CN110333560B - Broadband achromatic device based on medium super surface - Google Patents
Broadband achromatic device based on medium super surface Download PDFInfo
- Publication number
- CN110333560B CN110333560B CN201910612704.7A CN201910612704A CN110333560B CN 110333560 B CN110333560 B CN 110333560B CN 201910612704 A CN201910612704 A CN 201910612704A CN 110333560 B CN110333560 B CN 110333560B
- Authority
- CN
- China
- Prior art keywords
- phase
- achromatic
- dielectric
- device body
- wavelength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000004075 alteration Effects 0.000 claims abstract description 11
- 238000001514 detection method Methods 0.000 claims abstract description 11
- 238000012545 processing Methods 0.000 claims abstract description 10
- 239000000463 material Substances 0.000 claims description 12
- 239000000758 substrate Substances 0.000 claims description 10
- 230000000694 effects Effects 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 claims description 3
- 229910001634 calcium fluoride Inorganic materials 0.000 claims description 3
- 238000000034 method Methods 0.000 abstract description 8
- 238000000605 extraction Methods 0.000 abstract description 3
- 239000002131 composite material Substances 0.000 abstract description 2
- 230000003287 optical effect Effects 0.000 description 10
- 238000013461 design Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 239000002184 metal Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 230000010287 polarization Effects 0.000 description 4
- 238000004088 simulation Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000010587 phase diagram Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/002—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/0012—Optical design, e.g. procedures, algorithms, optimisation routines
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3083—Birefringent or phase retarding elements
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
- Polarising Elements (AREA)
Abstract
本发明公开了一种基于介质超表面的宽带消色差器件,涉及新型人工复合材料超表面领域,其包括器件本体,所述器件本体包括位于上层的电介质矩形块和位于下层的基底,其消色差分析包括以下步骤:利用几何相位和传播相位相结合的方式来分别控制入射左旋圆偏振光的波前和消除色差,之后,裁剪尺寸构建超表面阵列,通过对探测面的右旋圆偏振能量的提取和处理来实现器件本体的消色差特性分析。本发明中的宽带消色差器件一方面是利用了两种相位相结合的方法,另一方面是实现了连续带宽范围内的消色差,较以往器件而言,大大减小了体积与成本。
The invention discloses a broadband achromatic device based on a dielectric metasurface, and relates to the field of novel artificial composite material metasurfaces. The analysis includes the following steps: using a combination of geometric phase and propagation phase to control the wavefront of the incident left-circularly polarized light and eliminate chromatic aberration, respectively, and then, tailoring the size to construct a metasurface array, and by measuring the right-circularly polarized energy of the detection surface. Extraction and processing to achieve achromatic analysis of the device body. On the one hand, the broadband achromatic device in the present invention utilizes the method of combining two phases, and on the other hand, realizes achromatic achromatic in a continuous bandwidth range, which greatly reduces the volume and cost compared with the previous devices.
Description
技术领域technical field
本发明涉及新型人工复合材料超表面领域,尤其涉及一种基于介质超表面的宽带消色差器件。The invention relates to the field of novel artificial composite material metasurfaces, in particular to a broadband achromatic device based on dielectric metasurfaces.
背景技术Background technique
波长色散是光学材料的一个重要特性,在光学元件和系统的设计中一直起着重要的作用。在大多数介质中,像玻璃,折射率随波长的增加而减小,这称为正常色散。利用这种材料,相比于短波长,在较长波长处折射透镜将具有更大的焦距,而棱镜将以更小的角度偏转。这种色差严重降低了全色光学应用的性能,如通信、检测、成像、显示等。Wavelength dispersion is an important property of optical materials and has always played an important role in the design of optical components and systems. In most media, like glass, the refractive index decreases with increasing wavelength, which is called normal dispersion. With this material, the refractive lens will have a larger focal length at longer wavelengths than at shorter wavelengths, and the prism will deflect at a smaller angle. This chromatic aberration severely degrades the performance of panchromatic optical applications such as communications, detection, imaging, display, and more.
传统上,色差是通过几种不同材料的集成来消除的,它们的折射率与波长的关系相反。这样的折射光学元件通常体积大、成本高、制造精度高、耗时长,已逐渐不能满足日益增长的器件性能要求。因此具有微型、超薄、利于集成特性的超表面光学器件正逐步取代传统光学器件。基于超表面实现的光学器件主要由金属和介质两种材料组成,由于金属结构固有的欧姆损失,金属超表面的透射效率极低。反射式金属超表面虽然可以实现80%的效率,但绝大数主流的光学器件都是透射式器件,反射式超表面并不能适用。惠更斯超表面可以实现很高的透射率,但对结构尺寸非常敏感,对现代工艺具有极大的挑战。而用介质结构代替金属结构以及优化结构参数,可以消除欧姆损失,从而进一步提高反射式超表面的效率。同时可以利用比较成熟的半导体制作工艺来制作介质超表面,因此有利于实现高透射、低损失、具有兼容性的光学器件。Traditionally, chromatic aberration has been eliminated by the integration of several different materials whose refractive indices are inversely related to wavelength. Such refractive optical elements are usually bulky, high in cost, high in manufacturing precision, and time-consuming, and have gradually been unable to meet increasing device performance requirements. Therefore, metasurface optical devices with miniature, ultra-thin and integration-friendly characteristics are gradually replacing traditional optical devices. Optical devices realized based on metasurfaces are mainly composed of two materials, metal and dielectric. Due to the inherent ohmic loss of metal structures, the transmission efficiency of metal metasurfaces is extremely low. Although reflective metal metasurfaces can achieve 80% efficiency, most mainstream optical devices are transmissive devices, and reflective metasurfaces are not applicable. Huygens metasurfaces can achieve high transmittance, but are very sensitive to structure size, posing great challenges to modern processes. Replacing the metal structure with a dielectric structure and optimizing the structural parameters can eliminate the ohmic loss, thereby further improving the efficiency of the reflective metasurface. At the same time, a relatively mature semiconductor fabrication process can be used to fabricate a dielectric metasurface, so it is beneficial to realize optical devices with high transmission, low loss and compatibility.
目前,也有超透镜使用多层结构实现双波长和三波长色差的消除。虽然这一策略取得了成功,但它增加了光学系统的重量、复杂性和成本,极大地限制了它们的使用。因此,采用一种体积轻便、结构简单和低成本的方法来实现宽带消色差器件是具有重要意义的。At present, there are also metalens that use a multi-layer structure to achieve the elimination of two-wavelength and three-wavelength chromatic aberrations. While this strategy has been successful, it adds weight, complexity, and cost to optical systems, greatly limiting their use. Therefore, it is of great significance to implement a broadband achromatic device with a lightweight, simple structure and low cost method.
发明内容SUMMARY OF THE INVENTION
本发明的目的是为了提出一种工作波段在中红外波段3.7-4.5μ m,主要以聚焦(偏转)的方式将左旋圆偏振光(LCP)聚焦(偏转)在同一焦平面上(同一偏转角),从而实现了宽带消色差功能的一种基于介质超表面的宽带消色差器件。The purpose of the present invention is to propose a working band in the mid-infrared band of 3.7-4.5 μm, which mainly focuses (deflects) left-hand circularly polarized light (LCP) on the same focal plane (same deflection angle) in a focusing (deflecting) manner. ), thus realizing a broadband achromatic device based on a dielectric metasurface.
为了实现上述目的,本发明采用了如下技术方案:In order to achieve the above object, the present invention adopts the following technical solutions:
一种基于介质超表面的宽带消色差器件,包括器件本体,所述器件本体包括位于上层的电介质矩形块和位于下层的基底,其消色差分析包括以下步骤:A broadband achromatic device based on a dielectric metasurface, comprising a device body, the device body comprising a dielectric rectangular block on the upper layer and a substrate on the lower layer, and the achromatic analysis of the device includes the following steps:
利用几何相位和传播相位相结合的方式来分别控制入射左旋圆偏振光的波前和消除色差,之后,裁剪电介质矩形块的尺寸构建超表面阵列,通过对探测面的右旋圆偏振能量的提取和处理来实现器件本体的消色差特性分析。The combination of geometric phase and propagation phase is used to control the wavefront of incident left-circularly polarized light and eliminate chromatic aberration, respectively. After that, the size of the dielectric rectangular block is cut to construct a metasurface array. By extracting the right-circularly polarized energy of the detection surface and processing to achieve achromatic analysis of the device body.
优选的,几何相位和传播相位相结合具体为:利用几何相位的原理旋转电介质矩形块控制入射左旋圆偏振光的波前,使之满足双曲线相位或梯度相位剖面,从而在选定的中心波长处实现聚焦或偏转;Preferably, the combination of the geometric phase and the propagation phase is specifically: using the principle of geometric phase to rotate the dielectric rectangular block to control the wavefront of the incident left-handed circularly polarized light, so that it satisfies the hyperbolic phase or gradient phase profile, so that at the selected central wavelength to achieve focus or deflection;
利用传播相位作为补偿相位,通过控制电介质矩形块的长和宽来获得需要的不同补偿相位值,保证在选取波长范围内,传播相位与波长的倒数呈线性关系,用于消除在中心波长外的波长处的色差效应。Using the propagation phase as the compensation phase, the required different compensation phase values are obtained by controlling the length and width of the dielectric rectangular block to ensure that within the selected wavelength range, the propagation phase has a linear relationship with the reciprocal of the wavelength. Chromatic aberration effects at wavelengths.
优选的,所述下层基底为低折射率材料氟化钙制成,所述电介质矩形块为高折射率材料硅制成,所述器件本体的入射波长范围为 3.7-4.5μm。Preferably, the underlying substrate is made of low-refractive index material calcium fluoride, the dielectric rectangular block is made of high-refractive index material silicon, and the incident wavelength range of the device body is 3.7-4.5 μm.
优选的,所述器件本体的入射波长为4.5μm时,所述电介质矩形块的厚度为4μm,晶格常数为1.8μm,所述基底的厚度为3μm,所述器件本体通过对探测面的右旋圆偏振能量的提取和处理,分析器件的聚焦性能。Preferably, when the incident wavelength of the device body is 4.5 μm, the thickness of the dielectric rectangular block is 4 μm, the lattice constant is 1.8 μm, the thickness of the substrate is 3 μm, and the device body passes through the right side of the detection surface. Extraction and processing of circularly polarized energy, analyzing the focusing performance of the device.
优选的,所述器件本体在入射波长不等于4.5μm时,所述器件本体实现聚焦的焦平面保持不变,通过对探测面的右旋圆偏振能量的提取和处理,分析器件的消色差特性。Preferably, when the incident wavelength of the device body is not equal to 4.5 μm, the focal plane of the device body to achieve focusing remains unchanged, and the achromatic characteristics of the device are analyzed by extracting and processing the right-handed circularly polarized energy of the detection surface. .
本发明中采用电介质作为结构单元,利用高折射率材料做调制结构,在所述波段无材料吸收,大大增强透射提高了效率。In the present invention, a dielectric is used as a structural unit, and a high-refractive index material is used as a modulation structure, and there is no material absorption in the wavelength band, which greatly enhances transmission and improves efficiency.
本发明的有益效果为:The beneficial effects of the present invention are:
1、本发明适用于大频率范围,从可见光波段到太赫兹波段均可实现,此外,设计的超表面实现的消色差是连续带宽范围内的,除了可以单独用超表面实现消色差,还可与传统光学器件相结合,从而提高超表面消色差器件的性能和尺寸,扩展应用范围。1. The present invention is suitable for a large frequency range, which can be realized from the visible light band to the terahertz band. In addition, the designed metasurface realizes achromatic achromaticity within the continuous bandwidth range. Besides the metasurface can be used to realize achromatic achromatic, it can also be realized. Combined with traditional optics, it can improve the performance and size of metasurface achromatic devices and expand the range of applications.
2、低成本和半导体制造的兼容性使本发明中的消色差器件适合应用于纳米光子学和集成光学。2. The low cost and compatibility of semiconductor fabrication make the achromatic device in the present invention suitable for application in nanophotonics and integrated optics.
3、本发明中采取的入射左旋圆偏振光垂直照射超表面结构,根据所选择的入射中心波长,对介质矩形块进行结构参数扫描和优化,通过改变矩形硅的尺寸能得到所需的补偿相位,并且实现高透过率。而且在使用PB相位过程中不会对传播相位造成影响,这保证了PB相位与传播相位相结合的方法能独立地分别控制入射光的波前和消除色差。3. The incident left-handed circularly polarized light used in the present invention vertically irradiates the metasurface structure. According to the selected incident center wavelength, the structural parameters of the dielectric rectangular block are scanned and optimized, and the required compensation phase can be obtained by changing the size of the rectangular silicon. , and achieve high transmittance. Moreover, the propagation phase will not be affected in the process of using the PB phase, which ensures that the method of combining the PB phase and the propagation phase can independently control the wavefront of the incident light and eliminate the chromatic aberration.
4、本发明中的宽带消色差器件一方面是利用了两种相位相结合的方法,另一方面是实现了连续带宽范围内的消色差。较以往器件而言,大大减小了体积与成本。4. On the one hand, the broadband achromatic device in the present invention utilizes a method of combining two phases, and on the other hand, realizes achromatic achromaticity in a continuous bandwidth range. Compared with previous devices, the volume and cost are greatly reduced.
附图说明Description of drawings
图1是单个矩形块天线设计图。Figure 1 is a design diagram of a single rectangular block antenna.
图2是左旋圆偏振光入射改变矩形块长宽的有效折射、两个不同尺寸单元结构的传播相位和几何相位图。Figure 2 is the effective refraction of the left-handed circularly polarized light incident to change the length and width of the rectangular block, and the propagation phase and geometric phase diagrams of two cell structures of different sizes.
图3是消色差超透镜的示意图和相位分布图。Figure 3 is a schematic diagram and phase distribution diagram of an achromatic metalens.
图4是宽带消色差超透镜和色差透镜入射左旋圆偏振后结果示意图。Figure 4 is a schematic diagram of the results of the broadband achromatic metalens and the chromatic lens after incident left-handed circular polarization.
图5是宽带消色差偏转器和色差偏转器入射左旋圆偏振后结果示意图。Figure 5 is a schematic diagram of the result of the broadband achromatic deflector and the chromatic deflector after incident left-handed circular polarization.
图中标号:1器件本体、11基底、12电介质矩形块。Reference numerals in the figure: 1 device body, 11 substrate, 12 dielectric rectangular block.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments.
参照图1-5,一种基于介质超表面的宽带消色差器件,包括器件本体1,器件本体1包括位于上层的电介质矩形块12和位于下层的基底11,其消色差分析包括以下步骤:利用几何相位和传播相位相结合的方式来分别控制入射左旋圆偏振光的波前和消除色差,之后,裁剪电介质矩形块12的尺寸构建超表面阵列,通过对探测面的右旋圆偏振能量的提取和处理来实现器件本体1的消色差特性分析。1-5, a broadband achromatic device based on a dielectric metasurface includes a
本实施方式中,几何相位和传播相位相结合具体为:利用几何相位的原理旋转电介质矩形块12控制入射左旋圆偏振光的波前,使之满足双曲线相位或梯度相位剖面,从而在选定的中心波长处实现聚焦或偏转;利用传播相位作为补偿相位,通过控制电介质矩形块12的长和宽来获得需要的不同补偿相位值,保证在选取波长范围内,传播相位与波长的倒数呈线性关系,用于消除在中心波长外的波长处的色差效应。In this embodiment, the combination of the geometric phase and the propagation phase is specifically: using the principle of geometric phase to rotate the dielectric
本实施方式中,下层基底11为低折射率材料氟化钙制成,电介质矩形块12为高折射率材料硅制成,器件本体1的入射波长范围为 3.7-4.5μm。In this embodiment, the
本实施方式中,器件本体1的入射波长为4.5μm时,电介质矩形块12的厚度为4μm,晶格常数为1.8μm,基底11的厚度为3μm,器件本体1通过对探测面的右旋圆偏振能量的提取和处理,分析器件的聚焦性能。In this embodiment, when the incident wavelength of the
本实施方式中,器件本体1在入射波长不等于4.5μm时,器件本体1实现聚焦的焦平面保持不变,通过对探测面的右旋圆偏振能量的提取和处理,分析器件的消色差特性。In this embodiment, when the incident wavelength of the
宽带消色差超表面器件参数优化及仿真测试:Parameter optimization and simulation test of broadband achromatic metasurface device:
确定和优化单元结构尺寸参数。以所选的矩形柱单元结构为例,基底厚度为h1;矩形柱高度为h2;沿x轴方向长度为a,沿y轴方向宽度为b,晶格常数为p。在comsol中建模,同时改变长宽尺寸,仿真得到矩形块单元对于不同偏振的相位响应,然后依据设计的超表面实现相应功能所需的相位,挑选合适的结构单元。以入射中心波长4.5μ m为例,优选晶格常数p为1.8μm,矩形块高度为4μm。对单个矩形块进行结构参数扫描,即同时改变尺寸a和b,可得到不同的传播相位值。这是因为在一个给定坐标位置x处矩形块的传播相位为φ(x,λ)=2π/λneffh2,其中,neff表示矩形块的有效折射率,而由波导理论可知neff与矩形块的长宽密切相关,如图2a所示。Determine and optimize element structure size parameters. Taking the selected rectangular column element structure as an example, the base thickness is h 1 ; the height of the rectangular column is h 2 ; the length along the x-axis is a, the width along the y-axis is b, and the lattice constant is p. Modeling in comsol, changing the length and width at the same time, the phase response of the rectangular block unit to different polarizations is obtained by simulation, and then the appropriate structural unit is selected according to the phase required for the designed metasurface to achieve the corresponding function. Taking the incident center wavelength of 4.5 μm as an example, the lattice constant p is preferably 1.8 μm, and the height of the rectangular block is 4 μm. Scanning the structural parameters of a single rectangular block, that is, changing the dimensions a and b at the same time, can obtain different propagation phase values. This is because the propagation phase of the rectangular block at a given coordinate position x is φ(x,λ)=2π/λn eff h 2 , where n eff represents the effective refractive index of the rectangular block, and n eff is known from the waveguide theory It is closely related to the length and width of the rectangular block, as shown in Figure 2a.
超表面单元结构选取。为了实现宽带消色差功能,需要超表面上每个结构同时满足聚焦相位和补偿相位,而且这两个相位相互独立。其中聚焦相位由PB相位实现,PB相位只与单元结构的旋转角度有关系,即旋转单元结构角度为α时,得到单元结构对应的相位响应为± 2α,正负号与入射圆偏振光的旋性有关,左旋圆偏振入射为正号;而补偿相位由传播相位实现,在选取的带宽3.7-4.5μm内,最大波长与最小波长对应相位响应的差值就是该单元结构实现的相位补偿值,如图2b所示。而且为证明PB相位不影响传播相位响应,本发明研究了α与波长的关系,如图2c。由图可知,改变α,传播相位差值始终保持不变。Metasurface element structure selection. In order to realize the broadband achromatic function, each structure on the metasurface needs to satisfy the focusing phase and the compensation phase at the same time, and these two phases are independent of each other. The focusing phase is realized by the PB phase, which is only related to the rotation angle of the unit structure, that is, when the rotation angle of the unit structure is α, the phase response corresponding to the unit structure is ± 2α, and the sign is related to the rotation of the incident circularly polarized light. The left-handed circular polarization incident is a positive sign; and the compensation phase is realized by the propagation phase. Within the selected bandwidth of 3.7-4.5 μm, the difference between the phase response corresponding to the maximum wavelength and the minimum wavelength is the phase compensation value realized by the unit structure, As shown in Figure 2b. Moreover, in order to prove that the PB phase does not affect the propagation phase response, the present invention studies the relationship between α and wavelength, as shown in Figure 2c. It can be seen from the figure that the value of the propagation phase difference remains unchanged when α is changed.
宽带消色差超透镜的设计。以二维面为例进行具体仿真,焦点平面在XOZ平面,透射光所需相位描述如下:Design of broadband achromatic metalens. Taking a two-dimensional surface as an example for specific simulation, the focal plane is in the XOZ plane, and the required phase of the transmitted light is described as follows:
为实现宽带消色差超透镜,公式(1)可改写为:To realize broadband achromatic metalens, equation (1) can be rewritten as:
补偿相位compensation phase
其中f为焦距,x为每个结构与焦点的水平距离,λmax为选取带宽内的最大波长。根据每个子单元结构的位置,确定水平距离x的值,再将其它参数代入上述公式即可得到相应的聚焦相位和补偿相位的大小,消色差超透镜示意图和所需相位分布图如图3。对于中心波长4.5μm的入射光,焦距设置为f=27μm,超单元由43个共振器构成,总长度Lx=77.4μm。由公式求出所需聚焦相位与补偿相位,再由步骤(1)和(2)优化和选取合适的超表面单元结构,从而仿真得到本发明的宽带消色差超透镜,采用5个样品波长入射,结果如图 4a。为更好地说明消色差效果,本发明还设计了与消色差透镜大小相同的色差透镜做对比,结果如图4b。where f is the focal length, x is the horizontal distance between each structure and the focal point, and λ max is the maximum wavelength within the selected bandwidth. According to the position of each subunit structure, determine the value of the horizontal distance x, and then substitute other parameters into the above formula to obtain the corresponding focusing phase and compensation phase The size, schematic diagram of the achromatic metalens and the required phase distribution are shown in Figure 3. For incident light with a central wavelength of 4.5 μm, the focal length is set to f=27 μm, and the supercell is composed of 43 resonators with a total length of L x =77.4 μm . The required focusing phase and compensation phase are obtained by the formula, and then the appropriate metasurface unit structure is optimized and selected by steps (1) and (2), so as to simulate the broadband achromatic superlens of the present invention, using 5 sample wavelengths to be incident , the result is shown in Figure 4a. In order to better illustrate the achromatic effect, the present invention also designs a chromatic lens with the same size as the achromatic lens for comparison, and the result is shown in Figure 4b.
宽带消色差偏转器的设计。根据广义斯涅耳定律可得偏转所需相位描述如下:Design of a broadband achromatic deflector. According to the generalized Snell's law, the required phase of deflection can be described as follows:
为实现宽带消色差偏转,公式(4)改写为:To achieve broadband achromatic deflection, equation (4) is rewritten as:
其中θ为透射光的偏转角度,为中心波长处所需相位,为补偿相位。在本发明的偏转器中,对于中心波长4.5μm的入射光,偏转角度设置为θ=-18.2°,超单元由18个共振器构成,总长度 Lx=32.4μm。由公式求出所需偏转相位与补偿相位,再由步骤(1)和(2) 优化和选取合适的超表面单元结构,从而仿真得到本发明的宽带消色差偏转器,采用5个样品波长入射,结果如图5a。为更好地说明消色差效果,本发明还设计了与消色差偏转器大小相同的色差偏转器做对比,仿真结果如图5b。where θ is the deflection angle of the transmitted light, is the desired phase at the center wavelength, to compensate the phase. In the deflector of the present invention, for incident light with a center wavelength of 4.5 μm, the deflection angle is set to θ=−18.2°, the superunit is composed of 18 resonators, and the total length L x =32.4 μm. Calculate the required deflection phase and compensation phase by the formula, and then optimize and select a suitable metasurface element structure through steps (1) and (2), so as to simulate the broadband achromatic deflector of the present invention, using 5 sample wavelengths incident , the result is shown in Figure 5a. In order to better illustrate the achromatic effect, the present invention also designs a chromatic deflector with the same size as the achromatic deflector for comparison, and the simulation result is shown in Figure 5b.
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。The above description is only a preferred embodiment of the present invention, but the protection scope of the present invention is not limited to this. The equivalent replacement or change of the inventive concept thereof shall be included within the protection scope of the present invention.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910612704.7A CN110333560B (en) | 2019-07-09 | 2019-07-09 | Broadband achromatic device based on medium super surface |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910612704.7A CN110333560B (en) | 2019-07-09 | 2019-07-09 | Broadband achromatic device based on medium super surface |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110333560A CN110333560A (en) | 2019-10-15 |
CN110333560B true CN110333560B (en) | 2020-11-10 |
Family
ID=68144818
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910612704.7A Expired - Fee Related CN110333560B (en) | 2019-07-09 | 2019-07-09 | Broadband achromatic device based on medium super surface |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110333560B (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110954974B (en) * | 2019-11-27 | 2021-09-21 | 中国科学院光电技术研究所 | Full Stokes infrared polarization imager based on super surface |
CN111258059B (en) * | 2020-01-21 | 2021-09-03 | 中国科学院上海微系统与信息技术研究所 | Flexible mobile phone camera optical lens and manufacturing method thereof |
CN111258058B (en) * | 2020-01-21 | 2021-09-03 | 中国科学院上海微系统与信息技术研究所 | Flexible remote sensing satellite optical lens and manufacturing method thereof |
CN111220273A (en) * | 2020-03-23 | 2020-06-02 | 中国科学院光电技术研究所 | A Multi-wavelength Achromatic Metasurface Polarization Measurement Device Based on Dielectric Pillar Structure |
CN113485008B (en) * | 2020-04-24 | 2023-08-29 | 浙江舜宇光学有限公司 | Super-surface imaging device |
CN111722399A (en) * | 2020-06-29 | 2020-09-29 | 福州大学 | Quasi-periodic optical metasurface imaging element |
CN112394429B (en) * | 2020-11-27 | 2022-02-11 | 南京大学 | Mid-infrared polarization-independent broadband achromatic superlens and construction method thereof |
CN113203687B (en) * | 2021-04-29 | 2023-09-08 | 深圳大学 | Multi-dimensional imaging method and device based on composite phase super-structured surface |
CN113433689B (en) * | 2021-05-14 | 2022-04-08 | 北京科技大学 | A Design Method of Achromatic Metalens Based on Effective Medium Theory |
CN113504585A (en) * | 2021-07-29 | 2021-10-15 | 合肥工业大学 | Polarization-independent superlens |
CN114460726B (en) * | 2022-01-30 | 2022-12-02 | 华中科技大学 | Achromatic optical zoom system based on double-layer medium super surface |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108152997A (en) * | 2016-12-05 | 2018-06-12 | 中央研究院 | Broadband metamaterial optical device |
CN109863433A (en) * | 2018-10-12 | 2019-06-07 | 东莞理工学院 | Polarization generator based on medium super surface and design method thereof |
-
2019
- 2019-07-09 CN CN201910612704.7A patent/CN110333560B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108152997A (en) * | 2016-12-05 | 2018-06-12 | 中央研究院 | Broadband metamaterial optical device |
CN109863433A (en) * | 2018-10-12 | 2019-06-07 | 东莞理工学院 | Polarization generator based on medium super surface and design method thereof |
Non-Patent Citations (2)
Title |
---|
Optical properties and fabrication of dielectric metasurfaces based on amorphous silicon nanodisk arrays;D. VISSER;《OPTICS EXPRESS》;20190213;全文 * |
超构光子技术新突破——实现超薄宽带消色差光学器件;王漱明等;《物理》;20171231;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN110333560A (en) | 2019-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110333560B (en) | Broadband achromatic device based on medium super surface | |
US11543653B2 (en) | Device components formed of geometric structures | |
Chen et al. | Flat optics with dispersion-engineered metasurfaces | |
CN111258059B (en) | Flexible mobile phone camera optical lens and manufacturing method thereof | |
US20160025914A1 (en) | Dielectric Metasurface Optical Elements | |
CN112394429B (en) | Mid-infrared polarization-independent broadband achromatic superlens and construction method thereof | |
CN112946793A (en) | Polarization-independent broadband achromatic device based on dielectric super-surface | |
He et al. | Optical metalenses: fundamentals, dispersion manipulation, and applications | |
Haïdar et al. | Free-standing subwavelength metallic gratings for snapshot multispectral imaging | |
CN104749665B (en) | Planar lens unit based on dielectric material, planar lens and preparation method | |
CN109856704B (en) | A kind of manufacturing method of broadband achromatic all-dielectric plane lens | |
CN110297287A (en) | A kind of circuit dichroism super lens and the light path system including the super lens | |
CN113655549A (en) | Polarization achromatic optical imaging system based on super-structure surface | |
US12072508B2 (en) | Space-compression medium with transverse beam displacement reducing light propagation or image formation distance | |
CN113433689B (en) | A Design Method of Achromatic Metalens Based on Effective Medium Theory | |
Yuan et al. | A broadband achromatic dielectric planar metalens in mid-IR range | |
CN113741065A (en) | Square lattice super-surface resonator with adjustable optical rotation and polarization | |
Sun et al. | Polarization-and angle-insensitive broadband long wavelength infrared absorber based on coplanar four-sized resonators | |
Wang et al. | The investigation of height-dependent meta-lens and focusing properties | |
KR102603484B1 (en) | All-dielectric metasurface doublelet device enabling polarization-controllable enhanced beam steering | |
CN114706151B (en) | Polarization-maintaining wide-spectrum focusing middle infrared super-structured lens based on bionic moth-eye structure | |
CN108828787A (en) | A kind of big field angle achromatic waveplate of micro-nano structure | |
Gao et al. | Ultra-dispersive anomalous diffraction from Pancharatnam-Berry metasurfaces | |
Chen et al. | Phase and dispersion engineering of metalenses: broadband achromatic focusing and imaging in the visible | |
Xu et al. | Research on the design of metalens with achromatic and amplitude modulation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20201110 |
|
CF01 | Termination of patent right due to non-payment of annual fee |