CN110320117A - 基于单晶叶片蠕变性能的测试方法 - Google Patents
基于单晶叶片蠕变性能的测试方法 Download PDFInfo
- Publication number
- CN110320117A CN110320117A CN201910633787.8A CN201910633787A CN110320117A CN 110320117 A CN110320117 A CN 110320117A CN 201910633787 A CN201910633787 A CN 201910633787A CN 110320117 A CN110320117 A CN 110320117A
- Authority
- CN
- China
- Prior art keywords
- single crystal
- crystal blade
- test
- blade
- coupon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/32—Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0001—Type of application of the stress
- G01N2203/0005—Repeated or cyclic
- G01N2203/0007—Low frequencies up to 100 Hz
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0014—Type of force applied
- G01N2203/0016—Tensile or compressive
- G01N2203/0017—Tensile
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0058—Kind of property studied
- G01N2203/006—Crack, flaws, fracture or rupture
- G01N2203/0067—Fracture or rupture
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0058—Kind of property studied
- G01N2203/0069—Fatigue, creep, strain-stress relations or elastic constants
- G01N2203/0071—Creep
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0058—Kind of property studied
- G01N2203/0069—Fatigue, creep, strain-stress relations or elastic constants
- G01N2203/0073—Fatigue
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/022—Environment of the test
- G01N2203/0222—Temperature
- G01N2203/0226—High temperature; Heating means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/026—Specifications of the specimen
- G01N2203/0262—Shape of the specimen
- G01N2203/0266—Cylindrical specimens
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/06—Indicating or recording means; Sensing means
- G01N2203/0641—Indicating or recording means; Sensing means using optical, X-ray, ultraviolet, infrared or similar detectors
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
本发明属于单晶叶片应用技术领域,具体公开了基于单晶叶片蠕变性能的测试方法,步骤1、先通过精密铸造方法获得单晶叶片,材质为MM247LC,然后从叶片中利用线切割机获得长方体试样切片,通过测量确定其取向后,得到100、001、010三种取向的试棒。步骤2、通过高温蠕变力学拉伸机,对上述的100、001、010三种取向的试棒进行分别的蠕变拉伸测试,频率为0.25Hz。本发明的有益效果在于:1、其测试设计结构合理,便于操作,且测试效率高、测试结果精准,进而辅助实现单晶叶片高质量的制备生产作业;2、具有不同的微观结构的拉伸实棒,实验研究微结构变化和晶体学取向对蠕变行为的影响比传统的拉伸试棒测试结果更为精确,能够更有效的观察更多的力学性能。
Description
技术领域
本发明属于单晶叶片应用技术领域,具体涉及基于单晶叶片蠕变性能的测试方法。
背景技术
单晶叶片是只有一个晶粒的铸造叶片,定向结晶叶片消除了对空洞和裂纹敏感的横向晶界,使全部晶界平行于应力轴方向,从而改善了合金的使用性能。
单晶高温合金做的涡轮叶片非常好用,能够在一定应力条件下长期工作的金属材料,具有优异的高温强度,良好的抗氧化和抗热腐蚀性能,良好的疲劳性能、断裂韧性等综合性能,已成为军民用燃气涡轮发动机热端部件不可替代的关键材料。
在单晶叶片制备工艺中需要对单晶叶片进行蠕变性能测试,疲劳载荷和各自的机制会影响燃气轮机叶片的失效时间,特别是在使用周期短的喷气发动机中(飞行时间约为1至12小时)采用低周疲劳(LCF)试验研究了高温循环载荷引起的变形和损伤机理,疲劳机制受微观结构的影响会影响测试结构的精准性。
因此,基于上述问题,本发明提供基于单晶叶片蠕变性能的测试方法。
发明内容
发明目的:本发明的目的是提供基于单晶叶片蠕变性能的测试方法,其测试设计结构合理,便于操作,且测试效率高、测试结果精准,进而辅助实现单晶叶片高质量的制备生产作业。
技术方案:本发明提供基于单晶叶片蠕变性能的测试方法,步骤1、先通过
精密铸造方法获得单晶叶片,材质为MM247LC,然后从叶片中利用线切割机获得长方体试样切片,通过测量确定其取向后,得到100、001、010三种取向的试棒。步骤2、通过高温蠕变力学拉伸机,对上述的100、001、010三种取向的试棒进行分别的蠕变拉伸测试,频率为0.25Hz。
本技术方案的,所述步骤2中拉伸蠕变温度为800摄氏度-1000摄氏度,先将待测试的100、001、010三种取向的试棒加热到800摄氏度,保持10小时-12小时,再将待测试的100、001、010种取向的试棒加热到1000摄氏度,保持4小时-6小时,最后自然将至室内温度进行测试。
与现有技术相比,本发明的基于单晶叶片蠕变性能的测试方法的有益效果在于:1、其测试设计结构合理,便于操作,且测试效率高、测试结果精准,进而辅助实现单晶叶片高质量的制备生产作业;2、具有不同的微观结构的拉伸实棒(分别在100、001、010方向截取出三个试样),实验研究微结构变化和晶体学取向对蠕变行为的影响比传统的拉伸试棒测试结果更为精确,过该种方法设计出的试样,能够更有效的观察更多的力学性能。
附图说明
图1是本发明的基于单晶叶片蠕变性能的测试方法的拉伸实棒100、001、010方向截取结构示意图;
图2是本发明的基于单晶叶片蠕变性能的测试方法的拉伸实棒100、001、010测试结构示意图;
图3本发明的基于单晶叶片蠕变性能的测试方法的001疲劳度测试示意图;
图4本发明的基于单晶叶片蠕变性能的测试方法的001疲劳寿命期间的变形行为和损伤示意图;
图5本发明的基于单晶叶片蠕变性能的测试方法的001方向拉伸断裂后的显微照片示意图;
图6本发明的基于单晶叶片蠕变性能的测试方法的010试样的微观组织示意图;
图7本发明的基于单晶叶片蠕变性能的测试方法的100 方向的断裂显微及金相图。
具体实施方式
下面结合附图和具体实施例,进一步阐明本发明。
实施例
本发明的基于单晶叶片蠕变性能的测试方法,基于单晶叶片蠕变性能的测试
方法,步骤1、先通过精密铸造方法获得单晶叶片,材质为MM247LC,然后从叶片中利用线切割机获得长方体试样切片,通过测量确定其取向后,得到100、001、010三种取向的试棒(如图1所示)。步骤2、通过高温蠕变力学拉伸机,对上述的100、001、010三种取向的试棒进行分别的蠕变拉伸测试,频率为0.25Hz(如图2所示)
进一步优选的,所述步骤2中拉伸蠕变温度为800摄氏度-1000摄氏度,先将待测试的100、001、010三种取向的试棒加热到800摄氏度,保持10小时-12小时,再将待测试的100、001、010种取向的试棒加热到1000摄氏度,保持4小时-6小时,最后自然将至室内温度进行测试
本发明的如图3和图4所示的001取向下的测试结果:疲劳测试结果精确度高,测试准确。如图6所示的010试样的微观组织示意图,变形断裂以沿010滑动面的滑动和裂纹扩展为主,无I型裂纹扩展和断裂,整体变形导致椭圆试样横截面。
本发明的基于单晶叶片蠕变性能的测试方法,一方面其测试设计结构合理,便于操作,且测试效率高、测试结果精准,进而辅助实现单晶叶片高质量的制备生产作业,另一方面具有不同的微观结构的拉伸实棒(分别在100、001、010方向截取出三个试样),实验研究微结构变化和晶体学取向对蠕变行为的影响比传统的拉伸试棒测试结果更为精确,过该种方法设计出的试样,能够更有效的观察更多的力学性能。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以作出若干改进,这些改进也应视为本发明的保护范围。
Claims (2)
1.基于单晶叶片蠕变性能的测试方法,其特征在于:包括以下步骤,
步骤1、先通过精密铸造方法获得单晶叶片,材质为MM247LC,然后从叶片中利用线切割机获得长方体试样切片,通过测量确定其取向后,得到100、001、010三种取向的试棒;
步骤2、通过高温蠕变力学拉伸机,对上述的100、001、010三种取向的试棒进行分别的蠕变拉伸测试,频率为0.25Hz。
2.根据权利要求1所述的基于单晶叶片蠕变性能的测试方法,其特征在于:所述步骤2中拉伸蠕变温度为800摄氏度-1000摄氏度,先将待测试的100、001、010三种取向的试棒加热到800摄氏度,保持10小时-12小时,再将待测试的100、001、010种取向的试棒加热到1000摄氏度,保持4小时-6小时,最后自然将至室内温度进行测试。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910633787.8A CN110320117A (zh) | 2019-07-15 | 2019-07-15 | 基于单晶叶片蠕变性能的测试方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910633787.8A CN110320117A (zh) | 2019-07-15 | 2019-07-15 | 基于单晶叶片蠕变性能的测试方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110320117A true CN110320117A (zh) | 2019-10-11 |
Family
ID=68123459
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910633787.8A Pending CN110320117A (zh) | 2019-07-15 | 2019-07-15 | 基于单晶叶片蠕变性能的测试方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110320117A (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111024152A (zh) * | 2019-11-19 | 2020-04-17 | 中国第一汽车股份有限公司 | 一种间接检测气缸体铸件材料性能的方法 |
CN113916677A (zh) * | 2021-09-30 | 2022-01-11 | 潍坊科技学院 | 薄壁单晶高温合金大温度梯度下蠕变持久性能的测试方法 |
CN117740512A (zh) * | 2023-11-29 | 2024-03-22 | 中国航发湖南动力机械研究所 | 一种单晶叶片力学性能评价方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1409099A (zh) * | 2001-09-28 | 2003-04-09 | 三菱重工业株式会社 | 评估蠕变破坏的高精度方法和装置 |
CN104316388A (zh) * | 2014-07-25 | 2015-01-28 | 中国航空工业集团公司北京航空材料研究院 | 一种对各向异性材料结构件进行疲劳寿命测定的方法 |
CN106484978A (zh) * | 2016-09-28 | 2017-03-08 | 北京理工大学 | 一种基于晶体滑移机制的各向异性线弹性本构的建立方法 |
CN106501105A (zh) * | 2016-12-31 | 2017-03-15 | 北京工业大学 | 一种考虑微结构夹杂和晶体取向的搅拌摩擦焊接头疲劳薄弱区域的确定方法 |
CN206787948U (zh) * | 2017-03-27 | 2017-12-22 | 中国科学技术大学 | 一种与x射线散射联用的蠕变拉伸装置 |
JP2018132362A (ja) * | 2017-02-14 | 2018-08-23 | 三菱重工業株式会社 | 破断延性評価方法 |
CN108856437A (zh) * | 2018-08-24 | 2018-11-23 | 重庆三峡学院 | 一种金属板件振动蠕变复合时效拉伸变形的方法和装置 |
-
2019
- 2019-07-15 CN CN201910633787.8A patent/CN110320117A/zh active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1409099A (zh) * | 2001-09-28 | 2003-04-09 | 三菱重工业株式会社 | 评估蠕变破坏的高精度方法和装置 |
CN104316388A (zh) * | 2014-07-25 | 2015-01-28 | 中国航空工业集团公司北京航空材料研究院 | 一种对各向异性材料结构件进行疲劳寿命测定的方法 |
CN106484978A (zh) * | 2016-09-28 | 2017-03-08 | 北京理工大学 | 一种基于晶体滑移机制的各向异性线弹性本构的建立方法 |
CN106501105A (zh) * | 2016-12-31 | 2017-03-15 | 北京工业大学 | 一种考虑微结构夹杂和晶体取向的搅拌摩擦焊接头疲劳薄弱区域的确定方法 |
JP2018132362A (ja) * | 2017-02-14 | 2018-08-23 | 三菱重工業株式会社 | 破断延性評価方法 |
CN206787948U (zh) * | 2017-03-27 | 2017-12-22 | 中国科学技术大学 | 一种与x射线散射联用的蠕变拉伸装置 |
CN108856437A (zh) * | 2018-08-24 | 2018-11-23 | 重庆三峡学院 | 一种金属板件振动蠕变复合时效拉伸变形的方法和装置 |
Non-Patent Citations (1)
Title |
---|
魏朋义等: "DD3单晶高温合金拉伸蠕变各向异性", 《航空材料学报》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111024152A (zh) * | 2019-11-19 | 2020-04-17 | 中国第一汽车股份有限公司 | 一种间接检测气缸体铸件材料性能的方法 |
CN113916677A (zh) * | 2021-09-30 | 2022-01-11 | 潍坊科技学院 | 薄壁单晶高温合金大温度梯度下蠕变持久性能的测试方法 |
CN117740512A (zh) * | 2023-11-29 | 2024-03-22 | 中国航发湖南动力机械研究所 | 一种单晶叶片力学性能评价方法 |
CN117740512B (zh) * | 2023-11-29 | 2024-11-12 | 中国航发湖南动力机械研究所 | 一种单晶叶片力学性能评价方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Thermomechanical fatigue experiment and failure analysis on a nickel-based superalloy turbine blade | |
CN110320117A (zh) | 基于单晶叶片蠕变性能的测试方法 | |
Wang et al. | Thermomechanical fatigue failure investigation on a single crystal nickel superalloy turbine blade | |
Zhang et al. | In-situ SEM study of slip-controlled short-crack growth in single-crystal nickel superalloy | |
Witek | Experimental crack propagation and failure analysis of the first stage compressor blade subjected to vibration | |
Azevedo et al. | Erosion-fatigue of steam turbine blades | |
Epishin et al. | Microstructural degradation of CMSX-4: kinetics and effect on mechanical properties | |
Zhang et al. | Creep rupture mechanism and microstructure evolution around film-cooling holes in nickel-based single crystal superalloy specimen | |
Huang et al. | Experimental and analytical investigation for fatigue crack growth characteristics of an aero-engine fan disc | |
Song et al. | Thermomechanical fatigue and life prediction method of a precision cast superalloy with electrical discharge machining drilled holes | |
Li et al. | Low cycle fatigue behavior and crack initiation mechanism of Ni-based single crystal curved thin-walled blade simulator specimen with film cooling holes | |
Liu et al. | Failure mechanism of single-crystal superalloy NiAlReRu components with film cooling holes under the coupling high-speed rotating and high temperature condition | |
CN110044668A (zh) | 表征薄壁叶片铸件叶身性能的试样制造方法 | |
Bullough et al. | The characterization of the single crystal superalloy CMSX-4 for industrial gas turbine blading applications | |
Moverare et al. | Thermomechanical fatigue in single crystal superalloys | |
Weser et al. | Advanced experimental and analytical investigations on combined cycle fatigue (CCF) of conventional cast and single-crystal gas turbine blades | |
Busse et al. | A finite element study of the effect of crystal orientation and misalignment on the crack driving force in a single-crystal superalloy | |
Chen et al. | Effect of maximum temperature on the thermal fatigue behavior of superalloy GH536 | |
Wang et al. | Research on fatigue strength prediction model of aero-engine blades subjected to foreign object damage | |
Li et al. | Experimental investigation on the creep and low cycle fatigue behaviors of a serviced turbine blade | |
CN110018068A (zh) | 基于直接切取微型试样的镍基单晶叶片性能评估方法 | |
Chen et al. | Combined low and high cycle fatigue tests on full scale turbine blades | |
Ma et al. | High temperature fatigue properties research of GH4169 under multiaxial cyclic loading | |
Rajivandhi et al. | Creep crack growth behaviors of gas turbine blade under a significant temperature gradient conditions | |
CN111639145A (zh) | 一种燃气轮机热端动叶片寿命评估方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20191011 |