CN110333658B - An underactuated ship heading control method with input constraints and drift angle compensation - Google Patents
An underactuated ship heading control method with input constraints and drift angle compensation Download PDFInfo
- Publication number
- CN110333658B CN110333658B CN201910625737.5A CN201910625737A CN110333658B CN 110333658 B CN110333658 B CN 110333658B CN 201910625737 A CN201910625737 A CN 201910625737A CN 110333658 B CN110333658 B CN 110333658B
- Authority
- CN
- China
- Prior art keywords
- ship
- heading
- yaw
- angle
- drift angle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 10
- 230000003044 adaptive effect Effects 0.000 claims abstract description 7
- 230000033001 locomotion Effects 0.000 claims abstract description 7
- 238000013016 damping Methods 0.000 claims description 3
- 238000013178 mathematical model Methods 0.000 claims description 3
- 229920006395 saturated elastomer Polymers 0.000 claims description 3
- 230000006641 stabilisation Effects 0.000 claims description 3
- 230000007704 transition Effects 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
- G05B13/042—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
- Feedback Control In General (AREA)
Abstract
本发明提出了一种带输入约束和漂角补偿的欠驱动船舶航向控制方法,基于反步控制算法,引入双曲正切函数将不连续的输入饱和函数转化为连续函数,结合自适应律对艏摇方向上的外部扰动进行估计,所提出的航向控制算法可以使欠驱动船舶遵循设定航向航行的同时保持着较小的控制输入力矩,运动控制性能大大提高。
The invention proposes an underactuated ship heading control method with input constraints and drift angle compensation. Based on the backstepping control algorithm, the hyperbolic tangent function is introduced to convert the discontinuous input saturation function into a continuous function, and the bow is adjusted by the adaptive law. The external disturbance in the yaw direction is estimated, and the proposed heading control algorithm can make the underactuated ship sail along the set heading while maintaining a small control input torque, and the motion control performance is greatly improved.
Description
技术领域technical field
涉及船舶控制领域,具体涉及一种带输入约束和漂角补偿的欠驱动船舶航向控制方法。The invention relates to the field of ship control, in particular to an underactuated ship course control method with input constraints and drift angle compensation.
背景技术Background technique
随着海上交通日益密集,有关如何更好实现船舶航向控制的问题受到越来越多学者的关注。实际生活中的大多传统船舶通常是欠驱动系统的,即仅由一个控制输入控制横荡和艏摇两方向上的运动。航向控制中通常会忽略漂角的存在,但实际漂角并不为零,这样会使船舶实际运动方向和期望航向相差一个漂角,如果不进行修正,将降低航向控制性能。输入饱和更是实际控制系统中的一种常见现象,任何执行器都有一定的可执行范围,一旦输入超出极限值,就会影响执行器的运行,导致系统性能降低,影响控制效果,而且长期保持过大的控制输入也会增加舵的损耗。With the increasing density of maritime traffic, the problem of how to better realize the ship heading control has attracted more and more scholars' attention. Most conventional ships in real life are usually underactuated systems, that is, only one control input controls motion in both yaw and yaw directions. The existence of drift angle is usually ignored in heading control, but the actual drift angle is not zero, which will make the ship's actual motion direction and the expected heading different by a drift angle. If no correction is made, the heading control performance will be reduced. Input saturation is a common phenomenon in the actual control system. Any actuator has a certain executable range. Once the input exceeds the limit value, it will affect the operation of the actuator, resulting in reduced system performance, affecting the control effect, and long-term Maintaining an excessively large control input also increases rudder losses.
发明内容SUMMARY OF THE INVENTION
本发明提出了一种带输入约束和漂角补偿的欠驱动船舶航向控制方,基于反步控制算法,引入双曲正切函数将不连续的输入饱和函数转化为连续函数,结合自适应律对艏摇方向上的外部扰动进行估计,所提出的航向控制算法可以使欠驱动船舶遵循设定航向航行的同时保持着较小的控制输入力矩,运动控制性能大大提高。The present invention proposes an underactuated ship course controller with input constraints and drift angle compensation. Based on the backstep control algorithm, the hyperbolic tangent function is introduced to convert the discontinuous input saturation function into a continuous function, and the bow is controlled by the adaptive law. The external disturbance in the yaw direction is estimated, and the proposed heading control algorithm can make the underactuated ship sail along the set heading while maintaining a small control input torque, and the motion control performance is greatly improved.
主要包括以下步骤:It mainly includes the following steps:
步骤1、建立船舶数学模型;Step 1. Establish a mathematical model of the ship;
垂荡、横摇、纵摇方向上的运动忽略不计,在横荡和艏摇方向上的两自由度运动的欠驱动船舶动力学模型可归结如下:The motions in the heave, roll and pitch directions are ignored, and the dynamic model of the underactuated ship with two degrees of freedom in the yaw and yaw directions can be summarized as follows:
其中r是艏摇角频率,ur和vr是船舶相对于船体坐标系的相对纵荡和横荡速度;ψ表示船舶实际航向角,对于i=11,22,33,参数mi表示船舶系统惯性,di是艏摇、纵荡和横荡中的水动力阻尼,ωr和ωv分别为艏摇和横荡方向上有未知界的外部干扰;是实际的控制输入,是饱和执行器的输出,τM为控制输入约束的界值。where r is the yaw frequency, ur and v r are the relative surge and sway speeds of the ship relative to the hull coordinate system; ψ represents the actual heading angle of the ship, for i =11, 22, 33, the parameter mi represents the ship system inertia, d i is the hydrodynamic damping in yaw, surge and sway, ω r and ω v are external disturbances with unknown bounds in the yaw and sway directions, respectively; is the actual control input, is the output of the saturated actuator, and τ M is the boundary value of the control input constraint.
步骤2、引入双曲正切函数,将控制输入饱和约束转化为连续函数;Step 2. Introduce the hyperbolic tangent function to convert the control input saturation constraint into a continuous function;
引入双曲正切函数来近似饱和函数的非线性部分,如下所示Introduce the hyperbolic tangent function to approximate the nonlinear part of the saturation function as follows
所以将定义为两部分,即So will is defined in two parts, namely
其中为逼近误差,假设其有界,则式(1)可以改写如下:in In order to approximate the error, assuming that it is bounded, equation (1) can be rewritten as follows:
其中有界,所以假设Δ≤σ,定义为σ的估计值,其估计误差为c为正常数,φ为辅助信号。in is bounded, so assuming Δ≤σ, the definition is the estimated value of σ, and its estimated error is c is a positive number, and φ is an auxiliary signal.
步骤3、下达期望航向指令,即设定期望航向角ψd;Step 3, issue the desired heading command, that is, set the desired heading angle ψ d ;
步骤4、考虑海流对漂角的影响,计算漂角β,利用漂角对期望航向角ψd进行补偿;Step 4. Consider the influence of the current on the drift angle, calculate the drift angle β, and use the drift angle to compensate the desired heading angle ψ d ;
其中ur和vr分别是船舶相对于船体坐标系的实际横荡和纵荡速度,vc和βc是相对于大地坐标系的海浪速度和方位角,结合上式可得where ur and v r are the actual sway and surge velocities of the ship relative to the hull coordinate system, respectively, and v c and β c are the wave velocity and azimuth angle relative to the geodetic coordinate system, which can be obtained by combining the above formulas
ψda=ψd-β (7)ψ da = ψ d -β (7)
步骤5、设计航向控制算法;Step 5. Design the heading control algorithm;
结合步骤4引入新变量进行状态转换Combine step 4 to introduce new variables for state transition
z1=∫ψdt-∫ψdadt (8)z 1 =∫ψdt- ∫ψda dt (8)
z2=ψ-ψda-α1 (9)z 2 =ψ-ψ da -α 1 (9)
z3=r-α2 (10)z 3 =r-α 2 (10)
其中zi,i=1,2,3,4,为辅助变量,αi,i=1,2,3表示虚拟镇定函数,具体如下where z i , i=1, 2, 3, 4 are auxiliary variables, and α i , i=1, 2, 3 represent the virtual stabilization function, as follows
α1=-k1z1 (12)α 1 =-k 1 z 1 (12)
其中常数k1>0,k2>0,k3>0,υ>0;Wherein the constants k 1 >0, k 2 >0, k 3 >0, υ >0;
设计自适应律为Design Adaptive Law for
其中常数γf>0;where the constant γ f >0;
则辅助信号φ为Then the auxiliary signal φ is
其中常数k4>0。where the constant k 4 >0.
步骤6、控制系统执行指令,实时更新航向角ψ、艏摇角频率r及横荡速度vr,并转到步骤4。Step 6. The control system executes the instruction, updates the heading angle ψ, the yaw angle frequency r and the sway speed v r in real time, and goes to step 4 .
本方法具有如下效果和优点:This method has the following effects and advantages:
通过引入双曲正切函数对控制输入饱和约束进行逼近,满足了反步法设计中对于所有函数均可导的要求,并结合自适应律对艏摇方向上的扰动进行估计处理,通过基于反步法的航向控制方法,使系统在较短的时间内使达到稳定状态,航向输出误差大大减小,同时保持着较小的控制输入力矩,有效提高控制性能。By introducing the hyperbolic tangent function to approximate the control input saturation constraint, it satisfies the requirement that all functions can be derivable in the design of the backstepping method, and combines the adaptive law to estimate the disturbance in the yaw direction. The method of the method of heading control makes the system reach a stable state in a short time, the heading output error is greatly reduced, and at the same time, the control input torque is kept small, and the control performance is effectively improved.
附图说明Description of drawings
图1为船舶未补偿漂角的航向控制示意图Figure 1 is a schematic diagram of the course control of the ship's uncompensated drift angle
图2为本发明补偿漂角后的航向控制示意图FIG. 2 is a schematic diagram of the heading control after the drift angle compensation of the present invention
具体实施方式Detailed ways
本发明提出了一种带输入约束和漂角补偿的欠驱动船舶航向控制方法,引入双曲正切函数将不连续的输入饱和函数转化为连续函数,结合自适应律对艏摇方向上的外部扰动进行估计,结合反步法设计完整的航向控制器,包括以下步骤:The present invention proposes an underactuated ship heading control method with input constraints and drift angle compensation. The hyperbolic tangent function is introduced to convert the discontinuous input saturation function into a continuous function, and the adaptive law is used to control the external disturbance in the yaw direction. Estimated, combined with backstepping to design a complete heading controller, including the following steps:
步骤1、建立船舶数学模型;Step 1. Establish a mathematical model of the ship;
垂荡、横摇、纵摇方向上的运动忽略不计,在横荡和艏摇方向上的两自由度运动的欠驱动船舶动力学模型可归结如下:The motions in the heave, roll and pitch directions are ignored, and the dynamic model of the underactuated ship with two degrees of freedom in the yaw and yaw directions can be summarized as follows:
其中r是艏摇角频率,ur和vr是船舶相对于船体坐标系的相对纵荡和横荡速度;ψ表示船舶实际航向角,对于i=11,22,33,参数mi表示船舶系统惯性,di是艏摇、纵荡和横荡中的水动力阻尼,ωr和ωv分别为艏摇和横荡方向上有未知界的外部干扰;是实际的控制输入,是饱和执行器的输出,τM为控制输入约束的界值。where r is the yaw frequency, ur and v r are the relative surge and sway speeds of the ship relative to the hull coordinate system; ψ represents the actual heading angle of the ship, for i =11, 22, 33, the parameter mi represents the ship system inertia, d i is the hydrodynamic damping in yaw, surge and sway, ω r and ω v are external disturbances with unknown bounds in the yaw and sway directions, respectively; is the actual control input, is the output of the saturated actuator, and τ M is the boundary value of the control input constraint.
步骤2、引入双曲正切函数,将控制输入饱和约束转化为连续函数;Step 2. Introduce the hyperbolic tangent function to convert the control input saturation constraint into a continuous function;
引入双曲正切函数来近似饱和函数的非线性部分,如下所示Introduce the hyperbolic tangent function to approximate the nonlinear part of the saturation function as follows
所以将定义为两部分,即So will is defined in two parts, namely
其中为逼近误差,假设其有界,则式(1)可以改写如下:in In order to approximate the error, assuming that it is bounded, equation (1) can be rewritten as follows:
其中有界,所以假设Δ≤σ,定义为σ的估计值,其估计误差为c为正常数,φ为辅助信号。in is bounded, so assuming Δ≤σ, the definition is the estimated value of σ, and its estimated error is c is a positive number, and φ is an auxiliary signal.
步骤3、下达期望航向指令,即设定期望航向角ψd;Step 3, issue the desired heading command, that is, set the desired heading angle ψ d ;
步骤4、考虑海流对漂角的影响,计算漂角β,利用漂角对期望航向角ψd进行补偿;Step 4. Consider the influence of the current on the drift angle, calculate the drift angle β, and use the drift angle to compensate the desired heading angle ψ d ;
其中ur和vr分别是船舶相对于船体坐标系的实际横荡和纵荡速度,vc和βc是相对于大地坐标系的海流速度和方位角,结合上式可得where ur and v r are the actual sway and surge velocities of the ship relative to the hull coordinate system, respectively, and v c and β c are the current velocity and azimuth angle relative to the geodetic coordinate system, which can be obtained by combining the above formulas
ψda=ψd-β (7)ψ da = ψ d -β (7)
步骤5、设计航向控制算法;Step 5. Design the heading control algorithm;
结合步骤4引入新变量进行状态转换Combine step 4 to introduce new variables for state transition
z1=∫ψdt-∫ψdadt (8)z 1 =∫ψdt- ∫ψda dt (8)
z2=ψ-ψda-α1 (9)z 2 =ψ-ψ da -α 1 (9)
z3=r-α2 (10)z 3 =r-α 2 (10)
其中zi,i=1,2,3,4为辅助变量,αi,i=1,2,3表示虚拟镇定函数,具体如下where z i , i=1, 2, 3, 4 are auxiliary variables, and α i , i=1, 2, 3 represent virtual stabilization functions, as follows
α1=-k1z1 (12)α 1 =-k 1 z 1 (12)
其中常数k1>0,k2>0,k3>0,υ>0;Wherein the constants k 1 >0, k 2 >0, k 3 >0, υ >0;
设计自适应律为Design Adaptive Law for
其中常数γf>0;where the constant γ f >0;
则辅助信号φ为Then the auxiliary signal φ is
其中常数k4>0。where the constant k 4 >0.
步骤6、控制系统执行指令,实时更新航向角ψ、艏摇角频率r及横荡速度vr,并转到步骤4。Step 6. The control system executes the instruction, updates the heading angle ψ, the yaw angle frequency r and the sway speed v r in real time, and goes to step 4 .
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910625737.5A CN110333658B (en) | 2019-07-11 | 2019-07-11 | An underactuated ship heading control method with input constraints and drift angle compensation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910625737.5A CN110333658B (en) | 2019-07-11 | 2019-07-11 | An underactuated ship heading control method with input constraints and drift angle compensation |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110333658A CN110333658A (en) | 2019-10-15 |
CN110333658B true CN110333658B (en) | 2022-07-15 |
Family
ID=68146493
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910625737.5A Active CN110333658B (en) | 2019-07-11 | 2019-07-11 | An underactuated ship heading control method with input constraints and drift angle compensation |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110333658B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110852619B (en) * | 2019-11-12 | 2020-05-22 | 山东交通学院 | Method for correcting sea wave resistance in ship performance evaluation |
CN111291453B (en) * | 2020-03-20 | 2023-11-17 | 智慧航海(青岛)科技有限公司 | Hydrodynamic force determination method for ship |
CN112230666B (en) * | 2020-10-30 | 2024-06-07 | 上海海事大学 | Drift angle correction course control method based on self-adaptive extended state observer |
CN113050432B (en) * | 2020-11-12 | 2023-02-28 | 暨南大学 | An online adaptive near-optimal control method, system and device for an underactuated ship |
CN113625546B (en) * | 2021-08-10 | 2024-03-05 | 大连海事大学 | An anti-saturation method for shipborne stable platform stabilization control |
CN114611206B (en) * | 2022-02-28 | 2024-02-23 | 中国船舶重工集团公司第七0七研究所 | Environment optimal heading positioning method for power positioning ship |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104444817A (en) * | 2014-11-14 | 2015-03-25 | 南开大学 | Self-adaption anti-swing positioning control method of under-actuated crane |
CN107168369A (en) * | 2017-06-13 | 2017-09-15 | 中国科学院声学研究所 | The formation control method and system of a kind of drive lacking unmanned vehicle |
CN108333934A (en) * | 2018-01-29 | 2018-07-27 | 哈尔滨工程大学 | The adaptive LOS guidance methods of aircushion vehicle path trace based on compensation of breakking away |
CN109116838A (en) * | 2018-04-13 | 2019-01-01 | 上海海事大学 | A kind of auxiliary control method that berths automatically for small boat |
CN109460043A (en) * | 2018-12-29 | 2019-03-12 | 上海海事大学 | One kind being based on multi-modal non-singular terminal sliding formwork ship track Auto-disturbance-rejection Control |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8734250B2 (en) * | 2012-10-05 | 2014-05-27 | Wargaming.Net Llp | Control of vehicles in three dimensional space |
US20170160370A1 (en) * | 2015-12-02 | 2017-06-08 | Honeywell International Inc. | Low frequency/medium frequency (lf/mf) multi mode antenna/receiver |
-
2019
- 2019-07-11 CN CN201910625737.5A patent/CN110333658B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104444817A (en) * | 2014-11-14 | 2015-03-25 | 南开大学 | Self-adaption anti-swing positioning control method of under-actuated crane |
CN107168369A (en) * | 2017-06-13 | 2017-09-15 | 中国科学院声学研究所 | The formation control method and system of a kind of drive lacking unmanned vehicle |
CN108333934A (en) * | 2018-01-29 | 2018-07-27 | 哈尔滨工程大学 | The adaptive LOS guidance methods of aircushion vehicle path trace based on compensation of breakking away |
CN109116838A (en) * | 2018-04-13 | 2019-01-01 | 上海海事大学 | A kind of auxiliary control method that berths automatically for small boat |
CN109460043A (en) * | 2018-12-29 | 2019-03-12 | 上海海事大学 | One kind being based on multi-modal non-singular terminal sliding formwork ship track Auto-disturbance-rejection Control |
Non-Patent Citations (2)
Title |
---|
Finite-Time Observer Based Guidance and Control of Underactuated Surface Vehicles With Unknown Sideslip Angles and Disturbances;NING WANG,等;《IEEE》;20171231;第14059-14070页 * |
控制方向未知的无人帆船自适应动态面航向控制;沈智鹏,等;《哈尔滨工程大学》;20190131;第94-101页 * |
Also Published As
Publication number | Publication date |
---|---|
CN110333658A (en) | 2019-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110333658B (en) | An underactuated ship heading control method with input constraints and drift angle compensation | |
CN113485377B (en) | Unmanned sailing boat self-adaptive path tracking control method of double-layer virtual guiding mechanism | |
WO2022242633A1 (en) | Nacelle type unmanned ship course control method | |
CN106325071A (en) | Event driving based generalized predictive and self-adaptive supply ship navigation direction control method | |
CN110308726B (en) | Navigation control method of underactuated ship based on nonlinear backstepping method | |
CN110244556B (en) | A heading control method for underactuated ships based on desired heading correction | |
CN103226326A (en) | Frequency domain analysis method for ship autopilot system | |
CN110032075B (en) | A Design Method of Saturation Compensation Control System for Dynamic Positioning Vessel | |
CN113867352A (en) | A full-cushion lift hovercraft path tracking method | |
CN112987771B (en) | Mechanical sailing boat path tracking control method based on multiport output error trigger mechanism | |
CN110134012A (en) | A Ship Path Tracking Control Method for Uncertain Systems | |
CN112327638B (en) | An optimal control method for trajectory tracking of unmanned ships with specified performance and input saturation limit | |
CN117707162B (en) | Unmanned sailing boat dynamic event triggering control method based on improved LVS guidance | |
CN115113524B (en) | ASV multiport event trigger path tracking control method based on intervention LVS guidance | |
CN116859933A (en) | Novel LOS guidance method for path tracking prediction of ultra-large under-actuated ship | |
Rezaei et al. | Ship roll stabilization using an adaptive fractional-order sliding mode controller | |
CN119200614A (en) | A ship track tracking control method based on waypoint route | |
CN110515387A (en) | A drift angle compensation nonlinear heading control method for surface ships | |
CN111752278B (en) | Fixed point control method and device of navigation equipment and electronic equipment | |
CN105966566B (en) | Hydrofoil catamaran course heel control method and device | |
CN116540699B (en) | Ship navigation control method based on model predictive control under severe sea conditions | |
Wille et al. | Roll stabilization control of sailboats | |
CN116482977A (en) | Novel nonsingular rapid terminal sliding mode control method and system for underwater robot | |
CN116661439A (en) | Ship synchronous navigation anti-interference control method under event trigger mechanism | |
CN115755891A (en) | A motion control method for near-surface vehicles in high sea conditions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |