CN110301939A - Imaging of tissue and parameter detecting system - Google Patents
Imaging of tissue and parameter detecting system Download PDFInfo
- Publication number
- CN110301939A CN110301939A CN201910635814.5A CN201910635814A CN110301939A CN 110301939 A CN110301939 A CN 110301939A CN 201910635814 A CN201910635814 A CN 201910635814A CN 110301939 A CN110301939 A CN 110301939A
- Authority
- CN
- China
- Prior art keywords
- imaging
- parameter detection
- probe
- tissue
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 90
- 238000001514 detection method Methods 0.000 claims abstract description 119
- 239000000523 sample Substances 0.000 claims abstract description 86
- 238000000034 method Methods 0.000 claims abstract description 17
- 238000006243 chemical reaction Methods 0.000 claims abstract description 10
- 230000005284 excitation Effects 0.000 claims description 35
- 238000012546 transfer Methods 0.000 claims description 4
- 238000005070 sampling Methods 0.000 claims description 3
- 238000006073 displacement reaction Methods 0.000 claims description 2
- 238000012545 processing Methods 0.000 abstract description 9
- 238000002604 ultrasonography Methods 0.000 description 8
- 206010016654 Fibrosis Diseases 0.000 description 4
- 238000002091 elastography Methods 0.000 description 4
- 230000004761 fibrosis Effects 0.000 description 4
- 230000001052 transient effect Effects 0.000 description 4
- 238000001914 filtration Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 206010003445 Ascites Diseases 0.000 description 1
- 208000017667 Chronic Disease Diseases 0.000 description 1
- 208000005176 Hepatitis C Diseases 0.000 description 1
- 206010019799 Hepatitis viral Diseases 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 208000031513 cyst Diseases 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 208000005252 hepatitis A Diseases 0.000 description 1
- 208000002672 hepatitis B Diseases 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 210000000115 thoracic cavity Anatomy 0.000 description 1
- 201000001862 viral hepatitis Diseases 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/44—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
- A61B8/4444—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/44—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
- A61B8/4483—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/48—Diagnostic techniques
- A61B8/485—Diagnostic techniques involving measuring strain or elastic properties
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/54—Control of the diagnostic device
- A61B8/543—Control of the diagnostic device involving acquisition triggered by a physiological signal
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medical Informatics (AREA)
- Biophysics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Physiology (AREA)
- Gynecology & Obstetrics (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
Abstract
本发明涉及一种组织成像和参数检测系统,包括成像和参数检测单元及与其相连的探头,所述成像和参数检测单元包括:组织参数检测模块,用于根据控制指令产生和处理组织参数检测信号;成像模块,用于根据控制指令产生和处理成像信号;控制模块,与所述组织参数检测模块、所述成像模块以及所述探头相连,用于控制所述探头进入组织参数检测模式或者成像模式,以及向所述组织参数检测模块或成像模块发送控制指令。通过控制模块控制组织参数检测模式或者成像模式的转换,利用成像模式定位出最佳位置后,切换成控制组织参数检测模式即启动弹性检测功能,实现弹性检测。
The invention relates to a tissue imaging and parameter detection system, which includes an imaging and parameter detection unit and a probe connected thereto, and the imaging and parameter detection unit includes: a tissue parameter detection module for generating and processing tissue parameter detection signals according to control instructions The imaging module is used to generate and process imaging signals according to control instructions; the control module is connected to the tissue parameter detection module, the imaging module and the probe, and is used to control the probe to enter the tissue parameter detection mode or imaging mode , and send a control instruction to the tissue parameter detection module or the imaging module. The control module controls the tissue parameter detection mode or the conversion of the imaging mode. After the imaging mode is used to locate the best position, switch to the control tissue parameter detection mode to start the elastic detection function and realize the elastic detection.
Description
技术领域technical field
本发明涉及医学检测,特别是涉及具有影像引导功能的组织成像和参数检测系统。The invention relates to medical detection, in particular to a tissue imaging and parameter detection system with image guidance function.
背景技术Background technique
各种慢性病,例如病毒性肝炎(甲肝、乙肝、丙肝等)等,其发展过程中会伴随着受损组织的纤维化,组织纤维化过程中会伴随着组织弹性的变化。因此,组织弹性信息是可用于诊断组织纤维化程度的参数。The development of various chronic diseases, such as viral hepatitis (hepatitis A, hepatitis B, hepatitis C, etc.), will be accompanied by fibrosis of damaged tissues, and the process of tissue fibrosis will be accompanied by changes in tissue elasticity. Therefore, tissue elasticity information is a parameter that can be used to diagnose the degree of tissue fibrosis.
瞬时弹性成像技术(Transient Elastography,英文缩写TE)是一种定量检测组织弹性模量的技术,能够通过测量肝脏硬度值(Liver stiffness measurement,英文缩写LSM),较为全面的反映组织的纤维化程度。Transient Elastography (TE) is a technique for quantitatively detecting tissue elastic modulus, which can comprehensively reflect the degree of tissue fibrosis by measuring the liver stiffness measurement (LSM).
但是,瞬时弹性成像技术无法获知检测区域的组织结构信息,尤其是组织的二维结构信息,技师通常只能根据经验来设置和布置用于瞬时弹性成像的超声探头。因此,在进行弹性检测时,如果待检测区域内部含有大血管、囊肿或腹水等会影响弹性检测结果准确性的因素时,将因无法避开而产生检测误差。However, the transient elastography technique cannot obtain the tissue structure information of the detection area, especially the two-dimensional structure information of the tissue, and technicians usually can only set and arrange the ultrasonic probe for transient elastography based on experience. Therefore, when performing elasticity detection, if there are large blood vessels, cysts, or ascites in the area to be detected that will affect the accuracy of the elasticity detection results, detection errors will be unavoidable.
发明内容Contents of the invention
基于此,有必要针对瞬时弹性成像技术无法避开产生检测误差的问题,提供一种组织成像和参数检测系统。Based on this, it is necessary to provide a tissue imaging and parameter detection system for the problem that the transient elastography technique cannot avoid detection errors.
一种组织成像和参数检测系统,包括成像和参数检测单元及与其相连的探头,所述成像和参数检测单元包括:组织参数检测模块,用于根据控制指令产生和处理组织参数检测信号;成像模块,用于根据控制指令产生和处理成像信号;控制模块,与所述组织参数检测模块、所述成像模块以及所述探头相连,用于控制所述探头进入组织参数检测模式或者成像模式,以及向所述组织参数检测模块或成像模块发送控制指令。A tissue imaging and parameter detection system, including an imaging and parameter detection unit and a probe connected thereto, the imaging and parameter detection unit includes: a tissue parameter detection module, used to generate and process tissue parameter detection signals according to control instructions; the imaging module , used to generate and process imaging signals according to control instructions; a control module, connected to the tissue parameter detection module, the imaging module and the probe, used to control the probe to enter the tissue parameter detection mode or imaging mode, and send The tissue parameter detection module or the imaging module sends control instructions.
在其中一个实施例中,所述控制模块包括切换控制子模块,所述切换控制子模块用于控制所述探头在所述组织参数检测模式和所述成像超模式之间切换。In one of the embodiments, the control module includes a switch control submodule, and the switch control submodule is used to control the probe to switch between the tissue parameter detection mode and the imaging super mode.
在其中一个实施例中,所述切换控制子模块包括转换开关,所述转换开关用于将所述参数检测模块或所述成像模块与所述探头连接。In one of the embodiments, the switching control submodule includes a transfer switch, and the transfer switch is used to connect the parameter detection module or the imaging module with the probe.
在其中一个实施例中,所述参数检测模块包括第一控制处理器和剪切波驱动器,所述第一控制处理器分别与所述控制模块以及所述剪切波驱动器连接;所述第一控制处理器用于根据控制指令生成第一激励信号,并将所述第一激励信号传输至剪切波驱动器;所述剪切波驱动器用于接收所述第一激励信号,对所述激励信号进行放大处理,将放大处理后的所述第一激励信号传输至探头,激励所述探头产生低频剪切波。In one of the embodiments, the parameter detection module includes a first control processor and a shear wave driver, and the first control processor is connected to the control module and the shear wave driver respectively; the first The control processor is used to generate a first excitation signal according to the control instruction, and transmit the first excitation signal to the shear wave driver; the shear wave driver is used to receive the first excitation signal, and perform Amplifying processing, transmitting the amplified first excitation signal to the probe, and exciting the probe to generate low-frequency shear wave.
在其中一个实施例中,所述组织参数检测模块还包括第一信号发射器,所述第一信号发射器与所述第一控制处理器连接,所述第一控制处理器发射第二激励信号,并传输至所述第一信号发射器,所述第一信号发射器将所述第二激励信号传输至所述探头进而驱动探头产生超声信号。In one of the embodiments, the tissue parameter detection module further includes a first signal transmitter, the first signal transmitter is connected to the first control processor, and the first control processor transmits a second excitation signal , and transmit to the first signal transmitter, and the first signal transmitter transmits the second excitation signal to the probe to drive the probe to generate an ultrasonic signal.
在其中一个实施例中,所述组织参数检测模块还包括第一模数转换器和第一信号放大器,所述第一控制处理器与所述第一模数转换器、第一信号放大器依次连接,用于将所述探头探测的回波信号经所述第一信号放大器信号放大后,经所述第一模数转换器将模拟信号转换为数字信号后传输至所述第一控制处理器。In one of the embodiments, the tissue parameter detection module further includes a first analog-to-digital converter and a first signal amplifier, and the first control processor is sequentially connected to the first analog-to-digital converter and the first signal amplifier After the echo signal detected by the probe is amplified by the first signal amplifier, the analog signal is converted into a digital signal by the first analog-to-digital converter and then transmitted to the first control processor.
在其中一个实施例中,所述探头包括剪切波发生器、压力检测器及换能器阵列,所述剪切波发生器用于产生低频剪切波,所述压力检测器是压力传感器或者位移传感器,用于检测所述探头对其接触部位的压力大小,所述换能器阵列用于声电信号转换。In one of the embodiments, the probe includes a shear wave generator, a pressure detector and a transducer array, the shear wave generator is used to generate low-frequency shear waves, and the pressure detector is a pressure sensor or a displacement sensor. The sensor is used to detect the pressure of the probe on its contact part, and the transducer array is used for acoustic-electric signal conversion.
在其中一个实施例中,所述低频剪切波的频率范围为:1-1000Hz;所述低频剪切波的幅度范围为:0.1-50mm。In one of the embodiments, the frequency range of the low-frequency shear wave is: 1-1000 Hz; the amplitude range of the low-frequency shear wave is: 0.1-50 mm.
在其中一个实施例中,所述探头的成像频率范围为:0.5-50MHz;所述探头的成像帧频范围为:0.1-100000Hz;所述探头的成像是深度范围为:0.1-500mm;所述探头的成像采样频率范围为:1-500MHz。In one of the embodiments, the imaging frequency range of the probe is: 0.5-50MHz; the imaging frame frequency range of the probe is: 0.1-100000Hz; the imaging depth range of the probe is: 0.1-500mm; The imaging sampling frequency range of the probe is: 1-500MHz.
上述组织成像和参数检测系统包括成像和参数检测单元及与其相连的探头,所述成像和参数检测单元包括组织参数检测模块、成像模块及控制模块,组织参数检测模块,用于根据控制指令产生和处理组织参数检测信号;成像模块,用于根据控制指令产生和处理成像信号;控制模块,与所述组织参数检测模块、所述成像模块以及所述探头相连,用于控制所述探头进入组织参数检测模式或者成像模式,以及向所述组织参数检测模块或成像模块发送控制指令。通过控制模块控制组织参数检测模式或者成像模式的转换,利用成像模式定位出最佳位置后,切换成控制组织参数检测模式即启动弹性检测功能,实现弹性检测。The above tissue imaging and parameter detection system includes an imaging and parameter detection unit and a probe connected thereto, the imaging and parameter detection unit includes a tissue parameter detection module, an imaging module and a control module, and the tissue parameter detection module is used to generate and Processing tissue parameter detection signals; imaging module, used to generate and process imaging signals according to control instructions; control module, connected with the tissue parameter detection module, the imaging module and the probe, used to control the probe to enter the tissue parameter detection mode or imaging mode, and send control instructions to the tissue parameter detection module or imaging module. The control module controls the tissue parameter detection mode or the conversion of the imaging mode. After the imaging mode is used to locate the best position, switch to the control tissue parameter detection mode to start the elastic detection function and realize the elastic detection.
附图说明Description of drawings
图1为本发明实施例的组织成像和参数检测系统框图。Fig. 1 is a block diagram of a tissue imaging and parameter detection system according to an embodiment of the present invention.
具体实施方式Detailed ways
请参阅图1,一种组织成像和参数检测系统,包括成像和参数检测单元10及与其相连的探头20,所述成像和参数检测单元10包括:组织参数检测模块110,用于根据控制指令产生和处理组织参数检测信号;成像模块120,用于根据控制指令产生和处理成像信号;控制模块130,与所述组织参数检测模块110、所述成像模块120以及所述探头20相连,用于控制所述探头20进入组织参数检测模式或者成像模式,以及向所述组织参数检测模块110或成像模块120发送控制指令。Please refer to FIG. 1 , a tissue imaging and parameter detection system includes an imaging and parameter detection unit 10 and a probe 20 connected thereto. The imaging and parameter detection unit 10 includes: a tissue parameter detection module 110 configured to generate and processing tissue parameter detection signals; imaging module 120, used to generate and process imaging signals according to control instructions; control module 130, connected with the tissue parameter detection module 110, the imaging module 120 and the probe 20, for controlling The probe 20 enters the tissue parameter detection mode or the imaging mode, and sends a control instruction to the tissue parameter detection module 110 or the imaging module 120 .
如图1所示,所述组织参数检测模块110用于根据控制指令产生和处理组织参数检测信号,所述探头20根据所述组织参数检测模块110发射的第一激励信号驱动所述探头20产生低频剪切波,进而定量检测组织弹性模量。所述组织参数检测模块110包括第一控制处理器111和剪切波驱动器112、第一信号放大器113、第一模数转换器114、第一信号发射器115以及压力检测处理器116。其中所述低频剪切波的频率范围为:1-1000Hz;所述低频剪切波的幅度范围为:0.1-50mm。As shown in FIG. 1 , the tissue parameter detection module 110 is used to generate and process tissue parameter detection signals according to control instructions, and the probe 20 drives the probe 20 according to the first excitation signal transmitted by the tissue parameter detection module 110 to generate Low-frequency shear wave, and then quantitatively detect tissue elastic modulus. The tissue parameter detection module 110 includes a first control processor 111 , a shear wave driver 112 , a first signal amplifier 113 , a first analog-to-digital converter 114 , a first signal transmitter 115 and a pressure detection processor 116 . Wherein the frequency range of the low-frequency shear wave is: 1-1000 Hz; the amplitude range of the low-frequency shear wave is: 0.1-50 mm.
所述第一控制处理器111与所述剪切波驱动器112连接,所述第一控制处理器111用于根据控制指令生成第一激励信号,并将所述第一激励信号传输至剪切波驱动器112,所述剪切波驱动器112用于接收所述第一激励信号,对所述激励信号进行放大处理,将放大处理后的所述第一激励信号传输至探头20。所述第一激励信号激励所述探头20产生低频剪切波。所述第一控制处理器111与所述第一信号发射器115连接,所述第一控制处理器111发射第二激励信号,并传输至所述第一信号发射器115,所述第一信号发射器115将所述高压激励信号传输至所述探头20进而驱动探头20产生超声信号。所述第一控制处理器111与所述第一模数转换器114、第一信号放大器113依次连接,所述探头20探测的超声回波信号经所述第一信号放大器113进行信号放大后,再经所述第一模数转换器114将模拟信号转换为数字信号后传输至所述第一控制处理器111,所述第一控制处理器111对接收到的数据进行数据转换、处理、滤波等操作。所述压力检测处理器116与所述第一控制处理器111连接,所述压力检测处理器116将检测到所述探头20与接触部位接触的压力值,传输至所述第一控制处理器111,所述第一控制处理器111将压力值传输至显示装置进行显示,便于用户实时监测。The first control processor 111 is connected to the shear wave driver 112, and the first control processor 111 is configured to generate a first excitation signal according to a control instruction, and transmit the first excitation signal to the shear wave driver 112. The driver 112 , the shear wave driver 112 is configured to receive the first excitation signal, amplify the excitation signal, and transmit the amplified first excitation signal to the probe 20 . The first excitation signal excites the probe 20 to generate low-frequency shear waves. The first control processor 111 is connected to the first signal transmitter 115, the first control processor 111 transmits a second excitation signal, and transmits to the first signal transmitter 115, the first signal The transmitter 115 transmits the high-voltage excitation signal to the probe 20 to drive the probe 20 to generate an ultrasonic signal. The first control processor 111 is sequentially connected to the first analog-to-digital converter 114 and the first signal amplifier 113. After the ultrasonic echo signal detected by the probe 20 is amplified by the first signal amplifier 113, Then the analog signal is converted into a digital signal by the first analog-to-digital converter 114 and then transmitted to the first control processor 111, and the first control processor 111 performs data conversion, processing, and filtering on the received data and so on. The pressure detection processor 116 is connected to the first control processor 111, and the pressure detection processor 116 transmits the pressure value detected by the probe 20 in contact with the contact site to the first control processor 111 , the first control processor 111 transmits the pressure value to the display device for display, which is convenient for users to monitor in real time.
在本实施例中,所述第一控制处理器111为现场可编辑门阵列(Field-Programmable Gate Array:FPGA)板。所述FPGA生成第二激励信号,所述第二激励信号驱动探头20产生超声信号。所述FPGA发送第一激励信号,所述第一激励信号经所述剪切波驱动器112进行信号放大,进而所述第一激励信号激励所述探头20产生低频剪切波。所述低频剪切波在不同硬度组织中传播速度不同,所述超声信号携带所述低频剪切波的传播速度信息传输至所述组织参数检测模块,进而准确定量的计算组织硬度。In this embodiment, the first control processor 111 is a field-programmable gate array (Field-Programmable Gate Array: FPGA) board. The FPGA generates a second excitation signal, and the second excitation signal drives the probe 20 to generate an ultrasonic signal. The FPGA sends a first excitation signal, and the first excitation signal is amplified by the shear wave driver 112 , and then the first excitation signal excites the probe 20 to generate a low frequency shear wave. The propagation velocity of the low-frequency shear wave is different in tissues with different hardness, and the ultrasonic signal carries the propagation velocity information of the low-frequency shear wave and is transmitted to the tissue parameter detection module, so as to accurately and quantitatively calculate the tissue hardness.
所述成像模块120根据控制指令产生和处理成像信号,所述成像信号经所述探头20发出,用于进行精确的定位,进而为所述组织参数检测模块110选择探测的合适诊断位置和角度。所述成像模块120包括第二控制处理器121、第二信号放大器122、第二模数转换器123以及第二信号发射器124,所述第二控制处理器121与所述第二信号发射器124连接,所述第二控制处理器121发送驱动脉冲至所述第二信号发射器124,所述第二信号发射器124将所述驱动脉冲传递至所述探头20进而驱动探头20产生超声信号。所述第二控制处理器121与所述第二模数转换器123、第二信号放大器122依次连接,用于处理超声回波信号,即接收探头20探测的超声回波信号,经所述第二信号放大器122进行信号放大,再经所述第二模数转换器123将所述模拟信号转换为数字信号后传输至所述第二控制处理器121。The imaging module 120 generates and processes imaging signals according to control instructions, and the imaging signals are sent by the probe 20 for precise positioning, and then select a suitable diagnostic position and angle for the tissue parameter detection module 110 to detect. The imaging module 120 includes a second control processor 121, a second signal amplifier 122, a second analog-to-digital converter 123, and a second signal transmitter 124, and the second control processor 121 and the second signal transmitter 124 connection, the second control processor 121 sends a driving pulse to the second signal transmitter 124, and the second signal transmitter 124 transmits the driving pulse to the probe 20 to drive the probe 20 to generate an ultrasonic signal . The second control processor 121 is sequentially connected with the second analog-to-digital converter 123 and the second signal amplifier 122, and is used for processing the ultrasonic echo signal, that is, receiving the ultrasonic echo signal detected by the probe 20, and passing through the second The second signal amplifier 122 performs signal amplification, and then the analog signal is converted into a digital signal by the second analog-to-digital converter 123 and then transmitted to the second control processor 121 .
在本实施例中,所述第二控制处理器121为现场可编辑门阵列(Field-Programmable Gate Array:FPGA)板。当然根据设计需要,所述第一控制处理器111与所述第二控制处理器121可为STM32单片机、ARM芯片中的任意一种,只要能够实现数据处理、对其相连器件控制、发送第一/第二激励信号即可。In this embodiment, the second control processor 121 is a field-programmable gate array (Field-Programmable Gate Array: FPGA) board. Of course, according to design requirements, the first control processor 111 and the second control processor 121 can be any one of STM32 single-chip microcomputer and ARM chip, as long as it can realize data processing, control its connected devices, and send the first / The second excitation signal is sufficient.
所述控制模块130用于处理所述组织参数检测信号和所述成像信号,并根据所述组织参数检测信号及所述成像信号控制所述探头20进行组织参数检测模式检测或者成像模式检测,所述控制模块130包括切换控制子模块131及探头切换单元132,所述探头切换单元132与所述探头20连接并能够向所述探头20输出信号脉冲,同时实现不同探测物(探测肝脏、胸腔等身体部位)下,探头20的切换,所述切换控制子模块131用于控制所述探头20在所述组织参数检测模式和所述成像模式之间切换。所述切换控制子模块131包括转换开关,所述转换开关用于将所述参数检测模块或所述成像模块与所述探头连接。。The control module 130 is configured to process the tissue parameter detection signal and the imaging signal, and control the probe 20 to perform tissue parameter detection mode detection or imaging mode detection according to the tissue parameter detection signal and the imaging signal. The control module 130 includes a switching control sub-module 131 and a probe switching unit 132. The probe switching unit 132 is connected to the probe 20 and can output signal pulses to the probe 20, and at the same time realize different detection objects (detection of the liver, chest cavity, etc.) body part), the switching of the probe 20, the switching control sub-module 131 is used to control the switching of the probe 20 between the tissue parameter detection mode and the imaging mode. The switching control sub-module 131 includes a switch, and the switch is used to connect the parameter detection module or the imaging module with the probe. .
所述探头20包括剪切波发生器210、压力检测器220及换能器230,所述剪切波发生器210经所述组织参数检测模块110产生的第一激励信号驱动产生低频剪切波,所述压力检测器220用于检测所述探头20对其接触部位的压力大小,所述换能器230用于声(超声信号)电信号换。其中,所述压力检测器220将检测的压力值信息传递给所述组织参数检测模块110中的压力检测处理器116,所述压力检测处理器116将压力值信息传递给所述第一控制处理器111,进而实现实时监测所述探头20与其接触的部位之间的压力信息。其中,所述探头的成像频率为:0.5-50MHz;所述探头的成像帧频为:0.1-100000Hz;所述探头的成像是深度为:0.1-500mm;所述探头的成像采样频率为:1-500MHz。The probe 20 includes a shear wave generator 210, a pressure detector 220, and a transducer 230. The shear wave generator 210 is driven by the first excitation signal generated by the tissue parameter detection module 110 to generate low-frequency shear waves. , the pressure detector 220 is used to detect the pressure of the probe 20 on its contact part, and the transducer 230 is used for acoustic (ultrasonic signal) electrical signal conversion. Wherein, the pressure detector 220 transmits the detected pressure value information to the pressure detection processor 116 in the tissue parameter detection module 110, and the pressure detection processor 116 transmits the pressure value information to the first control process device 111, so as to realize real-time monitoring of the pressure information between the probe 20 and the part in contact with it. Wherein, the imaging frequency of the probe is: 0.5-50MHz; the imaging frame frequency of the probe is: 0.1-100000Hz; the imaging depth of the probe is: 0.1-500mm; the imaging sampling frequency of the probe is: 1 -500MHz.
其中,所述组织成像和参数检测系统集成组织参数检测模式和成像模式,其中组织参数检测模式为组织弹性检测模式例如E超,成像模式包括A超、M超、B超、CT、MRI等检测模式,进而集成影像引导功能和弹性检测功能。利用影像引导功能定位出最佳位置后,切换成弹性检测模式即启动组织参数检测模式,实现弹性检测。探头20的应用实现不更换探头,不会造成位置偏移,能够准确、简便、高效的实现组织弹性检测。Wherein, the tissue imaging and parameter detection system integrates a tissue parameter detection mode and an imaging mode, wherein the tissue parameter detection mode is a tissue elasticity detection mode such as E-ultrasound, and the imaging mode includes A-ultrasound, M-ultrasound, B-ultrasound, CT, MRI, etc. Mode, and then integrate image guidance function and elastic detection function. After using the image guidance function to locate the best position, switch to the elastic detection mode to start the tissue parameter detection mode to achieve elastic detection. The application of the probe 20 realizes that the probe does not need to be replaced, and the position will not be shifted, so that the detection of tissue elasticity can be realized accurately, simply and efficiently.
弹性检测的工作原理为:组织参数检测模块110发射高压激励信号驱动探头20内的换能器230产生超声信号,在被测体内传播,由于被测体内组织对超声信号的反射不同,得到超声回波信号的差异性明显进而形成超声图像。所述组织参数检测模块110发射低频激励信号驱动探头20内的剪切波发生器210,所述剪切波发生器210产生低频剪切波,在被测体内传播,由于剪切波在不同硬度的组织中传播速度有明显不同,通过探头20内发射的超声信号探测所述剪切波的传输速度,即可精确计算组织硬度。The working principle of elasticity detection is as follows: the tissue parameter detection module 110 transmits a high-voltage excitation signal to drive the transducer 230 in the probe 20 to generate an ultrasonic signal, which propagates in the test body, and the ultrasonic echo is obtained due to the different reflections of the ultrasonic signal by the tissue in the test body. The difference of the wave signal is obvious and then the ultrasonic image is formed. The tissue parameter detection module 110 transmits a low-frequency excitation signal to drive the shear wave generator 210 in the probe 20, and the shear wave generator 210 generates a low-frequency shear wave, which propagates in the subject. The propagation velocity in the tissue is obviously different, and the tissue hardness can be accurately calculated by detecting the propagation velocity of the shear wave through the ultrasonic signal emitted from the probe 20 .
下面以组织参数检测模式为E超,成像模式为B超的具体应用为例,说为本发明应用实例实现过程:Below with the tissue parameter detection mode being the E-ultrasound, the specific application of the imaging mode being the B-ultrasound is an example, and is said to be the implementation process of the application example of the present invention:
当所述控制模块130发送控制指令进入成像模式,所述转换开关将所述成像模块120与探头连接,所述第二控制处理器121发送驱动脉冲至所述第二信号发射器124,所述第二信号发射器124将所述驱动脉冲传递至所述探头20进而驱动复合探头20内的换能器230,所述换能器230将电信号转换成B型超声信号,所述B型超声信号进行被测体的位置检测。所述B型超声信号携带探测数据经被测体反射,经所述探头20接收,所述B型超声信号经换能器230进行所述超声信号至电信号的转换,所述探头20将电信号传输至所述成像模块120,所述成像模块120内的第二信号放大器122将所述电信号放大后传输至所述第二模数转换器123进行模数转换,将数字信号至所述第二控制处理器121,所述第二控制处理器121对所述数字信号进行数据转换、处理、滤波等操作后得到B型超声图像。When the control module 130 sends a control instruction to enter the imaging mode, the switch connects the imaging module 120 to the probe, the second control processor 121 sends a driving pulse to the second signal transmitter 124, and the The second signal transmitter 124 transmits the drive pulse to the probe 20 to drive the transducer 230 in the composite probe 20, and the transducer 230 converts the electrical signal into a B-type ultrasonic signal, and the B-type ultrasonic signal signal to detect the position of the object to be measured. The B-type ultrasonic signal carrying detection data is reflected by the measured body and received by the probe 20. The B-type ultrasonic signal is converted from the ultrasonic signal to an electrical signal by the transducer 230, and the probe 20 converts the electrical signal into an electrical signal. The signal is transmitted to the imaging module 120, and the second signal amplifier 122 in the imaging module 120 amplifies the electrical signal and then transmits it to the second analog-to-digital converter 123 for analog-to-digital conversion, and sends the digital signal to the The second control processor 121. The second control processor 121 performs operations such as data conversion, processing, and filtering on the digital signal to obtain a B-mode ultrasonic image.
当所述控制模块130发送控制指令进入E超检测模式,所述转换开关将所述组织参数检测模块与探头连接,所述组织参数检测模块的第一控制处理器111发送低频激励信号至所述剪切波驱动器112,所述低频激励信号驱动探头20内的剪切波发生器210产生低频剪切波,所述组织参数检测模块110的第一控制处理器111发送高压激励信号传输至所述复合探头20后,所述高压激励信号驱动复合探头20内的换能器230产生超声信号。所述超声信号探测所述低频剪切波的传输速度,所述超声信号经所述被测体反射,反射的信号为回波,所述回波信号经所述探头20内的换能器230将超声信号转换成电信号,所述电信号经组织参数检测模块110的第一信号放大器113放大后传输至所述第一模数转换器114进行模数转换,将数字信号传输至所述组织参数检测模块110的第一控制处理器111,所述第一控制处理器111对所述数字信号进行数字处理、转换及滤波后得到E超图像及硬度分析。When the control module 130 sends a control command to enter the E-ultrasound detection mode, the switch connects the tissue parameter detection module to the probe, and the first control processor 111 of the tissue parameter detection module sends a low-frequency excitation signal to the Shear wave driver 112, the low frequency excitation signal drives the shear wave generator 210 in the probe 20 to generate low frequency shear wave, the first control processor 111 of the tissue parameter detection module 110 sends a high voltage excitation signal to the Behind the compound probe 20, the high-voltage excitation signal drives the transducer 230 in the compound probe 20 to generate an ultrasonic signal. The ultrasonic signal detects the transmission speed of the low-frequency shear wave, the ultrasonic signal is reflected by the object under test, and the reflected signal is an echo, and the echo signal passes through the transducer 230 in the probe 20 Convert the ultrasonic signal into an electrical signal, the electrical signal is amplified by the first signal amplifier 113 of the tissue parameter detection module 110, and then transmitted to the first analog-to-digital converter 114 for analog-to-digital conversion, and the digital signal is transmitted to the tissue The first control processor 111 of the parameter detection module 110, the first control processor 111 performs digital processing, conversion and filtering on the digital signal to obtain an E-ultrasound image and hardness analysis.
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。The various technical features of the above-mentioned embodiments can be combined arbitrarily. To make the description concise, all possible combinations of the various technical features in the above-mentioned embodiments are not described. However, as long as there is no contradiction in the combination of these technical features, should be considered as within the scope of this specification.
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only express several implementation modes of the present invention, and the descriptions thereof are relatively specific and detailed, but should not be construed as limiting the patent scope of the invention. It should be noted that those skilled in the art can make several modifications and improvements without departing from the concept of the present invention, and these all belong to the protection scope of the present invention. Therefore, the protection scope of the patent for the present invention should be based on the appended claims.
Claims (9)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910635814.5A CN110301939A (en) | 2019-07-15 | 2019-07-15 | Imaging of tissue and parameter detecting system |
PCT/CN2020/090549 WO2021008217A1 (en) | 2019-07-15 | 2020-05-15 | Tissue imaging and parameter detection system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910635814.5A CN110301939A (en) | 2019-07-15 | 2019-07-15 | Imaging of tissue and parameter detecting system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110301939A true CN110301939A (en) | 2019-10-08 |
Family
ID=68081208
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910635814.5A Pending CN110301939A (en) | 2019-07-15 | 2019-07-15 | Imaging of tissue and parameter detecting system |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110301939A (en) |
WO (1) | WO2021008217A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110720948A (en) * | 2019-11-12 | 2020-01-24 | 无锡海斯凯尔医学技术有限公司 | Biological sign detection method based on ultrasonic detection system |
WO2021008217A1 (en) * | 2019-07-15 | 2021-01-21 | 无锡海斯凯尔医学技术有限公司 | Tissue imaging and parameter detection system |
WO2021008218A1 (en) * | 2019-07-15 | 2021-01-21 | 无锡海斯凯尔医学技术有限公司 | Probe and tissue elasticity measurement system |
CN112998759A (en) * | 2021-04-06 | 2021-06-22 | 无锡海斯凯尔医学技术有限公司 | Tissue elasticity detection method, device and system |
CN113093193A (en) * | 2021-04-06 | 2021-07-09 | 无锡海斯凯尔医学技术有限公司 | Ultrasonic signal triggering method, device and system |
CN113100816A (en) * | 2021-04-06 | 2021-07-13 | 无锡海斯凯尔医学技术有限公司 | Elasticity detection method and device |
WO2021226958A1 (en) * | 2020-05-14 | 2021-11-18 | 深圳迈瑞生物医疗电子股份有限公司 | Ultrasonic imaging apparatus and method |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1636519A (en) * | 2003-12-08 | 2005-07-13 | 株式会社东芝 | Ultrasonic diagnosing apparatus |
CN1728968A (en) * | 2002-10-28 | 2006-02-01 | 株式会社日立医药 | Biological tissue elasticity measurement method and ultrasonic diagnostic equipment |
CN102283679A (en) * | 2011-08-04 | 2011-12-21 | 中国科学院深圳先进技术研究院 | Ultrasonic imaging system for elasticity measurement and method for measuring elasticity of biological tissue |
CN105395218A (en) * | 2015-11-10 | 2016-03-16 | 中国科学院声学研究所 | Ultrasonic elastic imaging system and method |
CN107157515A (en) * | 2017-05-12 | 2017-09-15 | 无锡祥生医学影像有限责任公司 | Ultrasound detection vascular system and method |
CN108158610A (en) * | 2018-01-16 | 2018-06-15 | 苏州国科昂卓医疗科技有限公司 | A kind of elastograph imaging method, device, equipment and ultrasound imaging probe |
CN211049410U (en) * | 2019-07-15 | 2020-07-21 | 无锡海斯凯尔医学技术有限公司 | Tissue imaging and parameter detection system |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011004661A1 (en) * | 2009-07-07 | 2011-01-13 | 株式会社 日立メディコ | Ultrasonic diagnosis apparatus and ultrasonic measurement method |
JP6415920B2 (en) * | 2014-10-06 | 2018-10-31 | キヤノンメディカルシステムズ株式会社 | Ultrasonic diagnostic equipment |
CN105816204A (en) * | 2016-03-10 | 2016-08-03 | 无锡海斯凯尔医学技术有限公司 | Method and device for automatically triggering elastic detection |
CN108095764B (en) * | 2018-01-18 | 2024-05-03 | 北京索瑞特医学技术有限公司 | Composite probe and measuring system |
CN109919918A (en) * | 2019-02-21 | 2019-06-21 | 清华大学 | Elastography control method and device, computer equipment and readable storage medium |
CN110301939A (en) * | 2019-07-15 | 2019-10-08 | 无锡海斯凯尔医学技术有限公司 | Imaging of tissue and parameter detecting system |
-
2019
- 2019-07-15 CN CN201910635814.5A patent/CN110301939A/en active Pending
-
2020
- 2020-05-15 WO PCT/CN2020/090549 patent/WO2021008217A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1728968A (en) * | 2002-10-28 | 2006-02-01 | 株式会社日立医药 | Biological tissue elasticity measurement method and ultrasonic diagnostic equipment |
CN1636519A (en) * | 2003-12-08 | 2005-07-13 | 株式会社东芝 | Ultrasonic diagnosing apparatus |
CN102283679A (en) * | 2011-08-04 | 2011-12-21 | 中国科学院深圳先进技术研究院 | Ultrasonic imaging system for elasticity measurement and method for measuring elasticity of biological tissue |
CN105395218A (en) * | 2015-11-10 | 2016-03-16 | 中国科学院声学研究所 | Ultrasonic elastic imaging system and method |
CN107157515A (en) * | 2017-05-12 | 2017-09-15 | 无锡祥生医学影像有限责任公司 | Ultrasound detection vascular system and method |
CN108158610A (en) * | 2018-01-16 | 2018-06-15 | 苏州国科昂卓医疗科技有限公司 | A kind of elastograph imaging method, device, equipment and ultrasound imaging probe |
CN211049410U (en) * | 2019-07-15 | 2020-07-21 | 无锡海斯凯尔医学技术有限公司 | Tissue imaging and parameter detection system |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021008217A1 (en) * | 2019-07-15 | 2021-01-21 | 无锡海斯凯尔医学技术有限公司 | Tissue imaging and parameter detection system |
WO2021008218A1 (en) * | 2019-07-15 | 2021-01-21 | 无锡海斯凯尔医学技术有限公司 | Probe and tissue elasticity measurement system |
CN110720948A (en) * | 2019-11-12 | 2020-01-24 | 无锡海斯凯尔医学技术有限公司 | Biological sign detection method based on ultrasonic detection system |
CN110720948B (en) * | 2019-11-12 | 2021-02-02 | 无锡海斯凯尔医学技术有限公司 | Biological sign detection method based on ultrasonic detection system |
WO2021226958A1 (en) * | 2020-05-14 | 2021-11-18 | 深圳迈瑞生物医疗电子股份有限公司 | Ultrasonic imaging apparatus and method |
CN112998759A (en) * | 2021-04-06 | 2021-06-22 | 无锡海斯凯尔医学技术有限公司 | Tissue elasticity detection method, device and system |
CN113093193A (en) * | 2021-04-06 | 2021-07-09 | 无锡海斯凯尔医学技术有限公司 | Ultrasonic signal triggering method, device and system |
CN113100816A (en) * | 2021-04-06 | 2021-07-13 | 无锡海斯凯尔医学技术有限公司 | Elasticity detection method and device |
WO2022213948A1 (en) * | 2021-04-06 | 2022-10-13 | 无锡海斯凯尔医学技术有限公司 | Elasticity detection method and apparatus |
Also Published As
Publication number | Publication date |
---|---|
WO2021008217A9 (en) | 2021-10-21 |
WO2021008217A1 (en) | 2021-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021008217A9 (en) | Tissue imaging and parameter detection system | |
CN105395218B (en) | Ultrasound elastography system and method | |
US12138122B2 (en) | Ultrasonic probe and ultrasonic detecting device provided with same | |
WO2021008218A1 (en) | Probe and tissue elasticity measurement system | |
JP5420884B2 (en) | Ultrasonic diagnostic equipment | |
US4622978A (en) | Ultrasonic diagnosing apparatus | |
JPWO2007063619A1 (en) | Ultrasonic diagnostic equipment | |
JP2008136855A (en) | Ultrasonic diagnostic apparatus | |
CN106175838B (en) | Backscattering ultrasonic bone diagnosis system based on array probe | |
CN105395217A (en) | probe | |
WO2013161289A1 (en) | Acoustic wave diagnosis device and image display method | |
JP2002253549A (en) | Ultrasonic image pickup device and method, and probe | |
CN108095765A (en) | Combined probe and measuring system | |
CN211049410U (en) | Tissue imaging and parameter detection system | |
CN108095766A (en) | Combined probe and measuring system | |
CN211049411U (en) | Probe and tissue elasticity detection system | |
CN113440158A (en) | Ultrasonic probe, ultrasonic imaging apparatus, and control method thereof | |
CN206526064U (en) | A kind of ultrasonic sclerotin diagnostic system of the back scattering based on array probe | |
KR101053286B1 (en) | Ultrasonic probes and ultrasonic diagnostic equipment | |
EP3031397B1 (en) | Ultrasound imaging apparatus | |
WO2023092329A1 (en) | Blood pressure measurement system and method based on single array-element ultrasonic pulse echo | |
CN106510766A (en) | Cartilage tissue elasticity measuring device and method thereof based on shear wave propagation | |
JP6138313B2 (en) | apparatus | |
KR102688130B1 (en) | Methods for measuring shear wave parameters and ultrasonic apparatus | |
JP5925267B2 (en) | measuring device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20191008 |
|
RJ01 | Rejection of invention patent application after publication |