成,其典型材料可包括MgO、Al2O3等。第二参考磁层22可以由铁磁材料形成,例如Co、Fe、Ni以及包括Co、Fe、Ni的合金,诸如CoFe、NiFe、CoFeB等。第二参考磁层22的磁矩与第一参考磁层12的磁矩彼此平行,从而自由磁层14的磁矩可以与第一参考磁层12和第二参考磁层22二者平行或反平行,从而磁性隧道结结构20可以处于低阻态或高阻态。Different from the first spacer layer 13 , the second spacer layer 21 of the magnetic tunnel junction structure 20 may be formed of non-magnetic insulating material such as metal oxide, and its typical materials may include MgO, Al 2 O 3 and so on. The second reference magnetic layer 22 may be formed of a ferromagnetic material, such as Co, Fe, Ni, and alloys including Co, Fe, Ni, such as CoFe, NiFe, CoFeB, and the like. The magnetic moment of the second reference magnetic layer 22 and the magnetic moment of the first reference magnetic layer 12 are parallel to each other, so that the magnetic moment of the free magnetic layer 14 can be parallel or opposite to both the first reference magnetic layer 12 and the second reference magnetic layer 22. parallel, so that the magnetic tunnel junction structure 20 can be in a low-resistance state or a high-resistance state.
第二反铁磁钉扎层23可以与反铁磁钉扎层11类似,由反铁磁材料例如IrMn等形成,其用于钉扎第二参考磁层22的磁矩,使得其在磁性隧道结结构20的运行期间可以保持固定不变。The second antiferromagnetic pinning layer 23 can be similar to the antiferromagnetic pinning layer 11, formed of an antiferromagnetic material such as IrMn, etc., which is used to pin the magnetic moment of the second reference magnetic layer 22, so that it is in the magnetic tunnel The junction structure 20 may remain fixed during operation.
磁性隧道结结构20还可包括顶电极(第三电极)24和底电极(第四电极)25,从而用于施加垂直流过磁性隧道结结构20的读取电流,以读取磁性隧道结结构20的状态。写入电流可以如参照图1描述的那样,通过第一电极15和第二电极16来施加。The magnetic tunnel junction structure 20 may also include a top electrode (third electrode) 24 and a bottom electrode (fourth electrode) 25, so as to apply a read current flowing vertically through the magnetic tunnel junction structure 20 to read the magnetic tunnel junction structure 20 state. The write current may be applied through the first electrode 15 and the second electrode 16 as described with reference to FIG. 1 .
本发明的另一些实施例还提供一种包括上述巨磁致电阻器件10或磁性隧道结结构20的电子设备,例如磁存储器、自旋逻辑器件、以及用作磁记录读头的磁传感器等。传统巨磁致电阻器件和磁性隧道结结构在这些电子设备中的应用是已知的,仅需要用本发明的巨磁致电阻器件10或磁性隧道结结构20代替传统器件即可,因此这里不再详细描述这些电子设备的具体结构。Other embodiments of the present invention also provide an electronic device including the giant magnetoresistive device 10 or the magnetic tunnel junction structure 20 , such as a magnetic memory, a spin logic device, and a magnetic sensor used as a magnetic recording head. The application of traditional giant magnetoresistive devices and magnetic tunnel junction structures in these electronic devices is known, and it is only necessary to replace traditional devices with giant magnetoresistive devices 10 or magnetic tunnel junction structures 20 of the present invention, so it is not mentioned here The specific structure of these electronic devices will be described in detail.
上面参照示范性实施例描述了本发明的原理,并且在这些示范性实施例中给出了许多细节,但是本领域技术人员将理解,本发明不限于这些细节。而是,本领域技术人员可以在没有这些细节的情况下实施本发明,或者采用替代的细节来实施本发明,这些实施方式都应落在本发明的范围内。本发明的范围由所附权利要求定义。The principles of the invention have been described above with reference to exemplary embodiments, and in these exemplary embodiments numerous details have been given, but it will be understood by those skilled in the art that the invention is not limited to these details. Rather, a person skilled in the art may practice the invention without these details, or with alternative details, and such embodiments shall fall within the scope of the invention. The scope of the invention is defined by the appended claims.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910619674.2A CN110335940B (en) | 2019-07-10 | 2019-07-10 | Giant magnetoresistive device and magnetic tunnel junction structure and electronic device including the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910619674.2A CN110335940B (en) | 2019-07-10 | 2019-07-10 | Giant magnetoresistive device and magnetic tunnel junction structure and electronic device including the same |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110335940A true CN110335940A (en) | 2019-10-15 |
CN110335940B CN110335940B (en) | 2021-05-25 |
Family
ID=68145510
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910619674.2A Active CN110335940B (en) | 2019-07-10 | 2019-07-10 | Giant magnetoresistive device and magnetic tunnel junction structure and electronic device including the same |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110335940B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113657586A (en) * | 2021-07-21 | 2021-11-16 | 中国科学院微电子研究所 | A neural component based on spin-orbit moment |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1945870A (en) * | 2005-10-06 | 2007-04-11 | 日立环球储存科技荷兰有限公司 | Double mill process for patterning current perpendicular to plane magnetoresistive devices |
CN1960018A (en) * | 2005-07-18 | 2007-05-09 | 日立环球储存科技荷兰有限公司 | Current vertical plane type gigantic magnetoresistance sensor |
US20090087589A1 (en) * | 2007-09-28 | 2009-04-02 | Magic Technologies, Inc. | Method for providing AFM exchange pinning fields in multiple directions on same substrate |
CN103633239A (en) * | 2012-08-26 | 2014-03-12 | 三星电子株式会社 | Megnetic memory and providing method and programming method |
CN103887424A (en) * | 2012-12-20 | 2014-06-25 | 三星电子株式会社 | Magnetic junction, method of providing magnetic junction and magnetic memory |
CN105954692A (en) * | 2016-04-26 | 2016-09-21 | 中国科学院物理研究所 | Magnetic sensor with improved sensitivity and linearity |
CN108470826A (en) * | 2018-04-09 | 2018-08-31 | 中国科学院物理研究所 | Magnetic multilayer film structure, magnetic memory, spin logical device and electronic equipment |
CN108604632A (en) * | 2016-01-28 | 2018-09-28 | 斯平转换技术公司 | Memory cell with magnetic tunnel junction and thermal stability enhancement layer |
-
2019
- 2019-07-10 CN CN201910619674.2A patent/CN110335940B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1960018A (en) * | 2005-07-18 | 2007-05-09 | 日立环球储存科技荷兰有限公司 | Current vertical plane type gigantic magnetoresistance sensor |
CN1945870A (en) * | 2005-10-06 | 2007-04-11 | 日立环球储存科技荷兰有限公司 | Double mill process for patterning current perpendicular to plane magnetoresistive devices |
US20090087589A1 (en) * | 2007-09-28 | 2009-04-02 | Magic Technologies, Inc. | Method for providing AFM exchange pinning fields in multiple directions on same substrate |
CN103633239A (en) * | 2012-08-26 | 2014-03-12 | 三星电子株式会社 | Megnetic memory and providing method and programming method |
CN103887424A (en) * | 2012-12-20 | 2014-06-25 | 三星电子株式会社 | Magnetic junction, method of providing magnetic junction and magnetic memory |
CN108604632A (en) * | 2016-01-28 | 2018-09-28 | 斯平转换技术公司 | Memory cell with magnetic tunnel junction and thermal stability enhancement layer |
CN105954692A (en) * | 2016-04-26 | 2016-09-21 | 中国科学院物理研究所 | Magnetic sensor with improved sensitivity and linearity |
CN108470826A (en) * | 2018-04-09 | 2018-08-31 | 中国科学院物理研究所 | Magnetic multilayer film structure, magnetic memory, spin logical device and electronic equipment |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113657586A (en) * | 2021-07-21 | 2021-11-16 | 中国科学院微电子研究所 | A neural component based on spin-orbit moment |
Also Published As
Publication number | Publication date |
---|---|
CN110335940B (en) | 2021-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9343128B2 (en) | Magnetoresistive device | |
CN105280214B (en) | Current drive-type MAGNETIC RANDOM ACCESS MEMORY and spin logical device | |
JP6778866B2 (en) | Magnetoresistive element, magnetic memory device, manufacturing method, operating method, and integrated circuit | |
US11776726B2 (en) | Dipole-coupled spin-orbit torque structure | |
CN106876582B (en) | Magnetic tunnel junction and magnetic device and electronic equipment including it | |
CN110061127B (en) | Magnetic tunnel junction forming method and magneto-resistive random access memory | |
US10483459B2 (en) | Magnetic memory | |
US20130059168A1 (en) | Magnetoresistance Device | |
KR20120027390A (en) | Magnetic memory device with spin polarisation, and method for using same | |
JP5655391B2 (en) | Storage element and storage device | |
CN105449097B (en) | Double magnetism potential barrier tunnel knots and the spintronics devices including it | |
JP5504704B2 (en) | Memory element and memory | |
CN112652706B (en) | A spin-orbit moment memory cell without external magnetic field | |
TW201416693A (en) | Magnetic sensor for sensing an external magnetic field | |
TWI473088B (en) | Memory elements and memory devices | |
JP2013093558A (en) | Magnetic random access memory (mram) cell and method for writing and reading mram cell by using self reference read operation | |
WO2014050379A1 (en) | Storage element, storage device, and magnetic head | |
TWI569484B (en) | Magnetic tunnel junction with superlattice barriers and device comprising a magnetic tunnel junction with superlattice barriers | |
JP2012064623A (en) | Storage element and memory unit | |
JP2013115319A (en) | Storage element, storage device | |
JP7347799B2 (en) | Magnetoresistive element and magnetic memory | |
JP2012253357A (en) | Magnetic device having exchange bias | |
JP2008153527A (en) | Storage element and memory | |
CN111542489A (en) | Spin transfer torque MRAM with auxiliary layer and method of operating the same | |
JP5034317B2 (en) | Memory element and memory |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |