[go: up one dir, main page]

CN110335708A - 一种长效固型高强韧自增强海底电缆及其制造方法 - Google Patents

一种长效固型高强韧自增强海底电缆及其制造方法 Download PDF

Info

Publication number
CN110335708A
CN110335708A CN201910582035.3A CN201910582035A CN110335708A CN 110335708 A CN110335708 A CN 110335708A CN 201910582035 A CN201910582035 A CN 201910582035A CN 110335708 A CN110335708 A CN 110335708A
Authority
CN
China
Prior art keywords
core
layer
waterstop
curable type
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910582035.3A
Other languages
English (en)
Other versions
CN110335708B (zh
Inventor
张素兰
杨桂莲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JINTAI CABLE Co.,Ltd.
Original Assignee
Fuzhou Hua Bolli New Mstar Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou Hua Bolli New Mstar Technology Ltd filed Critical Fuzhou Hua Bolli New Mstar Technology Ltd
Priority to CN201910582035.3A priority Critical patent/CN110335708B/zh
Publication of CN110335708A publication Critical patent/CN110335708A/zh
Application granted granted Critical
Publication of CN110335708B publication Critical patent/CN110335708B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/14Submarine cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • H01B7/1875Multi-layer sheaths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • H01B7/1895Internal space filling-up means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • H01B7/22Metal wires or tapes, e.g. made of steel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • H01B7/22Metal wires or tapes, e.g. made of steel
    • H01B7/226Helicoidally wound metal wires or tapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/28Protection against damage caused by moisture, corrosion, chemical attack or weather
    • H01B7/282Preventing penetration of fluid, e.g. water or humidity, into conductor or cable
    • H01B7/2825Preventing penetration of fluid, e.g. water or humidity, into conductor or cable using a water impermeable sheath
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables
    • H01B9/02Power cables with screens or conductive layers, e.g. for avoiding large potential gradients
    • H01B9/027Power cables with screens or conductive layers, e.g. for avoiding large potential gradients composed of semi-conducting layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Laying Of Electric Cables Or Lines Outside (AREA)
  • Insulating Bodies (AREA)

Abstract

本发明公开了一种长效固型高强韧自增强海底电缆及其制造方法,该海底电缆整体为三芯电缆结构,外径为265mm‑270mm,每根芯管由内及外设置有芯体、静电包覆膜、绝缘层、单芯自固阻水带和单芯包套层;外层保护套由内及外设置有内衬自固阻水带、内衬层、钢丝铠装层、外衬自固阻水带、外衬层;在每根芯管和外层保护套的间隙间填装有固型条,固型条为采用环氧树脂制造的形状与芯管和外层保护套相匹配的密封条;单芯包套层为采用奥氏体不锈带卷包的金属套壳;内衬层、外衬层均为绝缘橡胶材质。本发明的海底电缆海水中自增强、强度高、韧性好、抗击穿、阻水性好、不易弯折、使用寿命长、抗撞击震动。

Description

一种长效固型高强韧自增强海底电缆及其制造方法
技术领域
本发明涉及特种电缆制造领域,尤其涉及一种长效固型高强韧自增强海底电缆及其制造方法。
背景技术
海底电力电缆主要用于水下传输大功率电能,与地下电力电缆的作用等同,只不过应用的场合和敷设的方式不同。由于海底电缆工程被世界各国公认为复杂困难的大型工程,从环境探测、海洋物理调查,以及电缆的设计、制造和安装,都应用复杂技术,因而海底电缆的制造厂家在世界上为数不多,主要有挪威、丹麦、日本、加拿大、美、英、法、意等国,这些国家除制造外还提供敷设技术。
海底电力电缆主要应用于大陆与海岛、海岛与海岛、大陆与石油平台和海岸风能发电场等场合的电能传输。海底电力电缆优异的电能传输性能以及高耐磨性、耐腐蚀性等特殊性能,使其相比于普通电力电缆的生产难度更大、等长度产值更高。
但目前现有技术中的海底电力电缆均为单芯海底电缆,相对生产周期长、制造成本高、敷设时占用的河床路面更多、空间浪费的缺点,因此在220kV单芯光纤复合海底电缆基础上,进行多芯电缆的开发具有极高的技术意义。
综上所述,市面上需要一种海水中自增强、强度高、韧性好、抗击穿、阻水性好、不易弯折、使用寿命长、抗撞击震动的海底电缆及其制造方法。
发明内容
为解决现有技术中存在的上述缺陷,本发明旨在提供一种海水中自增强、强度高、韧性好、抗击穿、阻水性好、不易弯折、使用寿命长、抗撞击震动的长效固型高强韧自增强海底电缆及其制造方法。
为了实现上述目的,本发明采用以下技术方案:一种长效固型高强韧自增强海底电缆,整体为三芯电缆结构,由三根单独包套的芯管及套装所有芯管的外层保护套组成,该海底电缆的外径为265mm-270mm,其内的每根芯体1均由30根纯铜芯采用聚晶模具按89%-91%的致密度压紧成直径φ38.2mm-φ38.8mm的圆柱形芯体,每根芯体外表面均裹覆有PVC材质的静电包覆膜;每根芯管由内及外设置有芯体、静电包覆膜、绝缘层、单芯自固阻水带和单芯包套层;外层保护套由内及外设置有内衬自固阻水带、内衬层、钢丝铠装层、外衬自固阻水带、外衬层;在每根芯管和外层保护套的间隙间填装有固型条,固型条为采用环氧树脂制造的形状与芯管和外层保护套相匹配的密封条;单芯包套层为采用奥氏体不锈带卷包的金属套壳;内衬层、外衬层均为绝缘橡胶材质;单芯自固阻水带、内衬自固阻水带和外衬自固阻水带均为采用氧化铟:氧化锡:氧化钙:氧化镁:氧化铁按质量比27:(3-4):(1.8-2):(1-1.1):(0.6-0.8)的比例混配的混合物为原料,在平面纯铜板表面蒸镀后,采用1%-1.5%质量浓度的NaOH水溶液初固化后再脱模取下的半导体自固化膜;
其中所述半导体自固化膜的制造方法包括以下步骤:
①原材料准备:按重量份准备氧化铟27份、氧化锡3份-4份、氧化钙1.8份-2份、氧化镁1份-1.1份、氧化铁0.6份-0.8份;
②辅材准备:准备采用无氧铜制造的表面粗糙度不高于Ra0.4的纯铜板、准备足量1%-1.5%质量浓度的NaOH水溶液;
③将步骤①获得的氧化铟、氧化锡、氧化钙、氧化镁、氧化铁混配均匀,获得金属氧化混合物;
④以步骤③获得的金属氧化混合物为原料,采用溅射镀膜工艺将原料全部涂覆在步骤②准备的纯铜板上,涂覆厚度0.5mm-0.7mm,自然凝固后获得待处理半导体膜;
⑤将步骤④获得的表面固化有待处理半导体膜的纯铜板完全浸入步骤②准备的NaOH水溶液中,保持3min-4min,获得初固化膜;
⑥将步骤⑤获得的初固化膜从纯铜板上取下,即获得所需半导体自固化膜。
其中,上述半导体自固化膜在卷绕封装其内包容物后,直接采用热融法封闭表面接缝即可。
与现有技术相比较,本发明具有以下优点:(1)本发明突破了现有技术中海底电缆无法多芯合用的技术难题,众所周知,海底中高压输电电缆若采用多芯合用,由于承受表面压强大,洋流扰乱明显(无法深入挖掘至海床下铺设),易弯折也易由于电压差被相互击穿产生高温以致失效,同时海水属于盐碱性水,现有技术中的电缆耐侵蚀能力较差,因此一般都要用厚层绝缘包套保护其内导体,多芯设计会造成包套尺寸过大而无法实用化,本发明通过绝缘层、半导体固化层与金属屏蔽层的多层复合设计,提升了本发明的综合力学性能同时明显提升了多根芯体间高压输电时的相互屏蔽能力;另外,不同于现有技术直接灌封绝缘胶而是采用成型胶条进行组装固型,极大地增强了本发明在受到外力冲击时的缓冲性能,因而获得高于现有技术的韧性。(2)本发明在现有技术之外,在海水至芯体之间额外设置了三层半导体自固化膜,这层膜采用溅射法制取,根据溅射法的特性,膜层本质性能保存完好、膜自结合力好、致密度高、杂质少,而本发明的五种氧化成份可以构建两种相互交织、性能互补材料体系,一种是氧化铟、氧化锡构建的致密导电材料体系,一种是经稀碱激发过的初凝胶态的氧化钙、氧化镁、氧化铁构建的碱促凝胶固化增强体系(根据相关研究C-S-H凝胶体系在最初经强碱激发后,后续在弱碱性溶液中就具有良好的碱促凝胶致密性,且本发明采用的是充足水环境内饱和凝胶的对应比例,亦即是说,本发明对应的这三种氧化物可以在海水中持续氧化直到完全凝胶,既填补了导电膜可能的微小孔隙,又为后一层阻水结构提供了良好的防护基础),这套氧化膜体系主要具有三个方面的综合性能,一是获得了电磁屏蔽性能,二是获得了在海水中随着时间推移自固化、自致密化的具有明显阻水作用的凝胶能力,三是给予了本发明结构上的强韧化支撑。(3)可以通过本发明的结构设计清晰地看到,本发明芯体到海水之间有着共十层具备各种性能的保护结构,且这些结构从力学结构上看分别采用的是抗张力材料(膜类材料)、柔弹性材料(树脂、橡胶类材料)、高强度材料(金属)层叠循环设计,既能保证本发明的强度和抗折弯性能,又能保证良好的冲击韧性;从电学结构上来看是绝缘层(PVC、树脂、橡胶)、半导层(半导体自固化膜)、导体层(不锈钢带、钢丝铠装)能极大地提升本发明的稳定性和安全性;从阻水性能上看,既有物理结构阻水(PVC、树脂、橡胶),又有自固化化学反应增强阻水(半导体自固化膜)。因此使本发明最终具有海水中自增强、强度高、韧性好、抗击穿、阻水性好、不易弯折、使用寿命长、抗撞击震动的特性。
附图说明
图1是本发明的结构示意图;
图2是本发明固型条的截面形状示意图;
图中:芯体1、静电包覆膜2、绝缘层3、单芯自固阻水带4、单芯包套层5、固型条6、内衬自固阻水带7、内衬层8、钢丝铠装层9、外衬自固阻水带10、外衬层11。
具体实施方式
实施例1:
一种长效固型高强韧自增强海底电缆,整体为三芯电缆结构,由三根单独包套的芯管及套装所有芯管的外层保护套组成,该海底电缆的外径为265mm,其内的每根芯体1均由30根纯铜芯采用聚晶模具按91%的致密度压紧成直径φ38.2mm的圆柱形芯体1,每根芯体1外表面均裹覆有PVC材质的静电包覆膜2;每根芯管由内及外设置有芯体1、静电包覆膜2、绝缘层3、单芯自固阻水带4和单芯包套层5;外层保护套由内及外设置有内衬自固阻水带7、内衬层8、钢丝铠装层9、外衬自固阻水带10、外衬层11;在每根芯管和外层保护套的间隙间填装有固型条6,固型条6为采用环氧树脂制造的形状与芯管和外层保护套相匹配的密封条;单芯包套层5为采用奥氏体不锈带卷包的金属套壳;内衬层8、外衬层11均为绝缘橡胶材质;单芯自固阻水带4、内衬自固阻水带7和外衬自固阻水带10均为采用氧化铟:氧化锡:氧化钙:氧化镁:氧化铁按质量比27:3:2:1.1:0.8的比例混配的混合物为原料,在平面纯铜板表面蒸镀后,采用1%质量浓度的NaOH水溶液初固化后再脱模取下的半导体自固化膜;
其中所述半导体自固化膜的制造方法包括以下步骤:
①原材料准备:按重量份准备氧化铟270kg、氧化锡30kg、氧化钙20kg、氧化镁11kg、氧化铁8kg;
②辅材准备:准备采用无氧铜制造的表面粗糙度Ra0.1的纯铜板、准备足量1%质量浓度的NaOH水溶液;
③将步骤①获得的氧化铟、氧化锡、氧化钙、氧化镁、氧化铁混配均匀,获得金属氧化混合物;
④以步骤③获得的金属氧化混合物为原料,采用溅射镀膜工艺将原料全部涂覆在步骤②准备的纯铜板上,涂覆厚度0.5mm-0.7mm,自然凝固后获得待处理半导体膜;
⑤将步骤④获得的表面固化有待处理半导体膜的纯铜板完全浸入步骤②准备的NaOH水溶液中,保持3min-4min,获得初固化膜;
⑥将步骤⑤获得的初固化膜从纯铜板上取下,即获得所需半导体自固化膜。
根据本实施例生产的海底电缆,其主要性能指标有:
1、20℃下,导体直流电阻≤0.0176Ω/km;
2、可成功通过330kV交流电压1h的耐电压试验(高于现有技术标准的318kV交流电压30min),未击穿;
3、电缆通过高于规定电压局部放电试验的加严试验,试验参数为:将电压升至260kV保持30s,然后在1min内降至180kV,无可视放电;
4、电缆电容≤0.186μF/km;
5、电缆阻水试验满足GB/T 32346-2015和IEC62067标准规定的透水试验要求并高于现有常规水平,实测水压1.0MPa下持续24h后,电缆端头进水为1.3m(标准要求为不超过7m)。
下同
实施例2:
整体与实施例1一致,差异之处在于:
该海底电缆的外径为270mm,其内的每根芯体1均由30根纯铜芯采用聚晶模具按89%的致密度压紧成直径φ38.8mm的圆柱形芯体1,单芯自固阻水带4、内衬自固阻水带7和外衬自固阻水带10均为采用氧化铟:氧化锡:氧化钙:氧化镁:氧化铁按质量比27:3:1.8:1:0.6的比例混配的混合物为原料,在平面纯铜板表面蒸镀后,采用1.5%质量浓度的NaOH水溶液初固化后再脱模取下的半导体自固化膜;
其中所述半导体自固化膜的制造方法包括以下步骤:
①原材料准备:按重量份准备氧化铟270kg、氧化锡40kg、氧化钙18kg、氧化镁10kg、氧化铁6kg;
②辅材准备:准备采用无氧铜制造的表面粗糙度Ra0.4的纯铜板、准备足量1.5%质量浓度的NaOH水溶液;
对所公开的实施例的上述说明,仅为了使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (1)

1.一种长效固型高强韧自增强海底电缆,整体为三芯电缆结构,由三根单独包套的芯管及套装所有芯管的外层保护套组成,其特征在于:该海底电缆的外径为265mm-270mm,其内的每根芯体(1)均由30根纯铜芯采用聚晶模具按89%-91%的致密度压紧成直径φ38.2mm-φ38.8mm的圆柱形芯体(1),每根芯体(1)外表面均裹覆有PVC材质的静电包覆膜(2);每根芯管由内及外设置有芯体(1)、静电包覆膜(2)、绝缘层(3)、单芯自固阻水带(4)和单芯包套层(5);外层保护套由内及外设置有内衬自固阻水带(7)、内衬层(8)、钢丝铠装层(9)、外衬自固阻水带(10)、外衬层(11);在每根芯管和外层保护套的间隙间填装有固型条(6),固型条(6)为采用环氧树脂制造的形状与芯管和外层保护套相匹配的密封条;单芯包套层(5)为采用奥氏体不锈带卷包的金属套壳;内衬层(8)、外衬层(11)均为绝缘橡胶材质;单芯自固阻水带(4)、内衬自固阻水带(7)和外衬自固阻水带(10)均为采用氧化铟:氧化锡:氧化钙:氧化镁:氧化铁按质量比27:(3-4):(1.8-2):(1-1.1):(0.6-0.8)的比例混配的混合物为原料,在平面纯铜板表面蒸镀后,采用1%-1.5%质量浓度的NaOH水溶液初固化后再脱模取下的半导体自固化膜;
其中所述半导体自固化膜的制造方法包括以下步骤:
①原材料准备:按重量份准备氧化铟27份、氧化锡3份-4份、氧化钙1.8份-2份、氧化镁1份-1.1份、氧化铁0.6份-0.8份;
②辅材准备:准备采用无氧铜制造的表面粗糙度不高于Ra0.4的纯铜板、准备足量1%-1.5%质量浓度的NaOH水溶液;
③将步骤①获得的氧化铟、氧化锡、氧化钙、氧化镁、氧化铁混配均匀,获得金属氧化混合物;
④以步骤③获得的金属氧化混合物为原料,采用溅射镀膜工艺将原料全部涂覆在步骤②准备的纯铜板上,涂覆厚度0.5mm-0.7mm,自然凝固后获得待处理半导体膜;
⑤将步骤④获得的表面固化有待处理半导体膜的纯铜板完全浸入步骤②准备的NaOH水溶液中,保持3min-4min,获得初固化膜;
⑥将步骤⑤获得的初固化膜从纯铜板上取下,即获得所需半导体自固化膜。
CN201910582035.3A 2019-06-30 2019-06-30 一种长效固型高强韧自增强海底电缆及其制造方法 Active CN110335708B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910582035.3A CN110335708B (zh) 2019-06-30 2019-06-30 一种长效固型高强韧自增强海底电缆及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910582035.3A CN110335708B (zh) 2019-06-30 2019-06-30 一种长效固型高强韧自增强海底电缆及其制造方法

Publications (2)

Publication Number Publication Date
CN110335708A true CN110335708A (zh) 2019-10-15
CN110335708B CN110335708B (zh) 2021-10-19

Family

ID=68143718

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910582035.3A Active CN110335708B (zh) 2019-06-30 2019-06-30 一种长效固型高强韧自增强海底电缆及其制造方法

Country Status (1)

Country Link
CN (1) CN110335708B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3850971A (en) * 1969-12-18 1974-11-26 Dynamit Nobel Ag Porous silicic acid and its production
CN1546413A (zh) * 2003-12-01 2004-11-17 同济大学 煤矸石工业废渣用激发剂及其制备方法
CN102420033A (zh) * 2011-06-30 2012-04-18 山东阳谷电缆集团有限公司 一种光电复合海底电缆
CN102751013A (zh) * 2012-06-20 2012-10-24 江苏远洋东泽电缆股份有限公司 石化装置移动用中高压电缆及其制造方法
CN109231899A (zh) * 2018-09-14 2019-01-18 吉林建筑大学 一种可应用于特殊环境的高强度碱激发凝胶材料

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3850971A (en) * 1969-12-18 1974-11-26 Dynamit Nobel Ag Porous silicic acid and its production
CN1546413A (zh) * 2003-12-01 2004-11-17 同济大学 煤矸石工业废渣用激发剂及其制备方法
CN102420033A (zh) * 2011-06-30 2012-04-18 山东阳谷电缆集团有限公司 一种光电复合海底电缆
CN102751013A (zh) * 2012-06-20 2012-10-24 江苏远洋东泽电缆股份有限公司 石化装置移动用中高压电缆及其制造方法
CN109231899A (zh) * 2018-09-14 2019-01-18 吉林建筑大学 一种可应用于特殊环境的高强度碱激发凝胶材料

Also Published As

Publication number Publication date
CN110335708B (zh) 2021-10-19

Similar Documents

Publication Publication Date Title
CN103680724B (zh) 海洋石油平台水下预警系统用基阵数模综合信号电缆
CN102254613A (zh) 一种高压、超高压直流聚烯烃绝缘海底电力电缆
CN106772845A (zh) 一种大截面海底光缆
CN107833678B (zh) 一种密封提捞专用承荷测试光电复合强力缆
CN202142339U (zh) 一种高压、超高压直流聚烯烃绝缘海底电力电缆
CN203631158U (zh) 海洋石油平台水下预警系统用基阵数模综合信号电缆
CN110335708A (zh) 一种长效固型高强韧自增强海底电缆及其制造方法
CN104616804A (zh) 一种使用聚四氟乙烯复合材料的无卤阻燃绝缘电力电缆
CN208027792U (zh) 一种抗压型防火电缆
CN105647058A (zh) 一种船舶用耐腐蚀防水电缆
CN110322989A (zh) 一种通信电力两用海底双三芯电缆及其制造方法
CN107274985A (zh) 一种z型铜丝铠装光电复合海底电缆
CN106328288B (zh) 一种高强度屏蔽型电缆
CN207250175U (zh) 一种z型铜丝铠装光电复合海底电缆
CN202512929U (zh) 一种浅海湖泊用变频电缆
CN104157340B (zh) 一种高稳定性海底通讯数据传输电缆
CN203760132U (zh) 交联聚乙烯绝缘电缆
CN203773979U (zh) 一种高电压光电复合海底交联电缆
CN206849540U (zh) 一种隔离型柔性矿物绝缘耐拖拽软电缆
CN206673112U (zh) 一种复合材料耐压结构整流天线罩
CN206877713U (zh) 用于风力发电机组抗寒扭曲的电缆
CN206610663U (zh) 一种聚氯乙烯绝缘和护套细钢丝铠装耐火电力电缆
CN118197691B (zh) 一种耐海水腐蚀阻水电缆
CN1811075A (zh) 地上箱式变电站、开闭站土建基础
CN104616805A (zh) 一种使用低密度高强度复合材料的无卤阻燃绝缘电力电缆

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20210929

Address after: 052200 Yingli, Jinzhou City, Shijiazhuang City, Hebei Province

Applicant after: JINTAI CABLE Co.,Ltd.

Address before: 350500 unit 1302, building 5, sunrise East, No.2 Mazu West Road, Fengcheng Town, Lianjiang county, Fuzhou City, Fujian Province

Applicant before: FUZHOU HUABO LILE NEW MATERIAL TECHNOLOGY Co.,Ltd.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant