CN110331178A - A kind of enzyme cutting method prepares the method for micromolecule hyaluronic acid and gained micromolecule hyaluronic acid is applied with it - Google Patents
A kind of enzyme cutting method prepares the method for micromolecule hyaluronic acid and gained micromolecule hyaluronic acid is applied with it Download PDFInfo
- Publication number
- CN110331178A CN110331178A CN201910659515.5A CN201910659515A CN110331178A CN 110331178 A CN110331178 A CN 110331178A CN 201910659515 A CN201910659515 A CN 201910659515A CN 110331178 A CN110331178 A CN 110331178A
- Authority
- CN
- China
- Prior art keywords
- hyaluronic acid
- salt
- ala
- gly
- hyaluronidase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/10—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/715—Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
- A61K31/726—Glycosaminoglycans, i.e. mucopolysaccharides
- A61K31/728—Hyaluronic acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/72—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
- A61K8/73—Polysaccharides
- A61K8/735—Mucopolysaccharides, e.g. hyaluronic acid; Derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P39/00—General protective or antinoxious agents
- A61P39/06—Free radical scavengers or antioxidants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q19/00—Preparations for care of the skin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q19/00—Preparations for care of the skin
- A61Q19/08—Anti-ageing preparations
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/26—Preparation of nitrogen-containing carbohydrates
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23V—INDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
- A23V2002/00—Food compositions, function of food ingredients or processes for food or foodstuffs
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Organic Chemistry (AREA)
- Dermatology (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Epidemiology (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Birds (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- Toxicology (AREA)
- Microbiology (AREA)
- Mycology (AREA)
- Nutrition Science (AREA)
- Food Science & Technology (AREA)
- Polymers & Plastics (AREA)
- Gerontology & Geriatric Medicine (AREA)
- Cosmetics (AREA)
- Enzymes And Modification Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
技术领域technical field
本发明属于生物技术领域,具体涉及一种酶切法制备小分子透明质酸的方法及所得小分子透明质酸与其应用。The invention belongs to the field of biotechnology, and in particular relates to a method for preparing small-molecule hyaluronic acid by enzymatic cleavage, the obtained small-molecule hyaluronic acid and its application.
背景技术Background technique
透明质酸(hyaluronic acid,HA)是由N-乙酰氨基葡糖和D-葡糖醛酸双糖单位重复交替连接而成的高分子黏多糖,在人体中广泛存在,是皮肤、玻璃体、关节滑液和软骨组织的重要成分,具有独特的理化性质和生物学功能。由于其具有高度粘弹性和可塑性,超强的持水性和渗透性以及良好的生物相容性,被广泛应用于食品、化妆品和医药领域中。Hyaluronic acid (HA) is a macromolecular mucopolysaccharide composed of N-acetylglucosamine and D-glucuronic acid disaccharide units repeatedly linked alternately. An important component of synovial fluid and cartilage tissue, it has unique physical and chemical properties and biological functions. Due to its high viscoelasticity and plasticity, super strong water holding capacity and permeability, and good biocompatibility, it is widely used in the fields of food, cosmetics and medicine.
近年来研究发现,HA的生物活性与其相对分子量直接相关,不同分子量的HA具有不同甚至截然相反的生物活性。高分子量的HA具有良好的黏弹性,保湿性,润滑和抗炎活性,可用于化妆品、眼科手术、关节炎治疗、术后防粘连等。小分子HA具有透皮吸收,易于消化,抗肿瘤,促进内皮细胞增生,促进血管生成,促进伤口愈合及免疫调节等作用,近年来透明质酸寡糖(o-HA)的研究并逐渐成为热点,研究发现,o-HA分子片段在体内具有促血管生成活性,在体外也可明显促进内皮细胞的增生;o-HA可以保护肉芽组织免受氧自由基的破坏,且能有效促进伤愈合可刺激内皮细胞识别受伤部位,并对伤口部位进行初步的保护及修复;研究显示o-HA还具有免疫调节、抗肿瘤等活性功能。活性显著的o-HA片段可以作为新资源用于药物研发、功能性产品的开发中,因此获得大量高纯度o-HA片段的研究具有十分重要的意义。Recent studies have found that the biological activity of HA is directly related to its relative molecular weight, and HA with different molecular weights has different or even opposite biological activities. High molecular weight HA has good viscoelasticity, moisture retention, lubrication and anti-inflammatory activity, and can be used in cosmetics, eye surgery, arthritis treatment, postoperative anti-adhesion, etc. Small molecule HA has the functions of transdermal absorption, easy digestion, anti-tumor, promoting endothelial cell proliferation, promoting angiogenesis, promoting wound healing and immune regulation. In recent years, the research on hyaluronic acid oligosaccharide (o-HA) has gradually become a hot spot , the study found that o-HA molecular fragments have pro-angiogenic activity in vivo, and can also significantly promote the proliferation of endothelial cells in vitro; o-HA can protect granulation tissue from the damage of oxygen free radicals, and can effectively promote wound healing. Stimulate endothelial cells to recognize the injured site, and perform preliminary protection and repair on the wound site; studies have shown that o-HA also has active functions such as immune regulation and anti-tumor. O-HA fragments with significant activity can be used as new resources in drug development and functional product development, so the research on obtaining a large number of high-purity o-HA fragments is of great significance.
小分子HA的制备方法主要包括物理降解法、化学降解、酶降解以及生物合成法。许多物理方法(加热,机械剪切,紫外线辐射和超声波破碎)都可应用于透明质酸的降解,通过物理方法降解很难将透明质酸分子量降低到10kDa以下,且制备的产物分子量分布范围较大,难以获得具有特定分子量的HA。化学降解方法将HA降解成寡聚糖需要较剧烈的反应条件,如较高的酸、碱浓度等,才能达到高的降解程度,无论是酸水解、碱水解还是氧化降解在反应过程中都会破坏HA分子结构,断裂糖链上的糖苷键的同时,葡糖醛酸和N-乙酰氨基葡糖的结构也会遭到破坏,比如乙酰基被水解掉、单糖六元环断裂等,对寡糖的质量和生物活性有显著的影响,而且化学降解法制备的寡聚透明质酸还容易发生褐变,生产过程会污染环境。De Angelis等利用巴氏杆菌HA合成酶(pmHAS)、葡糖醛酸转移酶和N-乙酰氨基葡糖转移酶合成2~20寡糖,此反应为生物合成反应,反应需要严格的反应条件,并且需要多种反应酶,成本较高。酶解法是温和的降解透明质酸的方法,其反应条件温和,容易控制、不会引起环境污染,产物结构均一,不会引起双糖结构断裂,产物实际回收率高,产品成本低,纯度高,质量好,尤其适于制备低小分子透明质酸。目前,常用的透明质酸酶主要来源于动物提取,TAWADA等用牛睾丸提取的透明质酸酶(水解酶)降解HA制备单糖残基4-52的低分子寡聚HA;中国专利CN 103484513B公开了使用水蛭来源透明质酸酶(水解酶)制备HA寡糖的方法,产物为饱和HA寡糖。但由于动物提取透明质酸酶纯度低,有潜在的动物病毒交叉污染危险,且价格高昂,限制了其在制备小分子透明质酸中的应用。而微生物来源的透明质酸裂解酶作为一种与透明质酸水解酶完全不同的酶,可以有效避免动物来源透明质酸酶的各种缺陷。微生物发酵法生产的透明质酸裂解酶酶活力高,纯度高,不含动物来源病毒,相对动物来源透明质酸酶具有独特的优势。中国专利CN 102876748 B公开了利用空气来源芽孢杆菌透明质酸酶降解制备分子量3000-104Da的寡聚透明质酸盐的方法及其产生的寡聚透明质酸盐和用途。中国专利CN 103484513 B公开了利用空气来源芽孢杆菌透明质酸酶降解制备分子量10kDa-1000kDa低分子透明质酸盐的方法及其产生的低分子透明质酸盐和用途。保护范围为分子量范围3000-1000kDa的低分子透明质酸盐。The preparation methods of small molecule HA mainly include physical degradation, chemical degradation, enzymatic degradation and biosynthesis. Many physical methods (heating, mechanical shearing, ultraviolet radiation and ultrasonic crushing) can be applied to the degradation of hyaluronic acid. It is difficult to reduce the molecular weight of hyaluronic acid to below 10kDa through physical degradation, and the molecular weight distribution of the prepared product is relatively wide. Large, it is difficult to obtain HA with a specific molecular weight. The chemical degradation method to degrade HA into oligosaccharides requires more severe reaction conditions, such as higher acid and alkali concentrations, to achieve a high degree of degradation. Whether it is acid hydrolysis, alkali hydrolysis or oxidative degradation, it will be destroyed during the reaction process. The molecular structure of HA breaks the glycosidic bond on the sugar chain, and at the same time, the structure of glucuronic acid and N-acetylglucosamine will also be destroyed, such as the acetyl group is hydrolyzed, the monosaccharide six-membered ring is broken, etc. The quality and biological activity of sugar have a significant impact, and the oligomeric hyaluronic acid prepared by chemical degradation is also prone to browning, and the production process will pollute the environment. De Angelis et al. used Pasteurella HA synthase (pmHAS), glucuronosyltransferase and N-acetylglucosamine transferase to synthesize 2-20 oligosaccharides. This reaction is a biosynthetic reaction, and the reaction requires strict reaction conditions. Moreover, multiple reaction enzymes are required, and the cost is relatively high. Enzymatic hydrolysis is a mild method for degrading hyaluronic acid. Its reaction conditions are mild, easy to control, and will not cause environmental pollution. The product structure is uniform and will not cause disaccharide structure breakage. The actual recovery rate of the product is high, the product cost is low, and the purity is high. , good quality, especially suitable for the preparation of low-molecular-weight hyaluronic acid. At present, the commonly used hyaluronidase is mainly derived from animal extraction. TAWADA and others use hyaluronidase (hydrolase) extracted from bovine testis to degrade HA to prepare low-molecular-weight oligomeric HA with monosaccharide residues 4-52; Chinese patent CN 103484513B A method for preparing HA oligosaccharides using leech-derived hyaluronidase (hydrolase) is disclosed, and the product is saturated HA oligosaccharides. However, due to the low purity of hyaluronidase extracted from animals, the potential risk of animal virus cross-contamination, and the high price limit its application in the preparation of small molecule hyaluronic acid. As a completely different enzyme from hyaluronan hydrolase, microbial-derived hyaluronan lyase can effectively avoid various defects of animal-derived hyaluronidase. The hyaluronic acid lyase produced by microbial fermentation has high enzyme activity, high purity, and does not contain animal-derived viruses, which has unique advantages over animal-derived hyaluronidase. Chinese patent CN 102876748 B discloses a method for preparing oligomeric hyaluronate with a molecular weight of 3000-10 4 Da by degradation of air-sourced Bacillus hyaluronidase, and the resulting oligomeric hyaluronate and its use. Chinese patent CN 103484513 B discloses a method for preparing low-molecular-weight hyaluronate with a molecular weight of 10kDa-1000kDa by degrading air-sourced Bacillus hyaluronidase, and the produced low-molecular-weight hyaluronate and its use. The protection range is low molecular weight hyaluronate in the molecular weight range of 3000-1000kDa.
由于目前上市的透明质酸酶主要是动物组织来源透明质酸酶酶,存在活力低,成本高,且有动物病毒安全风险等问题,不适于用酶法规模化生产小分子透明质酸,目前工业生产小分子透明质酸的主要方法仍然化学降解法,但存在结构破坏和环境污染等问题,亟待开发新型、安全、成本低廉的透明质酸酶,实现工业化酶法生产小分子透明质酸。Since the currently marketed hyaluronidases are mainly hyaluronidase enzymes derived from animal tissues, they have problems such as low activity, high cost, and safety risks of animal viruses, and are not suitable for large-scale production of small-molecule hyaluronic acid by enzymatic methods. The main method of industrial production of small molecule hyaluronic acid is still chemical degradation, but there are problems such as structural damage and environmental pollution. It is urgent to develop a new, safe and low-cost hyaluronidase to realize industrial enzymatic production of small molecule hyaluronic acid.
发明内容Contents of the invention
经过本发明人大量研究和创造性劳动,实现了球形节杆菌(Arthrobacterglobiformis)HL6发酵生产获得高酶活力的透明质酸酶,成功获得透明质酸酶产酶基因和氨基酸序列,构建重组载体并顺利实现在大肠杆菌和枯草芽孢杆菌中的重组表达和纯化制备(国家发明专利申请号:201811310938.8)。After a lot of research and creative work by the inventors, the fermentative production of Arthrobacter globiformis HL6 to obtain hyaluronidase with high enzyme activity was achieved, the hyaluronidase enzyme-producing gene and amino acid sequence were successfully obtained, and the recombinant vector was constructed and successfully realized. Recombinant expression and purification preparation in Escherichia coli and Bacillus subtilis (national invention patent application number: 201811310938.8).
针对现有技术的不足,本发明提供了一种酶切法制备小分子透明质酸的方法及所得小分子透明质酸与其应用。本发明使用的微生物透明质酸酶酶法制备小分子透明质酸,工艺操作简单,条件温和,无环境污染和动物来源病毒污染,对产品结构无破坏,产物均一性良好,实现小分子透明质酸环境友好型工业化生产。本发明制备的小分子透明质酸纯度高、安全无毒,具有良好的保湿、透皮吸收、抗氧化、抗炎活性,可广泛应用于食品、化妆品和医药等领域,也可作为透明质酸寡糖标准品用于透明质酸的结构和质量研究,具有广阔的研究应用前景。Aiming at the deficiencies of the prior art, the present invention provides a method for preparing small-molecule hyaluronic acid by enzymatic cleavage, and the obtained small-molecule hyaluronic acid and its application. The microbial hyaluronidase enzymatic method used in the present invention prepares small molecule hyaluronic acid, the process is simple, the conditions are mild, there is no environmental pollution and animal source virus pollution, no damage to the product structure, the product uniformity is good, and the small molecule hyaluronic acid is realized. Acid environment-friendly industrial production. The small molecule hyaluronic acid prepared by the present invention has high purity, safety and non-toxicity, and has good moisturizing, transdermal absorption, anti-oxidation and anti-inflammatory activities, and can be widely used in the fields of food, cosmetics and medicine, and can also be used as hyaluronic acid The oligosaccharide standard is used in the research on the structure and quality of hyaluronic acid, and has broad research and application prospects.
本发明要解决的技术问题是,提供一种酶切法制备小分子透明质酸的方法。The technical problem to be solved by the present invention is to provide a method for preparing small molecule hyaluronic acid by enzymatic cleavage.
本发明还要解决的技术问题是,提供上述小分子透明质酸的应用。The technical problem to be solved by the present invention is to provide the application of the above-mentioned small molecule hyaluronic acid.
为解决上述技术问题,本发明采用如下技术方案予以实现:In order to solve the above technical problems, the present invention adopts the following technical solutions to achieve:
一种酶切法制备小分子透明质酸的方法,包括使用保藏号CCTCC NO:M 2018452的球形节杆菌(Arthrobacter globiformis)HL6发酵制备的透明质酸酶或者氨基酸序列如SEQ ID NO:1所示的透明质酸酶,对分子量大于600kDa透明质酸或其盐进行降解,制备小分子透明质酸或其盐的方法。A method for preparing small-molecule hyaluronic acid by enzymatic cleavage, comprising using the hyaluronidase or amino acid sequence prepared by fermentation of Arthrobacter globiformis HL6 with the preservation number CCTCC NO: M 2018452 as shown in SEQ ID NO: 1 The hyaluronidase is a method for degrading hyaluronic acid or a salt thereof with a molecular weight greater than 600kDa, and preparing a small molecule hyaluronic acid or a salt thereof.
本发明所述酶切法制备小分子透明质酸的方法,包含以下步骤:The method for preparing small molecule hyaluronic acid by enzymatic cleavage of the present invention comprises the following steps:
1)配制透明质酸或其盐溶液:向纯化水中加入分子量大于600kDa的透明质酸或其盐,配制成质量体积分数为0.05-20%的溶液;1) Prepare hyaluronic acid or its salt solution: add hyaluronic acid or its salt with a molecular weight greater than 600kDa to purified water, and prepare a solution with a mass volume fraction of 0.05-20%;
2)酶解:调节步骤1)透明质酸或其盐溶液的温度为20-50℃,pH为5-10,向透明质酸或其盐配成的溶液加入100U/g-5×105U/g的透明质酸酶,将透明质酸或其盐降解到分子量379Da-600kDa,得酶解液;2) Enzyme hydrolysis: adjustment step 1) The temperature of the hyaluronic acid or its salt solution is 20-50°C, the pH is 5-10, and 100U/g-5×10 5 is added to the solution made of hyaluronic acid or its salt U/g hyaluronidase, degrade hyaluronic acid or its salt to a molecular weight of 379Da-600kDa to obtain an enzymatic solution;
3)灭活:将步骤2)中酶解液在55-100℃保持5-30分钟,对加入的酶进行灭活;3) Inactivation: keep the enzymatic hydrolysis solution in step 2) at 55-100°C for 5-30 minutes, and inactivate the added enzyme;
4)过滤:向步骤3)中酶解液加入或不加入0.01-2mol/L易溶性无机盐,搅拌至完全溶解,用滤膜或滤芯过滤,得滤液;4) Filtration: Add or not add 0.01-2mol/L soluble inorganic salt to the enzymolysis solution in step 3), stir until completely dissolved, and filter with a filter membrane or filter element to obtain a filtrate;
5)沉淀:向步骤4)的滤液中缓慢加入滤液体积1.5-30倍的醇或酮,混合均匀,沉淀析出小分子透明质酸或其盐;5) Precipitation: Slowly add alcohol or ketone 1.5-30 times the volume of the filtrate to the filtrate of step 4), mix well, and precipitate out small molecule hyaluronic acid or its salt;
6)脱水干燥:收集步骤5)中小分子透明质酸或其盐沉淀,向其中加入与步骤5)相同的醇或酮进行脱水,干燥得小分子透明质酸或其盐;6) Dehydration and drying: collect the precipitation of small and medium-sized hyaluronic acid or its salt in step 5), add the same alcohol or ketone as in step 5) to dehydrate, and dry to obtain small-molecular hyaluronic acid or its salt;
上述步骤1)中,所用的透明质酸盐为透明质酸的钠盐、钾盐、钙盐、镁盐或锌盐中的至少一种;In the above step 1), the hyaluronate used is at least one of sodium salt, potassium salt, calcium salt, magnesium salt or zinc salt of hyaluronic acid;
上述步骤2)中,优选的选择调节反应温度20-45℃,pH 5.5-8。调节pH所用酸或碱为盐酸、冰乙酸、硝酸、硫酸、磷酸或氢氧化钠、氢氧化钾中的至少一种;向透明质酸或其盐配成的溶液加入100U/g-5×105U/g球形节杆菌(Arthrobacter globiformis)HL6透明质酸酶或者氨基酸序列如SEQ ID NO:1所示的透明质酸酶,将透明质酸或其盐降解到分子量379Da-600kDa,透明质酸酶对透明质酸有很好的降解性,只需加入合适的透明质酸酶,控制反应时间的长短即可得到所需分子量透明质酸。In the above step 2), it is preferred to adjust the reaction temperature to 20-45°C and pH to 5.5-8. The acid or alkali used to adjust the pH is at least one of hydrochloric acid, glacial acetic acid, nitric acid, sulfuric acid, phosphoric acid or sodium hydroxide, potassium hydroxide; add 100U/g-5×10 5 U/g Arthrobacter globiformis HL6 hyaluronidase or the hyaluronidase whose amino acid sequence is shown in SEQ ID NO: 1, degrades hyaluronic acid or its salts to a molecular weight of 379Da-600kDa, hyaluronic acid The enzyme has good degradability to hyaluronic acid, only need to add the appropriate hyaluronidase, control the length of the reaction time to obtain the required molecular weight hyaluronic acid.
上述步骤3)中,优选调节酶解液温度60-80℃,保温10-20分钟对透明质酸酶进行灭活。In the above step 3), it is preferable to adjust the temperature of the enzymatic hydrolysis solution to 60-80° C. and keep it warm for 10-20 minutes to inactivate the hyaluronidase.
上述步骤4)中,所述易溶性无机盐为钠盐、钾盐、钙盐、镁盐或锌盐中的至少一种;所述滤膜或者滤芯为本领域常用滤膜或者滤芯即可,只要其材料和孔径满足工艺要求都能用于本发明。In the above step 4), the soluble inorganic salt is at least one of sodium salt, potassium salt, calcium salt, magnesium salt or zinc salt; the filter membrane or filter element is a commonly used filter membrane or filter element in the field, As long as its material and pore size meet the process requirements, it can be used in the present invention.
上述步骤5)中,所述醇或酮为甲醇、乙醇、丙醇、丁醇或丙酮中的至少一种。In the above step 5), the alcohol or ketone is at least one of methanol, ethanol, propanol, butanol or acetone.
上述步骤6)中,所述醇或酮为甲醇、乙醇、丙醇、丁醇或丙酮中的至少一种。In the above step 6), the alcohol or ketone is at least one of methanol, ethanol, propanol, butanol or acetone.
本发明还提供了由上述方法制备的一种小分子透明质酸或其盐,其中小分子透明质酸盐为小分子透明质酸的钠盐、钾盐、钙盐、镁盐或锌盐。The present invention also provides a small molecule hyaluronic acid or a salt thereof prepared by the above method, wherein the small molecule hyaluronic acid salt is a sodium salt, potassium salt, calcium salt, magnesium salt or zinc salt of the small molecule hyaluronic acid.
上述方法制备的小分子透明质酸或其盐,红外图谱与欧洲药典标准图谱基本一致,结构完整,没有基团脱落,并且在葡萄糖醛酸的C4-C5间产生不饱和C=C双键,其在232nm附近有特征吸收峰,不仅为降解过程提供一个显著的监测参数,可以根据反应过程232nm吸光度的变化监测降解过程,更容易控制反应过程,在工艺参数一定的条件下,通过控制反应时间和溶液的232nm吸光值,精确制备不同分子量的小分子透明质酸或其盐。The infrared spectrum of the small molecule hyaluronic acid or its salt prepared by the above method is basically consistent with the standard spectrum of the European Pharmacopoeia, the structure is complete, no group falls off, and an unsaturated C=C double bond is generated between C4-C5 of glucuronic acid. It has a characteristic absorption peak near 232nm, which not only provides a significant monitoring parameter for the degradation process, but also can monitor the degradation process according to the change of 232nm absorbance in the reaction process, and it is easier to control the reaction process. Under the condition of certain process parameters, by controlling the reaction time and the 232nm absorbance value of the solution to accurately prepare small molecule hyaluronic acid or its salts with different molecular weights.
上述方法制备的小分子透明质酸或其盐,分子量范围在379Da-600kDa之间,对细胞没有毒性,具有良好的保湿、透皮吸收、抗氧化、抗炎等生物活性,在化妆品、药品和食品中具有非常好的应用前景。The small molecule hyaluronic acid or its salt prepared by the above method has a molecular weight range of 379Da-600kDa, has no toxicity to cells, and has good biological activities such as moisturizing, transdermal absorption, anti-oxidation, and anti-inflammation. It has a very good application prospect in food.
本发明还提供了一种组合物,包含上述方法制备的小分子透明质酸或其盐。The present invention also provides a composition comprising the small molecule hyaluronic acid or its salt prepared by the above method.
本发明还提供了一种组合物,还包含食品、化妆品或药品中可接受的辅料或载体。The present invention also provides a composition, which also includes an auxiliary material or carrier acceptable in foods, cosmetics or medicines.
本发明还提供了一种组合物,可以是食品、化妆品或药品。The invention also provides a composition, which can be food, cosmetic or medicine.
在本发明中,如果没有特别说明,“小分子透明质酸或小分子透明质酸盐”简称为“小分子透明质酸或其盐”,其分子量范围为379Da-600kDa,优选的分子量范围为379Da-200kDa,进一步优选的分子量范围为379Da-10kDa,更进一步优选的分子量范围为379Da-3kDa。In the present invention, unless otherwise specified, "small molecule hyaluronic acid or small molecule hyaluronate" is simply referred to as "small molecule hyaluronic acid or its salt", and its molecular weight ranges from 379Da to 600kDa, and the preferred molecular weight range is 379Da-200kDa, a further preferred molecular weight range is 379Da-10kDa, an even more preferred molecular weight range is 379Da-3kDa.
与现有技术相比,本发明的优点和有益效果是:本发明利用海洋来源球形节杆菌(Arthrobacter globiformis)HL6发酵生产的透明质酸酶或者氨基酸序列如SEQ ID NO:1所示的透明质酸酶酶切制备小分子透明质酸,微生物发酵生产的透明质酸酶活力高,产品纯度高,杂质含量低且没有潜在的动物病毒危害,适于工业化生产并应用于小分子透明质酸的工业化生产,尤其适于工业化制备分子量小于3kDa小分子透明质酸,最低可至透明质酸二糖,反应条件温和,生产成本低,没有环境污染,酶解产物具有232nm特征吸收,便于生产工艺的精确控制,制备不同分子量的小分子透明质酸。Compared with the prior art, the advantages and beneficial effects of the present invention are: the present invention utilizes the hyaluronidase produced by the fermentation of Arthrobacter globiformis HL6 from marine sources or the hyaluronic acid whose amino acid sequence is shown in SEQ ID NO: 1 Acidase digestion to prepare small molecule hyaluronic acid. The hyaluronidase produced by microbial fermentation has high activity, high product purity, low impurity content and no potential animal virus hazards. It is suitable for industrial production and applied to the production of small molecule hyaluronic acid. Industrialized production, especially suitable for industrialized preparation of small molecule hyaluronic acid with a molecular weight of less than 3kDa, the lowest can reach hyaluronic acid disaccharide, mild reaction conditions, low production cost, no environmental pollution, and the enzymatic hydrolysis product has a characteristic absorption of 232nm, which is convenient for the production process. Precise control to prepare small molecule hyaluronic acid with different molecular weights.
本发明制备的小分子透明质酸或其盐没有基团脱落、糖环断裂等现象,产物结构完整,透明质酸实际含量高,纯度高,安全无毒,具有良好的保湿、透皮吸收、抗氧化、抗炎等生物活性,既可应用于食品、化妆品和医药等领域,也可作为透明质酸寡糖标准品用于透明质酸的结构和质量研究,具有广阔的研究应用前景。The small-molecule hyaluronic acid or its salt prepared by the present invention has no phenomena such as group shedding, sugar ring breakage, etc., the product structure is complete, the actual content of hyaluronic acid is high, the purity is high, safe and non-toxic, and it has good moisturizing, transdermal absorption, Antioxidant, anti-inflammatory and other biological activities can be used in food, cosmetics and medicine and other fields, and can also be used as hyaluronic acid oligosaccharide standard for hyaluronic acid structure and quality research, which has broad research and application prospects.
附图说明Description of drawings
下面结合附图对本发明的具体实施方式作进一步详细的说明,其中:Below in conjunction with accompanying drawing, specific embodiment of the present invention is described in further detail, wherein:
图1:酶解产物ESI-MS扫描图谱。横坐标为m/z,纵坐标为离子流强度。Figure 1: ESI-MS scanning pattern of enzymatic hydrolysis products. The abscissa is m/z, and the ordinate is the ion current intensity.
图2:不同分子量透明质酸紫外扫描图谱。横坐标为波长(nm),纵坐标为吸光度。Figure 2: UV scanning spectra of hyaluronic acid with different molecular weights. The abscissa is the wavelength (nm), and the ordinate is the absorbance.
图3:不同分子量透明质酸红外扫描图谱。横坐标为波数(cm-1),纵坐标为透过率;其中图3a为LMWHA;图3b为HMWHA;图3c为o-HA。Figure 3: Infrared scanning spectra of hyaluronic acid with different molecular weights. The abscissa is the wave number (cm -1 ), and the ordinate is the transmittance; Figure 3a is LMWHA; Figure 3b is HMWHA; Figure 3c is o-HA.
图4:不同分子量透明质酸对HUVEC细胞增殖的影响。横坐标为样品浓度(mg/mL),纵坐标为相对增殖率(%)。Figure 4: Effects of hyaluronic acid with different molecular weights on the proliferation of HUVEC cells. The abscissa is the sample concentration (mg/mL), and the ordinate is the relative proliferation rate (%).
图5:不同分子量透明质酸的保湿活性。横坐标为时间(h),纵坐标为保湿率(%)。Figure 5: Moisturizing activity of hyaluronic acid with different molecular weights. The abscissa is time (h), and the ordinate is moisture retention rate (%).
图6:不同分子量透明质酸体外透皮吸收。横坐标为时间(h),纵坐标为Qn(ug/cm2)。Figure 6: In vitro transdermal absorption of hyaluronic acid with different molecular weights. The abscissa is time (h), and the ordinate is Qn (ug/cm 2 ).
图7:不同分子量透明质酸的抗氧化活性。横坐标为样品浓度(mg/mL),图7(a)中纵坐标为DPPH清除率(%),图7(b)中纵坐标为700nm吸光度。Figure 7: Antioxidant activity of hyaluronic acid with different molecular weights. The abscissa is the sample concentration (mg/mL), the ordinate in Figure 7(a) is the DPPH clearance rate (%), and the ordinate in Figure 7(b) is the absorbance at 700nm.
图8:不同分子量透明质酸对炎症细胞TNF-a的影响。横坐标为实验组,纵坐标为TNF-a浓度(pg/mL)。Figure 8: Effects of hyaluronic acid with different molecular weights on TNF-a of inflammatory cells. The abscissa is the experimental group, and the ordinate is the TNF-a concentration (pg/mL).
具体实施方式Detailed ways
下面结合具体实施例,进一步阐述本发明的技术方案。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。如无特别说明,本发明所述浓度均为质量体积浓度。The technical solutions of the present invention will be further described below in conjunction with specific embodiments. It should be understood that these examples are only used to illustrate the present invention and are not intended to limit the scope of the present invention. Unless otherwise specified, the concentrations described in the present invention are all mass volume concentrations.
在本发明中,小分子透明质酸分子量测定采用凝胶排阻色谱法(GPC),寡聚透明质酸通过质谱(MS)进行产物分析,质谱选择阴离子检测模式;含量测定采用咔唑-硫酸法。透明质酸酶酶活力测定方法采用中国药典方法(参照中国药典2015版通则1207:玻璃酸酶测定法)。发酵液酶活力单位定义为:每毫升发酵液含酶活力单位(U/mL)。In the present invention, the molecular weight of the small molecule hyaluronic acid is determined by gel exclusion chromatography (GPC), and the oligomeric hyaluronic acid is analyzed by mass spectrometry (MS), and the anion detection mode is selected for the mass spectrometer; the content determination adopts carbazole-sulfuric acid Law. The hyaluronidase enzyme activity assay method adopts the Chinese Pharmacopoeia method (refer to the general rule 1207 of the Chinese Pharmacopoeia 2015 edition: hyaluronidase assay method). The enzyme activity unit of fermentation broth is defined as: enzyme activity unit per milliliter of fermentation broth (U/mL).
本发明从海水分离到一株产透明质酸酶的细菌HL6,其16S rRNA长度为1443bp,经过在NCBI数据库16S rRNA序列比对鉴定,与节杆菌属细菌具有最高相似度99.7%,初步鉴定为节杆菌属。根据伯杰氏细菌手册对该菌株进行形态学和生理生化鉴定,结果表明,该菌株在24℃培养48小时,菌落呈圆形,无色透明。革兰氏染色阳性。可以利用肌酸、肌氨酸、甜菜碱和甘氨酸作为单一碳源,可以液化明胶和水解淀粉,但是不能还原NO3至NO2,需要生物素作为生长因子,不需要硫酸铵、土壤因子作为生长因子,亮氨酸酶、谷氨酸酶阳性,不能利用木糖、甘露糖、核糖和棉子糖。形态学和生理生化结果表明,该菌株与申请号为201610115793.0的发明中已报道的球形节杆菌A152有显著的差异。结合16rRNA序列分析,形态学和生理生化鉴定结果,将该菌株命名为球形节杆菌(Arthrobacter globiformis)HL6。16s rRNAIn the present invention, a hyaluronidase-producing bacterium HL6 was isolated from seawater, and its 16S rRNA length was 1443bp. After comparing and identifying the 16S rRNA sequence in the NCBI database, it had the highest similarity of 99.7% with Arthrobacter bacteria, and was initially identified as Arthrobacter. According to the morphological, physiological and biochemical identification of the strain according to Bergey's Bacteria Handbook, the results showed that the strain was cultured at 24°C for 48 hours, and the colony was round, colorless and transparent. Gram stain positive. Can use creatine, sarcosine, betaine and glycine as a single carbon source, can liquefy gelatin and hydrolyzed starch, but cannot reduce NO 3 to NO 2 , needs biotin as growth factor, does not need ammonium sulfate, soil factor as growth factor Factors, leucinase, glutaminase positive, can not use xylose, mannose, ribose and raffinose. Morphological, physiological and biochemical results show that this strain is significantly different from the Arthrobacter globosa A152 reported in the invention with application number 201610115793.0. Combined with 16rRNA sequence analysis, morphological and physiological and biochemical identification results, the strain was named Arthrobacter globiformis HL6. 16s rRNA
TTTTTAGAGTTTTTTTATTCGTGGCTCAGGATGAACGCTGGCGGCGTGCTTCACACATGCAAGTCGAACGATGATCCCAGCTTGMTGGGGGATTAGTGGCGAACGGGTGAGTAACACGTGAGTAACCTGCCCTTGACTCTGGGATAAGCCTGGGAAACTGGGTCTAATACCGGATATGACCATCTGACGCATGTCATGGTGGTGGAAAGCTTTTGTGGTTTTGGATGGACTCGCGGCCTATCAGCTTGTTGGTGGGGTAATGGCCTACCAAGGCGACGACGGGTAGCCGGCCTGAGAGGGTGACCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGCAAGCCTGATGCAGCGACGCCGCGTGAGGGATGACGGCCTTCGGGTTGTAAACCTCTTTCAGTAGGGAAGAAGCGAAAGTGACGGTACCTGCAGAAGAAGCGCCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGCGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCGCGTCTGCTGTGAAAGACCGGGGCTCAACTCCGGTTCTGCAGTGGGTACGGGCAGACTAGAGTGCAGTAGGGGAGACTGGAATTCCTGGTGTAGCGGTGAAATGCGCAGATATCAGGAGGAACACCGATGGCGAAGGCAGGTCTCTGGGCTGTAACTGACGCTGAGGAGCGAAAGCATGGGGAGCGAACAGGATTAGATACCCTGGTAGTCCATGCCGTAAACGTTGGGCACTAGGTGTGGGGGACATTCCACGTTTTCCGCGCCGTAGCTAACGCATTAAGTGCCCCGCCTGGGGAGTACGGCCGCAAGGCTAAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGCGGAGCATGCGGATTAATTCGATGCAACGCGAAGAACCTTACCAAGGCTTGACATGAACCGGAAAGACCTGGAAACAGGTGCCCCGCTTGCGGTCGGTTTACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTCGTTCTATGTTGCCAGCGCGTTATGGCGGGGACTCATAGGAGACTGCCGGGGTCAACTCGGAGGAAGGTGGGGACGACGTCAAATCATCATGCCCCTTATGTCTTGGGCTTCACGCATGCTACAATGGCCGGTACAAAGGGTTGCGATACTGTGAGGTGGAGCTAATCCCAAAAAGCCGGTCTCAGTTCGGATTGGGGTCTGCAACTCGACCCCATGAAGTCGGAGTCGCTAGTAATCGCAGATCAGCAACGCTGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCAAGTCACGAAAGTTGGTAACACCCGAAGCCGGTGGCCTAACCCTTGTGGGGGGAGC。TTTTTAGAGTTTTTTTATTCGTGGCTCAGGATGAACGCTGGCGGCGTGCTTCACACATGCAAGTCGAACGATGATCCCAGCTTGMTGGGGGATTAGTGGCGAACGGGTGAGTAACACGTGAGTAACCTGCCCTTGACTCTGGGATAAGCCTGGGAAACTGGGTCTAATACCGGATATGACCATCTGACGCATGTCATGGTGGTGGAAAGCTTTTGTGGTTTTGGATGGACTCGCGGCCTATCAGCTTGTTGGTGGGGTAATGGCCTACCAAGGCGACGACGGGTAGCCGGCCTGAGAGGGTGACCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGCAAGCCTGATGCAGCGACGCCGCGTGAGGGATGACGGCCTTCGGGTTGTAAACCTCTTTCAGTAGGGAAGAAGCGAAAGTGACGGTACCTGCAGAAGAAGCGCCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGCGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCGCGTCTGCTGTGAAAGACCGGGGCTCAACTCCGGTTCTGCAGTGGGTACGGGCAGACTAGAGTGCAGTAGGGGAGACTGGAATTCCTGGTGTAGCGGTGAAATGCGCAGATATCAGGAGGAACACCGATGGCGAAGGCAGGTCTCTGGGCTGTAACTGACGCTGAGGAGCGAAAGCATGGGGAGCGAACAGGATTAGATACCCTGGTAGTCCATGCCGTAAACGTTGGGCACTAGGTGTGGGGGACATTCCACGTTTTCCGCGCCGTAGCTAACGCATTAAGTGCCCCGCCTGGGGAGTACGGCCGCAAGGCTAAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGCGGAGCATGCGGATTAATTCGATGCAACGCGAAGAACCTTACCAAGGCTTGACATGAACCGGAAAGACCTGGAAACAGG TGCCCCGCTTGCGGTCGGTTTACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTCGTTCTATGTTGCCAGCGCGTTATGGCGGGGACTCATAGGAGACTGCCGGGGTCAACTCGGAGGAAGGTGGGGACGACGTCAAATCATCATGCCCCTTATGTCTTGGGCTTCACGCATGCTACAATGGCCGGTACAAAGGGTTGCGATACTGTGAGGTGGAGCTAATCCCAAAAAGCCGGTCTCAGTTCGGATTGGGGTCTGCAACTCGACCCCATGAAGTCGGAGTCGCTAGTAATCGCAGATCAGCAACGCTGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCAAGTCACGAAAGTTGGTAACACCCGAAGCCGGTGGCCTAACCCTTGTGGGGGGAGC。
保藏信息:球形节杆菌Arthrobacter globiformis HL6,该菌株于2018年07月05日保藏于中国典型培养物菌种保藏中心,地址:中国,武汉,武汉大学,球形节杆菌Arthrobacter globiformis HL6的保藏编号为:CCTCC NO:M 2018452。Preservation information: Arthrobacter globiformis HL6, the strain was deposited in the China Type Culture Collection Center on July 5, 2018, address: Wuhan, China, Wuhan University, the preservation number of Arthrobacter globiformis HL6 is: CCTCC NO: M 2018452.
本发明所述透明质酸酶包括来源于海洋细菌球形节杆菌(Arthrobacterglobiformis)HL6的发酵生产的透明质酸酶,还包括采用球形节杆菌(Arthrobacterglobiformis)HL6之外的细菌、真菌、哺乳动物细胞发酵生产的氨基酸序列如SEQ ID NO:1所示的透明质酸酶。球形节杆菌(Arthrobacter globiformis)HL6的发酵生产透明质酸酶或采用球形节杆菌(Arthrobacter globiformis)HL6之外的细菌、真菌、哺乳动物细胞发酵生产的氨基酸序列如SEQ ID NO:1所示的透明质酸酶的具体方法参照申请号为201811310938.8的国家发明专利申请,其全部内容在此通过引用并入本发明。The hyaluronidase of the present invention includes the hyaluronidase derived from the fermentation of the marine bacterium Arthrobacterglobiformis HL6, and also includes the fermentation of bacteria, fungi, and mammalian cells other than Arthrobacterglobiformis HL6. The hyaluronidase produced has the amino acid sequence shown in SEQ ID NO:1. Arthrobacter globiformis HL6 fermented to produce hyaluronidase or the amino acid sequence produced by fermentation of bacteria, fungi, and mammalian cells other than Arthrobacter globiformis HL6 is hyaluronidase as shown in SEQ ID NO: 1 For the specific method of massnidase, refer to the national invention patent application with application number 201811310938.8, the entire content of which is hereby incorporated by reference into the present invention.
实施例1.透明质酸裂解酶基因的克隆与重组载体构建Example 1. Cloning of hyaluronan lyase gene and construction of recombinant vector
以保藏编号为CCTCC M 2018452的球形节杆菌(Arthrobacter globiformis)HL6总DNA为模板,通过数据库的功能基因分析,以含有限制性内切酶酶切位点的引物EC-F和EC-R扩增透明质酸裂解酶基因HyLs(不含信号肽):Using the total DNA of Arthrobacter globiformis HL6 with the preservation number CCTCC M 2018452 as a template, through the functional gene analysis of the database, amplify with primers EC-F and EC-R containing restriction endonuclease sites Hyaluronan lyase gene HyLs (without signal peptide):
EC-F:GGACTAGTCATGTTCGCCAACCACGCCT(SEQ.ID.No.3)EC-F: GGACTAGTCATGTTCGCCAACCACGCCT (SEQ. ID. No. 3)
EC-R:GGGGTACCCGGATACCGGGCGACGTTAGC(SEQ.ID.No.4)EC-R: GGGGTACCCGGATACCGGGCGACGTTAGC (SEQ.ID.No.4)
其中,ACTAGT为内切酶Spe Ⅰ的酶切位点,GGTACC为内切酶Kpn Ⅰ的酶切位点。Among them, ACTAGT is the restriction site of endonuclease Spe Ⅰ, and GGTACC is the restriction site of endonuclease Kpn Ⅰ.
采用PCR进行扩增,50μl反应体系为:PCR is used for amplification, and the 50 μl reaction system is:
在50μL的反应体系中含DNA模板,1μL;EC-F(10μM),1μL;EC-R(10μM),1μL;dNTP(各2.5mM),4μL;Taq(2U/μL),1μL;10×Taq buffer,5μL;ddH2O,加至50μL。In a 50 μL reaction system containing DNA template, 1 μL; EC-F (10 μM), 1 μL; EC-R (10 μM), 1 μL; dNTP (2.5 mM each), 4 μL; Taq (2U/μL), 1 μL; 10× Taq buffer, 5 μL; ddH2O, added to 50 μL.
PCR扩增程序为:95℃预变性3min,96℃变性30s,60℃退火45s,70℃延伸90s,循环30次,70℃10min。The PCR amplification program was: pre-denaturation at 95°C for 3 min, denaturation at 96°C for 30 s, annealing at 60°C for 45 s, extension at 70°C for 90 s, 30 cycles, and 10 min at 70°C.
PCR产物进行1%琼脂糖电泳并测序验证,获得球形节杆菌(Arthrobacterglobiformis)HL6CCTCC M 2018452透明质酸裂解酶的表达基因HyLs,长度2298bp,测序序列见序列表SEQ.ID.No.2所示。将SEQ.ID.No.2所示基因序列与全基因组序列比对,两者一致。PCR产物按照Cycle-Pure Kit(OMEGA Bio-Tek Co.)纯化试剂盒要求的操作方法进行纯化。The PCR product was subjected to 1% agarose electrophoresis and sequence verification, and the expression gene HyLs of Arthrobacterglobiformis HL6CCTCC M 2018452 hyaluronan lyase was obtained, with a length of 2298bp. The sequencing sequence is shown in the sequence table SEQ.ID.No.2. The gene sequence shown in SEQ.ID.No.2 was compared with the whole genome sequence, and both were consistent. The PCR product was purified according to the operation method required by the Cycle-Pure Kit (OMEGA Bio-Tek Co.) purification kit.
分别将载体pProEX-HTa与PCR扩增基因进行双酶酶切,酶切产物进行琼脂糖电泳,按照Gel extraction kit(OMEGA Bio-Tek Co.)胶提取试剂盒要求的操作方法进行回收。The vector pProEX-HTa and the PCR amplified gene were subjected to double-enzyme digestion, and the digested products were subjected to agarose electrophoresis, and recovered according to the operation method required by the Gel extraction kit (OMEGA Bio-Tek Co.).
用T4连接酶将含有透明质酸裂解酶基因序列片段与载体pProEX-HTa连接,获得含有透明质酸裂解酶基因的重组载体HTa-HyLs。T4 ligase is used to connect the sequence fragment containing the hyaluronan lyase gene with the vector pProEX-HTa to obtain the recombinant vector HTa-HyLs containing the hyaluronan lyase gene.
实施例2.球形节杆菌(Arthrobacter globiformis)HL6发酵制备透明质酸酶Example 2. Preparation of Hyaluronidase by Fermentation of Arthrobacter globiformis HL6
将保藏号为CCTCC NO:M 2018452的球形节杆菌(Arthrobacter globiformis)HL6接种到灭菌种子培养基中(种子培养基配方为:透明质酸钠0.2g/L,葡萄糖5g/L,蛋白胨2g/L,磷酸氢二钾1.5g/L,MgSO40.5g/L,pH 7.5),32℃,200r/min,培养24h,获得种子液。将种子培养液按1%接种量接种到灭菌发酵培养基中(透明质酸钠2g/L,葡萄糖10g/L,蛋白胨5g/L,磷酸氢二钾1.5g/L,MgSO40.5g/L,pH 7.5),28℃,200r/min培养24h,将发酵液在4℃下,8000r/min离心10min,收集发酵上清液,测定透明质酸酶活力为1×105U/mL。The preservation number is CCTCC NO: M 2018452 Arthrobacter globiformis HL6 is inoculated into the sterilized seed culture medium (seed culture medium formula is: sodium hyaluronate 0.2g/L, glucose 5g/L, peptone 2g/L L, dipotassium hydrogen phosphate 1.5g/L, MgSO 4 0.5g/L, pH 7.5), 32°C, 200r/min, cultivated for 24h to obtain seed liquid. Inoculate the seed culture liquid into the sterilized fermentation medium according to the inoculation amount of 1% (sodium hyaluronate 2g/L, glucose 10g/L, peptone 5g/L, dipotassium hydrogen phosphate 1.5g/L, MgSO 4 0.5g/L L, pH 7.5), 28°C, 200r/min for 24h, the fermentation broth was centrifuged at 4°C, 8000r/min for 10min, the fermentation supernatant was collected, and the hyaluronidase activity was determined to be 1×10 5 U/mL.
实施例3.大肠杆菌重组表达透明质酸酶Example 3. Recombinant expression of hyaluronidase in Escherichia coli
1、选择大肠杆菌菌株DH5α,经过感受细胞制备、热激转化(42℃,60s)、孵育(37℃,160rpm,45min),在含有75μg/mL氨苄青霉素钠LB固体平板筛选转化子,未被转化菌株无法在平板生长。经PCR检测,获得阳性克隆菌株,用Plasmid Mini Kit(OMEGA Bio-Tek Co.)试剂盒进行质粒提取,获得重组质粒HTa-HyLs。1. Select Escherichia coli strain DH5α, prepare competent cells, heat shock transformation (42°C, 60s), and incubate (37°C, 160rpm, 45min), and screen transformants on LB solid plates containing 75 μg/mL ampicillin sodium. Transformed strains cannot grow on plates. After PCR detection, positive cloned strains were obtained, and the plasmid was extracted with the Plasmid Mini Kit (OMEGA Bio-Tek Co.) kit to obtain the recombinant plasmid HTa-HyLs.
选择大肠杆菌表达菌株BL21(DE3),经过感受态细胞制备、热激转化(42℃,60s)、孵育(37℃,45min),将提取后的重组质粒HTa-HyLs转化进大肠杆菌表达菌株BL21(DE3),75μg/mL氨苄青霉素LB固体平板筛选,37℃培养16h获得转化子,挑选单菌落转化子PCR检测,获得阳性克隆菌株。置于-80℃下甘油保存。Select the Escherichia coli expression strain BL21(DE3), and transform the extracted recombinant plasmid HTa-HyLs into the Escherichia coli expression strain BL21 after preparing competent cells, heat shock transformation (42°C, 60s), and incubation (37°C, 45min). (DE3), screened on 75 μg/mL ampicillin LB solid plate, cultured at 37°C for 16 hours to obtain transformants, selected single colony transformants for PCR detection, and obtained positive clone strains. Store in glycerol at -80°C.
将含有编码氨基酸序列如SEQ ID NO:1所示透明质酸酶基因的重组大肠杆菌BL21(DE3)接种于LB液体培养基(75μg/mL氨苄青霉素钠)中,37℃培养至OD600为0.6~0.7时,加入IPTG至终浓度为0.5mM,24℃,180r/min诱导培养24h,将发酵液在4℃下,8000r/min离心10min,收集发酵上清液,测定透明质酸酶酶活力为5×106U/mL。Inoculate the recombinant Escherichia coli BL21 (DE3) containing the hyaluronidase gene encoding the amino acid sequence shown in SEQ ID NO: 1 in LB liquid medium (75 μg/mL ampicillin sodium), and cultivate it at 37°C until the OD600 is 0.6 At ~0.7, add IPTG to a final concentration of 0.5mM, induce culture at 24°C, 180r/min for 24h, centrifuge the fermentation broth at 8000r/min for 10min at 4°C, collect the fermentation supernatant, and measure the activity of hyaluronidase It is 5×10 6 U/mL.
2、重组酶纯化2. Recombinase purification
1)将离心后的发酵上清液首先用镍柱进行亲和层析(GE公司),按照镍柱纯化说明书进行初步分离纯化,收集纯初步分离纯化产物;1) The fermentation supernatant after centrifugation is firstly subjected to affinity chromatography (GE company) with a nickel column, followed by preliminary separation and purification according to the nickel column purification instructions, and the pure preliminary separation and purification product is collected;
2)将步骤1)初步纯化产物再用QFF-Fast Flow层析柱(GE公司)再次纯化,先用20mM,pH7.5的Tris-HCl缓冲液平衡柱子,上样后用含有浓度为0-1mol/L氯化钠的20mM Tris-HCl(pH 7.5)缓冲液进行线性梯度洗脱,在280nm下检测蛋白峰,组分按管收集,测定各管收集液的透明质酸酶活力,收集有活性的蛋白流份;2) The product of step 1) was initially purified with QFF- Fast Flow chromatographic column (GE company) is purified again, first with 20mM, the Tris-HCl damping fluid equilibrium column of pH7.5 is used to contain concentration after loading with the 20mM Tris-HCl (pH of 0-1mol/L sodium chloride) 7.5) The buffer solution is subjected to linear gradient elution, the protein peak is detected at 280nm, the components are collected in tubes, the hyaluronidase activity of the collected solution in each tube is measured, and the active protein fraction is collected;
3)进一步将步骤2)收集的活性蛋白流份用Sephadex G100凝胶(GE)纯化,洗脱液为20mM pH 7.0磷酸盐缓冲液,按管收集,检测透明质酸酶活力,收集有活性的蛋白流份即为纯化的透明质酸裂解酶。将纯化透明质酸酶进行SDS-PAGE电泳,或获得蛋白单一条带,分子量约为80kDa,与根据序列表SEQ.ID.No.2透明质酸裂解酶基因推测的透明质酸裂解酶序列SEQ.ID.No.1结果基本一致。3) Further purify the active protein fraction collected in step 2) with Sephadex G100 gel (GE), the eluent is 20mM pH 7.0 phosphate buffer, collect by tube, detect hyaluronidase activity, and collect active protein The protein fraction is purified hyaluronan lyase. Perform SDS-PAGE electrophoresis on the purified hyaluronidase, or obtain a single protein band with a molecular weight of about 80kDa, which is inferred from the hyaluronan lyase sequence SEQ.ID.No.2 hyaluronan lyase gene in the sequence table .ID.No.1 results are basically the same.
实施例4.小分子透明质酸的制备Example 4. Preparation of Small Molecular Hyaluronic Acid
向5L烧杯中加入1L纯化水,边搅拌边缓慢加入10g分子量为2000kDa的透明质酸,搅拌至完全溶解,用盐酸调节pH为5.5,调节温度42℃,然后向透明质酸溶液中加入实施例2制备的透明质酸酶0.5mL(5×104U),保温反应6h,间隔取样50mL,样品60℃保温20min灭酶,加入0.5mol/L NaCl,搅拌至溶解完全,用0.45μm滤膜过滤酶解液,向酶解液中加入3倍乙醇沉淀,收集沉淀,然后用乙醇洗涤、脱水,真空干燥得小分子透明质酸。不同时间点样品的分子量见表1。Add 1L of purified water to a 5L beaker, slowly add 10g of hyaluronic acid with a molecular weight of 2000kDa while stirring, stir until completely dissolved, adjust the pH to 5.5 with hydrochloric acid, adjust the temperature to 42°C, and then add the example to the hyaluronic acid solution 2 Prepare 0.5mL of hyaluronidase (5×10 4 U), incubate for 6 hours, take 50mL of samples at intervals, incubate the sample at 60°C for 20 minutes to inactivate the enzyme, add 0.5mol/L NaCl, stir until completely dissolved, filter with 0.45μm filter membrane Filter the enzymolysis solution, add 3 times of ethanol to the enzymolysis solution to precipitate, collect the precipitate, then wash with ethanol, dehydrate, and vacuum dry to obtain small molecule hyaluronic acid. The molecular weights of samples at different time points are shown in Table 1.
表1.酶解时间与透明质酸分子量Table 1. Enzyme hydrolysis time and molecular weight of hyaluronic acid
实施例5.小分子透明质酸钠的制备Example 5. Preparation of Small Molecular Sodium Hyaluronate
向5L烧杯中加入1L纯化水,边搅拌边缓慢加入100g分子量为1500kDa的透明质酸钠,搅拌至完全溶解,用氢氧化钠调节pH为7.0,调节温度37℃,然后向透明质酸钠溶液中加入实施例3制备的透明质酸酶1mL(5×106U),保温反应6h,间隔取样50mL,样品70℃保温15min灭酶,加入1mol/L NaCl,搅拌至溶解完全,用0.45μm滤膜过滤酶解液,向酶解液中加入3倍乙醇沉淀,收集沉淀,然后用乙醇洗涤、脱水,真空干燥得小分子透明质酸钠。不同时间点样品的分子量见表2。Add 1L of purified water to a 5L beaker, slowly add 100g of sodium hyaluronate with a molecular weight of 1500kDa while stirring, stir until it is completely dissolved, adjust the pH to 7.0 with sodium hydroxide, adjust the temperature to 37°C, and then pour into the sodium hyaluronate solution Add 1 mL of hyaluronidase (5×10 6 U) prepared in Example 3 to the solution, incubate for 6 hours, take 50 mL of samples at intervals, incubate the sample at 70°C for 15 minutes to inactivate the enzyme, add 1 mol/L NaCl, stir until completely dissolved, and use 0.45 μm Filter the enzymolysis solution with a filter membrane, add 3 times of ethanol to the enzymolysis solution to precipitate, collect the precipitate, then wash with ethanol, dehydrate, and vacuum dry to obtain small molecule sodium hyaluronate. The molecular weights of samples at different time points are shown in Table 2.
表2.酶解时间与透明质酸钠分子量Table 2. Enzyme hydrolysis time and molecular weight of sodium hyaluronate
实施例6.小分子透明质酸钾的制备Example 6. Preparation of Small Molecule Potassium Hyaluronate
向5L烧杯中加入1L纯化水,边搅拌边缓慢加入1g分子量为650kDa的透明质酸钠,搅拌至完全溶解,用氢氧化钾调节pH为8.0,调节温度30℃,然后向透明质酸钾溶液中加入实施例2制备的透明质酸酶0.01mL(1×103U),保温反应6h,间隔取样50mL,样品80℃保温10min灭酶,用0.45μm滤芯过滤酶解液,向酶解液中加入3倍丙酮沉淀,收集沉淀,然后用丙酮洗涤、脱水,真空干燥得小分子透明质酸钾。不同时间点样品的分子量见表3。Add 1L of purified water to a 5L beaker, slowly add 1g of sodium hyaluronate with a molecular weight of 650kDa while stirring, stir until it is completely dissolved, adjust the pH to 8.0 with potassium hydroxide, adjust the temperature to 30°C, and then pour into the potassium hyaluronate solution Add 0.01mL (1×10 3 U) of hyaluronidase prepared in Example 2, incubate for 6 hours, take 50mL samples at intervals, incubate the sample at 80°C for 10 minutes to inactivate the enzyme, filter the enzymolyzed solution with a 0.45 μm filter element, pour into the enzymolyzed solution Add 3 times of acetone to precipitate, collect the precipitate, then wash with acetone, dehydrate, and vacuum dry to obtain small molecule potassium hyaluronate. The molecular weights of samples at different time points are shown in Table 3.
表3.酶解时间与透明质酸钾分子量Table 3. Enzyme hydrolysis time and molecular weight of potassium hyaluronate
实施例7.透明质酸寡糖的制备Embodiment 7. Preparation of hyaluronic acid oligosaccharides
向5L烧杯中加入1L纯化水,边搅拌边缓慢加入10g分子量为1500kDa的透明质酸钠,搅拌至完全溶解,用氢氧化钠调节pH为7.0,调节温度37℃,然后向透明质酸钠溶液中加入实施例2制备的透明质酸酶50mL(5×106U),保温反应8h,分别在4h和8h取样100mL,样品60℃保温20min灭酶,搅拌至溶解完全,用0.45μm滤膜过滤酶解液,向酶解液中加入20倍乙醇沉淀,收集沉淀,然后用乙醇洗涤、脱水,冷冻干燥得透明质酸寡糖。Add 1L of purified water to a 5L beaker, slowly add 10g of sodium hyaluronate with a molecular weight of 1500kDa while stirring, stir until it is completely dissolved, adjust the pH to 7.0 with sodium hydroxide, adjust the temperature to 37°C, and then pour into the sodium hyaluronate solution Add 50 mL of the hyaluronidase (5×10 6 U) prepared in Example 2 to the mixture, incubate for 8 hours, take 100 mL of samples at 4 hours and 8 hours respectively, incubate the samples at 60°C for 20 minutes to inactivate the enzyme, stir until completely dissolved, and filter with a 0.45 μm filter membrane Filter the enzymolysis solution, add 20 times of ethanol to the enzymolysis solution to precipitate, collect the precipitate, then wash with ethanol, dehydrate, and freeze-dry to obtain hyaluronic acid oligosaccharides.
对酶解产物进行ESI-MS分析,采用负离子电离模式,扫描范围m/z:100-2000,质谱扫描图谱见附图1,ESI-MS扫描结果表明:酶解4h的样品中主要有m/z为175.03、378.1、757和779.2四种离子峰,分别代表不饱和糖醛酸(m/z:175.03),不饱和透明质酸二糖(m/z:378.1),不饱和透明质酸四糖(m/z:757和779.2),还含有微量的m/z为599.0、1180.4和1581.6的离子峰,分别代表不饱和透明质酸三糖(m/z:599.0)、不饱和透明质酸六糖(m/z:1180.4)和不饱和透明质酸八糖(m/z:1581.6);酶解8小时样品质谱图显示样品中主要含有m/z:378.1的不饱和透明质酸二糖(ΔDiHA),表明本发明细菌透明质酸酶降解透明质酸的主要终产物为不饱和透明质酸二糖,本发明透明质酸酶为透明质酸裂解酶,以裂解的方式降解透明质酸,降解透明质酸以不饱和二糖为终产物,目前常见的动物组织提取透明质酸酶(水解酶,饱和四糖为终产物)和水蛭透明质酸酶(水解酶,饱和四糖和六糖为终产物)无论是作用方式和降解产物均有明显差异。ESI-MS analysis was carried out on the enzymatic hydrolysis product, using negative ion ionization mode, scanning range m/z: 100-2000, mass spectrometry scanning spectrum is shown in Figure 1, ESI-MS scanning results show that: in the sample of enzymatic hydrolysis for 4 hours, there are mainly m/z z is 175.03, 378.1, 757 and 779.2 four kinds of ion peaks, representing unsaturated uronic acid (m/z: 175.03), unsaturated hyaluronic acid disaccharide (m/z: 378.1), unsaturated hyaluronic acid four Sugar (m/z: 757 and 779.2), also contains a small amount of ion peaks with m/z 599.0, 1180.4 and 1581.6, representing unsaturated hyaluronic acid trisaccharide (m/z: 599.0), unsaturated hyaluronic acid Hexasaccharide (m/z: 1180.4) and unsaturated hyaluronic acid octasaccharide (m/z: 1581.6); the mass spectrum of the sample after enzymatic hydrolysis for 8 hours shows that the sample mainly contains unsaturated hyaluronic acid disaccharide with m/z: 378.1 (ΔDiHA), indicating that the main end product of bacterial hyaluronidase degrading hyaluronic acid of the present invention is unsaturated hyaluronic acid disaccharide, hyaluronidase of the present invention is hyaluronan lyase, degrades hyaluronic acid in a cleavage manner , degrades hyaluronic acid with unsaturated disaccharide as the end product, currently common animal tissue extracts hyaluronidase (hydrolase, saturated tetrasaccharide as end product) and leech hyaluronidase (hydrolase, saturated tetrasaccharide and six sugar as the end product) both in the mode of action and degradation products are significantly different.
将酶解前高分子透明质酸(HMWHA)样品和酶解8小时透明质酸寡糖(o-HA)样品进行紫外扫描,紫外扫描图谱见附图2,紫外扫描结果表明:本发明制备的透明质酸寡糖在232nm具有特征吸收,表明有不饱和双键的产生,未降解高分子透明质酸没有232nm紫外吸收,在工业化生产中可以通过建立酶解液紫外吸收值、分子量与黏度的对应关系,实现酶解过程的在线监测与控制,高效制备不同分子量的低分子透明质酸或透明质酸寡糖。The high molecular hyaluronic acid (HMWHA) sample before enzymolysis and the 8-hour enzymolysis hyaluronic acid oligosaccharide (o-HA) sample were subjected to ultraviolet scanning, and the ultraviolet scanning pattern is shown in Figure 2. The ultraviolet scanning results show that: Hyaluronic acid oligosaccharides have characteristic absorption at 232nm, indicating the generation of unsaturated double bonds. Undegraded polymer hyaluronic acid has no 232nm ultraviolet absorption. The corresponding relationship realizes the online monitoring and control of the enzymatic hydrolysis process, and efficiently prepares low-molecular hyaluronic acid or hyaluronic acid oligosaccharides with different molecular weights.
实施例8.酶解产物红外扫描分析Example 8. Enzymatic hydrolysis product infrared scanning analysis
对未用透明质酸酶降解的高分子透明质酸(HMWHA)、实施例4制备的小分子透明质酸(LMWHA)和实施例6制备的透明质酸寡糖(o-HA)在4000cm-1到400cm-1的波长范围内进行红外扫描,红外扫描图谱见附图3,红外扫描表明:酶解产物均具有糖类的特征吸收峰,而且不同分子量的降解产物与酶解前透明质酸均具有相似的特征吸收峰,且与国家药典委员会编2010药品红外光谱集中透明质酸标准图谱一致,表明酶解后得到的小分子透明质酸和透明质酸寡糖均保持结构完整,酶解过程中没有基团脱落。For the high molecular hyaluronic acid (HMWHA) that was not degraded by hyaluronidase, the small molecular hyaluronic acid (LMWHA) prepared in Example 4, and the hyaluronic acid oligosaccharide (o-HA) prepared in Example 6 at 4000 cm - Infrared scanning is carried out in the wavelength range of 1 to 400cm -1 , the infrared scanning spectrum is shown in attached drawing 3, the infrared scanning shows that: the enzymatic hydrolysis products all have the characteristic absorption peaks of carbohydrates, and the degradation products of different molecular weights are different from the hyaluronic acid before enzymatic hydrolysis All have similar characteristic absorption peaks, and are consistent with the standard spectrum of hyaluronic acid in the infrared spectrum of drugs compiled by the National Pharmacopoeia Committee in 2010, indicating that the small molecule hyaluronic acid and hyaluronic acid oligosaccharides obtained after enzymatic hydrolysis maintain structural integrity, and the enzymatic hydrolysis No groups were shed during the process.
实施例9.小分子透明质酸的细胞毒性Example 9. Cytotoxicity of small molecule hyaluronic acid
将处于对数生长期的HUVEC细胞以15000个/孔(180μl/孔)接种于96孔板,培养24h后,加入高分子透明质酸(HMWHA)、实施例4制备的小分子透明质酸(LMWHA)和实施例6制备的透明质酸寡糖(o-HA)样品,每个浓度设3个复孔。药物作用24h后,吸走上清,然后重新加入含有20μl的MTT培养基,4小时后,吸走上清,加150μl DMSO溶解,用酶标仪测定570nm处的吸光值,计算细胞相对增值率(RGR)HUVEC cells in the logarithmic growth phase were inoculated on a 96-well plate at 15,000 cells/well (180 μl/well). After culturing for 24 hours, high molecular weight hyaluronic acid (HMWHA), small molecular hyaluronic acid prepared in Example 4 ( LMWHA) and the hyaluronic acid oligosaccharide (o-HA) sample prepared in Example 6, each concentration was provided with 3 duplicate holes. After 24 hours of drug action, the supernatant was sucked away, and then MTT medium containing 20 μl was re-added. After 4 hours, the supernatant was sucked away, and 150 μl DMSO was added to dissolve it. The absorbance value at 570 nm was measured with a microplate reader, and the relative cell proliferation rate was calculated. (RGR)
式中,Ai为样品的吸光度,A0为对照组的吸光度。In the formula, Ai is the absorbance of the sample, and A0 is the absorbance of the control group.
0.01~1mg/mL不同浓度的HMWHA,LMWHA和o-HA对HUVEC细胞增殖的影响见附图4,实验结果表明:0.01~1mg/mL不同浓度的HMWHA,LMWHA和o-HA对HUVEC细胞增殖均没有明显影响,细胞相对增值率均高于95%,药典规定细胞相对增值率大于80%其毒性级别为0~1级,因此,本发明制备的小分子透明质酸和透明质酸寡糖均安全无毒。The effects of HMWHA, LMWHA and o-HA at different concentrations of 0.01 to 1 mg/mL on the proliferation of HUVEC cells are shown in Figure 4. The experimental results show that HMWHA, LMWHA and o-HA at different concentrations of 0.01 to 1 mg/mL have no effect on the proliferation of HUVEC cells. There is no obvious effect, and the relative value-added rate of cells is higher than 95%. The Pharmacopoeia stipulates that the relative value-added rate of cells is greater than 80%, and its toxicity level is 0-1. safe and non-toxic.
实施例10.小分子透明质酸的保湿活性Example 10. Moisturizing activity of small molecule hyaluronic acid
分别配制质量体积浓度10%的高分子透明质酸(HMWHA)、实施例4制备的小分子透明质酸(LMWHA)和实施例6制备的透明质酸寡糖(o-HA)的样品溶液,分别在饱和碳酸钠水溶液(相对湿度RH=43%)和干硅胶(相对湿度RH=0%)环境下测定样品的保湿率,样品保湿活性结果见附图5,保湿活性实验结果表明:无论是在饱和碳酸钠环境下(相对湿度RH=43%),还是在干硅胶(相对湿度RH=0%)环境下不同分子量透明质酸样品均具有良好的保湿活性,随着酶解样品分子量的降低,保湿活性有所下降,但相对HMWHA没有明显差别,同一样品在干硅胶环境下保湿率略低于饱和碳酸钠环境,但是没有明显差别,表明本发明酶解制备的不同分子量透明质酸在不同环境下均具有良好的保湿活性。Sample solutions of high molecular weight hyaluronic acid (HMWHA), small molecule hyaluronic acid (LMWHA) prepared in Example 4, and hyaluronic acid oligosaccharide (o-HA) prepared in Example 6 were prepared respectively, with a mass volume concentration of 10%. Measure the moisture retention rate of the sample under the environment of saturated sodium carbonate aqueous solution (relative humidity RH=43%) and dry silica gel (relative humidity RH=0%) respectively. Under the environment of saturated sodium carbonate (relative humidity RH=43%), or in the environment of dry silica gel (relative humidity RH=0%), hyaluronic acid samples with different molecular weights all have good moisturizing activity. , the moisturizing activity has decreased, but there is no significant difference compared with HMWHA. The moisture retention rate of the same sample in the dry silica gel environment is slightly lower than that in the saturated sodium carbonate environment, but there is no significant difference, indicating that the hyaluronic acid with different molecular weights prepared by enzymatic hydrolysis of the present invention has different molecular weights in different It has good moisturizing activity in all environments.
实施例11.小分子透明质酸的透皮吸收性能Example 11. Transdermal absorption performance of small molecule hyaluronic acid
采用改良的Franz扩散池,皮肤表层向上,供给池中加入5mg/mL的高分子透明质酸(HMWHA)、实施例4制备的小分子透明质酸(LMWHA)和实施例6制备的透明质酸寡糖(o-HA)的样品溶液1mL,接收池中加入0.85%的生理盐水6.5mL,控制转速360rpm,37℃进行实验,分别在2h、4h、6h、8h、10h、12h和24h取样1mL,并用新鲜的接受液补足。测定样品中糖醛酸含量,并以此计算单位面积累积透过量,计算公式如下:Adopt the improved Franz diffusion cell, the skin surface is upward, add 5mg/mL high molecular weight hyaluronic acid (HMWHA), the small molecular weight hyaluronic acid (LMWHA) prepared in Example 4 and the hyaluronic acid prepared in Example 6 to the supply pool oligosaccharide (o-HA) sample solution 1mL, add 6.5mL of 0.85% normal saline to the receiving tank, control the rotation speed at 360rpm, conduct the experiment at 37°C, and sample 1mL at 2h, 4h, 6h, 8h, 10h, 12h and 24h , and replenished with fresh acceptor solution. Measure the content of uronic acid in the sample, and calculate the cumulative penetration per unit area based on this, the calculation formula is as follows:
其中:in:
Qn:t时间样品的单位面积累积透过量(μg/cm2);Qn: Cumulative penetration per unit area of the sample at time t (μg/cm 2 );
A:透皮扩散面积;A: Transdermal diffusion area;
Cn:t时间浓度测定值;Cn: measured value of concentration at time t;
Ci:t时间之前浓度测定值;Ci: measured value of concentration before time t;
V:接收池体积;V: receiving pool volume;
Vo:取样体积Vo: sampling volume
J:透皮速率常数,作Qn对t的曲线得回归方程,斜率即为透皮速率常数。J: transdermal rate constant, the regression equation is obtained by plotting Qn against t, and the slope is the transdermal rate constant.
不同样品的单位面积累积透过量见附图6,体外透皮吸收实验结果表明:由于分子量较大,HMWHA的单位面积累积透过量较低,在12h为0.057μg/cm2,而且随着时间的延长,单位面积累积透过量增长缓慢,24h仅达到0.072μg/cm2;LMWHA和o-HA的单位面积累积透过量随着时间的延长呈线性增加,o-HA的单位面积累积透过量略高于LMWHA,而且两者明显高于HMWHA,在12h时单位面积累积透过量分别为0.65μg/cm2(LMWHA)和0.71μg/cm2(o-HA),而且随着时间的延长,单位面积累积透过量持续增加,在24小时分别达到1.07μg/cm2(LMWHA)和1.15μg/cm2(o-HA)表现出了良好的持久透皮吸收性。透皮吸收系数反应透皮吸收率,HMWHA的24小时透皮吸收系数为0.0031,R2:0.8924;线性较差,LMWHA的24小时透皮吸收系数为0.0446,R2:0.9935,线性良好;o-HA的24小时透皮吸收系数为0.0479,R2:0.9917,线性良好;透皮吸收系数进一步表明o-HA和LMWHA的透皮吸收性能优于HMWHA。The cumulative penetration per unit area of different samples is shown in Figure 6. The results of in vitro transdermal absorption experiments show that: due to the large molecular weight, the cumulative permeation per unit area of HMWHA is low, 0.057μg/cm 2 in 12 hours, and with time The cumulative permeation per unit area increased slowly, and only reached 0.072μg/cm 2 in 24 hours; the cumulative permeation per unit area of LMWHA and o-HA increased linearly with the prolongation of time, and the cumulative permeation per unit area of o-HA was slightly higher Compared with LMWHA, and both of them are significantly higher than HMWHA, the cumulative permeation per unit area at 12h is 0.65μg/cm 2 (LMWHA) and 0.71μg/cm 2 (o-HA), and as time goes on, the unit area Cumulative permeation increased continuously, reaching 1.07μg/cm 2 (LMWHA) and 1.15μg/cm 2 (o-HA) respectively in 24 hours, showing good long-lasting transdermal absorption. The transdermal absorption coefficient reflects the transdermal absorption rate, and the 24-hour transdermal absorption coefficient of HMWHA is 0.0031, R 2 : 0.8924; the linearity is poor, and the 24-hour transdermal absorption coefficient of LMWHA is 0.0446, R 2 : 0.9935, and the linearity is good; o The 24-hour transdermal absorption coefficient of -HA is 0.0479, R 2 : 0.9917, and the linearity is good; the transdermal absorption coefficient further indicates that the transdermal absorption performance of o-HA and LMWHA is better than that of HMWHA.
实施例12.小分子透明质酸的抗氧化活性Example 12. Antioxidative activity of small molecule hyaluronic acid
分别测定0.5-25mg/mL的不同浓度的高分子透明质酸(HMWHA)、实施例4制备的小分子透明质酸(LMWHA)和实施例6制备的透明质酸寡糖(o-HA)样品的DPPH清除率和还原力,表征不同分子量透明质酸的抗氧化活性,抗氧化活性结果见附图7,DPPH清除实验结果表明:酶法制备的小分子透明质酸样品分子量越低,DPPH清除率越高,相同浓度的样品o-HA>LMWHA>HMWHA,相同浓度的o-HA的DPPH清除率较HMWHA提高4倍左右,而且实验样品在5-25mg/mL浓度范围内具有良好的线性增长;还原力实验结果表明:HMWHA的还原力较低,酶解制备的LMWHA和o-HA还原力显著上升,尤其是o-HA上升趋势明显;DPPH清除率和还原力的抗氧化活性结果表明酶法制备的小分子透明质酸,尤其是透明质酸寡糖具有良好的抗氧化活性,在化妆品中具有良好的应用前景。The samples of high molecular hyaluronic acid (HMWHA), small molecular hyaluronic acid (LMWHA) prepared in Example 4 and hyaluronic acid oligosaccharide (o-HA) prepared in Example 6 were measured respectively at different concentrations of 0.5-25 mg/mL The DPPH scavenging rate and reducing power are used to characterize the antioxidant activity of hyaluronic acid with different molecular weights. The results of antioxidant activity are shown in Figure 7. The results of DPPH scavenging experiments show that the lower the molecular weight of the small molecule hyaluronic acid sample prepared by enzymatic method, the lower the DPPH scavenging effect. The higher the rate, the same concentration of samples o-HA>LMWHA>HMWHA, the DPPH clearance rate of the same concentration of o-HA is about 4 times higher than that of HMWHA, and the experimental samples have a good linear increase in the concentration range of 5-25mg/mL ; The results of reducing power experiments show that: the reducing power of HMWHA is low, and the reducing power of LMWHA and o-HA prepared by enzymatic hydrolysis increases significantly, especially the upward trend of o-HA is obvious; the results of antioxidant activity of DPPH clearance rate and reducing power show that the enzyme The small molecule hyaluronic acid prepared by the method, especially the hyaluronic acid oligosaccharide has good antioxidant activity and has a good application prospect in cosmetics.
实施例13.小分子透明质酸的抗炎活性Example 13. Anti-inflammatory activity of small molecule hyaluronic acid
采用脂多糖(LPS)诱导小鼠RAW264.7巨噬细胞炎症模型进行实验。The lipopolysaccharide (LPS)-induced inflammation model of mouse RAW264.7 macrophages was used for experiments.
样品分组:Sample grouping:
空白对照组:C;模型组:M;Blank control group: C; model group: M;
100ug/mL HMWHA:HH;50ug/mL HMWHA:HL;100ug/mL HMWHA:HH; 50ug/mL HMWHA:HL;
100ug/mL o-HA:OH;50ug/mL HMWHA:OL;100ug/mL o-HA:OH; 50ug/mL HMWHA:OL;
取对数生长期的RAW264.7细胞(8×105个/孔,50μL)加入96孔板中,贴壁30min,模型组(M)和样品组先加入终浓度为1μg/mL的LPS处理1h,刺激炎症,样品组分别加入浓度为100ug/mL和50ug/mL的HMWHA和o-HA,模型组用PBS代替,空白对照组(C)不做任何处理,培养8h,取细胞上清,2000r/min离心15min去掉细胞碎片,ELISA试剂盒测定细胞上清中TNF-a浓度。不同分子量透明质酸对炎症细胞TNF-a的影响见附图8,实验结果表明:模型组TNF-a浓度明显高于空白对照组,表明模型可用;HMWHA与o-HA均具有抑制TNF-a产生的抗炎作用,然而不同的是HMWHA在浓度100ug/mL时抑制能力大于50ug/mL,而o-HA在浓度为50ug/mL时大于100ug/mL,这可能与两者的抗炎机理不同有关;相同浓度样品o-HA对TNF-a的抑制作用均优于HMWHA,尤其是在低浓度条件下,表明o-HA具有更好地抗炎效果,而且可以显著减少样品用量,降低成本,具有更好地开发应用前景。Take RAW264.7 cells in the logarithmic growth phase (8×10 5 cells/well, 50 μL) and add them to a 96-well plate, adhere to the wall for 30 minutes, and add LPS with a final concentration of 1 μg/mL to the model group (M) and sample group first. 1h, to stimulate inflammation, add HMWHA and o-HA with a concentration of 100ug/mL and 50ug/mL to the sample group respectively, replace it with PBS in the model group, and leave the blank control group (C) without any treatment, culture for 8h, take the cell supernatant, Centrifuge at 2000r/min for 15min to remove cell debris, and measure the concentration of TNF-a in the cell supernatant with an ELISA kit. The effect of different molecular weight hyaluronic acid on inflammatory cell TNF-a is shown in Figure 8. The experimental results show that the concentration of TNF-a in the model group is significantly higher than that of the blank control group, indicating that the model is available; both HMWHA and o-HA have the ability to inhibit TNF-a However, the difference is that the inhibitory ability of HMWHA is greater than 50ug/mL when the concentration is 100ug/mL, while o-HA is greater than 100ug/mL when the concentration is 50ug/mL, which may be different from the anti-inflammatory mechanism of the two Relevant; the inhibitory effect of o-HA on TNF-a in the same concentration samples is better than that of HMWHA, especially at low concentrations, indicating that o-HA has better anti-inflammatory effects, and can significantly reduce the amount of samples and reduce costs. It has better development and application prospects.
以上实施例仅用以说明本发明的技术方案,而非对其进行限制;尽管参照前述实施例对本发明进行了详细的说明,对于本领域的普通技术人员来说,依然可以对前述实施例所表述的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或替换,并不使相应技术方案的本质脱离本发明所要求保护的技术方案的精神和范围。The above embodiments are only used to illustrate the technical solutions of the present invention, rather than to limit them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art can still understand the foregoing embodiments. Modifications are made to the stated technical solutions, or equivalent replacements are made to some of the technical features; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the spirit and scope of the technical solutions claimed in the present invention.
序列表 sequence listing
<110> 青岛海洋生物医药研究院股份有限公司<110> Qingdao Marine Biomedical Research Institute Co., Ltd.
<120> 一种酶切法制备小分子透明质酸的方法及所得小分子透明质酸与其应用<120> A method for preparing small-molecule hyaluronic acid by enzymatic cleavage, the obtained small-molecule hyaluronic acid and its application
<160> 5<160> 5
<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0
<210> 1<210> 1
<211> 765<211> 765
<212> PRT<212> PRT
<213> 球形节杆菌(Arthrobacter globiformis)<213> Arthrobacter globiformis
<400> 1<400> 1
Met Pro Ala Ala His Ala Thr Ala Ala Ala Gly Pro Gly Thr Ala GlyMet Pro Ala Ala His Ala Thr Ala Ala Ala Gly Pro Gly Thr Ala Gly
1 5 10 151 5 10 15
Pro Ala Ala Leu Ala Ser Ala Thr Val Ala Gly Ile Thr Gly Ala AlaPro Ala Ala Leu Ala Ser Ala Thr Val Ala Gly Ile Thr Gly Ala Ala
20 25 30 20 25 30
Val Ile Gly Ala Gly Ala Pro Ala Pro Ala Ala Ala Val Thr Ala LeuVal Ile Gly Ala Gly Ala Pro Ala Pro Ala Ala Ala Val Thr Ala Leu
35 40 45 35 40 45
Ala Thr Leu Ala Ala Ala Ser Leu Ala Leu Leu Ala Ala Val Ser GlyAla Thr Leu Ala Ala Ala Ser Leu Ala Leu Leu Ala Ala Val Ser Gly
50 55 60 50 55 60
Ala Thr Ser Val Pro Thr Ala Leu Ser Pro Ala Leu Ala Ala Gly MetAla Thr Ser Val Pro Thr Ala Leu Ser Pro Ala Leu Ala Ala Gly Met
65 70 75 8065 70 75 80
Val Thr Thr Thr Thr Ala Leu Ser Gly Leu Ala Ala Ala Thr Ala ThrVal Thr Thr Thr Thr Ala Leu Ser Gly Leu Ala Ala Ala Thr Ala Thr
85 90 95 85 90 95
Pro Thr Ala Ala Val Pro Gly Ala Ser Ala Val Leu Ala Ala Ile LeuPro Thr Ala Ala Val Pro Gly Ala Ser Ala Val Leu Ala Ala Ile Leu
100 105 110 100 105 110
Ala Gly Leu Ala Ala Ala Ala Thr Leu Cys Thr His Ala Gly Ala GlyAla Gly Leu Ala Ala Ala Ala Thr Leu Cys Thr His Ala Gly Ala Gly
115 120 125 115 120 125
Gly Val Gly Ala Thr Thr Ser Thr Gly Ile Gly Val Pro Ala Ala LeuGly Val Gly Ala Thr Thr Ser Thr Gly Ile Gly Val Pro Ala Ala Leu
130 135 140 130 135 140
Ala Ala Ala Met Val Leu Leu His Ala Gly Leu Ser Ala Ala Gly IleAla Ala Ala Met Val Leu Leu His Ala Gly Leu Ser Ala Ala Gly Ile
145 150 155 160145 150 155 160
Gly Ala Thr Ser Ala Ala Ile Ala His Pro Val Pro Ala Pro Thr LeuGly Ala Thr Ser Ala Ala Ile Ala His Pro Val Pro Ala Pro Thr Leu
165 170 175 165 170 175
Gly Pro Pro Pro Leu Ala Gly Leu Ile Thr Ser Val Gly Ala Ala AlaGly Pro Pro Pro Leu Ala Gly Leu Ile Thr Ser Val Gly Ala Ala Ala
180 185 190 180 185 190
Val Ala Leu Cys Gly Gly Val Ile Ile Ala Ser Leu Ala Gly Gly AlaVal Ala Leu Cys Gly Gly Val Ile Ile Ala Ser Leu Ala Gly Gly Ala
195 200 205 195 200 205
Pro Gly Leu Leu Ala His Ala Val Ala Gly Leu Ser Gly Val Thr GlyPro Gly Leu Leu Ala His Ala Val Ala Gly Leu Ser Gly Val Thr Gly
210 215 220 210 215 220
Thr Val Thr Ser Gly Ala Gly Ile Pro Ala Ala Gly Ser Pro Ile GlyThr Val Thr Ser Gly Ala Gly Ile Pro Ala Ala Gly Ser Pro Ile Gly
225 230 235 240225 230 235 240
His Ser Thr Thr Pro Thr Thr Gly Ser Thr Gly Val Val Leu Leu ThrHis Ser Thr Thr Pro Thr Thr Gly Ser Thr Gly Val Val Leu Leu Thr
245 250 255 245 250 255
Gly Leu Ser Leu Leu Pro Ser Leu Leu Gly Gly Thr Ala Pro Gly ValGly Leu Ser Leu Leu Pro Ser Leu Leu Gly Gly Thr Ala Pro Gly Val
260 265 270 260 265 270
Ser Ala Pro Ser Ala Ser Ile Pro Pro Ala Ala Val Gly Gly Ser ProSer Ala Pro Ser Ala Ser Ile Pro Pro Ala Ala Val Gly Gly Ser Pro
275 280 285 275 280 285
Ala Pro Val Met Ile Ala Gly Ala Met Ala Ala Ser Val Ala Gly AlaAla Pro Val Met Ile Ala Gly Ala Met Ala Ala Ser Val Ala Gly Ala
290 295 300 290 295 300
Ser Ile Ser Ala Gly Ala Ala Thr Gly Thr Ala Leu Gly Ala Ser AlaSer Ile Ser Ala Gly Ala Ala Thr Gly Thr Ala Leu Gly Ala Ser Ala
305 310 315 320305 310 315 320
Ile Gly Ala Ile Leu Leu Leu Ala Ala Ala Met Ala Pro Ala Thr AlaIle Gly Ala Ile Leu Leu Leu Ala Ala Ala Met Ala Pro Ala Thr Ala
325 330 335 325 330 335
Thr Ala Thr Ala Gly Leu Cys Ala Gly Thr Ile Ala Ala Ala Thr ThrThr Ala Thr Ala Gly Leu Cys Ala Gly Thr Ile Ala Ala Ala Thr Thr
340 345 350 340 345 350
Ala Pro Ile Leu Ala Gly Ala Ser Leu Pro Ala Thr Ala Leu Val LeuAla Pro Ile Leu Ala Gly Ala Ser Leu Pro Ala Thr Ala Leu Val Leu
355 360 365 355 360 365
Gly Leu Gly Ser Thr Gly Ile Ala Pro Val Ala Gly Ala Pro Gly HisGly Leu Gly Ser Thr Gly Ile Ala Pro Val Ala Gly Ala Pro Gly His
370 375 380 370 375 380
Ala Leu Pro Pro Ala Met Ala Ala Thr Met His Ala Gly Pro Gly ThrAla Leu Pro Pro Ala Met Ala Ala Thr Met His Ala Gly Pro Gly Thr
385 390 395 400385 390 395 400
Ala Leu Ser Leu Ser Leu Ser Ser Ala Ala Ile Ala Thr Thr Gly CysAla Leu Ser Leu Ser Leu Ser Ser Ala Ala Ile Ala Thr Thr Gly Cys
405 410 415 405 410 415
Gly Ala Gly Gly Ala Ala Ala Gly Thr His Thr Gly Ser Gly Met ThrGly Ala Gly Gly Ala Ala Ala Gly Thr His Thr Gly Ser Gly Met Thr
420 425 430 420 425 430
Thr Pro Thr Thr Ser Ala Leu Gly Gly Thr Ala Ala Ala Pro Thr AlaThr Pro Thr Thr Ser Ala Leu Gly Gly Thr Ala Ala Ala Pro Thr Ala
435 440 445 435 440 445
Thr Ala Ala Thr Ala Ala Leu Pro Gly Ile Thr Val Ala Thr Thr ProThr Ala Ala Thr Ala Ala Leu Pro Gly Ile Thr Val Ala Thr Thr Pro
450 455 460 450 455 460
Leu Pro Ala Leu Val Gly Gly Gly Thr Gly Ala Ala Val Pro Ala AlaLeu Pro Ala Leu Val Gly Gly Gly Thr Gly Ala Ala Val Pro Ala Ala
465 470 475 480465 470 475 480
Gly Thr Ser Gly Ala Thr Ala Leu Gly Gly Val Ala Ala Val Gly GlyGly Thr Ser Gly Ala Thr Ala Leu Gly Gly Val Ala Ala Val Gly Gly
485 490 495 485 490 495
His Leu Val Gly Pro Gly Ala Thr Gly Leu Ser Ala Ala Leu Ser ThrHis Leu Val Gly Pro Gly Ala Thr Gly Leu Ser Ala Ala Leu Ser Thr
500 505 510 500 505 510
Pro Val Ser Gly Gly Ala Thr Val Cys Leu Gly Ala Ala Ile Thr ThrPro Val Ser Gly Gly Ala Thr Val Cys Leu Gly Ala Ala Ile Thr Thr
515 520 525 515 520 525
Gly Ser Gly Ala Ala Val Gly Ser Ile Val Ala His Ala Ala Leu HisGly Ser Gly Ala Ala Val Gly Ser Ile Val Ala His Ala Ala Leu His
530 535 540 530 535 540
Gly Gly Ser Ala Thr Leu Thr Thr Ala Ala Gly Thr Ile Ala Gly SerGly Gly Ser Ala Thr Leu Thr Thr Thr Ala Ala Gly Thr Ile Ala Gly Ser
545 550 555 560545 550 555 560
Val Gly Ser Ala Gly Val Leu Ser Gly Gly Ala Thr Val His Leu GlyVal Gly Ser Ala Gly Val Leu Ser Gly Gly Ala Thr Val His Leu Gly
565 570 575 565 570 575
Gly Pro Gly Gly Thr Ala Met Leu Ala Ala Ser Pro Leu His Val LeuGly Pro Gly Gly Thr Ala Met Leu Ala Ala Ser Pro Leu His Val Leu
580 585 590 580 585 590
Ala Gly Thr Ala Ser Gly Ser Thr Ser Gly Val Ala Thr Ala Gly SerAla Gly Thr Ala Ser Gly Ser Thr Ser Gly Val Ala Thr Ala Gly Ser
595 600 605 595 600 605
Thr Thr Val His Gly Ala Thr Pro Ala Thr Leu Thr Val Ala His GlyThr Thr Val His Gly Ala Thr Pro Ala Thr Leu Thr Val Ala His Gly
610 615 620 610 615 620
Ala Gly Pro Ala Ala Gly Ser Thr Ala Thr Val Val Ala Pro Gly AlaAla Gly Pro Ala Ala Gly Ser Thr Ala Thr Val Val Ala Pro Gly Ala
625 630 635 640625 630 635 640
Ser Val Ala Leu Thr Ala Leu Leu Val Gly Gly Ala Leu Thr Ala ValSer Val Ala Leu Thr Ala Leu Leu Val Gly Gly Ala Leu Thr Ala Val
645 650 655 645 650 655
Ile Ala Ala Ala Thr Thr Ala Gly Ser Val Gly Pro Leu Ala Ser LeuIle Ala Ala Ala Thr Thr Ala Gly Ser Val Gly Pro Leu Ala Ser Leu
660 665 670 660 665 670
Thr Thr Ala Ala Thr Pro Thr Leu Pro Gly Met Ala Gly Ala Leu GlyThr Thr Ala Ala Thr Pro Thr Leu Pro Gly Met Ala Gly Ala Leu Gly
675 680 685 675 680 685
Ala Ser Gly Pro Ala Cys Val Val Pro Ser Ala His Gly Ala Gly LeuAla Ser Gly Pro Ala Cys Val Val Pro Ser Ala His Gly Ala Gly Leu
690 695 700 690 695 700
Ser Leu Ala Pro Ser Gly Pro Thr Gly Leu Ala Ala Ser Leu Thr LeuSer Leu Ala Pro Ser Gly Pro Thr Gly Leu Ala Ala Ser Leu Thr Leu
705 710 715 720705 710 715 720
Thr Leu Pro Gly Gly Thr Thr Ser Ser Val Leu Gly Gly Thr Gly ThrThr Leu Pro Gly Gly Thr Thr Ser Ser Ser Val Leu Gly Gly Thr Gly Thr
725 730 735 725 730 735
Leu Gly Thr Ala Ala Ala Gly Ala Ser Thr Val Thr Leu Ala Thr AlaLeu Gly Thr Ala Ala Ala Gly Ala Ser Thr Val Thr Leu Ala Thr Ala
740 745 750 740 745 750
Gly Leu Ala Gly Gly Thr Leu Val Ile Thr Leu Ala AlaGly Leu Ala Gly Gly Thr Leu Val Ile Thr Leu Ala Ala
755 760 765 755 760 765
<210> 2<210> 2
<211> 2298<211> 2298
<212> DNA<212>DNA
<213> 球形节杆菌(Arthrobacter globiformis)<213> Arthrobacter globiformis
<400> 2<400> 2
atgttcgcca accacgcctg ggccgacgcg gaaccgggca ccgcggagtt cgcagcgctg 60atgttcgcca accacgcctg ggccgacgcg gaaccgggca ccgcggagtt cgcagcgctg 60
cgaagccgtt gggtggacca gatcacgggc cgcaacgtca tccaagccgg cgatccggac 120cgaagccgtt gggtggcacca gatcacgggc cgcaacgtca tccaagccgg cgatccggac 120
tttgccaggg cggtgacagc gctgaacacc aaagccgctg actccttggc aaagctcaac 180tttgccaggg cggtgacagc gctgaacacc aaagccgctg actccttggc aaagctcaac 180
cgggtttcag gccgaacctc ggtctttacg gacttgtcct tcgccaagga tgcagagatg 240cgggtttcag gccgaacctc ggtctttacg gacttgtcct tcgccaagga tgcagagatg 240
gtcaccacgt acacgcgttt atcccagctc gctgctgcct gggcaacacc aacggccgcg 300gtcaccacgt acacgcgttt atcccagctc gctgctgcct gggcaacacc aacggccgcg 300
gtgtttggtg attccgcagt actggcagac atcaaggcgg gcctcgccga cgccaatacc 360gtgtttggtg attccgcagt actggcagac atcaaggcgg gcctcgccga cgccaatacc 360
ctctgctacc acgctggcag ggaagaggtc ggcaactggt ggtcgtggga aatcggtgtg 420ctctgctacc acgctggcag ggaagaggtc ggcaactggt ggtcgtggga aatcggtgtg 420
ccccgtgcct tggccgacgc catggtgctt cttcacgccg agctgtccgc cgctgaaata 480ccccgtgcct tggccgacgc catggtgctt cttcacgccg agctgtccgc cgctgaaata 480
caggcctaca gtgcggcgat cgaccatttt gtgccggacc cttggctgca gttcccaccc 540caggcctaca gtgcggcgat cgaccatttt gtgccggacc cttggctgca gttcccaccc 540
aagcgcggca agatcacctc cgtgggcgcc aaccgtgtgg acctgtgcca aggggtcatc 600aagcgcggca agatcacctc cgtgggcgcc aaccgtgtgg acctgtgcca aggggtcatc 600
atccggtccc tcgctggaga agatccgggc aagctcaacc acgcagtcgc cggactcagc 660atccggtccc tcgctggaga agatccgggc aagctcaacc acgcagtcgc cggactcagc 660
caggtgtggc agtacgtcac cagtggtgac ggaatcttcc gggacggctc gtttatccaa 720caggtgtggc agtacgtcac cagtggtgac ggaatcttcc gggacggctc gtttatccaa 720
cacagcacca ccccgtacac gggctcctac ggggtggtcc tgctcaccgg attgtccaag 780cacagcacca ccccgtacac gggctcctac ggggtggtcc tgctcaccgg attgtccaag 780
ttgttctccc tcctgggagg cacggcgttc gaagtttcgg acccctcgcg cagtattttc 840ttgttctccc tcctgggagg cacggcgttc gaagtttcgg accccctcgcg cagtattttc 840
ttcgacgcag tggagggttc gtttgcgccc gtcatgatca acggggccat ggccgattcc 900ttcgacgcag tggagggttc gtttgcgccc gtcatgatca acggggccat ggccgattcc 900
gtgcgcggca ggagtatcag ccgcgaggcc aacaccggct acgacctggg ggcatcggcc 960gtgcgcggca ggagtatcag ccgcgaggcc aacaccggct acgacctggg ggcatcggcc 960
atcgaagcca ttctgctgct ggcccgggcc atggatccag ctactgccac acgatggaga 1020atcgaagcca ttctgctgct ggcccgggcc atggatccag ctactgccac acgatggaga 1020
gggctgtgcg cgggatggat tgcgcgcaat acgtaccggc ccatcctcgc aggggccagc 1080gggctgtgcg cgggatggat tgcgcgcaat acgtaccggc ccatcctcgc aggggccagc 1080
ctgcccagga ctgcattggt gaaggagctt cagtcaacgg gtatcgcacc ggtggcagaa 1140ctgcccagga ctgcattggt gaaggagctt cagtcaacgg gtatcgcacc ggtggcagaa 1140
gcccccgggc acaggctctt ccctgcgatg gaccgcacca tgcaccgggg acccggctgg 1200gcccccgggc acaggctctt ccctgcgatg gaccgcacca tgcaccgggg acccggctgg 1200
gcattgtcgc tctccctgtc cagcaaccgc atcgcctggt acgaatgcgg caatggcgag 1260gcattgtcgc tctccctgtc cagcaaccgc atcgcctggt acgaatgcgg caatggcgag 1260
aacaaccgcg gctatcacac gggttccggc atgacgtact tctatacgtc cgatctcggc 1320aacaaccgcg gctatcacac gggttccggc atgacgtact tctatacgtc cgatctcggc 1320
caatacgatg acgcgttctg ggccacagcc aactacaacc gccttccggg catcaccgtg 1380caatacgatg acgcgttctg ggccacagcc aactacaacc gccttccggg catcaccgtg 1380
gacaccactc cgttgccgga caaggtggag ggtgaatggg gtgccgccgt tcctgcgaat 1440gacaccactc cgttgccgga caaggtggag ggtgaatggg gtgccgccgt tcctgcgaat 1440
gaatggagtg gcgccacggc gcttggcggg gttgccgccg tcggacaaca cctggtggga 1500gaatggagtg gcgccacggc gcttggcggg gttgccgccg tcggacaaca cctggtggga 1500
ccgggccgca cgggcctgtc cgccaggaag tcctggtttg tcagcggcga ggccactgtc 1560ccgggccgca cgggcctgtc cgccaggaag tcctggtttg tcagcggcga ggccactgtc 1560
tgcctcggcg ccgacatcac cactggttcc ggggccaggg tggaaagcat cgttgaccac 1620tgcctcggcg ccgacatcac cactggttcc ggggccaggg tggaaagcat cgttgaccac 1620
cgcaacctcc accagggcag caatacactc acgacggcgg caggcaccat cgccggatcg 1680cgcaacctcc accagggcag caatacactc acgacggcgg caggcaccat cgccggatcg 1680
gtcggcagtg ctgaggtact gagcgaagaa cgctgggttc atttggaggg tttcggaggc 1740gtcggcagtg ctgaggtact gagcgaagaa cgctgggttc atttggaggg tttcggaggc 1740
tacgccatgc tggacgattc cccgcttcac gtgctccggg aaacccgatc aggcagctgg 1800tacgccatgc tggacgattc cccgcttcac gtgctccggg aaacccgatc aggcagctgg 1800
tccggggtca acaccaacgg cagcaccacc gtccaccagc gcacctttgc caccctctac 1860tccggggtca acaccaacgg cagcaccacc gtccaccagc gcacctttgc caccctctac 1860
gtagaccacg gcgccggacc tgctgcgggc agctatgcct atgtggttgc tccgggcgct 1920gtagaccacg gcgccggacc tgctgcgggc agctatgcct atgtggttgc tccgggcgct 1920
tctgtgaacc tgacccggaa gctggtgcag ggggacaaat accgggtgat ccgcaacgat 1980tctgtgaacc tgacccggaa gctggtgcag ggggacaaat accgggtgat ccgcaacgat 1980
acaacggcac agtccgtgga gttcaaggca tcgaagacca cggcagcaac cttctggaag 2040acaacggcac agtccgtgga gttcaaggca tcgaagacca cggcagcaac cttctggaag 2040
cccgggatgg cgggggatct gggtgcgtcc gggcctgctt gcgtggtgtt ctccaggcac 2100cccgggatgg cgggggatct gggtgcgtcc gggcctgctt gcgtggtgtt ctccaggcac 2100
ggaaatgagt tgagcctggc gttcagtgag ccaacgcaga aggctgccag cctcacgctg 2160ggaaatgagt tgagcctggc gttcagtgag ccaacgcaga aggctgccag cctcacgctg 2160
accctgcccc agggcacatg gtccagcgtg ctggaaggca cgggcacact ggggaccgac 2220accctgcccc agggcacatg gtccagcgtg ctggaaggca cgggcacact ggggaccgac 2220
gcagacggcc ggagtacggt gacccttgat acggccggcc tgaatggcca gacgaaggtc 2280gcagacggcc ggagtacggt gacccttgat acggccggcc tgaatggcca gacgaaggtc 2280
atcacactgc ggcgctaa 2298atcacactgc ggcgctaa 2298
<210> 3<210> 3
<211> 28<211> 28
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 3<400> 3
ggactagtca tgttcgccaa ccacgcct 28ggactagtca tgttcgccaa ccacgcct 28
<210> 4<210> 4
<211> 29<211> 29
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 4<400> 4
ggggtacccg gataccgggc gacgttagc 29ggggtacccg gataccgggc gacgttagc 29
<210> 5<210> 5
<211> 1145<211> 1145
<212> RNA<212> RNA
<213> 球形节杆菌(Arthrobacter globiformis)<213> Arthrobacter globiformis
<400> 5<400> 5
agagacgggc caggagaacg cggcggcggc cacacagcaa gcgaacgaga cccagcgmgg 60agagacgggc caggagaacg cggcggcggc cacacagcaa gcgaacgaga cccagcgmgg 60
gggaagggcg aacggggaga acacggagaa ccgcccgacc gggaaagccg ggaaacgggc 120gggaagggcg aacggggaga acacggagaa ccgcccgacc gggaaagccg ggaaacggggc 120
aaaccggaag accacgacgc agcagggggg aaagcggggg aggaccgcgg ccacagcggg 180aaaccggaag accacgacgc agcagggggg aaagcggggg aggaccgcgg ccacagcggg 180
ggggaaggcc accaaggcga cgacgggagc cggccgagag gggaccggcc acacgggacg 240ggggaaggcc accaaggcga cgacgggagc cggccgagag gggaccggcc acacgggacg 240
agacacggcc cagacccacg ggaggcagca gggggaaagc acaagggcgc aagccgagca 300agacacggcc cagacccacg ggaggcagca gggggaaagc acaagggcgc aagccgagca 300
gcgacgccgc ggagggagac ggcccgggga aaccccagag ggaagaagcg aaaggacgga 360gcgacgccgc ggagggagac ggcccgggga aacccccagag ggaagaagcg aaaggacgga 360
ccgcagaaga agcgccggca acacggccag cagccgcgga aacgagggcg caagcgaccg 420ccgcagaaga agcgccggca acacggccag cagccgcgga aacgagggcg caagcgaccg 420
gaaagggcga aagagccgag gcgggcgcgc gcggaaagac cggggccaac ccggcgcagg 480gaaagggcga aagagccgag gcgggcgcgc gcggaaagac cggggccaac ccggcgcagg 480
ggacgggcag acagaggcag aggggagacg gaaccgggag cgggaaagcg cagaacagga 540ggacgggcag acagaggcag aggggagacg gaaccggggag cgggaaagcg cagaacagga 540
ggaacaccga ggcgaaggca ggccgggcga acgacgcgag gagcgaaagc aggggagcga 600ggaacaccga ggcgaaggca ggccgggcga acgacgcgag gagcgaaagc aggggagcga 600
acaggaagaa cccggagcca gccgaaacgg ggcacagggg ggggacacca cgccgcgccg 660acaggaagaa cccggagcca gccgaaacgg ggcacagggg gggcacacca cgccgcgccg 660
agcaacgcaa aggccccgcc ggggagacgg ccgcaaggca aaaccaaagg aagacggggg 720agcaacgcaa aggccccgcc ggggagacgg ccgcaaggca aaaccaaagg aagacggggg 720
cccgcacaag cggcggagca gcggaaacga gcaacgcgaa gaaccaccaa ggcgacagaa 780cccgcacaag cggcggagca gcggaaacga gcaacgcgaa gaaccaccaa ggcgacagaa 780
ccggaaagac cggaaacagg gccccgcgcg gcggacaggg ggcagggcgc agccggcgga 840ccggaaagac cggaaacagg gccccgcgcg gcggacaggg ggcagggcgc agccggcgga 840
gaggggaagc ccgcaacgag cgcaaccccg caggccagcg cgaggcgggg accaaggaga 900gaggggaagc ccgcaacgag cgcaaccccg caggccagcg cgaggcgggg accaaggaga 900
cgccggggca accggaggaa ggggggacga cgcaaacaca gccccagcgg gccacgcagc 960cgccggggca accggaggaa ggggggacga cgcaaacaca gccccagcgg gccacgcagc 960
acaaggccgg acaaaggggc gaacggaggg gagcaaccca aaaagccggc cagcggaggg 1020acaaggccgg acaaaggggc gaacggaggg gagcaaccca aaaagccggc cagcggaggg 1020
gcgcaaccga ccccagaagc ggagcgcaga acgcagacag caacgcgcgg gaaacgcccg 1080gcgcaaccga ccccagaagc ggagcgcaga acgcagacag caacgcgcgg gaaacgcccg 1080
ggccgacaca ccgcccgcaa gcacgaaagg gaacacccga agccggggcc aacccggggg 1140ggccgacaca ccgcccgcaa gcacgaaagg gaacacccga agccggggcc aacccggggg 1140
ggagc 1145gagc 1145
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2019105681384 | 2019-06-27 | ||
CN201910568138 | 2019-06-27 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110331178A true CN110331178A (en) | 2019-10-15 |
CN110331178B CN110331178B (en) | 2021-01-19 |
Family
ID=68146943
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910659515.5A Active CN110331178B (en) | 2019-06-27 | 2019-07-22 | A kind of method for preparing small molecule hyaluronic acid by enzyme cleavage method, obtained small molecule hyaluronic acid and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110331178B (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110951714A (en) * | 2019-12-27 | 2020-04-03 | 江苏诚信药业有限公司 | Hyaluronic acid hydrolase, coding sequence thereof and method for preparing oligomeric hyaluronate by using same |
CN111443149A (en) * | 2020-05-25 | 2020-07-24 | 华熙生物科技股份有限公司 | Method for measuring content of lysine hydrochloride in sodium hyaluronate composite solution for injection |
CN111562231A (en) * | 2020-06-22 | 2020-08-21 | 华熙生物科技股份有限公司 | Method for measuring molecular weight of hyaluronic acid |
CN114316085A (en) * | 2021-12-22 | 2022-04-12 | 北京佗林医药科技有限公司 | Cis-hyaluronic acid hexasaccharide and preparation method and application thereof |
CN115093991A (en) * | 2022-06-08 | 2022-09-23 | 中国科学院西北生态环境资源研究院 | Preparation and application of antioxidant arthrobacter and secondary metabolite thereof |
CN115386608A (en) * | 2022-09-02 | 2022-11-25 | 山东百阜福瑞达制药有限公司 | A method for real-time regulation of enzyme activity and high-efficiency preparation of highly active hyaluronic acid oligosaccharide composition |
CN116179629A (en) * | 2023-03-06 | 2023-05-30 | 水羊化妆品制造有限公司 | Preparation method of unsaturated sodium hyaluronate disaccharide |
CN116555375A (en) * | 2023-02-06 | 2023-08-08 | 山东焦点福瑞达生物股份有限公司 | Preparation method and application of hyaluronic acid oligosaccharide |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4897349A (en) * | 1989-04-28 | 1990-01-30 | Medchem Products, Inc. | Biosynthesis of hyaluronic acid |
CN101507733A (en) * | 2009-04-02 | 2009-08-19 | 北京中生奥普寡肽技术研究所 | Nano micromolecule hyaluronic acid and preparation method thereof |
CN105567606A (en) * | 2016-03-02 | 2016-05-11 | 青岛海洋生物医药研究院股份有限公司 | Arthrobacter globiformis and hyaluronidase generated by arthrobacter globiformis |
-
2019
- 2019-07-22 CN CN201910659515.5A patent/CN110331178B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4897349A (en) * | 1989-04-28 | 1990-01-30 | Medchem Products, Inc. | Biosynthesis of hyaluronic acid |
CN101507733A (en) * | 2009-04-02 | 2009-08-19 | 北京中生奥普寡肽技术研究所 | Nano micromolecule hyaluronic acid and preparation method thereof |
CN105567606A (en) * | 2016-03-02 | 2016-05-11 | 青岛海洋生物医药研究院股份有限公司 | Arthrobacter globiformis and hyaluronidase generated by arthrobacter globiformis |
Non-Patent Citations (2)
Title |
---|
CHANGLIANG ZHU,等: "Purification and Characterization of Hyaluronate Lyase from Arthrobacter globiformis A152", 《APPL BIOCHEM BIOTECHNOL》 * |
杨桂兰 等: "不同相对分子质量透明质酸钠的应用", 《食品与药品》 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110951714A (en) * | 2019-12-27 | 2020-04-03 | 江苏诚信药业有限公司 | Hyaluronic acid hydrolase, coding sequence thereof and method for preparing oligomeric hyaluronate by using same |
CN111443149A (en) * | 2020-05-25 | 2020-07-24 | 华熙生物科技股份有限公司 | Method for measuring content of lysine hydrochloride in sodium hyaluronate composite solution for injection |
CN111562231A (en) * | 2020-06-22 | 2020-08-21 | 华熙生物科技股份有限公司 | Method for measuring molecular weight of hyaluronic acid |
CN111562231B (en) * | 2020-06-22 | 2023-09-15 | 华熙生物科技股份有限公司 | Method for measuring molecular weight of hyaluronic acid |
CN114316085A (en) * | 2021-12-22 | 2022-04-12 | 北京佗林医药科技有限公司 | Cis-hyaluronic acid hexasaccharide and preparation method and application thereof |
CN115093991A (en) * | 2022-06-08 | 2022-09-23 | 中国科学院西北生态环境资源研究院 | Preparation and application of antioxidant arthrobacter and secondary metabolite thereof |
CN115386608A (en) * | 2022-09-02 | 2022-11-25 | 山东百阜福瑞达制药有限公司 | A method for real-time regulation of enzyme activity and high-efficiency preparation of highly active hyaluronic acid oligosaccharide composition |
CN115386608B (en) * | 2022-09-02 | 2023-11-10 | 山东百阜福瑞达制药有限公司 | A method for preparing highly active hyaluronic acid oligosaccharide composition by regulating enzyme activity in real time |
CN116555375A (en) * | 2023-02-06 | 2023-08-08 | 山东焦点福瑞达生物股份有限公司 | Preparation method and application of hyaluronic acid oligosaccharide |
CN116179629A (en) * | 2023-03-06 | 2023-05-30 | 水羊化妆品制造有限公司 | Preparation method of unsaturated sodium hyaluronate disaccharide |
Also Published As
Publication number | Publication date |
---|---|
CN110331178B (en) | 2021-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110331178A (en) | A kind of enzyme cutting method prepares the method for micromolecule hyaluronic acid and gained micromolecule hyaluronic acid is applied with it | |
JP5957096B2 (en) | Bacillus, hyaluronic acid enzyme and use thereof | |
CN107338201B (en) | Streptococcus equi subsp zooepidemicus SXY36 and application thereof in fermentation production of hyaluronic acid | |
CN108220364B (en) | Method for preparing hyaluronic acid oligosaccharide with ultra-low molecular weight and salt thereof by combining solid-liquid two-phase enzymolysis and ultrafiltration | |
CN110923173B (en) | A kind of Enterobacter and its application | |
CN106906161B (en) | Microbacterium, broad-spectrum glycosaminoglycan lyase expressed by same, and coding gene and application thereof | |
CN102648214B (en) | Method for manufacturing purified hyaluronic acids | |
CN110951714B (en) | Hyaluronic acid hydrolase, coding sequence thereof and method for preparing oligomeric hyaluronate by using same | |
CN103484513A (en) | Method for preparing small-molecule oligomeric hyaluronic acid through enzyme method | |
CN109593672A (en) | One plant of Pseudoalteromonas polysaccharide degradation bacteria and its cultural method and application | |
CN114480182A (en) | A kind of pseudoarthrobacter PL-410 and its application in producing chondroitin lyase | |
CN107312765B (en) | Glycosaminoglycan lyase and coding gene and application thereof | |
CN110093298A (en) | Ester perfume (or spice) microbacterium MCDA02 and its method for producing chitin deacetylase | |
CN118480588A (en) | Preparation method and application of unsaturated sodium hyaluronate disaccharide | |
CN110951805A (en) | A kind of enzymatic hydrolysis preparation method of low molecular weight laver polysaccharide and laver oligosaccharide | |
CN116515803B (en) | Hyaluronidase and gene expression and application thereof | |
CN117683842A (en) | A method for preparing collagen oligopeptides and oligosaccharides by synergistically degrading animal tissue with multiple enzymes | |
CN103038339A (en) | Deacetylation hydrolase of hyaluronic acid, hyaluronic acid deacetylated by same and derivative thereof | |
CN110408566B (en) | Externally tangent chondroitin sulfate degrading enzyme and coding gene and application thereof | |
Yan et al. | Recent trends in functional characteristics and degradation methods of alginate | |
CN114686503B (en) | Coli mutant strain for stabilizing high-yield alginic acid lyase | |
CN117264983A (en) | Novel hyaluronidase, genetically engineered bacterium thereof, construction method and application | |
JP4693014B2 (en) | A method for producing glycosaminoglycan disaccharide. | |
CN119020338A (en) | A hyaluronan lyase and its application in degrading hyaluronic acid | |
CN113999830A (en) | Ocean-derived externally-tangent chondroitin sulfate sulfatase, and coding gene and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |